1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26
27 /* Free memory management - zoned buddy allocator. */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 11
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
34
35 /*
36 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
37 * costly to service. That is between allocation orders which should
38 * coalesce naturally under reasonable reclaim pressure and those which
39 * will not.
40 */
41 #define PAGE_ALLOC_COSTLY_ORDER 3
42
43 enum migratetype {
44 MIGRATE_UNMOVABLE,
45 MIGRATE_MOVABLE,
46 MIGRATE_RECLAIMABLE,
47 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
48 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
49 #ifdef CONFIG_CMA
50 /*
51 * MIGRATE_CMA migration type is designed to mimic the way
52 * ZONE_MOVABLE works. Only movable pages can be allocated
53 * from MIGRATE_CMA pageblocks and page allocator never
54 * implicitly change migration type of MIGRATE_CMA pageblock.
55 *
56 * The way to use it is to change migratetype of a range of
57 * pageblocks to MIGRATE_CMA which can be done by
58 * __free_pageblock_cma() function.
59 */
60 MIGRATE_CMA,
61 #endif
62 #ifdef CONFIG_MEMORY_ISOLATION
63 MIGRATE_ISOLATE, /* can't allocate from here */
64 #endif
65 MIGRATE_TYPES
66 };
67
68 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
69 extern const char * const migratetype_names[MIGRATE_TYPES];
70
71 #ifdef CONFIG_CMA
72 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
73 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
74 #else
75 # define is_migrate_cma(migratetype) false
76 # define is_migrate_cma_page(_page) false
77 #endif
78
is_migrate_movable(int mt)79 static inline bool is_migrate_movable(int mt)
80 {
81 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
82 }
83
84 /*
85 * Check whether a migratetype can be merged with another migratetype.
86 *
87 * It is only mergeable when it can fall back to other migratetypes for
88 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
89 */
migratetype_is_mergeable(int mt)90 static inline bool migratetype_is_mergeable(int mt)
91 {
92 return mt < MIGRATE_PCPTYPES;
93 }
94
95 #define for_each_migratetype_order(order, type) \
96 for (order = 0; order < MAX_ORDER; order++) \
97 for (type = 0; type < MIGRATE_TYPES; type++)
98
99 extern int page_group_by_mobility_disabled;
100
101 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
102
103 #define get_pageblock_migratetype(page) \
104 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
105
106 struct free_area {
107 struct list_head free_list[MIGRATE_TYPES];
108 unsigned long nr_free;
109 };
110
get_page_from_free_area(struct free_area * area,int migratetype)111 static inline struct page *get_page_from_free_area(struct free_area *area,
112 int migratetype)
113 {
114 return list_first_entry_or_null(&area->free_list[migratetype],
115 struct page, lru);
116 }
117
free_area_empty(struct free_area * area,int migratetype)118 static inline bool free_area_empty(struct free_area *area, int migratetype)
119 {
120 return list_empty(&area->free_list[migratetype]);
121 }
122
123 struct pglist_data;
124
125 #ifdef CONFIG_NUMA
126 enum numa_stat_item {
127 NUMA_HIT, /* allocated in intended node */
128 NUMA_MISS, /* allocated in non intended node */
129 NUMA_FOREIGN, /* was intended here, hit elsewhere */
130 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
131 NUMA_LOCAL, /* allocation from local node */
132 NUMA_OTHER, /* allocation from other node */
133 NR_VM_NUMA_EVENT_ITEMS
134 };
135 #else
136 #define NR_VM_NUMA_EVENT_ITEMS 0
137 #endif
138
139 enum zone_stat_item {
140 /* First 128 byte cacheline (assuming 64 bit words) */
141 NR_FREE_PAGES,
142 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
143 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
144 NR_ZONE_ACTIVE_ANON,
145 NR_ZONE_INACTIVE_FILE,
146 NR_ZONE_ACTIVE_FILE,
147 NR_ZONE_UNEVICTABLE,
148 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
149 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
150 /* Second 128 byte cacheline */
151 NR_BOUNCE,
152 #if IS_ENABLED(CONFIG_ZSMALLOC)
153 NR_ZSPAGES, /* allocated in zsmalloc */
154 #endif
155 NR_FREE_CMA_PAGES,
156 NR_VM_ZONE_STAT_ITEMS };
157
158 enum node_stat_item {
159 NR_LRU_BASE,
160 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
161 NR_ACTIVE_ANON, /* " " " " " */
162 NR_INACTIVE_FILE, /* " " " " " */
163 NR_ACTIVE_FILE, /* " " " " " */
164 NR_UNEVICTABLE, /* " " " " " */
165 NR_SLAB_RECLAIMABLE_B,
166 NR_SLAB_UNRECLAIMABLE_B,
167 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
168 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
169 WORKINGSET_NODES,
170 WORKINGSET_REFAULT_BASE,
171 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
172 WORKINGSET_REFAULT_FILE,
173 WORKINGSET_ACTIVATE_BASE,
174 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
175 WORKINGSET_ACTIVATE_FILE,
176 WORKINGSET_RESTORE_BASE,
177 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
178 WORKINGSET_RESTORE_FILE,
179 WORKINGSET_NODERECLAIM,
180 NR_ANON_MAPPED, /* Mapped anonymous pages */
181 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
182 only modified from process context */
183 NR_FILE_PAGES,
184 NR_FILE_DIRTY,
185 NR_WRITEBACK,
186 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
187 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
188 NR_SHMEM_THPS,
189 NR_SHMEM_PMDMAPPED,
190 NR_FILE_THPS,
191 NR_FILE_PMDMAPPED,
192 NR_ANON_THPS,
193 NR_VMSCAN_WRITE,
194 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
195 NR_DIRTIED, /* page dirtyings since bootup */
196 NR_WRITTEN, /* page writings since bootup */
197 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
198 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
199 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
200 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
201 NR_KERNEL_STACK_KB, /* measured in KiB */
202 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
203 NR_KERNEL_SCS_KB, /* measured in KiB */
204 #endif
205 NR_PAGETABLE, /* used for pagetables */
206 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
207 #ifdef CONFIG_SWAP
208 NR_SWAPCACHE,
209 #endif
210 #ifdef CONFIG_NUMA_BALANCING
211 PGPROMOTE_SUCCESS, /* promote successfully */
212 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
213 #endif
214 NR_VM_NODE_STAT_ITEMS
215 };
216
217 /*
218 * Returns true if the item should be printed in THPs (/proc/vmstat
219 * currently prints number of anon, file and shmem THPs. But the item
220 * is charged in pages).
221 */
vmstat_item_print_in_thp(enum node_stat_item item)222 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
223 {
224 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
225 return false;
226
227 return item == NR_ANON_THPS ||
228 item == NR_FILE_THPS ||
229 item == NR_SHMEM_THPS ||
230 item == NR_SHMEM_PMDMAPPED ||
231 item == NR_FILE_PMDMAPPED;
232 }
233
234 /*
235 * Returns true if the value is measured in bytes (most vmstat values are
236 * measured in pages). This defines the API part, the internal representation
237 * might be different.
238 */
vmstat_item_in_bytes(int idx)239 static __always_inline bool vmstat_item_in_bytes(int idx)
240 {
241 /*
242 * Global and per-node slab counters track slab pages.
243 * It's expected that changes are multiples of PAGE_SIZE.
244 * Internally values are stored in pages.
245 *
246 * Per-memcg and per-lruvec counters track memory, consumed
247 * by individual slab objects. These counters are actually
248 * byte-precise.
249 */
250 return (idx == NR_SLAB_RECLAIMABLE_B ||
251 idx == NR_SLAB_UNRECLAIMABLE_B);
252 }
253
254 /*
255 * We do arithmetic on the LRU lists in various places in the code,
256 * so it is important to keep the active lists LRU_ACTIVE higher in
257 * the array than the corresponding inactive lists, and to keep
258 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
259 *
260 * This has to be kept in sync with the statistics in zone_stat_item
261 * above and the descriptions in vmstat_text in mm/vmstat.c
262 */
263 #define LRU_BASE 0
264 #define LRU_ACTIVE 1
265 #define LRU_FILE 2
266
267 enum lru_list {
268 LRU_INACTIVE_ANON = LRU_BASE,
269 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
270 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
271 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
272 LRU_UNEVICTABLE,
273 NR_LRU_LISTS
274 };
275
276 enum vmscan_throttle_state {
277 VMSCAN_THROTTLE_WRITEBACK,
278 VMSCAN_THROTTLE_ISOLATED,
279 VMSCAN_THROTTLE_NOPROGRESS,
280 VMSCAN_THROTTLE_CONGESTED,
281 NR_VMSCAN_THROTTLE,
282 };
283
284 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
285
286 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
287
is_file_lru(enum lru_list lru)288 static inline bool is_file_lru(enum lru_list lru)
289 {
290 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
291 }
292
is_active_lru(enum lru_list lru)293 static inline bool is_active_lru(enum lru_list lru)
294 {
295 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
296 }
297
298 #define WORKINGSET_ANON 0
299 #define WORKINGSET_FILE 1
300 #define ANON_AND_FILE 2
301
302 enum lruvec_flags {
303 LRUVEC_CONGESTED, /* lruvec has many dirty pages
304 * backed by a congested BDI
305 */
306 };
307
308 #endif /* !__GENERATING_BOUNDS_H */
309
310 /*
311 * Evictable pages are divided into multiple generations. The youngest and the
312 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
313 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
314 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
315 * corresponding generation. The gen counter in folio->flags stores gen+1 while
316 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
317 *
318 * A page is added to the youngest generation on faulting. The aging needs to
319 * check the accessed bit at least twice before handing this page over to the
320 * eviction. The first check takes care of the accessed bit set on the initial
321 * fault; the second check makes sure this page hasn't been used since then.
322 * This process, AKA second chance, requires a minimum of two generations,
323 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
324 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
325 * rest of generations, if they exist, are considered inactive. See
326 * lru_gen_is_active().
327 *
328 * PG_active is always cleared while a page is on one of lrugen->folios[] so
329 * that the aging needs not to worry about it. And it's set again when a page
330 * considered active is isolated for non-reclaiming purposes, e.g., migration.
331 * See lru_gen_add_folio() and lru_gen_del_folio().
332 *
333 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
334 * number of categories of the active/inactive LRU when keeping track of
335 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
336 * in folio->flags.
337 */
338 #define MIN_NR_GENS 2U
339 #define MAX_NR_GENS 4U
340
341 /*
342 * Each generation is divided into multiple tiers. A page accessed N times
343 * through file descriptors is in tier order_base_2(N). A page in the first tier
344 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
345 * tables or read ahead. A page in any other tier (N>1) is marked by
346 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
347 * supported without using additional bits in folio->flags.
348 *
349 * In contrast to moving across generations which requires the LRU lock, moving
350 * across tiers only involves atomic operations on folio->flags and therefore
351 * has a negligible cost in the buffered access path. In the eviction path,
352 * comparisons of refaulted/(evicted+protected) from the first tier and the
353 * rest infer whether pages accessed multiple times through file descriptors
354 * are statistically hot and thus worth protecting.
355 *
356 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
357 * number of categories of the active/inactive LRU when keeping track of
358 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
359 * folio->flags.
360 */
361 #define MAX_NR_TIERS 4U
362
363 #ifndef __GENERATING_BOUNDS_H
364
365 struct lruvec;
366 struct page_vma_mapped_walk;
367
368 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
369 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
370
371 #ifdef CONFIG_LRU_GEN
372
373 enum {
374 LRU_GEN_ANON,
375 LRU_GEN_FILE,
376 };
377
378 enum {
379 LRU_GEN_CORE,
380 LRU_GEN_MM_WALK,
381 LRU_GEN_NONLEAF_YOUNG,
382 NR_LRU_GEN_CAPS
383 };
384
385 #define MIN_LRU_BATCH BITS_PER_LONG
386 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
387
388 /* whether to keep historical stats from evicted generations */
389 #ifdef CONFIG_LRU_GEN_STATS
390 #define NR_HIST_GENS MAX_NR_GENS
391 #else
392 #define NR_HIST_GENS 1U
393 #endif
394
395 /*
396 * The youngest generation number is stored in max_seq for both anon and file
397 * types as they are aged on an equal footing. The oldest generation numbers are
398 * stored in min_seq[] separately for anon and file types as clean file pages
399 * can be evicted regardless of swap constraints.
400 *
401 * Normally anon and file min_seq are in sync. But if swapping is constrained,
402 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
403 * min_seq behind.
404 *
405 * The number of pages in each generation is eventually consistent and therefore
406 * can be transiently negative when reset_batch_size() is pending.
407 */
408 struct lru_gen_folio {
409 /* the aging increments the youngest generation number */
410 unsigned long max_seq;
411 /* the eviction increments the oldest generation numbers */
412 unsigned long min_seq[ANON_AND_FILE];
413 /* the birth time of each generation in jiffies */
414 unsigned long timestamps[MAX_NR_GENS];
415 /* the multi-gen LRU lists, lazily sorted on eviction */
416 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
417 /* the multi-gen LRU sizes, eventually consistent */
418 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
419 /* the exponential moving average of refaulted */
420 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
421 /* the exponential moving average of evicted+protected */
422 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
423 /* the first tier doesn't need protection, hence the minus one */
424 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
425 /* can be modified without holding the LRU lock */
426 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
427 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
428 /* whether the multi-gen LRU is enabled */
429 bool enabled;
430 #ifdef CONFIG_MEMCG
431 /* the memcg generation this lru_gen_folio belongs to */
432 u8 gen;
433 /* the list segment this lru_gen_folio belongs to */
434 u8 seg;
435 /* per-node lru_gen_folio list for global reclaim */
436 struct hlist_nulls_node list;
437 #endif
438 };
439
440 enum {
441 MM_LEAF_TOTAL, /* total leaf entries */
442 MM_LEAF_OLD, /* old leaf entries */
443 MM_LEAF_YOUNG, /* young leaf entries */
444 MM_NONLEAF_TOTAL, /* total non-leaf entries */
445 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
446 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
447 NR_MM_STATS
448 };
449
450 /* double-buffering Bloom filters */
451 #define NR_BLOOM_FILTERS 2
452
453 struct lru_gen_mm_state {
454 /* set to max_seq after each iteration */
455 unsigned long seq;
456 /* where the current iteration continues (inclusive) */
457 struct list_head *head;
458 /* where the last iteration ended (exclusive) */
459 struct list_head *tail;
460 /* to wait for the last page table walker to finish */
461 struct wait_queue_head wait;
462 /* Bloom filters flip after each iteration */
463 unsigned long *filters[NR_BLOOM_FILTERS];
464 /* the mm stats for debugging */
465 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
466 /* the number of concurrent page table walkers */
467 int nr_walkers;
468 };
469
470 struct lru_gen_mm_walk {
471 /* the lruvec under reclaim */
472 struct lruvec *lruvec;
473 /* unstable max_seq from lru_gen_folio */
474 unsigned long max_seq;
475 /* the next address within an mm to scan */
476 unsigned long next_addr;
477 /* to batch promoted pages */
478 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
479 /* to batch the mm stats */
480 int mm_stats[NR_MM_STATS];
481 /* total batched items */
482 int batched;
483 bool can_swap;
484 bool force_scan;
485 };
486
487 void lru_gen_init_lruvec(struct lruvec *lruvec);
488 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
489
490 #ifdef CONFIG_MEMCG
491
492 /*
493 * For each node, memcgs are divided into two generations: the old and the
494 * young. For each generation, memcgs are randomly sharded into multiple bins
495 * to improve scalability. For each bin, the hlist_nulls is virtually divided
496 * into three segments: the head, the tail and the default.
497 *
498 * An onlining memcg is added to the tail of a random bin in the old generation.
499 * The eviction starts at the head of a random bin in the old generation. The
500 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
501 * the old generation, is incremented when all its bins become empty.
502 *
503 * There are four operations:
504 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
505 * current generation (old or young) and updates its "seg" to "head";
506 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
507 * current generation (old or young) and updates its "seg" to "tail";
508 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
509 * generation, updates its "gen" to "old" and resets its "seg" to "default";
510 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
511 * young generation, updates its "gen" to "young" and resets its "seg" to
512 * "default".
513 *
514 * The events that trigger the above operations are:
515 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
516 * 2. The first attempt to reclaim an memcg below low, which triggers
517 * MEMCG_LRU_TAIL;
518 * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
519 * which triggers MEMCG_LRU_TAIL;
520 * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
521 * which triggers MEMCG_LRU_YOUNG;
522 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
523 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
524 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
525 *
526 * Note that memcg LRU only applies to global reclaim, and the round-robin
527 * incrementing of their max_seq counters ensures the eventual fairness to all
528 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
529 */
530 #define MEMCG_NR_GENS 2
531 #define MEMCG_NR_BINS 8
532
533 struct lru_gen_memcg {
534 /* the per-node memcg generation counter */
535 unsigned long seq;
536 /* each memcg has one lru_gen_folio per node */
537 unsigned long nr_memcgs[MEMCG_NR_GENS];
538 /* per-node lru_gen_folio list for global reclaim */
539 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
540 /* protects the above */
541 spinlock_t lock;
542 };
543
544 void lru_gen_init_pgdat(struct pglist_data *pgdat);
545
546 void lru_gen_init_memcg(struct mem_cgroup *memcg);
547 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
548 void lru_gen_online_memcg(struct mem_cgroup *memcg);
549 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
550 void lru_gen_release_memcg(struct mem_cgroup *memcg);
551 void lru_gen_soft_reclaim(struct lruvec *lruvec);
552
553 #else /* !CONFIG_MEMCG */
554
555 #define MEMCG_NR_GENS 1
556
557 struct lru_gen_memcg {
558 };
559
lru_gen_init_pgdat(struct pglist_data * pgdat)560 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
561 {
562 }
563
564 #endif /* CONFIG_MEMCG */
565
566 #else /* !CONFIG_LRU_GEN */
567
lru_gen_init_pgdat(struct pglist_data * pgdat)568 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
569 {
570 }
571
lru_gen_init_lruvec(struct lruvec * lruvec)572 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
573 {
574 }
575
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)576 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
577 {
578 }
579
580 #ifdef CONFIG_MEMCG
581
lru_gen_init_memcg(struct mem_cgroup * memcg)582 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
583 {
584 }
585
lru_gen_exit_memcg(struct mem_cgroup * memcg)586 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
587 {
588 }
589
lru_gen_online_memcg(struct mem_cgroup * memcg)590 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
591 {
592 }
593
lru_gen_offline_memcg(struct mem_cgroup * memcg)594 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
595 {
596 }
597
lru_gen_release_memcg(struct mem_cgroup * memcg)598 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
599 {
600 }
601
lru_gen_soft_reclaim(struct lruvec * lruvec)602 static inline void lru_gen_soft_reclaim(struct lruvec *lruvec)
603 {
604 }
605
606 #endif /* CONFIG_MEMCG */
607
608 #endif /* CONFIG_LRU_GEN */
609
610 struct lruvec {
611 struct list_head lists[NR_LRU_LISTS];
612 /* per lruvec lru_lock for memcg */
613 spinlock_t lru_lock;
614 /*
615 * These track the cost of reclaiming one LRU - file or anon -
616 * over the other. As the observed cost of reclaiming one LRU
617 * increases, the reclaim scan balance tips toward the other.
618 */
619 unsigned long anon_cost;
620 unsigned long file_cost;
621 /* Non-resident age, driven by LRU movement */
622 atomic_long_t nonresident_age;
623 /* Refaults at the time of last reclaim cycle */
624 unsigned long refaults[ANON_AND_FILE];
625 /* Various lruvec state flags (enum lruvec_flags) */
626 unsigned long flags;
627 #ifdef CONFIG_LRU_GEN
628 /* evictable pages divided into generations */
629 struct lru_gen_folio lrugen;
630 /* to concurrently iterate lru_gen_mm_list */
631 struct lru_gen_mm_state mm_state;
632 #endif
633 #ifdef CONFIG_MEMCG
634 struct pglist_data *pgdat;
635 #endif
636 };
637
638 /* Isolate unmapped pages */
639 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
640 /* Isolate for asynchronous migration */
641 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
642 /* Isolate unevictable pages */
643 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
644
645 /* LRU Isolation modes. */
646 typedef unsigned __bitwise isolate_mode_t;
647
648 enum zone_watermarks {
649 WMARK_MIN,
650 WMARK_LOW,
651 WMARK_HIGH,
652 WMARK_PROMO,
653 NR_WMARK
654 };
655
656 /*
657 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
658 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
659 * it should not contribute to serious fragmentation causing THP allocation
660 * failures.
661 */
662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
663 #define NR_PCP_THP 1
664 #else
665 #define NR_PCP_THP 0
666 #endif
667 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
668 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
669
670 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
671 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
672 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
673 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
674
675 /* Fields and list protected by pagesets local_lock in page_alloc.c */
676 struct per_cpu_pages {
677 spinlock_t lock; /* Protects lists field */
678 int count; /* number of pages in the list */
679 int high; /* high watermark, emptying needed */
680 int batch; /* chunk size for buddy add/remove */
681 short free_factor; /* batch scaling factor during free */
682 #ifdef CONFIG_NUMA
683 short expire; /* When 0, remote pagesets are drained */
684 #endif
685
686 /* Lists of pages, one per migrate type stored on the pcp-lists */
687 struct list_head lists[NR_PCP_LISTS];
688 } ____cacheline_aligned_in_smp;
689
690 struct per_cpu_zonestat {
691 #ifdef CONFIG_SMP
692 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
693 s8 stat_threshold;
694 #endif
695 #ifdef CONFIG_NUMA
696 /*
697 * Low priority inaccurate counters that are only folded
698 * on demand. Use a large type to avoid the overhead of
699 * folding during refresh_cpu_vm_stats.
700 */
701 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
702 #endif
703 };
704
705 struct per_cpu_nodestat {
706 s8 stat_threshold;
707 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
708 };
709
710 #endif /* !__GENERATING_BOUNDS.H */
711
712 enum zone_type {
713 /*
714 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
715 * to DMA to all of the addressable memory (ZONE_NORMAL).
716 * On architectures where this area covers the whole 32 bit address
717 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
718 * DMA addressing constraints. This distinction is important as a 32bit
719 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
720 * platforms may need both zones as they support peripherals with
721 * different DMA addressing limitations.
722 */
723 #ifdef CONFIG_ZONE_DMA
724 ZONE_DMA,
725 #endif
726 #ifdef CONFIG_ZONE_DMA32
727 ZONE_DMA32,
728 #endif
729 /*
730 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
731 * performed on pages in ZONE_NORMAL if the DMA devices support
732 * transfers to all addressable memory.
733 */
734 ZONE_NORMAL,
735 #ifdef CONFIG_HIGHMEM
736 /*
737 * A memory area that is only addressable by the kernel through
738 * mapping portions into its own address space. This is for example
739 * used by i386 to allow the kernel to address the memory beyond
740 * 900MB. The kernel will set up special mappings (page
741 * table entries on i386) for each page that the kernel needs to
742 * access.
743 */
744 ZONE_HIGHMEM,
745 #endif
746 /*
747 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
748 * movable pages with few exceptional cases described below. Main use
749 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
750 * likely to succeed, and to locally limit unmovable allocations - e.g.,
751 * to increase the number of THP/huge pages. Notable special cases are:
752 *
753 * 1. Pinned pages: (long-term) pinning of movable pages might
754 * essentially turn such pages unmovable. Therefore, we do not allow
755 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
756 * faulted, they come from the right zone right away. However, it is
757 * still possible that address space already has pages in
758 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
759 * touches that memory before pinning). In such case we migrate them
760 * to a different zone. When migration fails - pinning fails.
761 * 2. memblock allocations: kernelcore/movablecore setups might create
762 * situations where ZONE_MOVABLE contains unmovable allocations
763 * after boot. Memory offlining and allocations fail early.
764 * 3. Memory holes: kernelcore/movablecore setups might create very rare
765 * situations where ZONE_MOVABLE contains memory holes after boot,
766 * for example, if we have sections that are only partially
767 * populated. Memory offlining and allocations fail early.
768 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
769 * memory offlining, such pages cannot be allocated.
770 * 5. Unmovable PG_offline pages: in paravirtualized environments,
771 * hotplugged memory blocks might only partially be managed by the
772 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
773 * parts not manged by the buddy are unmovable PG_offline pages. In
774 * some cases (virtio-mem), such pages can be skipped during
775 * memory offlining, however, cannot be moved/allocated. These
776 * techniques might use alloc_contig_range() to hide previously
777 * exposed pages from the buddy again (e.g., to implement some sort
778 * of memory unplug in virtio-mem).
779 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
780 * situations where ZERO_PAGE(0) which is allocated differently
781 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
782 * cannot be migrated.
783 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
784 * memory to the MOVABLE zone, the vmemmap pages are also placed in
785 * such zone. Such pages cannot be really moved around as they are
786 * self-stored in the range, but they are treated as movable when
787 * the range they describe is about to be offlined.
788 *
789 * In general, no unmovable allocations that degrade memory offlining
790 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
791 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
792 * if has_unmovable_pages() states that there are no unmovable pages,
793 * there can be false negatives).
794 */
795 ZONE_MOVABLE,
796 #ifdef CONFIG_ZONE_DEVICE
797 ZONE_DEVICE,
798 #endif
799 __MAX_NR_ZONES
800
801 };
802
803 #ifndef __GENERATING_BOUNDS_H
804
805 #define ASYNC_AND_SYNC 2
806
807 struct zone {
808 /* Read-mostly fields */
809
810 /* zone watermarks, access with *_wmark_pages(zone) macros */
811 unsigned long _watermark[NR_WMARK];
812 unsigned long watermark_boost;
813
814 unsigned long nr_reserved_highatomic;
815
816 /*
817 * We don't know if the memory that we're going to allocate will be
818 * freeable or/and it will be released eventually, so to avoid totally
819 * wasting several GB of ram we must reserve some of the lower zone
820 * memory (otherwise we risk to run OOM on the lower zones despite
821 * there being tons of freeable ram on the higher zones). This array is
822 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
823 * changes.
824 */
825 long lowmem_reserve[MAX_NR_ZONES];
826
827 #ifdef CONFIG_NUMA
828 int node;
829 #endif
830 struct pglist_data *zone_pgdat;
831 struct per_cpu_pages __percpu *per_cpu_pageset;
832 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
833 /*
834 * the high and batch values are copied to individual pagesets for
835 * faster access
836 */
837 int pageset_high;
838 int pageset_batch;
839
840 #ifndef CONFIG_SPARSEMEM
841 /*
842 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
843 * In SPARSEMEM, this map is stored in struct mem_section
844 */
845 unsigned long *pageblock_flags;
846 #endif /* CONFIG_SPARSEMEM */
847
848 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
849 unsigned long zone_start_pfn;
850
851 /*
852 * spanned_pages is the total pages spanned by the zone, including
853 * holes, which is calculated as:
854 * spanned_pages = zone_end_pfn - zone_start_pfn;
855 *
856 * present_pages is physical pages existing within the zone, which
857 * is calculated as:
858 * present_pages = spanned_pages - absent_pages(pages in holes);
859 *
860 * present_early_pages is present pages existing within the zone
861 * located on memory available since early boot, excluding hotplugged
862 * memory.
863 *
864 * managed_pages is present pages managed by the buddy system, which
865 * is calculated as (reserved_pages includes pages allocated by the
866 * bootmem allocator):
867 * managed_pages = present_pages - reserved_pages;
868 *
869 * cma pages is present pages that are assigned for CMA use
870 * (MIGRATE_CMA).
871 *
872 * So present_pages may be used by memory hotplug or memory power
873 * management logic to figure out unmanaged pages by checking
874 * (present_pages - managed_pages). And managed_pages should be used
875 * by page allocator and vm scanner to calculate all kinds of watermarks
876 * and thresholds.
877 *
878 * Locking rules:
879 *
880 * zone_start_pfn and spanned_pages are protected by span_seqlock.
881 * It is a seqlock because it has to be read outside of zone->lock,
882 * and it is done in the main allocator path. But, it is written
883 * quite infrequently.
884 *
885 * The span_seq lock is declared along with zone->lock because it is
886 * frequently read in proximity to zone->lock. It's good to
887 * give them a chance of being in the same cacheline.
888 *
889 * Write access to present_pages at runtime should be protected by
890 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
891 * present_pages should use get_online_mems() to get a stable value.
892 */
893 atomic_long_t managed_pages;
894 unsigned long spanned_pages;
895 unsigned long present_pages;
896 #if defined(CONFIG_MEMORY_HOTPLUG)
897 unsigned long present_early_pages;
898 #endif
899 #ifdef CONFIG_CMA
900 unsigned long cma_pages;
901 #endif
902
903 const char *name;
904
905 #ifdef CONFIG_MEMORY_ISOLATION
906 /*
907 * Number of isolated pageblock. It is used to solve incorrect
908 * freepage counting problem due to racy retrieving migratetype
909 * of pageblock. Protected by zone->lock.
910 */
911 unsigned long nr_isolate_pageblock;
912 #endif
913
914 #ifdef CONFIG_MEMORY_HOTPLUG
915 /* see spanned/present_pages for more description */
916 seqlock_t span_seqlock;
917 #endif
918
919 int initialized;
920
921 /* Write-intensive fields used from the page allocator */
922 CACHELINE_PADDING(_pad1_);
923
924 /* free areas of different sizes */
925 struct free_area free_area[MAX_ORDER];
926
927 /* zone flags, see below */
928 unsigned long flags;
929
930 /* Primarily protects free_area */
931 spinlock_t lock;
932
933 /* Write-intensive fields used by compaction and vmstats. */
934 CACHELINE_PADDING(_pad2_);
935
936 /*
937 * When free pages are below this point, additional steps are taken
938 * when reading the number of free pages to avoid per-cpu counter
939 * drift allowing watermarks to be breached
940 */
941 unsigned long percpu_drift_mark;
942
943 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
944 /* pfn where compaction free scanner should start */
945 unsigned long compact_cached_free_pfn;
946 /* pfn where compaction migration scanner should start */
947 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
948 unsigned long compact_init_migrate_pfn;
949 unsigned long compact_init_free_pfn;
950 #endif
951
952 #ifdef CONFIG_COMPACTION
953 /*
954 * On compaction failure, 1<<compact_defer_shift compactions
955 * are skipped before trying again. The number attempted since
956 * last failure is tracked with compact_considered.
957 * compact_order_failed is the minimum compaction failed order.
958 */
959 unsigned int compact_considered;
960 unsigned int compact_defer_shift;
961 int compact_order_failed;
962 #endif
963
964 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
965 /* Set to true when the PG_migrate_skip bits should be cleared */
966 bool compact_blockskip_flush;
967 #endif
968
969 bool contiguous;
970
971 CACHELINE_PADDING(_pad3_);
972 /* Zone statistics */
973 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
974 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
975 } ____cacheline_internodealigned_in_smp;
976
977 enum pgdat_flags {
978 PGDAT_DIRTY, /* reclaim scanning has recently found
979 * many dirty file pages at the tail
980 * of the LRU.
981 */
982 PGDAT_WRITEBACK, /* reclaim scanning has recently found
983 * many pages under writeback
984 */
985 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
986 };
987
988 enum zone_flags {
989 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
990 * Cleared when kswapd is woken.
991 */
992 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
993 };
994
zone_managed_pages(struct zone * zone)995 static inline unsigned long zone_managed_pages(struct zone *zone)
996 {
997 return (unsigned long)atomic_long_read(&zone->managed_pages);
998 }
999
zone_cma_pages(struct zone * zone)1000 static inline unsigned long zone_cma_pages(struct zone *zone)
1001 {
1002 #ifdef CONFIG_CMA
1003 return zone->cma_pages;
1004 #else
1005 return 0;
1006 #endif
1007 }
1008
zone_end_pfn(const struct zone * zone)1009 static inline unsigned long zone_end_pfn(const struct zone *zone)
1010 {
1011 return zone->zone_start_pfn + zone->spanned_pages;
1012 }
1013
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1014 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1015 {
1016 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1017 }
1018
zone_is_initialized(struct zone * zone)1019 static inline bool zone_is_initialized(struct zone *zone)
1020 {
1021 return zone->initialized;
1022 }
1023
zone_is_empty(struct zone * zone)1024 static inline bool zone_is_empty(struct zone *zone)
1025 {
1026 return zone->spanned_pages == 0;
1027 }
1028
1029 #ifndef BUILD_VDSO32_64
1030 /*
1031 * The zone field is never updated after free_area_init_core()
1032 * sets it, so none of the operations on it need to be atomic.
1033 */
1034
1035 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1036 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1037 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1038 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1039 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1040 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1041 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1042 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1043
1044 /*
1045 * Define the bit shifts to access each section. For non-existent
1046 * sections we define the shift as 0; that plus a 0 mask ensures
1047 * the compiler will optimise away reference to them.
1048 */
1049 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1050 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1051 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1052 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1053 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1054
1055 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1056 #ifdef NODE_NOT_IN_PAGE_FLAGS
1057 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1058 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1059 SECTIONS_PGOFF : ZONES_PGOFF)
1060 #else
1061 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1062 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1063 NODES_PGOFF : ZONES_PGOFF)
1064 #endif
1065
1066 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1067
1068 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1069 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1070 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1071 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1072 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1073 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1074
page_zonenum(const struct page * page)1075 static inline enum zone_type page_zonenum(const struct page *page)
1076 {
1077 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1078 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1079 }
1080
folio_zonenum(const struct folio * folio)1081 static inline enum zone_type folio_zonenum(const struct folio *folio)
1082 {
1083 return page_zonenum(&folio->page);
1084 }
1085
1086 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1087 static inline bool is_zone_device_page(const struct page *page)
1088 {
1089 return page_zonenum(page) == ZONE_DEVICE;
1090 }
1091
1092 /*
1093 * Consecutive zone device pages should not be merged into the same sgl
1094 * or bvec segment with other types of pages or if they belong to different
1095 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1096 * without scanning the entire segment. This helper returns true either if
1097 * both pages are not zone device pages or both pages are zone device pages
1098 * with the same pgmap.
1099 */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1100 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1101 const struct page *b)
1102 {
1103 if (is_zone_device_page(a) != is_zone_device_page(b))
1104 return false;
1105 if (!is_zone_device_page(a))
1106 return true;
1107 return a->pgmap == b->pgmap;
1108 }
1109
1110 extern void memmap_init_zone_device(struct zone *, unsigned long,
1111 unsigned long, struct dev_pagemap *);
1112 #else
is_zone_device_page(const struct page * page)1113 static inline bool is_zone_device_page(const struct page *page)
1114 {
1115 return false;
1116 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1117 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1118 const struct page *b)
1119 {
1120 return true;
1121 }
1122 #endif
1123
folio_is_zone_device(const struct folio * folio)1124 static inline bool folio_is_zone_device(const struct folio *folio)
1125 {
1126 return is_zone_device_page(&folio->page);
1127 }
1128
is_zone_movable_page(const struct page * page)1129 static inline bool is_zone_movable_page(const struct page *page)
1130 {
1131 return page_zonenum(page) == ZONE_MOVABLE;
1132 }
1133 #endif
1134
1135 /*
1136 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1137 * intersection with the given zone
1138 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1139 static inline bool zone_intersects(struct zone *zone,
1140 unsigned long start_pfn, unsigned long nr_pages)
1141 {
1142 if (zone_is_empty(zone))
1143 return false;
1144 if (start_pfn >= zone_end_pfn(zone) ||
1145 start_pfn + nr_pages <= zone->zone_start_pfn)
1146 return false;
1147
1148 return true;
1149 }
1150
1151 /*
1152 * The "priority" of VM scanning is how much of the queues we will scan in one
1153 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1154 * queues ("queue_length >> 12") during an aging round.
1155 */
1156 #define DEF_PRIORITY 12
1157
1158 /* Maximum number of zones on a zonelist */
1159 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1160
1161 enum {
1162 ZONELIST_FALLBACK, /* zonelist with fallback */
1163 #ifdef CONFIG_NUMA
1164 /*
1165 * The NUMA zonelists are doubled because we need zonelists that
1166 * restrict the allocations to a single node for __GFP_THISNODE.
1167 */
1168 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1169 #endif
1170 MAX_ZONELISTS
1171 };
1172
1173 /*
1174 * This struct contains information about a zone in a zonelist. It is stored
1175 * here to avoid dereferences into large structures and lookups of tables
1176 */
1177 struct zoneref {
1178 struct zone *zone; /* Pointer to actual zone */
1179 int zone_idx; /* zone_idx(zoneref->zone) */
1180 };
1181
1182 /*
1183 * One allocation request operates on a zonelist. A zonelist
1184 * is a list of zones, the first one is the 'goal' of the
1185 * allocation, the other zones are fallback zones, in decreasing
1186 * priority.
1187 *
1188 * To speed the reading of the zonelist, the zonerefs contain the zone index
1189 * of the entry being read. Helper functions to access information given
1190 * a struct zoneref are
1191 *
1192 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1193 * zonelist_zone_idx() - Return the index of the zone for an entry
1194 * zonelist_node_idx() - Return the index of the node for an entry
1195 */
1196 struct zonelist {
1197 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1198 };
1199
1200 /*
1201 * The array of struct pages for flatmem.
1202 * It must be declared for SPARSEMEM as well because there are configurations
1203 * that rely on that.
1204 */
1205 extern struct page *mem_map;
1206
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208 struct deferred_split {
1209 spinlock_t split_queue_lock;
1210 struct list_head split_queue;
1211 unsigned long split_queue_len;
1212 };
1213 #endif
1214
1215 #ifdef CONFIG_MEMORY_FAILURE
1216 /*
1217 * Per NUMA node memory failure handling statistics.
1218 */
1219 struct memory_failure_stats {
1220 /*
1221 * Number of raw pages poisoned.
1222 * Cases not accounted: memory outside kernel control, offline page,
1223 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1224 * error events, and unpoison actions from hwpoison_unpoison.
1225 */
1226 unsigned long total;
1227 /*
1228 * Recovery results of poisoned raw pages handled by memory_failure,
1229 * in sync with mf_result.
1230 * total = ignored + failed + delayed + recovered.
1231 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1232 */
1233 unsigned long ignored;
1234 unsigned long failed;
1235 unsigned long delayed;
1236 unsigned long recovered;
1237 };
1238 #endif
1239
1240 /*
1241 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1242 * it's memory layout. On UMA machines there is a single pglist_data which
1243 * describes the whole memory.
1244 *
1245 * Memory statistics and page replacement data structures are maintained on a
1246 * per-zone basis.
1247 */
1248 typedef struct pglist_data {
1249 /*
1250 * node_zones contains just the zones for THIS node. Not all of the
1251 * zones may be populated, but it is the full list. It is referenced by
1252 * this node's node_zonelists as well as other node's node_zonelists.
1253 */
1254 struct zone node_zones[MAX_NR_ZONES];
1255
1256 /*
1257 * node_zonelists contains references to all zones in all nodes.
1258 * Generally the first zones will be references to this node's
1259 * node_zones.
1260 */
1261 struct zonelist node_zonelists[MAX_ZONELISTS];
1262
1263 int nr_zones; /* number of populated zones in this node */
1264 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1265 struct page *node_mem_map;
1266 #ifdef CONFIG_PAGE_EXTENSION
1267 struct page_ext *node_page_ext;
1268 #endif
1269 #endif
1270 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1271 /*
1272 * Must be held any time you expect node_start_pfn,
1273 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1274 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1275 * init.
1276 *
1277 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1278 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1279 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1280 *
1281 * Nests above zone->lock and zone->span_seqlock
1282 */
1283 spinlock_t node_size_lock;
1284 #endif
1285 unsigned long node_start_pfn;
1286 unsigned long node_present_pages; /* total number of physical pages */
1287 unsigned long node_spanned_pages; /* total size of physical page
1288 range, including holes */
1289 int node_id;
1290 wait_queue_head_t kswapd_wait;
1291 wait_queue_head_t pfmemalloc_wait;
1292
1293 /* workqueues for throttling reclaim for different reasons. */
1294 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1295
1296 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1297 unsigned long nr_reclaim_start; /* nr pages written while throttled
1298 * when throttling started. */
1299 #ifdef CONFIG_MEMORY_HOTPLUG
1300 struct mutex kswapd_lock;
1301 #endif
1302 struct task_struct *kswapd; /* Protected by kswapd_lock */
1303 int kswapd_order;
1304 enum zone_type kswapd_highest_zoneidx;
1305
1306 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1307
1308 #ifdef CONFIG_COMPACTION
1309 int kcompactd_max_order;
1310 enum zone_type kcompactd_highest_zoneidx;
1311 wait_queue_head_t kcompactd_wait;
1312 struct task_struct *kcompactd;
1313 bool proactive_compact_trigger;
1314 #endif
1315 /*
1316 * This is a per-node reserve of pages that are not available
1317 * to userspace allocations.
1318 */
1319 unsigned long totalreserve_pages;
1320
1321 #ifdef CONFIG_NUMA
1322 /*
1323 * node reclaim becomes active if more unmapped pages exist.
1324 */
1325 unsigned long min_unmapped_pages;
1326 unsigned long min_slab_pages;
1327 #endif /* CONFIG_NUMA */
1328
1329 /* Write-intensive fields used by page reclaim */
1330 CACHELINE_PADDING(_pad1_);
1331
1332 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1333 /*
1334 * If memory initialisation on large machines is deferred then this
1335 * is the first PFN that needs to be initialised.
1336 */
1337 unsigned long first_deferred_pfn;
1338 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1339
1340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1341 struct deferred_split deferred_split_queue;
1342 #endif
1343
1344 #ifdef CONFIG_NUMA_BALANCING
1345 /* start time in ms of current promote rate limit period */
1346 unsigned int nbp_rl_start;
1347 /* number of promote candidate pages at start time of current rate limit period */
1348 unsigned long nbp_rl_nr_cand;
1349 /* promote threshold in ms */
1350 unsigned int nbp_threshold;
1351 /* start time in ms of current promote threshold adjustment period */
1352 unsigned int nbp_th_start;
1353 /*
1354 * number of promote candidate pages at start time of current promote
1355 * threshold adjustment period
1356 */
1357 unsigned long nbp_th_nr_cand;
1358 #endif
1359 /* Fields commonly accessed by the page reclaim scanner */
1360
1361 /*
1362 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1363 *
1364 * Use mem_cgroup_lruvec() to look up lruvecs.
1365 */
1366 struct lruvec __lruvec;
1367
1368 unsigned long flags;
1369
1370 #ifdef CONFIG_LRU_GEN
1371 /* kswap mm walk data */
1372 struct lru_gen_mm_walk mm_walk;
1373 /* lru_gen_folio list */
1374 struct lru_gen_memcg memcg_lru;
1375 #endif
1376
1377 CACHELINE_PADDING(_pad2_);
1378
1379 /* Per-node vmstats */
1380 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1381 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1382 #ifdef CONFIG_NUMA
1383 struct memory_tier __rcu *memtier;
1384 #endif
1385 #ifdef CONFIG_MEMORY_FAILURE
1386 struct memory_failure_stats mf_stats;
1387 #endif
1388 } pg_data_t;
1389
1390 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1391 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1392
1393 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1394 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1395
pgdat_end_pfn(pg_data_t * pgdat)1396 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1397 {
1398 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1399 }
1400
1401 #include <linux/memory_hotplug.h>
1402
1403 void build_all_zonelists(pg_data_t *pgdat);
1404 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1405 enum zone_type highest_zoneidx);
1406 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1407 int highest_zoneidx, unsigned int alloc_flags,
1408 long free_pages);
1409 bool zone_watermark_ok(struct zone *z, unsigned int order,
1410 unsigned long mark, int highest_zoneidx,
1411 unsigned int alloc_flags);
1412 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1413 unsigned long mark, int highest_zoneidx);
1414 /*
1415 * Memory initialization context, use to differentiate memory added by
1416 * the platform statically or via memory hotplug interface.
1417 */
1418 enum meminit_context {
1419 MEMINIT_EARLY,
1420 MEMINIT_HOTPLUG,
1421 };
1422
1423 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1424 unsigned long size);
1425
1426 extern void lruvec_init(struct lruvec *lruvec);
1427
lruvec_pgdat(struct lruvec * lruvec)1428 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1429 {
1430 #ifdef CONFIG_MEMCG
1431 return lruvec->pgdat;
1432 #else
1433 return container_of(lruvec, struct pglist_data, __lruvec);
1434 #endif
1435 }
1436
1437 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1438 int local_memory_node(int node_id);
1439 #else
local_memory_node(int node_id)1440 static inline int local_memory_node(int node_id) { return node_id; };
1441 #endif
1442
1443 /*
1444 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1445 */
1446 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1447
1448 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1449 static inline bool zone_is_zone_device(struct zone *zone)
1450 {
1451 return zone_idx(zone) == ZONE_DEVICE;
1452 }
1453 #else
zone_is_zone_device(struct zone * zone)1454 static inline bool zone_is_zone_device(struct zone *zone)
1455 {
1456 return false;
1457 }
1458 #endif
1459
1460 /*
1461 * Returns true if a zone has pages managed by the buddy allocator.
1462 * All the reclaim decisions have to use this function rather than
1463 * populated_zone(). If the whole zone is reserved then we can easily
1464 * end up with populated_zone() && !managed_zone().
1465 */
managed_zone(struct zone * zone)1466 static inline bool managed_zone(struct zone *zone)
1467 {
1468 return zone_managed_pages(zone);
1469 }
1470
1471 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1472 static inline bool populated_zone(struct zone *zone)
1473 {
1474 return zone->present_pages;
1475 }
1476
1477 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1478 static inline int zone_to_nid(struct zone *zone)
1479 {
1480 return zone->node;
1481 }
1482
zone_set_nid(struct zone * zone,int nid)1483 static inline void zone_set_nid(struct zone *zone, int nid)
1484 {
1485 zone->node = nid;
1486 }
1487 #else
zone_to_nid(struct zone * zone)1488 static inline int zone_to_nid(struct zone *zone)
1489 {
1490 return 0;
1491 }
1492
zone_set_nid(struct zone * zone,int nid)1493 static inline void zone_set_nid(struct zone *zone, int nid) {}
1494 #endif
1495
1496 extern int movable_zone;
1497
is_highmem_idx(enum zone_type idx)1498 static inline int is_highmem_idx(enum zone_type idx)
1499 {
1500 #ifdef CONFIG_HIGHMEM
1501 return (idx == ZONE_HIGHMEM ||
1502 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1503 #else
1504 return 0;
1505 #endif
1506 }
1507
1508 /**
1509 * is_highmem - helper function to quickly check if a struct zone is a
1510 * highmem zone or not. This is an attempt to keep references
1511 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1512 * @zone: pointer to struct zone variable
1513 * Return: 1 for a highmem zone, 0 otherwise
1514 */
is_highmem(struct zone * zone)1515 static inline int is_highmem(struct zone *zone)
1516 {
1517 return is_highmem_idx(zone_idx(zone));
1518 }
1519
1520 #ifdef CONFIG_ZONE_DMA
1521 bool has_managed_dma(void);
1522 #else
has_managed_dma(void)1523 static inline bool has_managed_dma(void)
1524 {
1525 return false;
1526 }
1527 #endif
1528
1529 /* These two functions are used to setup the per zone pages min values */
1530 struct ctl_table;
1531
1532 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1533 loff_t *);
1534 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1535 size_t *, loff_t *);
1536 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1537 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1538 size_t *, loff_t *);
1539 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1540 void *, size_t *, loff_t *);
1541 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1542 void *, size_t *, loff_t *);
1543 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1544 void *, size_t *, loff_t *);
1545 int numa_zonelist_order_handler(struct ctl_table *, int,
1546 void *, size_t *, loff_t *);
1547 extern int percpu_pagelist_high_fraction;
1548 extern char numa_zonelist_order[];
1549 #define NUMA_ZONELIST_ORDER_LEN 16
1550
1551 #ifndef CONFIG_NUMA
1552
1553 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1554 static inline struct pglist_data *NODE_DATA(int nid)
1555 {
1556 return &contig_page_data;
1557 }
1558
1559 #else /* CONFIG_NUMA */
1560
1561 #include <asm/mmzone.h>
1562
1563 #endif /* !CONFIG_NUMA */
1564
1565 extern struct pglist_data *first_online_pgdat(void);
1566 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1567 extern struct zone *next_zone(struct zone *zone);
1568
1569 /**
1570 * for_each_online_pgdat - helper macro to iterate over all online nodes
1571 * @pgdat: pointer to a pg_data_t variable
1572 */
1573 #define for_each_online_pgdat(pgdat) \
1574 for (pgdat = first_online_pgdat(); \
1575 pgdat; \
1576 pgdat = next_online_pgdat(pgdat))
1577 /**
1578 * for_each_zone - helper macro to iterate over all memory zones
1579 * @zone: pointer to struct zone variable
1580 *
1581 * The user only needs to declare the zone variable, for_each_zone
1582 * fills it in.
1583 */
1584 #define for_each_zone(zone) \
1585 for (zone = (first_online_pgdat())->node_zones; \
1586 zone; \
1587 zone = next_zone(zone))
1588
1589 #define for_each_populated_zone(zone) \
1590 for (zone = (first_online_pgdat())->node_zones; \
1591 zone; \
1592 zone = next_zone(zone)) \
1593 if (!populated_zone(zone)) \
1594 ; /* do nothing */ \
1595 else
1596
zonelist_zone(struct zoneref * zoneref)1597 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1598 {
1599 return zoneref->zone;
1600 }
1601
zonelist_zone_idx(struct zoneref * zoneref)1602 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1603 {
1604 return zoneref->zone_idx;
1605 }
1606
zonelist_node_idx(struct zoneref * zoneref)1607 static inline int zonelist_node_idx(struct zoneref *zoneref)
1608 {
1609 return zone_to_nid(zoneref->zone);
1610 }
1611
1612 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1613 enum zone_type highest_zoneidx,
1614 nodemask_t *nodes);
1615
1616 /**
1617 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1618 * @z: The cursor used as a starting point for the search
1619 * @highest_zoneidx: The zone index of the highest zone to return
1620 * @nodes: An optional nodemask to filter the zonelist with
1621 *
1622 * This function returns the next zone at or below a given zone index that is
1623 * within the allowed nodemask using a cursor as the starting point for the
1624 * search. The zoneref returned is a cursor that represents the current zone
1625 * being examined. It should be advanced by one before calling
1626 * next_zones_zonelist again.
1627 *
1628 * Return: the next zone at or below highest_zoneidx within the allowed
1629 * nodemask using a cursor within a zonelist as a starting point
1630 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1631 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1632 enum zone_type highest_zoneidx,
1633 nodemask_t *nodes)
1634 {
1635 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1636 return z;
1637 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1638 }
1639
1640 /**
1641 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1642 * @zonelist: The zonelist to search for a suitable zone
1643 * @highest_zoneidx: The zone index of the highest zone to return
1644 * @nodes: An optional nodemask to filter the zonelist with
1645 *
1646 * This function returns the first zone at or below a given zone index that is
1647 * within the allowed nodemask. The zoneref returned is a cursor that can be
1648 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1649 * one before calling.
1650 *
1651 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1652 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1653 * update due to cpuset modification.
1654 *
1655 * Return: Zoneref pointer for the first suitable zone found
1656 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1657 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1658 enum zone_type highest_zoneidx,
1659 nodemask_t *nodes)
1660 {
1661 return next_zones_zonelist(zonelist->_zonerefs,
1662 highest_zoneidx, nodes);
1663 }
1664
1665 /**
1666 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1667 * @zone: The current zone in the iterator
1668 * @z: The current pointer within zonelist->_zonerefs being iterated
1669 * @zlist: The zonelist being iterated
1670 * @highidx: The zone index of the highest zone to return
1671 * @nodemask: Nodemask allowed by the allocator
1672 *
1673 * This iterator iterates though all zones at or below a given zone index and
1674 * within a given nodemask
1675 */
1676 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1677 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1678 zone; \
1679 z = next_zones_zonelist(++z, highidx, nodemask), \
1680 zone = zonelist_zone(z))
1681
1682 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1683 for (zone = z->zone; \
1684 zone; \
1685 z = next_zones_zonelist(++z, highidx, nodemask), \
1686 zone = zonelist_zone(z))
1687
1688
1689 /**
1690 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1691 * @zone: The current zone in the iterator
1692 * @z: The current pointer within zonelist->zones being iterated
1693 * @zlist: The zonelist being iterated
1694 * @highidx: The zone index of the highest zone to return
1695 *
1696 * This iterator iterates though all zones at or below a given zone index.
1697 */
1698 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1699 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1700
1701 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1702 static inline bool movable_only_nodes(nodemask_t *nodes)
1703 {
1704 struct zonelist *zonelist;
1705 struct zoneref *z;
1706 int nid;
1707
1708 if (nodes_empty(*nodes))
1709 return false;
1710
1711 /*
1712 * We can chose arbitrary node from the nodemask to get a
1713 * zonelist as they are interlinked. We just need to find
1714 * at least one zone that can satisfy kernel allocations.
1715 */
1716 nid = first_node(*nodes);
1717 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1718 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1719 return (!z->zone) ? true : false;
1720 }
1721
1722
1723 #ifdef CONFIG_SPARSEMEM
1724 #include <asm/sparsemem.h>
1725 #endif
1726
1727 #ifdef CONFIG_FLATMEM
1728 #define pfn_to_nid(pfn) (0)
1729 #endif
1730
1731 #ifdef CONFIG_SPARSEMEM
1732
1733 /*
1734 * PA_SECTION_SHIFT physical address to/from section number
1735 * PFN_SECTION_SHIFT pfn to/from section number
1736 */
1737 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1738 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1739
1740 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1741
1742 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1743 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1744
1745 #define SECTION_BLOCKFLAGS_BITS \
1746 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1747
1748 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1749 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1750 #endif
1751
pfn_to_section_nr(unsigned long pfn)1752 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1753 {
1754 return pfn >> PFN_SECTION_SHIFT;
1755 }
section_nr_to_pfn(unsigned long sec)1756 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1757 {
1758 return sec << PFN_SECTION_SHIFT;
1759 }
1760
1761 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1762 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1763
1764 #define SUBSECTION_SHIFT 21
1765 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1766
1767 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1768 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1769 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1770
1771 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1772 #error Subsection size exceeds section size
1773 #else
1774 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1775 #endif
1776
1777 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1778 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1779
1780 struct mem_section_usage {
1781 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1782 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1783 #endif
1784 /* See declaration of similar field in struct zone */
1785 unsigned long pageblock_flags[0];
1786 };
1787
1788 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1789
1790 struct page;
1791 struct page_ext;
1792 struct mem_section {
1793 /*
1794 * This is, logically, a pointer to an array of struct
1795 * pages. However, it is stored with some other magic.
1796 * (see sparse.c::sparse_init_one_section())
1797 *
1798 * Additionally during early boot we encode node id of
1799 * the location of the section here to guide allocation.
1800 * (see sparse.c::memory_present())
1801 *
1802 * Making it a UL at least makes someone do a cast
1803 * before using it wrong.
1804 */
1805 unsigned long section_mem_map;
1806
1807 struct mem_section_usage *usage;
1808 #ifdef CONFIG_PAGE_EXTENSION
1809 /*
1810 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1811 * section. (see page_ext.h about this.)
1812 */
1813 struct page_ext *page_ext;
1814 unsigned long pad;
1815 #endif
1816 /*
1817 * WARNING: mem_section must be a power-of-2 in size for the
1818 * calculation and use of SECTION_ROOT_MASK to make sense.
1819 */
1820 };
1821
1822 #ifdef CONFIG_SPARSEMEM_EXTREME
1823 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1824 #else
1825 #define SECTIONS_PER_ROOT 1
1826 #endif
1827
1828 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1829 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1830 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1831
1832 #ifdef CONFIG_SPARSEMEM_EXTREME
1833 extern struct mem_section **mem_section;
1834 #else
1835 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1836 #endif
1837
section_to_usemap(struct mem_section * ms)1838 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1839 {
1840 return ms->usage->pageblock_flags;
1841 }
1842
__nr_to_section(unsigned long nr)1843 static inline struct mem_section *__nr_to_section(unsigned long nr)
1844 {
1845 unsigned long root = SECTION_NR_TO_ROOT(nr);
1846
1847 if (unlikely(root >= NR_SECTION_ROOTS))
1848 return NULL;
1849
1850 #ifdef CONFIG_SPARSEMEM_EXTREME
1851 if (!mem_section || !mem_section[root])
1852 return NULL;
1853 #endif
1854 return &mem_section[root][nr & SECTION_ROOT_MASK];
1855 }
1856 extern size_t mem_section_usage_size(void);
1857
1858 /*
1859 * We use the lower bits of the mem_map pointer to store
1860 * a little bit of information. The pointer is calculated
1861 * as mem_map - section_nr_to_pfn(pnum). The result is
1862 * aligned to the minimum alignment of the two values:
1863 * 1. All mem_map arrays are page-aligned.
1864 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1865 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1866 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1867 * worst combination is powerpc with 256k pages,
1868 * which results in PFN_SECTION_SHIFT equal 6.
1869 * To sum it up, at least 6 bits are available on all architectures.
1870 * However, we can exceed 6 bits on some other architectures except
1871 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1872 * with the worst case of 64K pages on arm64) if we make sure the
1873 * exceeded bit is not applicable to powerpc.
1874 */
1875 enum {
1876 SECTION_MARKED_PRESENT_BIT,
1877 SECTION_HAS_MEM_MAP_BIT,
1878 SECTION_IS_ONLINE_BIT,
1879 SECTION_IS_EARLY_BIT,
1880 #ifdef CONFIG_ZONE_DEVICE
1881 SECTION_TAINT_ZONE_DEVICE_BIT,
1882 #endif
1883 SECTION_MAP_LAST_BIT,
1884 };
1885
1886 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1887 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1888 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1889 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1890 #ifdef CONFIG_ZONE_DEVICE
1891 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1892 #endif
1893 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1894 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1895
__section_mem_map_addr(struct mem_section * section)1896 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1897 {
1898 unsigned long map = section->section_mem_map;
1899 map &= SECTION_MAP_MASK;
1900 return (struct page *)map;
1901 }
1902
present_section(struct mem_section * section)1903 static inline int present_section(struct mem_section *section)
1904 {
1905 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1906 }
1907
present_section_nr(unsigned long nr)1908 static inline int present_section_nr(unsigned long nr)
1909 {
1910 return present_section(__nr_to_section(nr));
1911 }
1912
valid_section(struct mem_section * section)1913 static inline int valid_section(struct mem_section *section)
1914 {
1915 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1916 }
1917
early_section(struct mem_section * section)1918 static inline int early_section(struct mem_section *section)
1919 {
1920 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1921 }
1922
valid_section_nr(unsigned long nr)1923 static inline int valid_section_nr(unsigned long nr)
1924 {
1925 return valid_section(__nr_to_section(nr));
1926 }
1927
online_section(struct mem_section * section)1928 static inline int online_section(struct mem_section *section)
1929 {
1930 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1931 }
1932
1933 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1934 static inline int online_device_section(struct mem_section *section)
1935 {
1936 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1937
1938 return section && ((section->section_mem_map & flags) == flags);
1939 }
1940 #else
online_device_section(struct mem_section * section)1941 static inline int online_device_section(struct mem_section *section)
1942 {
1943 return 0;
1944 }
1945 #endif
1946
online_section_nr(unsigned long nr)1947 static inline int online_section_nr(unsigned long nr)
1948 {
1949 return online_section(__nr_to_section(nr));
1950 }
1951
1952 #ifdef CONFIG_MEMORY_HOTPLUG
1953 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1954 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1955 #endif
1956
__pfn_to_section(unsigned long pfn)1957 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1958 {
1959 return __nr_to_section(pfn_to_section_nr(pfn));
1960 }
1961
1962 extern unsigned long __highest_present_section_nr;
1963
subsection_map_index(unsigned long pfn)1964 static inline int subsection_map_index(unsigned long pfn)
1965 {
1966 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1967 }
1968
1969 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1970 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1971 {
1972 int idx = subsection_map_index(pfn);
1973
1974 return test_bit(idx, ms->usage->subsection_map);
1975 }
1976 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1977 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1978 {
1979 return 1;
1980 }
1981 #endif
1982
1983 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1984 /**
1985 * pfn_valid - check if there is a valid memory map entry for a PFN
1986 * @pfn: the page frame number to check
1987 *
1988 * Check if there is a valid memory map entry aka struct page for the @pfn.
1989 * Note, that availability of the memory map entry does not imply that
1990 * there is actual usable memory at that @pfn. The struct page may
1991 * represent a hole or an unusable page frame.
1992 *
1993 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1994 */
pfn_valid(unsigned long pfn)1995 static inline int pfn_valid(unsigned long pfn)
1996 {
1997 struct mem_section *ms;
1998
1999 /*
2000 * Ensure the upper PAGE_SHIFT bits are clear in the
2001 * pfn. Else it might lead to false positives when
2002 * some of the upper bits are set, but the lower bits
2003 * match a valid pfn.
2004 */
2005 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2006 return 0;
2007
2008 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2009 return 0;
2010 ms = __pfn_to_section(pfn);
2011 if (!valid_section(ms))
2012 return 0;
2013 /*
2014 * Traditionally early sections always returned pfn_valid() for
2015 * the entire section-sized span.
2016 */
2017 return early_section(ms) || pfn_section_valid(ms, pfn);
2018 }
2019 #endif
2020
pfn_in_present_section(unsigned long pfn)2021 static inline int pfn_in_present_section(unsigned long pfn)
2022 {
2023 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2024 return 0;
2025 return present_section(__pfn_to_section(pfn));
2026 }
2027
next_present_section_nr(unsigned long section_nr)2028 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2029 {
2030 while (++section_nr <= __highest_present_section_nr) {
2031 if (present_section_nr(section_nr))
2032 return section_nr;
2033 }
2034
2035 return -1;
2036 }
2037
2038 /*
2039 * These are _only_ used during initialisation, therefore they
2040 * can use __initdata ... They could have names to indicate
2041 * this restriction.
2042 */
2043 #ifdef CONFIG_NUMA
2044 #define pfn_to_nid(pfn) \
2045 ({ \
2046 unsigned long __pfn_to_nid_pfn = (pfn); \
2047 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2048 })
2049 #else
2050 #define pfn_to_nid(pfn) (0)
2051 #endif
2052
2053 void sparse_init(void);
2054 #else
2055 #define sparse_init() do {} while (0)
2056 #define sparse_index_init(_sec, _nid) do {} while (0)
2057 #define pfn_in_present_section pfn_valid
2058 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2059 #endif /* CONFIG_SPARSEMEM */
2060
2061 #endif /* !__GENERATING_BOUNDS.H */
2062 #endif /* !__ASSEMBLY__ */
2063 #endif /* _LINUX_MMZONE_H */
2064