1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_referenced,
103 	PG_uptodate,
104 	PG_dirty,
105 	PG_lru,
106 	PG_active,
107 	PG_workingset,
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_error,
110 	PG_slab,
111 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
112 	PG_arch_1,
113 	PG_reserved,
114 	PG_private,		/* If pagecache, has fs-private data */
115 	PG_private_2,		/* If pagecache, has fs aux data */
116 	PG_writeback,		/* Page is under writeback */
117 	PG_head,		/* A head page */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
136 	PG_arch_2,
137 	PG_arch_3,
138 #endif
139 #ifdef CONFIG_KASAN_HW_TAGS
140 	PG_skip_kasan_poison,
141 #endif
142 	__NR_PAGEFLAGS,
143 
144 	PG_readahead = PG_reclaim,
145 
146 	/*
147 	 * Depending on the way an anonymous folio can be mapped into a page
148 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
149 	 * THP), PG_anon_exclusive may be set only for the head page or for
150 	 * tail pages of an anonymous folio. For now, we only expect it to be
151 	 * set on tail pages for PTE-mapped THP.
152 	 */
153 	PG_anon_exclusive = PG_mappedtodisk,
154 
155 	/* Filesystems */
156 	PG_checked = PG_owner_priv_1,
157 
158 	/* SwapBacked */
159 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
160 
161 	/* Two page bits are conscripted by FS-Cache to maintain local caching
162 	 * state.  These bits are set on pages belonging to the netfs's inodes
163 	 * when those inodes are being locally cached.
164 	 */
165 	PG_fscache = PG_private_2,	/* page backed by cache */
166 
167 	/* XEN */
168 	/* Pinned in Xen as a read-only pagetable page. */
169 	PG_pinned = PG_owner_priv_1,
170 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
171 	PG_savepinned = PG_dirty,
172 	/* Has a grant mapping of another (foreign) domain's page. */
173 	PG_foreign = PG_owner_priv_1,
174 	/* Remapped by swiotlb-xen. */
175 	PG_xen_remapped = PG_owner_priv_1,
176 
177 	/* SLOB */
178 	PG_slob_free = PG_private,
179 
180 #ifdef CONFIG_MEMORY_FAILURE
181 	/*
182 	 * Compound pages. Stored in first tail page's flags.
183 	 * Indicates that at least one subpage is hwpoisoned in the
184 	 * THP.
185 	 */
186 	PG_has_hwpoisoned = PG_error,
187 #endif
188 
189 	/* non-lru isolated movable page */
190 	PG_isolated = PG_reclaim,
191 
192 	/* Only valid for buddy pages. Used to track pages that are reported */
193 	PG_reported = PG_uptodate,
194 
195 #ifdef CONFIG_MEMORY_HOTPLUG
196 	/* For self-hosted memmap pages */
197 	PG_vmemmap_self_hosted = PG_owner_priv_1,
198 #endif
199 };
200 
201 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
202 
203 #ifndef __GENERATING_BOUNDS_H
204 
205 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
206 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
207 
208 /*
209  * Return the real head page struct iff the @page is a fake head page, otherwise
210  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
211  */
page_fixed_fake_head(const struct page * page)212 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
213 {
214 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
215 		return page;
216 
217 	/*
218 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
219 	 * struct page. The alignment check aims to avoid access the fields (
220 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
221 	 * cold cacheline in some cases.
222 	 */
223 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
224 	    test_bit(PG_head, &page->flags)) {
225 		/*
226 		 * We can safely access the field of the @page[1] with PG_head
227 		 * because the @page is a compound page composed with at least
228 		 * two contiguous pages.
229 		 */
230 		unsigned long head = READ_ONCE(page[1].compound_head);
231 
232 		if (likely(head & 1))
233 			return (const struct page *)(head - 1);
234 	}
235 	return page;
236 }
237 #else
page_fixed_fake_head(const struct page * page)238 static inline const struct page *page_fixed_fake_head(const struct page *page)
239 {
240 	return page;
241 }
242 #endif
243 
page_is_fake_head(struct page * page)244 static __always_inline int page_is_fake_head(struct page *page)
245 {
246 	return page_fixed_fake_head(page) != page;
247 }
248 
_compound_head(const struct page * page)249 static inline unsigned long _compound_head(const struct page *page)
250 {
251 	unsigned long head = READ_ONCE(page->compound_head);
252 
253 	if (unlikely(head & 1))
254 		return head - 1;
255 	return (unsigned long)page_fixed_fake_head(page);
256 }
257 
258 #define compound_head(page)	((typeof(page))_compound_head(page))
259 
260 /**
261  * page_folio - Converts from page to folio.
262  * @p: The page.
263  *
264  * Every page is part of a folio.  This function cannot be called on a
265  * NULL pointer.
266  *
267  * Context: No reference, nor lock is required on @page.  If the caller
268  * does not hold a reference, this call may race with a folio split, so
269  * it should re-check the folio still contains this page after gaining
270  * a reference on the folio.
271  * Return: The folio which contains this page.
272  */
273 #define page_folio(p)		(_Generic((p),				\
274 	const struct page *:	(const struct folio *)_compound_head(p), \
275 	struct page *:		(struct folio *)_compound_head(p)))
276 
277 /**
278  * folio_page - Return a page from a folio.
279  * @folio: The folio.
280  * @n: The page number to return.
281  *
282  * @n is relative to the start of the folio.  This function does not
283  * check that the page number lies within @folio; the caller is presumed
284  * to have a reference to the page.
285  */
286 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
287 
PageTail(struct page * page)288 static __always_inline int PageTail(struct page *page)
289 {
290 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
291 }
292 
PageCompound(struct page * page)293 static __always_inline int PageCompound(struct page *page)
294 {
295 	return test_bit(PG_head, &page->flags) ||
296 	       READ_ONCE(page->compound_head) & 1;
297 }
298 
299 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)300 static inline int PagePoisoned(const struct page *page)
301 {
302 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
303 }
304 
305 #ifdef CONFIG_DEBUG_VM
306 void page_init_poison(struct page *page, size_t size);
307 #else
page_init_poison(struct page * page,size_t size)308 static inline void page_init_poison(struct page *page, size_t size)
309 {
310 }
311 #endif
312 
folio_flags(struct folio * folio,unsigned n)313 static unsigned long *folio_flags(struct folio *folio, unsigned n)
314 {
315 	struct page *page = &folio->page;
316 
317 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
318 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
319 	return &page[n].flags;
320 }
321 
322 /*
323  * Page flags policies wrt compound pages
324  *
325  * PF_POISONED_CHECK
326  *     check if this struct page poisoned/uninitialized
327  *
328  * PF_ANY:
329  *     the page flag is relevant for small, head and tail pages.
330  *
331  * PF_HEAD:
332  *     for compound page all operations related to the page flag applied to
333  *     head page.
334  *
335  * PF_ONLY_HEAD:
336  *     for compound page, callers only ever operate on the head page.
337  *
338  * PF_NO_TAIL:
339  *     modifications of the page flag must be done on small or head pages,
340  *     checks can be done on tail pages too.
341  *
342  * PF_NO_COMPOUND:
343  *     the page flag is not relevant for compound pages.
344  *
345  * PF_SECOND:
346  *     the page flag is stored in the first tail page.
347  */
348 #define PF_POISONED_CHECK(page) ({					\
349 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
350 		page; })
351 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
352 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
353 #define PF_ONLY_HEAD(page, enforce) ({					\
354 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
355 		PF_POISONED_CHECK(page); })
356 #define PF_NO_TAIL(page, enforce) ({					\
357 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
358 		PF_POISONED_CHECK(compound_head(page)); })
359 #define PF_NO_COMPOUND(page, enforce) ({				\
360 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
361 		PF_POISONED_CHECK(page); })
362 #define PF_SECOND(page, enforce) ({					\
363 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
364 		PF_POISONED_CHECK(&page[1]); })
365 
366 /* Which page is the flag stored in */
367 #define FOLIO_PF_ANY		0
368 #define FOLIO_PF_HEAD		0
369 #define FOLIO_PF_ONLY_HEAD	0
370 #define FOLIO_PF_NO_TAIL	0
371 #define FOLIO_PF_NO_COMPOUND	0
372 #define FOLIO_PF_SECOND		1
373 
374 /*
375  * Macros to create function definitions for page flags
376  */
377 #define TESTPAGEFLAG(uname, lname, policy)				\
378 static __always_inline bool folio_test_##lname(struct folio *folio)	\
379 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
380 static __always_inline int Page##uname(struct page *page)		\
381 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
382 
383 #define SETPAGEFLAG(uname, lname, policy)				\
384 static __always_inline							\
385 void folio_set_##lname(struct folio *folio)				\
386 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
387 static __always_inline void SetPage##uname(struct page *page)		\
388 { set_bit(PG_##lname, &policy(page, 1)->flags); }
389 
390 #define CLEARPAGEFLAG(uname, lname, policy)				\
391 static __always_inline							\
392 void folio_clear_##lname(struct folio *folio)				\
393 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
394 static __always_inline void ClearPage##uname(struct page *page)		\
395 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
396 
397 #define __SETPAGEFLAG(uname, lname, policy)				\
398 static __always_inline							\
399 void __folio_set_##lname(struct folio *folio)				\
400 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
401 static __always_inline void __SetPage##uname(struct page *page)		\
402 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
403 
404 #define __CLEARPAGEFLAG(uname, lname, policy)				\
405 static __always_inline							\
406 void __folio_clear_##lname(struct folio *folio)				\
407 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
408 static __always_inline void __ClearPage##uname(struct page *page)	\
409 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
410 
411 #define TESTSETFLAG(uname, lname, policy)				\
412 static __always_inline							\
413 bool folio_test_set_##lname(struct folio *folio)			\
414 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
415 static __always_inline int TestSetPage##uname(struct page *page)	\
416 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
417 
418 #define TESTCLEARFLAG(uname, lname, policy)				\
419 static __always_inline							\
420 bool folio_test_clear_##lname(struct folio *folio)			\
421 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
422 static __always_inline int TestClearPage##uname(struct page *page)	\
423 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
424 
425 #define PAGEFLAG(uname, lname, policy)					\
426 	TESTPAGEFLAG(uname, lname, policy)				\
427 	SETPAGEFLAG(uname, lname, policy)				\
428 	CLEARPAGEFLAG(uname, lname, policy)
429 
430 #define __PAGEFLAG(uname, lname, policy)				\
431 	TESTPAGEFLAG(uname, lname, policy)				\
432 	__SETPAGEFLAG(uname, lname, policy)				\
433 	__CLEARPAGEFLAG(uname, lname, policy)
434 
435 #define TESTSCFLAG(uname, lname, policy)				\
436 	TESTSETFLAG(uname, lname, policy)				\
437 	TESTCLEARFLAG(uname, lname, policy)
438 
439 #define TESTPAGEFLAG_FALSE(uname, lname)				\
440 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
441 static inline int Page##uname(const struct page *page) { return 0; }
442 
443 #define SETPAGEFLAG_NOOP(uname, lname)					\
444 static inline void folio_set_##lname(struct folio *folio) { }		\
445 static inline void SetPage##uname(struct page *page) {  }
446 
447 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
448 static inline void folio_clear_##lname(struct folio *folio) { }		\
449 static inline void ClearPage##uname(struct page *page) {  }
450 
451 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
452 static inline void __folio_clear_##lname(struct folio *folio) { }	\
453 static inline void __ClearPage##uname(struct page *page) {  }
454 
455 #define TESTSETFLAG_FALSE(uname, lname)					\
456 static inline bool folio_test_set_##lname(struct folio *folio)		\
457 { return 0; }								\
458 static inline int TestSetPage##uname(struct page *page) { return 0; }
459 
460 #define TESTCLEARFLAG_FALSE(uname, lname)				\
461 static inline bool folio_test_clear_##lname(struct folio *folio)	\
462 { return 0; }								\
463 static inline int TestClearPage##uname(struct page *page) { return 0; }
464 
465 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
466 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
467 
468 #define TESTSCFLAG_FALSE(uname, lname)					\
469 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
470 
471 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
472 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
473 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
474 PAGEFLAG(Referenced, referenced, PF_HEAD)
475 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
476 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
477 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
478 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
479 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
480 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
481 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
482 	TESTCLEARFLAG(Active, active, PF_HEAD)
483 PAGEFLAG(Workingset, workingset, PF_HEAD)
484 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
485 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
486 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
487 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
488 
489 /* Xen */
490 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
491 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
492 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
493 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)494 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
495 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
496 
497 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
498 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
499 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
500 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
501 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
502 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
503 
504 /*
505  * Private page markings that may be used by the filesystem that owns the page
506  * for its own purposes.
507  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
508  */
509 PAGEFLAG(Private, private, PF_ANY)
510 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
511 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
512 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
513 
514 /*
515  * Only test-and-set exist for PG_writeback.  The unconditional operators are
516  * risky: they bypass page accounting.
517  */
518 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
519 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
520 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
521 
522 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
523 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
524 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
525 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
526 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
527 
528 #ifdef CONFIG_HIGHMEM
529 /*
530  * Must use a macro here due to header dependency issues. page_zone() is not
531  * available at this point.
532  */
533 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
534 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
535 #else
536 PAGEFLAG_FALSE(HighMem, highmem)
537 #endif
538 
539 #ifdef CONFIG_SWAP
540 static __always_inline bool folio_test_swapcache(struct folio *folio)
541 {
542 	return folio_test_swapbacked(folio) &&
543 			test_bit(PG_swapcache, folio_flags(folio, 0));
544 }
545 
PageSwapCache(struct page * page)546 static __always_inline bool PageSwapCache(struct page *page)
547 {
548 	return folio_test_swapcache(page_folio(page));
549 }
550 
551 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
552 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
553 #else
554 PAGEFLAG_FALSE(SwapCache, swapcache)
555 #endif
556 
557 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
558 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
559 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
560 
561 #ifdef CONFIG_MMU
562 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
563 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
564 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
565 #else
566 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
567 	TESTSCFLAG_FALSE(Mlocked, mlocked)
568 #endif
569 
570 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
571 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
572 #else
573 PAGEFLAG_FALSE(Uncached, uncached)
574 #endif
575 
576 #ifdef CONFIG_MEMORY_FAILURE
577 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
578 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
579 #define __PG_HWPOISON (1UL << PG_hwpoison)
580 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
581 extern void SetPageHWPoisonTakenOff(struct page *page);
582 extern void ClearPageHWPoisonTakenOff(struct page *page);
583 extern bool take_page_off_buddy(struct page *page);
584 extern bool put_page_back_buddy(struct page *page);
585 #else
586 PAGEFLAG_FALSE(HWPoison, hwpoison)
587 #define __PG_HWPOISON 0
588 #endif
589 
590 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)591 TESTPAGEFLAG(Young, young, PF_ANY)
592 SETPAGEFLAG(Young, young, PF_ANY)
593 TESTCLEARFLAG(Young, young, PF_ANY)
594 PAGEFLAG(Idle, idle, PF_ANY)
595 #endif
596 
597 #ifdef CONFIG_KASAN_HW_TAGS
598 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
599 #else
600 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
601 #endif
602 
603 /*
604  * PageReported() is used to track reported free pages within the Buddy
605  * allocator. We can use the non-atomic version of the test and set
606  * operations as both should be shielded with the zone lock to prevent
607  * any possible races on the setting or clearing of the bit.
608  */
609 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
610 
611 #ifdef CONFIG_MEMORY_HOTPLUG
612 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
613 #else
614 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
615 #endif
616 
617 /*
618  * On an anonymous page mapped into a user virtual memory area,
619  * page->mapping points to its anon_vma, not to a struct address_space;
620  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
621  *
622  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
623  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
624  * bit; and then page->mapping points, not to an anon_vma, but to a private
625  * structure which KSM associates with that merged page.  See ksm.h.
626  *
627  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
628  * page and then page->mapping points to a struct movable_operations.
629  *
630  * Please note that, confusingly, "page_mapping" refers to the inode
631  * address_space which maps the page from disk; whereas "page_mapped"
632  * refers to user virtual address space into which the page is mapped.
633  */
634 #define PAGE_MAPPING_ANON	0x1
635 #define PAGE_MAPPING_MOVABLE	0x2
636 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
637 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
638 
639 /*
640  * Different with flags above, this flag is used only for fsdax mode.  It
641  * indicates that this page->mapping is now under reflink case.
642  */
643 #define PAGE_MAPPING_DAX_SHARED	((void *)0x1)
644 
645 static __always_inline bool folio_mapping_flags(struct folio *folio)
646 {
647 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
648 }
649 
PageMappingFlags(struct page * page)650 static __always_inline int PageMappingFlags(struct page *page)
651 {
652 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
653 }
654 
folio_test_anon(struct folio * folio)655 static __always_inline bool folio_test_anon(struct folio *folio)
656 {
657 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
658 }
659 
PageAnon(struct page * page)660 static __always_inline bool PageAnon(struct page *page)
661 {
662 	return folio_test_anon(page_folio(page));
663 }
664 
__folio_test_movable(const struct folio * folio)665 static __always_inline bool __folio_test_movable(const struct folio *folio)
666 {
667 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
668 			PAGE_MAPPING_MOVABLE;
669 }
670 
__PageMovable(struct page * page)671 static __always_inline int __PageMovable(struct page *page)
672 {
673 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
674 				PAGE_MAPPING_MOVABLE;
675 }
676 
677 #ifdef CONFIG_KSM
678 /*
679  * A KSM page is one of those write-protected "shared pages" or "merged pages"
680  * which KSM maps into multiple mms, wherever identical anonymous page content
681  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
682  * anon_vma, but to that page's node of the stable tree.
683  */
folio_test_ksm(struct folio * folio)684 static __always_inline bool folio_test_ksm(struct folio *folio)
685 {
686 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
687 				PAGE_MAPPING_KSM;
688 }
689 
PageKsm(struct page * page)690 static __always_inline bool PageKsm(struct page *page)
691 {
692 	return folio_test_ksm(page_folio(page));
693 }
694 #else
695 TESTPAGEFLAG_FALSE(Ksm, ksm)
696 #endif
697 
698 u64 stable_page_flags(struct page *page);
699 
700 /**
701  * folio_test_uptodate - Is this folio up to date?
702  * @folio: The folio.
703  *
704  * The uptodate flag is set on a folio when every byte in the folio is
705  * at least as new as the corresponding bytes on storage.  Anonymous
706  * and CoW folios are always uptodate.  If the folio is not uptodate,
707  * some of the bytes in it may be; see the is_partially_uptodate()
708  * address_space operation.
709  */
folio_test_uptodate(struct folio * folio)710 static inline bool folio_test_uptodate(struct folio *folio)
711 {
712 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
713 	/*
714 	 * Must ensure that the data we read out of the folio is loaded
715 	 * _after_ we've loaded folio->flags to check the uptodate bit.
716 	 * We can skip the barrier if the folio is not uptodate, because
717 	 * we wouldn't be reading anything from it.
718 	 *
719 	 * See folio_mark_uptodate() for the other side of the story.
720 	 */
721 	if (ret)
722 		smp_rmb();
723 
724 	return ret;
725 }
726 
PageUptodate(struct page * page)727 static inline int PageUptodate(struct page *page)
728 {
729 	return folio_test_uptodate(page_folio(page));
730 }
731 
__folio_mark_uptodate(struct folio * folio)732 static __always_inline void __folio_mark_uptodate(struct folio *folio)
733 {
734 	smp_wmb();
735 	__set_bit(PG_uptodate, folio_flags(folio, 0));
736 }
737 
folio_mark_uptodate(struct folio * folio)738 static __always_inline void folio_mark_uptodate(struct folio *folio)
739 {
740 	/*
741 	 * Memory barrier must be issued before setting the PG_uptodate bit,
742 	 * so that all previous stores issued in order to bring the folio
743 	 * uptodate are actually visible before folio_test_uptodate becomes true.
744 	 */
745 	smp_wmb();
746 	set_bit(PG_uptodate, folio_flags(folio, 0));
747 }
748 
__SetPageUptodate(struct page * page)749 static __always_inline void __SetPageUptodate(struct page *page)
750 {
751 	__folio_mark_uptodate((struct folio *)page);
752 }
753 
SetPageUptodate(struct page * page)754 static __always_inline void SetPageUptodate(struct page *page)
755 {
756 	folio_mark_uptodate((struct folio *)page);
757 }
758 
759 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
760 
761 bool __folio_start_writeback(struct folio *folio, bool keep_write);
762 bool set_page_writeback(struct page *page);
763 
764 #define folio_start_writeback(folio)			\
765 	__folio_start_writeback(folio, false)
766 #define folio_start_writeback_keepwrite(folio)	\
767 	__folio_start_writeback(folio, true)
768 
set_page_writeback_keepwrite(struct page * page)769 static inline void set_page_writeback_keepwrite(struct page *page)
770 {
771 	folio_start_writeback_keepwrite(page_folio(page));
772 }
773 
test_set_page_writeback(struct page * page)774 static inline bool test_set_page_writeback(struct page *page)
775 {
776 	return set_page_writeback(page);
777 }
778 
folio_test_head(struct folio * folio)779 static __always_inline bool folio_test_head(struct folio *folio)
780 {
781 	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
782 }
783 
PageHead(struct page * page)784 static __always_inline int PageHead(struct page *page)
785 {
786 	PF_POISONED_CHECK(page);
787 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
788 }
789 
__SETPAGEFLAG(Head,head,PF_ANY)790 __SETPAGEFLAG(Head, head, PF_ANY)
791 __CLEARPAGEFLAG(Head, head, PF_ANY)
792 CLEARPAGEFLAG(Head, head, PF_ANY)
793 
794 /**
795  * folio_test_large() - Does this folio contain more than one page?
796  * @folio: The folio to test.
797  *
798  * Return: True if the folio is larger than one page.
799  */
800 static inline bool folio_test_large(struct folio *folio)
801 {
802 	return folio_test_head(folio);
803 }
804 
set_compound_head(struct page * page,struct page * head)805 static __always_inline void set_compound_head(struct page *page, struct page *head)
806 {
807 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
808 }
809 
clear_compound_head(struct page * page)810 static __always_inline void clear_compound_head(struct page *page)
811 {
812 	WRITE_ONCE(page->compound_head, 0);
813 }
814 
815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)816 static inline void ClearPageCompound(struct page *page)
817 {
818 	BUG_ON(!PageHead(page));
819 	ClearPageHead(page);
820 }
821 #endif
822 
823 #define PG_head_mask ((1UL << PG_head))
824 
825 #ifdef CONFIG_HUGETLB_PAGE
826 int PageHuge(struct page *page);
827 int PageHeadHuge(struct page *page);
folio_test_hugetlb(struct folio * folio)828 static inline bool folio_test_hugetlb(struct folio *folio)
829 {
830 	return PageHeadHuge(&folio->page);
831 }
832 #else
TESTPAGEFLAG_FALSE(Huge,hugetlb)833 TESTPAGEFLAG_FALSE(Huge, hugetlb)
834 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
835 #endif
836 
837 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
838 /*
839  * PageHuge() only returns true for hugetlbfs pages, but not for
840  * normal or transparent huge pages.
841  *
842  * PageTransHuge() returns true for both transparent huge and
843  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
844  * called only in the core VM paths where hugetlbfs pages can't exist.
845  */
846 static inline int PageTransHuge(struct page *page)
847 {
848 	VM_BUG_ON_PAGE(PageTail(page), page);
849 	return PageHead(page);
850 }
851 
folio_test_transhuge(struct folio * folio)852 static inline bool folio_test_transhuge(struct folio *folio)
853 {
854 	return folio_test_head(folio);
855 }
856 
857 /*
858  * PageTransCompound returns true for both transparent huge pages
859  * and hugetlbfs pages, so it should only be called when it's known
860  * that hugetlbfs pages aren't involved.
861  */
PageTransCompound(struct page * page)862 static inline int PageTransCompound(struct page *page)
863 {
864 	return PageCompound(page);
865 }
866 
867 /*
868  * PageTransTail returns true for both transparent huge pages
869  * and hugetlbfs pages, so it should only be called when it's known
870  * that hugetlbfs pages aren't involved.
871  */
PageTransTail(struct page * page)872 static inline int PageTransTail(struct page *page)
873 {
874 	return PageTail(page);
875 }
876 #else
877 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
878 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
879 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
880 TESTPAGEFLAG_FALSE(TransTail, transtail)
881 #endif
882 
883 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
884 /*
885  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
886  * compound page.
887  *
888  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
889  */
PAGEFLAG(HasHWPoisoned,has_hwpoisoned,PF_SECOND)890 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
891 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
892 #else
893 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
894 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
895 #endif
896 
897 /*
898  * Check if a page is currently marked HWPoisoned. Note that this check is
899  * best effort only and inherently racy: there is no way to synchronize with
900  * failing hardware.
901  */
902 static inline bool is_page_hwpoison(struct page *page)
903 {
904 	if (PageHWPoison(page))
905 		return true;
906 	return PageHuge(page) && PageHWPoison(compound_head(page));
907 }
908 
909 /*
910  * For pages that are never mapped to userspace (and aren't PageSlab),
911  * page_type may be used.  Because it is initialised to -1, we invert the
912  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
913  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
914  * low bits so that an underflow or overflow of page_mapcount() won't be
915  * mistaken for a page type value.
916  */
917 
918 #define PAGE_TYPE_BASE	0xf0000000
919 /* Reserve		0x0000007f to catch underflows of page_mapcount */
920 #define PAGE_MAPCOUNT_RESERVE	-128
921 #define PG_buddy	0x00000080
922 #define PG_offline	0x00000100
923 #define PG_table	0x00000200
924 #define PG_guard	0x00000400
925 
926 #define PageType(page, flag)						\
927 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
928 
page_has_type(struct page * page)929 static inline int page_has_type(struct page *page)
930 {
931 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
932 }
933 
934 #define PAGE_TYPE_OPS(uname, lname)					\
935 static __always_inline int Page##uname(struct page *page)		\
936 {									\
937 	return PageType(page, PG_##lname);				\
938 }									\
939 static __always_inline void __SetPage##uname(struct page *page)		\
940 {									\
941 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
942 	page->page_type &= ~PG_##lname;					\
943 }									\
944 static __always_inline void __ClearPage##uname(struct page *page)	\
945 {									\
946 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
947 	page->page_type |= PG_##lname;					\
948 }
949 
950 /*
951  * PageBuddy() indicates that the page is free and in the buddy system
952  * (see mm/page_alloc.c).
953  */
954 PAGE_TYPE_OPS(Buddy, buddy)
955 
956 /*
957  * PageOffline() indicates that the page is logically offline although the
958  * containing section is online. (e.g. inflated in a balloon driver or
959  * not onlined when onlining the section).
960  * The content of these pages is effectively stale. Such pages should not
961  * be touched (read/write/dump/save) except by their owner.
962  *
963  * If a driver wants to allow to offline unmovable PageOffline() pages without
964  * putting them back to the buddy, it can do so via the memory notifier by
965  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
966  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
967  * pages (now with a reference count of zero) are treated like free pages,
968  * allowing the containing memory block to get offlined. A driver that
969  * relies on this feature is aware that re-onlining the memory block will
970  * require to re-set the pages PageOffline() and not giving them to the
971  * buddy via online_page_callback_t.
972  *
973  * There are drivers that mark a page PageOffline() and expect there won't be
974  * any further access to page content. PFN walkers that read content of random
975  * pages should check PageOffline() and synchronize with such drivers using
976  * page_offline_freeze()/page_offline_thaw().
977  */
978 PAGE_TYPE_OPS(Offline, offline)
979 
980 extern void page_offline_freeze(void);
981 extern void page_offline_thaw(void);
982 extern void page_offline_begin(void);
983 extern void page_offline_end(void);
984 
985 /*
986  * Marks pages in use as page tables.
987  */
988 PAGE_TYPE_OPS(Table, table)
989 
990 /*
991  * Marks guardpages used with debug_pagealloc.
992  */
993 PAGE_TYPE_OPS(Guard, guard)
994 
995 extern bool is_free_buddy_page(struct page *page);
996 
997 PAGEFLAG(Isolated, isolated, PF_ANY);
998 
PageAnonExclusive(struct page * page)999 static __always_inline int PageAnonExclusive(struct page *page)
1000 {
1001 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1002 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1003 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1004 }
1005 
SetPageAnonExclusive(struct page * page)1006 static __always_inline void SetPageAnonExclusive(struct page *page)
1007 {
1008 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1009 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1010 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1011 }
1012 
ClearPageAnonExclusive(struct page * page)1013 static __always_inline void ClearPageAnonExclusive(struct page *page)
1014 {
1015 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1016 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1017 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1018 }
1019 
__ClearPageAnonExclusive(struct page * page)1020 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1021 {
1022 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1023 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1024 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1025 }
1026 
1027 #ifdef CONFIG_MMU
1028 #define __PG_MLOCKED		(1UL << PG_mlocked)
1029 #else
1030 #define __PG_MLOCKED		0
1031 #endif
1032 
1033 /*
1034  * Flags checked when a page is freed.  Pages being freed should not have
1035  * these flags set.  If they are, there is a problem.
1036  */
1037 #define PAGE_FLAGS_CHECK_AT_FREE				\
1038 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1039 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1040 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1041 	 1UL << PG_slab		| 1UL << PG_active 	|	\
1042 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1043 
1044 /*
1045  * Flags checked when a page is prepped for return by the page allocator.
1046  * Pages being prepped should not have these flags set.  If they are set,
1047  * there has been a kernel bug or struct page corruption.
1048  *
1049  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1050  * alloc-free cycle to prevent from reusing the page.
1051  */
1052 #define PAGE_FLAGS_CHECK_AT_PREP	\
1053 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1054 
1055 #define PAGE_FLAGS_PRIVATE				\
1056 	(1UL << PG_private | 1UL << PG_private_2)
1057 /**
1058  * page_has_private - Determine if page has private stuff
1059  * @page: The page to be checked
1060  *
1061  * Determine if a page has private stuff, indicating that release routines
1062  * should be invoked upon it.
1063  */
page_has_private(struct page * page)1064 static inline int page_has_private(struct page *page)
1065 {
1066 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1067 }
1068 
folio_has_private(struct folio * folio)1069 static inline bool folio_has_private(struct folio *folio)
1070 {
1071 	return page_has_private(&folio->page);
1072 }
1073 
1074 #undef PF_ANY
1075 #undef PF_HEAD
1076 #undef PF_ONLY_HEAD
1077 #undef PF_NO_TAIL
1078 #undef PF_NO_COMPOUND
1079 #undef PF_SECOND
1080 #endif /* !__GENERATING_BOUNDS_H */
1081 
1082 #endif	/* PAGE_FLAGS_H */
1083