1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15
16 struct folio_batch;
17
18 /*
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
23 */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 __GFP_NOLOCKDEP)
28
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
38 /*
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
41 */
42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
45 \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 __warned = true; \
48 WARN_ON(1); \
49 } \
50 unlikely(__ret_warn_once); \
51 })
52
53 void page_writeback_init(void);
54
55 /*
56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60 */
61 #define COMPOUND_MAPPED 0x800000
62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
63
64 /*
65 * How many individual pages have an elevated _mapcount. Excludes
66 * the folio's entire_mapcount.
67 */
folio_nr_pages_mapped(struct folio * folio)68 static inline int folio_nr_pages_mapped(struct folio *folio)
69 {
70 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
71 }
72
folio_raw_mapping(struct folio * folio)73 static inline void *folio_raw_mapping(struct folio *folio)
74 {
75 unsigned long mapping = (unsigned long)folio->mapping;
76
77 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
78 }
79
80 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
81 int nr_throttled);
acct_reclaim_writeback(struct folio * folio)82 static inline void acct_reclaim_writeback(struct folio *folio)
83 {
84 pg_data_t *pgdat = folio_pgdat(folio);
85 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
86
87 if (nr_throttled)
88 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
89 }
90
wake_throttle_isolated(pg_data_t * pgdat)91 static inline void wake_throttle_isolated(pg_data_t *pgdat)
92 {
93 wait_queue_head_t *wqh;
94
95 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
96 if (waitqueue_active(wqh))
97 wake_up(wqh);
98 }
99
100 vm_fault_t do_swap_page(struct vm_fault *vmf);
101 void folio_rotate_reclaimable(struct folio *folio);
102 bool __folio_end_writeback(struct folio *folio);
103 void deactivate_file_folio(struct folio *folio);
104 void folio_activate(struct folio *folio);
105
106 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
107 struct vm_area_struct *start_vma, unsigned long floor,
108 unsigned long ceiling);
109 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
110
111 struct zap_details;
112 void unmap_page_range(struct mmu_gather *tlb,
113 struct vm_area_struct *vma,
114 unsigned long addr, unsigned long end,
115 struct zap_details *details);
116
117 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
118 unsigned int order);
119 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)120 static inline void force_page_cache_readahead(struct address_space *mapping,
121 struct file *file, pgoff_t index, unsigned long nr_to_read)
122 {
123 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
124 force_page_cache_ra(&ractl, nr_to_read);
125 }
126
127 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
128 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
129 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
130 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
131 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
132 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
133 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
134 loff_t end);
135 long invalidate_inode_page(struct page *page);
136 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
137 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
138
139 /**
140 * folio_evictable - Test whether a folio is evictable.
141 * @folio: The folio to test.
142 *
143 * Test whether @folio is evictable -- i.e., should be placed on
144 * active/inactive lists vs unevictable list.
145 *
146 * Reasons folio might not be evictable:
147 * 1. folio's mapping marked unevictable
148 * 2. One of the pages in the folio is part of an mlocked VMA
149 */
folio_evictable(struct folio * folio)150 static inline bool folio_evictable(struct folio *folio)
151 {
152 bool ret;
153
154 /* Prevent address_space of inode and swap cache from being freed */
155 rcu_read_lock();
156 ret = !mapping_unevictable(folio_mapping(folio)) &&
157 !folio_test_mlocked(folio);
158 rcu_read_unlock();
159 return ret;
160 }
161
162 /*
163 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
164 * a count of one.
165 */
set_page_refcounted(struct page * page)166 static inline void set_page_refcounted(struct page *page)
167 {
168 VM_BUG_ON_PAGE(PageTail(page), page);
169 VM_BUG_ON_PAGE(page_ref_count(page), page);
170 set_page_count(page, 1);
171 }
172
173 extern unsigned long highest_memmap_pfn;
174
175 /*
176 * Maximum number of reclaim retries without progress before the OOM
177 * killer is consider the only way forward.
178 */
179 #define MAX_RECLAIM_RETRIES 16
180
181 /*
182 * in mm/early_ioremap.c
183 */
184 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
185 unsigned long size, pgprot_t prot);
186
187 /*
188 * in mm/vmscan.c:
189 */
190 bool isolate_lru_page(struct page *page);
191 bool folio_isolate_lru(struct folio *folio);
192 void putback_lru_page(struct page *page);
193 void folio_putback_lru(struct folio *folio);
194 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
195
196 /*
197 * in mm/rmap.c:
198 */
199 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
200
201 /*
202 * in mm/page_alloc.c
203 */
204
205 /*
206 * Structure for holding the mostly immutable allocation parameters passed
207 * between functions involved in allocations, including the alloc_pages*
208 * family of functions.
209 *
210 * nodemask, migratetype and highest_zoneidx are initialized only once in
211 * __alloc_pages() and then never change.
212 *
213 * zonelist, preferred_zone and highest_zoneidx are set first in
214 * __alloc_pages() for the fast path, and might be later changed
215 * in __alloc_pages_slowpath(). All other functions pass the whole structure
216 * by a const pointer.
217 */
218 struct alloc_context {
219 struct zonelist *zonelist;
220 nodemask_t *nodemask;
221 struct zoneref *preferred_zoneref;
222 int migratetype;
223
224 /*
225 * highest_zoneidx represents highest usable zone index of
226 * the allocation request. Due to the nature of the zone,
227 * memory on lower zone than the highest_zoneidx will be
228 * protected by lowmem_reserve[highest_zoneidx].
229 *
230 * highest_zoneidx is also used by reclaim/compaction to limit
231 * the target zone since higher zone than this index cannot be
232 * usable for this allocation request.
233 */
234 enum zone_type highest_zoneidx;
235 bool spread_dirty_pages;
236 };
237
238 /*
239 * This function returns the order of a free page in the buddy system. In
240 * general, page_zone(page)->lock must be held by the caller to prevent the
241 * page from being allocated in parallel and returning garbage as the order.
242 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
243 * page cannot be allocated or merged in parallel. Alternatively, it must
244 * handle invalid values gracefully, and use buddy_order_unsafe() below.
245 */
buddy_order(struct page * page)246 static inline unsigned int buddy_order(struct page *page)
247 {
248 /* PageBuddy() must be checked by the caller */
249 return page_private(page);
250 }
251
252 /*
253 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
254 * PageBuddy() should be checked first by the caller to minimize race window,
255 * and invalid values must be handled gracefully.
256 *
257 * READ_ONCE is used so that if the caller assigns the result into a local
258 * variable and e.g. tests it for valid range before using, the compiler cannot
259 * decide to remove the variable and inline the page_private(page) multiple
260 * times, potentially observing different values in the tests and the actual
261 * use of the result.
262 */
263 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
264
265 /*
266 * This function checks whether a page is free && is the buddy
267 * we can coalesce a page and its buddy if
268 * (a) the buddy is not in a hole (check before calling!) &&
269 * (b) the buddy is in the buddy system &&
270 * (c) a page and its buddy have the same order &&
271 * (d) a page and its buddy are in the same zone.
272 *
273 * For recording whether a page is in the buddy system, we set PageBuddy.
274 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
275 *
276 * For recording page's order, we use page_private(page).
277 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)278 static inline bool page_is_buddy(struct page *page, struct page *buddy,
279 unsigned int order)
280 {
281 if (!page_is_guard(buddy) && !PageBuddy(buddy))
282 return false;
283
284 if (buddy_order(buddy) != order)
285 return false;
286
287 /*
288 * zone check is done late to avoid uselessly calculating
289 * zone/node ids for pages that could never merge.
290 */
291 if (page_zone_id(page) != page_zone_id(buddy))
292 return false;
293
294 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
295
296 return true;
297 }
298
299 /*
300 * Locate the struct page for both the matching buddy in our
301 * pair (buddy1) and the combined O(n+1) page they form (page).
302 *
303 * 1) Any buddy B1 will have an order O twin B2 which satisfies
304 * the following equation:
305 * B2 = B1 ^ (1 << O)
306 * For example, if the starting buddy (buddy2) is #8 its order
307 * 1 buddy is #10:
308 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
309 *
310 * 2) Any buddy B will have an order O+1 parent P which
311 * satisfies the following equation:
312 * P = B & ~(1 << O)
313 *
314 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
315 */
316 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)317 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
318 {
319 return page_pfn ^ (1 << order);
320 }
321
322 /*
323 * Find the buddy of @page and validate it.
324 * @page: The input page
325 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
326 * function is used in the performance-critical __free_one_page().
327 * @order: The order of the page
328 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
329 * page_to_pfn().
330 *
331 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
332 * not the same as @page. The validation is necessary before use it.
333 *
334 * Return: the found buddy page or NULL if not found.
335 */
find_buddy_page_pfn(struct page * page,unsigned long pfn,unsigned int order,unsigned long * buddy_pfn)336 static inline struct page *find_buddy_page_pfn(struct page *page,
337 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
338 {
339 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
340 struct page *buddy;
341
342 buddy = page + (__buddy_pfn - pfn);
343 if (buddy_pfn)
344 *buddy_pfn = __buddy_pfn;
345
346 if (page_is_buddy(page, buddy, order))
347 return buddy;
348 return NULL;
349 }
350
351 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
352 unsigned long end_pfn, struct zone *zone);
353
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)354 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
355 unsigned long end_pfn, struct zone *zone)
356 {
357 if (zone->contiguous)
358 return pfn_to_page(start_pfn);
359
360 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
361 }
362
363 extern int __isolate_free_page(struct page *page, unsigned int order);
364 extern void __putback_isolated_page(struct page *page, unsigned int order,
365 int mt);
366 extern void memblock_free_pages(struct page *page, unsigned long pfn,
367 unsigned int order);
368 extern void __free_pages_core(struct page *page, unsigned int order);
369 extern void prep_compound_page(struct page *page, unsigned int order);
370 extern void post_alloc_hook(struct page *page, unsigned int order,
371 gfp_t gfp_flags);
372 extern int user_min_free_kbytes;
373
374 extern void free_unref_page(struct page *page, unsigned int order);
375 extern void free_unref_page_list(struct list_head *list);
376
377 extern void zone_pcp_reset(struct zone *zone);
378 extern void zone_pcp_disable(struct zone *zone);
379 extern void zone_pcp_enable(struct zone *zone);
380
381 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
382 phys_addr_t min_addr,
383 int nid, bool exact_nid);
384
385 int split_free_page(struct page *free_page,
386 unsigned int order, unsigned long split_pfn_offset);
387
388 /*
389 * This will have no effect, other than possibly generating a warning, if the
390 * caller passes in a non-large folio.
391 */
folio_set_order(struct folio * folio,unsigned int order)392 static inline void folio_set_order(struct folio *folio, unsigned int order)
393 {
394 if (WARN_ON_ONCE(!folio_test_large(folio)))
395 return;
396
397 folio->_folio_order = order;
398 #ifdef CONFIG_64BIT
399 /*
400 * When hugetlb dissolves a folio, we need to clear the tail
401 * page, rather than setting nr_pages to 1.
402 */
403 folio->_folio_nr_pages = order ? 1U << order : 0;
404 #endif
405 }
406
407 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
408
409 /*
410 * in mm/compaction.c
411 */
412 /*
413 * compact_control is used to track pages being migrated and the free pages
414 * they are being migrated to during memory compaction. The free_pfn starts
415 * at the end of a zone and migrate_pfn begins at the start. Movable pages
416 * are moved to the end of a zone during a compaction run and the run
417 * completes when free_pfn <= migrate_pfn
418 */
419 struct compact_control {
420 struct list_head freepages; /* List of free pages to migrate to */
421 struct list_head migratepages; /* List of pages being migrated */
422 unsigned int nr_freepages; /* Number of isolated free pages */
423 unsigned int nr_migratepages; /* Number of pages to migrate */
424 unsigned long free_pfn; /* isolate_freepages search base */
425 /*
426 * Acts as an in/out parameter to page isolation for migration.
427 * isolate_migratepages uses it as a search base.
428 * isolate_migratepages_block will update the value to the next pfn
429 * after the last isolated one.
430 */
431 unsigned long migrate_pfn;
432 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
433 struct zone *zone;
434 unsigned long total_migrate_scanned;
435 unsigned long total_free_scanned;
436 unsigned short fast_search_fail;/* failures to use free list searches */
437 short search_order; /* order to start a fast search at */
438 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
439 int order; /* order a direct compactor needs */
440 int migratetype; /* migratetype of direct compactor */
441 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
442 const int highest_zoneidx; /* zone index of a direct compactor */
443 enum migrate_mode mode; /* Async or sync migration mode */
444 bool ignore_skip_hint; /* Scan blocks even if marked skip */
445 bool no_set_skip_hint; /* Don't mark blocks for skipping */
446 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
447 bool direct_compaction; /* False from kcompactd or /proc/... */
448 bool proactive_compaction; /* kcompactd proactive compaction */
449 bool whole_zone; /* Whole zone should/has been scanned */
450 bool contended; /* Signal lock contention */
451 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
452 * when there are potentially transient
453 * isolation or migration failures to
454 * ensure forward progress.
455 */
456 bool alloc_contig; /* alloc_contig_range allocation */
457 };
458
459 /*
460 * Used in direct compaction when a page should be taken from the freelists
461 * immediately when one is created during the free path.
462 */
463 struct capture_control {
464 struct compact_control *cc;
465 struct page *page;
466 };
467
468 unsigned long
469 isolate_freepages_range(struct compact_control *cc,
470 unsigned long start_pfn, unsigned long end_pfn);
471 int
472 isolate_migratepages_range(struct compact_control *cc,
473 unsigned long low_pfn, unsigned long end_pfn);
474
475 int __alloc_contig_migrate_range(struct compact_control *cc,
476 unsigned long start, unsigned long end);
477 #endif
478 int find_suitable_fallback(struct free_area *area, unsigned int order,
479 int migratetype, bool only_stealable, bool *can_steal);
480
481 /*
482 * These three helpers classifies VMAs for virtual memory accounting.
483 */
484
485 /*
486 * Executable code area - executable, not writable, not stack
487 */
is_exec_mapping(vm_flags_t flags)488 static inline bool is_exec_mapping(vm_flags_t flags)
489 {
490 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
491 }
492
493 /*
494 * Stack area - automatically grows in one direction
495 *
496 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
497 * do_mmap() forbids all other combinations.
498 */
is_stack_mapping(vm_flags_t flags)499 static inline bool is_stack_mapping(vm_flags_t flags)
500 {
501 return (flags & VM_STACK) == VM_STACK;
502 }
503
504 /*
505 * Data area - private, writable, not stack
506 */
is_data_mapping(vm_flags_t flags)507 static inline bool is_data_mapping(vm_flags_t flags)
508 {
509 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
510 }
511
512 /* mm/util.c */
513 struct anon_vma *folio_anon_vma(struct folio *folio);
514
515 #ifdef CONFIG_MMU
516 void unmap_mapping_folio(struct folio *folio);
517 extern long populate_vma_page_range(struct vm_area_struct *vma,
518 unsigned long start, unsigned long end, int *locked);
519 extern long faultin_vma_page_range(struct vm_area_struct *vma,
520 unsigned long start, unsigned long end,
521 bool write, int *locked);
522 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
523 unsigned long len);
524 /*
525 * mlock_vma_folio() and munlock_vma_folio():
526 * should be called with vma's mmap_lock held for read or write,
527 * under page table lock for the pte/pmd being added or removed.
528 *
529 * mlock is usually called at the end of page_add_*_rmap(), munlock at
530 * the end of page_remove_rmap(); but new anon folios are managed by
531 * folio_add_lru_vma() calling mlock_new_folio().
532 *
533 * @compound is used to include pmd mappings of THPs, but filter out
534 * pte mappings of THPs, which cannot be consistently counted: a pte
535 * mapping of the THP head cannot be distinguished by the page alone.
536 */
537 void mlock_folio(struct folio *folio);
mlock_vma_folio(struct folio * folio,struct vm_area_struct * vma,bool compound)538 static inline void mlock_vma_folio(struct folio *folio,
539 struct vm_area_struct *vma, bool compound)
540 {
541 /*
542 * The VM_SPECIAL check here serves two purposes.
543 * 1) VM_IO check prevents migration from double-counting during mlock.
544 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
545 * is never left set on a VM_SPECIAL vma, there is an interval while
546 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
547 * still be set while VM_SPECIAL bits are added: so ignore it then.
548 */
549 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
550 (compound || !folio_test_large(folio)))
551 mlock_folio(folio);
552 }
553
554 void munlock_folio(struct folio *folio);
munlock_vma_folio(struct folio * folio,struct vm_area_struct * vma,bool compound)555 static inline void munlock_vma_folio(struct folio *folio,
556 struct vm_area_struct *vma, bool compound)
557 {
558 if (unlikely(vma->vm_flags & VM_LOCKED) &&
559 (compound || !folio_test_large(folio)))
560 munlock_folio(folio);
561 }
562
563 void mlock_new_folio(struct folio *folio);
564 bool need_mlock_drain(int cpu);
565 void mlock_drain_local(void);
566 void mlock_drain_remote(int cpu);
567
568 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
569
570 /*
571 * Return the start of user virtual address at the specific offset within
572 * a vma.
573 */
574 static inline unsigned long
vma_pgoff_address(pgoff_t pgoff,unsigned long nr_pages,struct vm_area_struct * vma)575 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
576 struct vm_area_struct *vma)
577 {
578 unsigned long address;
579
580 if (pgoff >= vma->vm_pgoff) {
581 address = vma->vm_start +
582 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
583 /* Check for address beyond vma (or wrapped through 0?) */
584 if (address < vma->vm_start || address >= vma->vm_end)
585 address = -EFAULT;
586 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
587 /* Test above avoids possibility of wrap to 0 on 32-bit */
588 address = vma->vm_start;
589 } else {
590 address = -EFAULT;
591 }
592 return address;
593 }
594
595 /*
596 * Return the start of user virtual address of a page within a vma.
597 * Returns -EFAULT if all of the page is outside the range of vma.
598 * If page is a compound head, the entire compound page is considered.
599 */
600 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)601 vma_address(struct page *page, struct vm_area_struct *vma)
602 {
603 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
604 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
605 }
606
607 /*
608 * Then at what user virtual address will none of the range be found in vma?
609 * Assumes that vma_address() already returned a good starting address.
610 */
vma_address_end(struct page_vma_mapped_walk * pvmw)611 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
612 {
613 struct vm_area_struct *vma = pvmw->vma;
614 pgoff_t pgoff;
615 unsigned long address;
616
617 /* Common case, plus ->pgoff is invalid for KSM */
618 if (pvmw->nr_pages == 1)
619 return pvmw->address + PAGE_SIZE;
620
621 pgoff = pvmw->pgoff + pvmw->nr_pages;
622 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
623 /* Check for address beyond vma (or wrapped through 0?) */
624 if (address < vma->vm_start || address > vma->vm_end)
625 address = vma->vm_end;
626 return address;
627 }
628
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)629 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
630 struct file *fpin)
631 {
632 int flags = vmf->flags;
633
634 if (fpin)
635 return fpin;
636
637 /*
638 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
639 * anything, so we only pin the file and drop the mmap_lock if only
640 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
641 */
642 if (fault_flag_allow_retry_first(flags) &&
643 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
644 fpin = get_file(vmf->vma->vm_file);
645 mmap_read_unlock(vmf->vma->vm_mm);
646 }
647 return fpin;
648 }
649 #else /* !CONFIG_MMU */
unmap_mapping_folio(struct folio * folio)650 static inline void unmap_mapping_folio(struct folio *folio) { }
mlock_new_folio(struct folio * folio)651 static inline void mlock_new_folio(struct folio *folio) { }
need_mlock_drain(int cpu)652 static inline bool need_mlock_drain(int cpu) { return false; }
mlock_drain_local(void)653 static inline void mlock_drain_local(void) { }
mlock_drain_remote(int cpu)654 static inline void mlock_drain_remote(int cpu) { }
vunmap_range_noflush(unsigned long start,unsigned long end)655 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
656 {
657 }
658 #endif /* !CONFIG_MMU */
659
660 /* Memory initialisation debug and verification */
661 enum mminit_level {
662 MMINIT_WARNING,
663 MMINIT_VERIFY,
664 MMINIT_TRACE
665 };
666
667 #ifdef CONFIG_DEBUG_MEMORY_INIT
668
669 extern int mminit_loglevel;
670
671 #define mminit_dprintk(level, prefix, fmt, arg...) \
672 do { \
673 if (level < mminit_loglevel) { \
674 if (level <= MMINIT_WARNING) \
675 pr_warn("mminit::" prefix " " fmt, ##arg); \
676 else \
677 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
678 } \
679 } while (0)
680
681 extern void mminit_verify_pageflags_layout(void);
682 extern void mminit_verify_zonelist(void);
683 #else
684
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)685 static inline void mminit_dprintk(enum mminit_level level,
686 const char *prefix, const char *fmt, ...)
687 {
688 }
689
mminit_verify_pageflags_layout(void)690 static inline void mminit_verify_pageflags_layout(void)
691 {
692 }
693
mminit_verify_zonelist(void)694 static inline void mminit_verify_zonelist(void)
695 {
696 }
697 #endif /* CONFIG_DEBUG_MEMORY_INIT */
698
699 #define NODE_RECLAIM_NOSCAN -2
700 #define NODE_RECLAIM_FULL -1
701 #define NODE_RECLAIM_SOME 0
702 #define NODE_RECLAIM_SUCCESS 1
703
704 #ifdef CONFIG_NUMA
705 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
706 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
707 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)708 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
709 unsigned int order)
710 {
711 return NODE_RECLAIM_NOSCAN;
712 }
find_next_best_node(int node,nodemask_t * used_node_mask)713 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
714 {
715 return NUMA_NO_NODE;
716 }
717 #endif
718
719 /*
720 * mm/memory-failure.c
721 */
722 extern int hwpoison_filter(struct page *p);
723
724 extern u32 hwpoison_filter_dev_major;
725 extern u32 hwpoison_filter_dev_minor;
726 extern u64 hwpoison_filter_flags_mask;
727 extern u64 hwpoison_filter_flags_value;
728 extern u64 hwpoison_filter_memcg;
729 extern u32 hwpoison_filter_enable;
730
731 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
732 unsigned long, unsigned long,
733 unsigned long, unsigned long);
734
735 extern void set_pageblock_order(void);
736 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
737 struct list_head *page_list);
738 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
739 #define ALLOC_WMARK_MIN WMARK_MIN
740 #define ALLOC_WMARK_LOW WMARK_LOW
741 #define ALLOC_WMARK_HIGH WMARK_HIGH
742 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
743
744 /* Mask to get the watermark bits */
745 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
746
747 /*
748 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
749 * cannot assume a reduced access to memory reserves is sufficient for
750 * !MMU
751 */
752 #ifdef CONFIG_MMU
753 #define ALLOC_OOM 0x08
754 #else
755 #define ALLOC_OOM ALLOC_NO_WATERMARKS
756 #endif
757
758 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
759 * to 25% of the min watermark or
760 * 62.5% if __GFP_HIGH is set.
761 */
762 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
763 * of the min watermark.
764 */
765 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
766 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
767 #ifdef CONFIG_ZONE_DMA32
768 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
769 #else
770 #define ALLOC_NOFRAGMENT 0x0
771 #endif
772 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
773 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
774
775 /* Flags that allow allocations below the min watermark. */
776 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
777
778 enum ttu_flags;
779 struct tlbflush_unmap_batch;
780
781
782 /*
783 * only for MM internal work items which do not depend on
784 * any allocations or locks which might depend on allocations
785 */
786 extern struct workqueue_struct *mm_percpu_wq;
787
788 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
789 void try_to_unmap_flush(void);
790 void try_to_unmap_flush_dirty(void);
791 void flush_tlb_batched_pending(struct mm_struct *mm);
792 #else
try_to_unmap_flush(void)793 static inline void try_to_unmap_flush(void)
794 {
795 }
try_to_unmap_flush_dirty(void)796 static inline void try_to_unmap_flush_dirty(void)
797 {
798 }
flush_tlb_batched_pending(struct mm_struct * mm)799 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
800 {
801 }
802 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
803
804 extern const struct trace_print_flags pageflag_names[];
805 extern const struct trace_print_flags vmaflag_names[];
806 extern const struct trace_print_flags gfpflag_names[];
807
is_migrate_highatomic(enum migratetype migratetype)808 static inline bool is_migrate_highatomic(enum migratetype migratetype)
809 {
810 return migratetype == MIGRATE_HIGHATOMIC;
811 }
812
is_migrate_highatomic_page(struct page * page)813 static inline bool is_migrate_highatomic_page(struct page *page)
814 {
815 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
816 }
817
818 void setup_zone_pageset(struct zone *zone);
819
820 struct migration_target_control {
821 int nid; /* preferred node id */
822 nodemask_t *nmask;
823 gfp_t gfp_mask;
824 };
825
826 /*
827 * mm/filemap.c
828 */
829 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
830 struct folio *folio, loff_t fpos, size_t size);
831
832 /*
833 * mm/vmalloc.c
834 */
835 #ifdef CONFIG_MMU
836 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
837 pgprot_t prot, struct page **pages, unsigned int page_shift);
838 #else
839 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)840 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
841 pgprot_t prot, struct page **pages, unsigned int page_shift)
842 {
843 return -EINVAL;
844 }
845 #endif
846
847 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
848 pgprot_t prot, struct page **pages,
849 unsigned int page_shift);
850
851 void vunmap_range_noflush(unsigned long start, unsigned long end);
852
853 void __vunmap_range_noflush(unsigned long start, unsigned long end);
854
855 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
856 unsigned long addr, int page_nid, int *flags);
857
858 void free_zone_device_page(struct page *page);
859 int migrate_device_coherent_page(struct page *page);
860
861 /*
862 * mm/gup.c
863 */
864 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
865 int __must_check try_grab_page(struct page *page, unsigned int flags);
866
867 enum {
868 /* mark page accessed */
869 FOLL_TOUCH = 1 << 16,
870 /* a retry, previous pass started an IO */
871 FOLL_TRIED = 1 << 17,
872 /* we are working on non-current tsk/mm */
873 FOLL_REMOTE = 1 << 18,
874 /* pages must be released via unpin_user_page */
875 FOLL_PIN = 1 << 19,
876 /* gup_fast: prevent fall-back to slow gup */
877 FOLL_FAST_ONLY = 1 << 20,
878 /* allow unlocking the mmap lock */
879 FOLL_UNLOCKABLE = 1 << 21,
880 };
881
882 /*
883 * Indicates for which pages that are write-protected in the page table,
884 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
885 * GUP pin will remain consistent with the pages mapped into the page tables
886 * of the MM.
887 *
888 * Temporary unmapping of PageAnonExclusive() pages or clearing of
889 * PageAnonExclusive() has to protect against concurrent GUP:
890 * * Ordinary GUP: Using the PT lock
891 * * GUP-fast and fork(): mm->write_protect_seq
892 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
893 * page_try_share_anon_rmap()
894 *
895 * Must be called with the (sub)page that's actually referenced via the
896 * page table entry, which might not necessarily be the head page for a
897 * PTE-mapped THP.
898 *
899 * If the vma is NULL, we're coming from the GUP-fast path and might have
900 * to fallback to the slow path just to lookup the vma.
901 */
gup_must_unshare(struct vm_area_struct * vma,unsigned int flags,struct page * page)902 static inline bool gup_must_unshare(struct vm_area_struct *vma,
903 unsigned int flags, struct page *page)
904 {
905 /*
906 * FOLL_WRITE is implicitly handled correctly as the page table entry
907 * has to be writable -- and if it references (part of) an anonymous
908 * folio, that part is required to be marked exclusive.
909 */
910 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
911 return false;
912 /*
913 * Note: PageAnon(page) is stable until the page is actually getting
914 * freed.
915 */
916 if (!PageAnon(page)) {
917 /*
918 * We only care about R/O long-term pining: R/O short-term
919 * pinning does not have the semantics to observe successive
920 * changes through the process page tables.
921 */
922 if (!(flags & FOLL_LONGTERM))
923 return false;
924
925 /* We really need the vma ... */
926 if (!vma)
927 return true;
928
929 /*
930 * ... because we only care about writable private ("COW")
931 * mappings where we have to break COW early.
932 */
933 return is_cow_mapping(vma->vm_flags);
934 }
935
936 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
937 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
938 smp_rmb();
939
940 /*
941 * Note that PageKsm() pages cannot be exclusive, and consequently,
942 * cannot get pinned.
943 */
944 return !PageAnonExclusive(page);
945 }
946
947 extern bool mirrored_kernelcore;
948
vma_soft_dirty_enabled(struct vm_area_struct * vma)949 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
950 {
951 /*
952 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
953 * enablements, because when without soft-dirty being compiled in,
954 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
955 * will be constantly true.
956 */
957 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
958 return false;
959
960 /*
961 * Soft-dirty is kind of special: its tracking is enabled when the
962 * vma flags not set.
963 */
964 return !(vma->vm_flags & VM_SOFTDIRTY);
965 }
966
967 /*
968 * VMA Iterator functions shared between nommu and mmap
969 */
vma_iter_prealloc(struct vma_iterator * vmi)970 static inline int vma_iter_prealloc(struct vma_iterator *vmi)
971 {
972 return mas_preallocate(&vmi->mas, GFP_KERNEL);
973 }
974
vma_iter_clear(struct vma_iterator * vmi,unsigned long start,unsigned long end)975 static inline void vma_iter_clear(struct vma_iterator *vmi,
976 unsigned long start, unsigned long end)
977 {
978 mas_set_range(&vmi->mas, start, end - 1);
979 mas_store_prealloc(&vmi->mas, NULL);
980 }
981
vma_iter_load(struct vma_iterator * vmi)982 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
983 {
984 return mas_walk(&vmi->mas);
985 }
986
987 /* Store a VMA with preallocated memory */
vma_iter_store(struct vma_iterator * vmi,struct vm_area_struct * vma)988 static inline void vma_iter_store(struct vma_iterator *vmi,
989 struct vm_area_struct *vma)
990 {
991
992 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
993 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.index > vma->vm_start)) {
994 printk("%lu > %lu\n", vmi->mas.index, vma->vm_start);
995 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
996 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last);
997 mt_dump(vmi->mas.tree);
998 }
999 if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.last < vma->vm_start)) {
1000 printk("%lu < %lu\n", vmi->mas.last, vma->vm_start);
1001 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
1002 printk("into slot %lu-%lu", vmi->mas.index, vmi->mas.last);
1003 mt_dump(vmi->mas.tree);
1004 }
1005 #endif
1006
1007 if (vmi->mas.node != MAS_START &&
1008 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1009 vma_iter_invalidate(vmi);
1010
1011 vmi->mas.index = vma->vm_start;
1012 vmi->mas.last = vma->vm_end - 1;
1013 mas_store_prealloc(&vmi->mas, vma);
1014 }
1015
vma_iter_store_gfp(struct vma_iterator * vmi,struct vm_area_struct * vma,gfp_t gfp)1016 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1017 struct vm_area_struct *vma, gfp_t gfp)
1018 {
1019 if (vmi->mas.node != MAS_START &&
1020 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1021 vma_iter_invalidate(vmi);
1022
1023 vmi->mas.index = vma->vm_start;
1024 vmi->mas.last = vma->vm_end - 1;
1025 mas_store_gfp(&vmi->mas, vma, gfp);
1026 if (unlikely(mas_is_err(&vmi->mas)))
1027 return -ENOMEM;
1028
1029 return 0;
1030 }
1031
1032 /*
1033 * VMA lock generalization
1034 */
1035 struct vma_prepare {
1036 struct vm_area_struct *vma;
1037 struct vm_area_struct *adj_next;
1038 struct file *file;
1039 struct address_space *mapping;
1040 struct anon_vma *anon_vma;
1041 struct vm_area_struct *insert;
1042 struct vm_area_struct *remove;
1043 struct vm_area_struct *remove2;
1044 };
1045 #endif /* __MM_INTERNAL_H */
1046