1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* include/asm-generic/tlb.h
3 *
4 * Generic TLB shootdown code
5 *
6 * Copyright 2001 Red Hat, Inc.
7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 *
9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 */
11 #ifndef _ASM_GENERIC__TLB_H
12 #define _ASM_GENERIC__TLB_H
13
14 #include <linux/mmu_notifier.h>
15 #include <linux/swap.h>
16 #include <linux/hugetlb_inline.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19
20 /*
21 * Blindly accessing user memory from NMI context can be dangerous
22 * if we're in the middle of switching the current user task or switching
23 * the loaded mm.
24 */
25 #ifndef nmi_uaccess_okay
26 # define nmi_uaccess_okay() true
27 #endif
28
29 #ifdef CONFIG_MMU
30
31 /*
32 * Generic MMU-gather implementation.
33 *
34 * The mmu_gather data structure is used by the mm code to implement the
35 * correct and efficient ordering of freeing pages and TLB invalidations.
36 *
37 * This correct ordering is:
38 *
39 * 1) unhook page
40 * 2) TLB invalidate page
41 * 3) free page
42 *
43 * That is, we must never free a page before we have ensured there are no live
44 * translations left to it. Otherwise it might be possible to observe (or
45 * worse, change) the page content after it has been reused.
46 *
47 * The mmu_gather API consists of:
48 *
49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
50 *
51 * start and finish a mmu_gather
52 *
53 * Finish in particular will issue a (final) TLB invalidate and free
54 * all (remaining) queued pages.
55 *
56 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
57 *
58 * Defaults to flushing at tlb_end_vma() to reset the range; helps when
59 * there's large holes between the VMAs.
60 *
61 * - tlb_remove_table()
62 *
63 * tlb_remove_table() is the basic primitive to free page-table directories
64 * (__p*_free_tlb()). In it's most primitive form it is an alias for
65 * tlb_remove_page() below, for when page directories are pages and have no
66 * additional constraints.
67 *
68 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
69 *
70 * - tlb_remove_page() / __tlb_remove_page()
71 * - tlb_remove_page_size() / __tlb_remove_page_size()
72 *
73 * __tlb_remove_page_size() is the basic primitive that queues a page for
74 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
75 * boolean indicating if the queue is (now) full and a call to
76 * tlb_flush_mmu() is required.
77 *
78 * tlb_remove_page() and tlb_remove_page_size() imply the call to
79 * tlb_flush_mmu() when required and has no return value.
80 *
81 * - tlb_change_page_size()
82 *
83 * call before __tlb_remove_page*() to set the current page-size; implies a
84 * possible tlb_flush_mmu() call.
85 *
86 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
87 *
88 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
89 * related state, like the range)
90 *
91 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
92 * whatever pages are still batched.
93 *
94 * - mmu_gather::fullmm
95 *
96 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
97 * the entire mm; this allows a number of optimizations.
98 *
99 * - We can ignore tlb_{start,end}_vma(); because we don't
100 * care about ranges. Everything will be shot down.
101 *
102 * - (RISC) architectures that use ASIDs can cycle to a new ASID
103 * and delay the invalidation until ASID space runs out.
104 *
105 * - mmu_gather::need_flush_all
106 *
107 * A flag that can be set by the arch code if it wants to force
108 * flush the entire TLB irrespective of the range. For instance
109 * x86-PAE needs this when changing top-level entries.
110 *
111 * And allows the architecture to provide and implement tlb_flush():
112 *
113 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
114 * use of:
115 *
116 * - mmu_gather::start / mmu_gather::end
117 *
118 * which provides the range that needs to be flushed to cover the pages to
119 * be freed.
120 *
121 * - mmu_gather::freed_tables
122 *
123 * set when we freed page table pages
124 *
125 * - tlb_get_unmap_shift() / tlb_get_unmap_size()
126 *
127 * returns the smallest TLB entry size unmapped in this range.
128 *
129 * If an architecture does not provide tlb_flush() a default implementation
130 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
131 * specified, in which case we'll default to flush_tlb_mm().
132 *
133 * Additionally there are a few opt-in features:
134 *
135 * MMU_GATHER_PAGE_SIZE
136 *
137 * This ensures we call tlb_flush() every time tlb_change_page_size() actually
138 * changes the size and provides mmu_gather::page_size to tlb_flush().
139 *
140 * This might be useful if your architecture has size specific TLB
141 * invalidation instructions.
142 *
143 * MMU_GATHER_TABLE_FREE
144 *
145 * This provides tlb_remove_table(), to be used instead of tlb_remove_page()
146 * for page directores (__p*_free_tlb()).
147 *
148 * Useful if your architecture has non-page page directories.
149 *
150 * When used, an architecture is expected to provide __tlb_remove_table()
151 * which does the actual freeing of these pages.
152 *
153 * MMU_GATHER_RCU_TABLE_FREE
154 *
155 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
156 * comment below).
157 *
158 * Useful if your architecture doesn't use IPIs for remote TLB invalidates
159 * and therefore doesn't naturally serialize with software page-table walkers.
160 *
161 * MMU_GATHER_NO_FLUSH_CACHE
162 *
163 * Indicates the architecture has flush_cache_range() but it needs *NOT* be called
164 * before unmapping a VMA.
165 *
166 * NOTE: strictly speaking we shouldn't have this knob and instead rely on
167 * flush_cache_range() being a NOP, except Sparc64 seems to be
168 * different here.
169 *
170 * MMU_GATHER_MERGE_VMAS
171 *
172 * Indicates the architecture wants to merge ranges over VMAs; typical when
173 * multiple range invalidates are more expensive than a full invalidate.
174 *
175 * MMU_GATHER_NO_RANGE
176 *
177 * Use this if your architecture lacks an efficient flush_tlb_range(). This
178 * option implies MMU_GATHER_MERGE_VMAS above.
179 *
180 * MMU_GATHER_NO_GATHER
181 *
182 * If the option is set the mmu_gather will not track individual pages for
183 * delayed page free anymore. A platform that enables the option needs to
184 * provide its own implementation of the __tlb_remove_page_size() function to
185 * free pages.
186 *
187 * This is useful if your architecture already flushes TLB entries in the
188 * various ptep_get_and_clear() functions.
189 */
190
191 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
192
193 struct mmu_table_batch {
194 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
195 struct rcu_head rcu;
196 #endif
197 unsigned int nr;
198 void *tables[];
199 };
200
201 #define MAX_TABLE_BATCH \
202 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
203
204 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
205
206 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
207
208 /*
209 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
210 * page directories and we can use the normal page batching to free them.
211 */
212 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
213
214 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
215
216 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
217 /*
218 * This allows an architecture that does not use the linux page-tables for
219 * hardware to skip the TLBI when freeing page tables.
220 */
221 #ifndef tlb_needs_table_invalidate
222 #define tlb_needs_table_invalidate() (true)
223 #endif
224
225 void tlb_remove_table_sync_one(void);
226
227 #else
228
229 #ifdef tlb_needs_table_invalidate
230 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
231 #endif
232
tlb_remove_table_sync_one(void)233 static inline void tlb_remove_table_sync_one(void) { }
234
235 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
236
237
238 #ifndef CONFIG_MMU_GATHER_NO_GATHER
239 /*
240 * If we can't allocate a page to make a big batch of page pointers
241 * to work on, then just handle a few from the on-stack structure.
242 */
243 #define MMU_GATHER_BUNDLE 8
244
245 struct mmu_gather_batch {
246 struct mmu_gather_batch *next;
247 unsigned int nr;
248 unsigned int max;
249 struct encoded_page *encoded_pages[];
250 };
251
252 #define MAX_GATHER_BATCH \
253 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
254
255 /*
256 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
257 * lockups for non-preemptible kernels on huge machines when a lot of memory
258 * is zapped during unmapping.
259 * 10K pages freed at once should be safe even without a preemption point.
260 */
261 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
262
263 extern bool __tlb_remove_page_size(struct mmu_gather *tlb,
264 struct encoded_page *page,
265 int page_size);
266
267 #ifdef CONFIG_SMP
268 /*
269 * This both sets 'delayed_rmap', and returns true. It would be an inline
270 * function, except we define it before the 'struct mmu_gather'.
271 */
272 #define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true)
273 extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma);
274 #endif
275
276 #endif
277
278 /*
279 * We have a no-op version of the rmap removal that doesn't
280 * delay anything. That is used on S390, which flushes remote
281 * TLBs synchronously, and on UP, which doesn't have any
282 * remote TLBs to flush and is not preemptible due to this
283 * all happening under the page table lock.
284 */
285 #ifndef tlb_delay_rmap
286 #define tlb_delay_rmap(tlb) (false)
tlb_flush_rmaps(struct mmu_gather * tlb,struct vm_area_struct * vma)287 static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
288 #endif
289
290 /*
291 * struct mmu_gather is an opaque type used by the mm code for passing around
292 * any data needed by arch specific code for tlb_remove_page.
293 */
294 struct mmu_gather {
295 struct mm_struct *mm;
296
297 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
298 struct mmu_table_batch *batch;
299 #endif
300
301 unsigned long start;
302 unsigned long end;
303 /*
304 * we are in the middle of an operation to clear
305 * a full mm and can make some optimizations
306 */
307 unsigned int fullmm : 1;
308
309 /*
310 * we have performed an operation which
311 * requires a complete flush of the tlb
312 */
313 unsigned int need_flush_all : 1;
314
315 /*
316 * we have removed page directories
317 */
318 unsigned int freed_tables : 1;
319
320 /*
321 * Do we have pending delayed rmap removals?
322 */
323 unsigned int delayed_rmap : 1;
324
325 /*
326 * at which levels have we cleared entries?
327 */
328 unsigned int cleared_ptes : 1;
329 unsigned int cleared_pmds : 1;
330 unsigned int cleared_puds : 1;
331 unsigned int cleared_p4ds : 1;
332
333 /*
334 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
335 */
336 unsigned int vma_exec : 1;
337 unsigned int vma_huge : 1;
338 unsigned int vma_pfn : 1;
339
340 unsigned int batch_count;
341
342 #ifndef CONFIG_MMU_GATHER_NO_GATHER
343 struct mmu_gather_batch *active;
344 struct mmu_gather_batch local;
345 struct page *__pages[MMU_GATHER_BUNDLE];
346
347 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
348 unsigned int page_size;
349 #endif
350 #endif
351 };
352
353 void tlb_flush_mmu(struct mmu_gather *tlb);
354
__tlb_adjust_range(struct mmu_gather * tlb,unsigned long address,unsigned int range_size)355 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
356 unsigned long address,
357 unsigned int range_size)
358 {
359 tlb->start = min(tlb->start, address);
360 tlb->end = max(tlb->end, address + range_size);
361 }
362
__tlb_reset_range(struct mmu_gather * tlb)363 static inline void __tlb_reset_range(struct mmu_gather *tlb)
364 {
365 if (tlb->fullmm) {
366 tlb->start = tlb->end = ~0;
367 } else {
368 tlb->start = TASK_SIZE;
369 tlb->end = 0;
370 }
371 tlb->freed_tables = 0;
372 tlb->cleared_ptes = 0;
373 tlb->cleared_pmds = 0;
374 tlb->cleared_puds = 0;
375 tlb->cleared_p4ds = 0;
376 /*
377 * Do not reset mmu_gather::vma_* fields here, we do not
378 * call into tlb_start_vma() again to set them if there is an
379 * intermediate flush.
380 */
381 }
382
383 #ifdef CONFIG_MMU_GATHER_NO_RANGE
384
385 #if defined(tlb_flush)
386 #error MMU_GATHER_NO_RANGE relies on default tlb_flush()
387 #endif
388
389 /*
390 * When an architecture does not have efficient means of range flushing TLBs
391 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
392 * range small. We equally don't have to worry about page granularity or other
393 * things.
394 *
395 * All we need to do is issue a full flush for any !0 range.
396 */
tlb_flush(struct mmu_gather * tlb)397 static inline void tlb_flush(struct mmu_gather *tlb)
398 {
399 if (tlb->end)
400 flush_tlb_mm(tlb->mm);
401 }
402
403 #else /* CONFIG_MMU_GATHER_NO_RANGE */
404
405 #ifndef tlb_flush
406 /*
407 * When an architecture does not provide its own tlb_flush() implementation
408 * but does have a reasonably efficient flush_vma_range() implementation
409 * use that.
410 */
tlb_flush(struct mmu_gather * tlb)411 static inline void tlb_flush(struct mmu_gather *tlb)
412 {
413 if (tlb->fullmm || tlb->need_flush_all) {
414 flush_tlb_mm(tlb->mm);
415 } else if (tlb->end) {
416 struct vm_area_struct vma = {
417 .vm_mm = tlb->mm,
418 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) |
419 (tlb->vma_huge ? VM_HUGETLB : 0),
420 };
421
422 flush_tlb_range(&vma, tlb->start, tlb->end);
423 }
424 }
425 #endif
426
427 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
428
429 static inline void
tlb_update_vma_flags(struct mmu_gather * tlb,struct vm_area_struct * vma)430 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
431 {
432 /*
433 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
434 * mips-4k) flush only large pages.
435 *
436 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
437 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
438 * range.
439 *
440 * We rely on tlb_end_vma() to issue a flush, such that when we reset
441 * these values the batch is empty.
442 */
443 tlb->vma_huge = is_vm_hugetlb_page(vma);
444 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
445 tlb->vma_pfn = !!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP));
446 }
447
tlb_flush_mmu_tlbonly(struct mmu_gather * tlb)448 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
449 {
450 /*
451 * Anything calling __tlb_adjust_range() also sets at least one of
452 * these bits.
453 */
454 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
455 tlb->cleared_puds || tlb->cleared_p4ds))
456 return;
457
458 tlb_flush(tlb);
459 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
460 __tlb_reset_range(tlb);
461 }
462
tlb_remove_page_size(struct mmu_gather * tlb,struct page * page,int page_size)463 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
464 struct page *page, int page_size)
465 {
466 if (__tlb_remove_page_size(tlb, encode_page(page, 0), page_size))
467 tlb_flush_mmu(tlb);
468 }
469
__tlb_remove_page(struct mmu_gather * tlb,struct page * page,unsigned int flags)470 static __always_inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page, unsigned int flags)
471 {
472 return __tlb_remove_page_size(tlb, encode_page(page, flags), PAGE_SIZE);
473 }
474
475 /* tlb_remove_page
476 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
477 * required.
478 */
tlb_remove_page(struct mmu_gather * tlb,struct page * page)479 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
480 {
481 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
482 }
483
tlb_change_page_size(struct mmu_gather * tlb,unsigned int page_size)484 static inline void tlb_change_page_size(struct mmu_gather *tlb,
485 unsigned int page_size)
486 {
487 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
488 if (tlb->page_size && tlb->page_size != page_size) {
489 if (!tlb->fullmm && !tlb->need_flush_all)
490 tlb_flush_mmu(tlb);
491 }
492
493 tlb->page_size = page_size;
494 #endif
495 }
496
tlb_get_unmap_shift(struct mmu_gather * tlb)497 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
498 {
499 if (tlb->cleared_ptes)
500 return PAGE_SHIFT;
501 if (tlb->cleared_pmds)
502 return PMD_SHIFT;
503 if (tlb->cleared_puds)
504 return PUD_SHIFT;
505 if (tlb->cleared_p4ds)
506 return P4D_SHIFT;
507
508 return PAGE_SHIFT;
509 }
510
tlb_get_unmap_size(struct mmu_gather * tlb)511 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
512 {
513 return 1UL << tlb_get_unmap_shift(tlb);
514 }
515
516 /*
517 * In the case of tlb vma handling, we can optimise these away in the
518 * case where we're doing a full MM flush. When we're doing a munmap,
519 * the vmas are adjusted to only cover the region to be torn down.
520 */
tlb_start_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)521 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
522 {
523 if (tlb->fullmm)
524 return;
525
526 tlb_update_vma_flags(tlb, vma);
527 #ifndef CONFIG_MMU_GATHER_NO_FLUSH_CACHE
528 flush_cache_range(vma, vma->vm_start, vma->vm_end);
529 #endif
530 }
531
tlb_end_vma(struct mmu_gather * tlb,struct vm_area_struct * vma)532 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
533 {
534 if (tlb->fullmm)
535 return;
536
537 /*
538 * VM_PFNMAP is more fragile because the core mm will not track the
539 * page mapcount -- there might not be page-frames for these PFNs after
540 * all. Force flush TLBs for such ranges to avoid munmap() vs
541 * unmap_mapping_range() races.
542 */
543 if (tlb->vma_pfn || !IS_ENABLED(CONFIG_MMU_GATHER_MERGE_VMAS)) {
544 /*
545 * Do a TLB flush and reset the range at VMA boundaries; this avoids
546 * the ranges growing with the unused space between consecutive VMAs.
547 */
548 tlb_flush_mmu_tlbonly(tlb);
549 }
550 }
551
552 /*
553 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
554 * and set corresponding cleared_*.
555 */
tlb_flush_pte_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)556 static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
557 unsigned long address, unsigned long size)
558 {
559 __tlb_adjust_range(tlb, address, size);
560 tlb->cleared_ptes = 1;
561 }
562
tlb_flush_pmd_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)563 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
564 unsigned long address, unsigned long size)
565 {
566 __tlb_adjust_range(tlb, address, size);
567 tlb->cleared_pmds = 1;
568 }
569
tlb_flush_pud_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)570 static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
571 unsigned long address, unsigned long size)
572 {
573 __tlb_adjust_range(tlb, address, size);
574 tlb->cleared_puds = 1;
575 }
576
tlb_flush_p4d_range(struct mmu_gather * tlb,unsigned long address,unsigned long size)577 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
578 unsigned long address, unsigned long size)
579 {
580 __tlb_adjust_range(tlb, address, size);
581 tlb->cleared_p4ds = 1;
582 }
583
584 #ifndef __tlb_remove_tlb_entry
585 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
586 #endif
587
588 /**
589 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
590 *
591 * Record the fact that pte's were really unmapped by updating the range,
592 * so we can later optimise away the tlb invalidate. This helps when
593 * userspace is unmapping already-unmapped pages, which happens quite a lot.
594 */
595 #define tlb_remove_tlb_entry(tlb, ptep, address) \
596 do { \
597 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \
598 __tlb_remove_tlb_entry(tlb, ptep, address); \
599 } while (0)
600
601 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
602 do { \
603 unsigned long _sz = huge_page_size(h); \
604 if (_sz >= P4D_SIZE) \
605 tlb_flush_p4d_range(tlb, address, _sz); \
606 else if (_sz >= PUD_SIZE) \
607 tlb_flush_pud_range(tlb, address, _sz); \
608 else if (_sz >= PMD_SIZE) \
609 tlb_flush_pmd_range(tlb, address, _sz); \
610 else \
611 tlb_flush_pte_range(tlb, address, _sz); \
612 __tlb_remove_tlb_entry(tlb, ptep, address); \
613 } while (0)
614
615 /**
616 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
617 * This is a nop so far, because only x86 needs it.
618 */
619 #ifndef __tlb_remove_pmd_tlb_entry
620 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
621 #endif
622
623 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
624 do { \
625 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \
626 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
627 } while (0)
628
629 /**
630 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
631 * invalidation. This is a nop so far, because only x86 needs it.
632 */
633 #ifndef __tlb_remove_pud_tlb_entry
634 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
635 #endif
636
637 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
638 do { \
639 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \
640 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
641 } while (0)
642
643 /*
644 * For things like page tables caches (ie caching addresses "inside" the
645 * page tables, like x86 does), for legacy reasons, flushing an
646 * individual page had better flush the page table caches behind it. This
647 * is definitely how x86 works, for example. And if you have an
648 * architected non-legacy page table cache (which I'm not aware of
649 * anybody actually doing), you're going to have some architecturally
650 * explicit flushing for that, likely *separate* from a regular TLB entry
651 * flush, and thus you'd need more than just some range expansion..
652 *
653 * So if we ever find an architecture
654 * that would want something that odd, I think it is up to that
655 * architecture to do its own odd thing, not cause pain for others
656 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
657 *
658 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
659 */
660
661 #ifndef pte_free_tlb
662 #define pte_free_tlb(tlb, ptep, address) \
663 do { \
664 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \
665 tlb->freed_tables = 1; \
666 __pte_free_tlb(tlb, ptep, address); \
667 } while (0)
668 #endif
669
670 #ifndef pmd_free_tlb
671 #define pmd_free_tlb(tlb, pmdp, address) \
672 do { \
673 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \
674 tlb->freed_tables = 1; \
675 __pmd_free_tlb(tlb, pmdp, address); \
676 } while (0)
677 #endif
678
679 #ifndef pud_free_tlb
680 #define pud_free_tlb(tlb, pudp, address) \
681 do { \
682 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \
683 tlb->freed_tables = 1; \
684 __pud_free_tlb(tlb, pudp, address); \
685 } while (0)
686 #endif
687
688 #ifndef p4d_free_tlb
689 #define p4d_free_tlb(tlb, pudp, address) \
690 do { \
691 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
692 tlb->freed_tables = 1; \
693 __p4d_free_tlb(tlb, pudp, address); \
694 } while (0)
695 #endif
696
697 #ifndef pte_needs_flush
pte_needs_flush(pte_t oldpte,pte_t newpte)698 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
699 {
700 return true;
701 }
702 #endif
703
704 #ifndef huge_pmd_needs_flush
huge_pmd_needs_flush(pmd_t oldpmd,pmd_t newpmd)705 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
706 {
707 return true;
708 }
709 #endif
710
711 #endif /* CONFIG_MMU */
712
713 #endif /* _ASM_GENERIC__TLB_H */
714