1 /*
2  * Copyright (c) 2017 - 2020, Nordic Semiconductor ASA
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice, this
9  *    list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its
16  *    contributors may be used to endorse or promote products derived from this
17  *    software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #ifndef NRFX_COMMON_H__
33 #define NRFX_COMMON_H__
34 
35 #include <stdint.h>
36 #include <stddef.h>
37 #include <stdbool.h>
38 
39 #include <nrf.h>
40 #include <nrf_peripherals.h>
41 
42 #ifdef __cplusplus
43 extern "C" {
44 #endif
45 
46 #ifndef NRFX_STATIC_INLINE
47 #ifdef NRFX_DECLARE_ONLY
48 #define NRFX_STATIC_INLINE
49 #else
50 #define NRFX_STATIC_INLINE __STATIC_INLINE
51 #endif
52 #endif // NRFX_STATIC_INLINE
53 
54 #ifndef NRF_STATIC_INLINE
55 #ifdef NRF_DECLARE_ONLY
56 #define NRF_STATIC_INLINE
57 #else
58 #define NRF_STATIC_INLINE __STATIC_INLINE
59 #endif
60 #endif // NRF_STATIC_INLINE
61 
62 /**
63  * @defgroup nrfx_common Common module
64  * @{
65  * @ingroup nrfx
66  * @brief Common module.
67  */
68 
69 /**
70  * @brief Macro for checking if the specified identifier is defined and it has
71  *        a non-zero value.
72  *
73  * Normally, preprocessors treat all undefined identifiers as having the value
74  * zero. However, some tools, like static code analyzers, can issue a warning
75  * when such identifier is evaluated. This macro gives the possibility to suppress
76  * such warnings only in places where this macro is used for evaluation, not in
77  * the whole analyzed code.
78  */
79 #define NRFX_CHECK(module_enabled)  (module_enabled)
80 
81 /**
82  * @brief Macro for concatenating two tokens in macro expansion.
83  *
84  * @note This macro is expanded in two steps so that tokens given as macros
85  *       themselves are fully expanded before they are merged.
86  *
87  * @param[in] p1 First token.
88  * @param[in] p2 Second token.
89  *
90  * @return The two tokens merged into one, unless they cannot together form
91  *         a valid token (in such case, the preprocessor issues a warning and
92  *         does not perform the concatenation).
93  *
94  * @sa NRFX_CONCAT_3
95  */
96 #define NRFX_CONCAT_2(p1, p2)       NRFX_CONCAT_2_(p1, p2)
97 
98 /** @brief Internal macro used by @ref NRFX_CONCAT_2 to perform the expansion in two steps. */
99 #define NRFX_CONCAT_2_(p1, p2)      p1 ## p2
100 
101 /**
102  * @brief Macro for concatenating three tokens in macro expansion.
103  *
104  * @note This macro is expanded in two steps so that tokens given as macros
105  *       themselves are fully expanded before they are merged.
106  *
107  * @param[in] p1 First token.
108  * @param[in] p2 Second token.
109  * @param[in] p3 Third token.
110  *
111  * @return The three tokens merged into one, unless they cannot together form
112  *         a valid token (in such case, the preprocessor issues a warning and
113  *         does not perform the concatenation).
114  *
115  * @sa NRFX_CONCAT_2
116  */
117 #define NRFX_CONCAT_3(p1, p2, p3)   NRFX_CONCAT_3_(p1, p2, p3)
118 
119 /** @brief Internal macro used by @ref NRFX_CONCAT_3 to perform the expansion in two steps. */
120 #define NRFX_CONCAT_3_(p1, p2, p3)  p1 ## p2 ## p3
121 
122 /**
123  * @brief Macro for performing rounded integer division (as opposed to
124  *        truncating the result).
125  *
126  * @param[in] a Numerator.
127  * @param[in] b Denominator.
128  *
129  * @return Rounded (integer) result of dividing @c a by @c b.
130  */
131 #define NRFX_ROUNDED_DIV(a, b)  (((a) + ((b) / 2)) / (b))
132 
133 /**
134  * @brief Macro for performing integer division, making sure the result is rounded up.
135  *
136  * @details A typical use case for this macro is to compute the number of objects
137  *          with size @c b required to hold @c a number of bytes.
138  *
139  * @param[in] a Numerator.
140  * @param[in] b Denominator.
141  *
142  * @return Integer result of dividing @c a by @c b, rounded up.
143  */
144 #define NRFX_CEIL_DIV(a, b)  ((((a) - 1) / (b)) + 1)
145 
146 /**
147  * @brief Macro for getting the number of elements in an array.
148  *
149  * @param[in] array Name of the array.
150  *
151  * @return Array element count.
152  */
153 #define NRFX_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
154 
155 /**
156  * @brief Macro for getting the offset (in bytes) from the beginning of a structure
157  *        of the specified type to its specified member.
158  *
159  * @param[in] type   Structure type.
160  * @param[in] member Structure member whose offset is searched for.
161  *
162  * @return Member offset in bytes.
163  */
164 #define NRFX_OFFSETOF(type, member)  ((size_t)&(((type *)0)->member))
165 
166 /**@brief Macro for checking if given lengths of EasyDMA transfers do not exceed
167  *        the limit of the specified peripheral.
168  *
169  * @param[in] peripheral Peripheral to check the lengths against.
170  * @param[in] length1    First length to be checked.
171  * @param[in] length2    Second length to be checked (pass 0 if not needed).
172  *
173  * @retval true  The length of buffers does not exceed the limit of the specified peripheral.
174  * @retval false The length of buffers exceeds the limit of the specified peripheral.
175  */
176 #define NRFX_EASYDMA_LENGTH_VALIDATE(peripheral, length1, length2)            \
177     (((length1) < (1U << NRFX_CONCAT_2(peripheral, _EASYDMA_MAXCNT_SIZE))) && \
178      ((length2) < (1U << NRFX_CONCAT_2(peripheral, _EASYDMA_MAXCNT_SIZE))))
179 
180 /**
181  * @brief Macro for waiting until condition is met.
182  *
183  * @param[in]  condition Condition to meet.
184  * @param[in]  attempts  Maximum number of condition checks. Must not be 0.
185  * @param[in]  delay_us  Delay between consecutive checks, in microseconds.
186  * @param[out] result    Boolean variable to store the result of the wait process.
187  *                       Set to true if the condition is met or false otherwise.
188  */
189 #define NRFX_WAIT_FOR(condition, attempts, delay_us, result) \
190 do {                                                         \
191     result =  false;                                         \
192     uint32_t remaining_attempts = (attempts);                \
193     do {                                                     \
194            if (condition)                                    \
195            {                                                 \
196                result =  true;                               \
197                break;                                        \
198            }                                                 \
199            NRFX_DELAY_US(delay_us);                          \
200     } while (--remaining_attempts);                          \
201 } while(0)
202 
203 /**
204  * @brief Macro for getting the ID number of the specified peripheral.
205  *
206  * For peripherals in Nordic SoCs, there is a direct relationship between their
207  * ID numbers and their base addresses. See the chapter "Peripheral interface"
208  * (section "Peripheral ID") in the Product Specification.
209  *
210  * @param[in] base_addr Peripheral base address or pointer.
211  *
212  * @return ID number associated with the specified peripheral.
213  */
214 #define NRFX_PERIPHERAL_ID_GET(base_addr)  (uint8_t)((uint32_t)(base_addr) >> 12)
215 
216 /**
217  * @brief Macro for getting the interrupt number assigned to a specific
218  *        peripheral.
219  *
220  * For peripherals in Nordic SoCs, the IRQ number assigned to a peripheral is
221  * equal to its ID number. See the chapter "Peripheral interface" (sections
222  * "Peripheral ID" and "Interrupts") in the Product Specification.
223  *
224  * @param[in] base_addr Peripheral base address or pointer.
225  *
226  * @return Interrupt number associated with the specified peripheral.
227  */
228 #define NRFX_IRQ_NUMBER_GET(base_addr)  NRFX_PERIPHERAL_ID_GET(base_addr)
229 
230 /** @brief IRQ handler type. */
231 typedef void (* nrfx_irq_handler_t)(void);
232 
233 /** @brief Driver state. */
234 typedef enum
235 {
236     NRFX_DRV_STATE_UNINITIALIZED, ///< Uninitialized.
237     NRFX_DRV_STATE_INITIALIZED,   ///< Initialized but powered off.
238     NRFX_DRV_STATE_POWERED_ON,    ///< Initialized and powered on.
239 } nrfx_drv_state_t;
240 
241 
242 /**
243  * @brief Function for checking if an object is placed in the Data RAM region.
244  *
245  * Several peripherals (the ones using EasyDMA) require the transfer buffers
246  * to be placed in the Data RAM region. This function can be used to check if
247  * this condition is met.
248  *
249  * @param[in] p_object Pointer to an object whose location is to be checked.
250  *
251  * @retval true  The pointed object is located in the Data RAM region.
252  * @retval false The pointed object is not located in the Data RAM region.
253  */
254 NRF_STATIC_INLINE bool nrfx_is_in_ram(void const * p_object);
255 
256 /**
257  * @brief Function for checking if an object is aligned to a 32-bit word
258  *
259  * Several peripherals (the ones using EasyDMA) require the transfer buffers
260  * to be aligned to a 32-bit word. This function can be used to check if
261  * this condition is met.
262  *
263  * @param[in] p_object  Pointer to an object whose location is to be checked.
264  *
265  * @retval true  The pointed object is aligned to a 32-bit word.
266  * @retval false The pointed object is not aligned to a 32-bit word.
267  */
268 NRF_STATIC_INLINE bool nrfx_is_word_aligned(void const * p_object);
269 
270 /**
271  * @brief Function for getting the interrupt number for the specified peripheral.
272  *
273  * @param[in] p_reg Peripheral base pointer.
274  *
275  * @return Interrupt number associated with the pointed peripheral.
276  */
277 NRF_STATIC_INLINE IRQn_Type nrfx_get_irq_number(void const * p_reg);
278 
279 /**
280  * @brief Function for converting an INTEN register bit position to the
281  *        corresponding event identifier.
282  *
283  * The event identifier is the offset between the event register address and
284  * the peripheral base address, and is equal (thus, can be directly cast) to
285  * the corresponding value of the enumerated type from HAL (nrf_*_event_t).
286  *
287  * @param[in] bit INTEN register bit position.
288  *
289  * @return Event identifier.
290  *
291  * @sa nrfx_event_to_bitpos
292  */
293 NRF_STATIC_INLINE uint32_t nrfx_bitpos_to_event(uint32_t bit);
294 
295 /**
296  * @brief Function for converting an event identifier to the corresponding
297  *        INTEN register bit position.
298  *
299  * The event identifier is the offset between the event register address and
300  * the peripheral base address, and is equal (thus, can be directly cast) to
301  * the corresponding value of the enumerated type from HAL (nrf_*_event_t).
302  *
303  * @param[in] event Event identifier.
304  *
305  * @return INTEN register bit position.
306  *
307  * @sa nrfx_bitpos_to_event
308  */
309 NRF_STATIC_INLINE uint32_t nrfx_event_to_bitpos(uint32_t event);
310 
311 
312 #ifndef NRF_DECLARE_ONLY
313 
nrfx_is_in_ram(void const * p_object)314 NRF_STATIC_INLINE bool nrfx_is_in_ram(void const * p_object)
315 {
316     return ((((uint32_t)p_object) & 0xE0000000u) == 0x20000000u);
317 }
318 
nrfx_is_word_aligned(void const * p_object)319 NRF_STATIC_INLINE bool nrfx_is_word_aligned(void const * p_object)
320 {
321     return ((((uint32_t)p_object) & 0x3u) == 0u);
322 }
323 
nrfx_get_irq_number(void const * p_reg)324 NRF_STATIC_INLINE IRQn_Type nrfx_get_irq_number(void const * p_reg)
325 {
326     return (IRQn_Type)NRFX_IRQ_NUMBER_GET(p_reg);
327 }
328 
nrfx_bitpos_to_event(uint32_t bit)329 NRF_STATIC_INLINE uint32_t nrfx_bitpos_to_event(uint32_t bit)
330 {
331     static const uint32_t event_reg_offset = 0x100u;
332     return event_reg_offset + (bit * sizeof(uint32_t));
333 }
334 
nrfx_event_to_bitpos(uint32_t event)335 NRF_STATIC_INLINE uint32_t nrfx_event_to_bitpos(uint32_t event)
336 {
337     static const uint32_t event_reg_offset = 0x100u;
338     return (event - event_reg_offset) / sizeof(uint32_t);
339 }
340 
341 #endif // NRF_DECLARE_ONLY
342 
343 /** @} */
344 
345 #ifdef __cplusplus
346 }
347 #endif
348 
349 #endif // NRFX_COMMON_H__
350