1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20 
21 
22 /*
23  * Flags to pass to kmem_cache_create().
24  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25  */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32 /* Indicate a kmalloc slab */
33 #define SLAB_KMALLOC		((slab_flags_t __force)0x00001000U)
34 /* Align objs on cache lines */
35 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
36 /* Use GFP_DMA memory */
37 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
38 /* Use GFP_DMA32 memory */
39 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
40 /* DEBUG: Store the last owner for bug hunting */
41 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
42 /* Panic if kmem_cache_create() fails */
43 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
44 /*
45  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
46  *
47  * This delays freeing the SLAB page by a grace period, it does _NOT_
48  * delay object freeing. This means that if you do kmem_cache_free()
49  * that memory location is free to be reused at any time. Thus it may
50  * be possible to see another object there in the same RCU grace period.
51  *
52  * This feature only ensures the memory location backing the object
53  * stays valid, the trick to using this is relying on an independent
54  * object validation pass. Something like:
55  *
56  *  rcu_read_lock()
57  * again:
58  *  obj = lockless_lookup(key);
59  *  if (obj) {
60  *    if (!try_get_ref(obj)) // might fail for free objects
61  *      goto again;
62  *
63  *    if (obj->key != key) { // not the object we expected
64  *      put_ref(obj);
65  *      goto again;
66  *    }
67  *  }
68  *  rcu_read_unlock();
69  *
70  * This is useful if we need to approach a kernel structure obliquely,
71  * from its address obtained without the usual locking. We can lock
72  * the structure to stabilize it and check it's still at the given address,
73  * only if we can be sure that the memory has not been meanwhile reused
74  * for some other kind of object (which our subsystem's lock might corrupt).
75  *
76  * rcu_read_lock before reading the address, then rcu_read_unlock after
77  * taking the spinlock within the structure expected at that address.
78  *
79  * Note that it is not possible to acquire a lock within a structure
80  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
81  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
82  * are not zeroed before being given to the slab, which means that any
83  * locks must be initialized after each and every kmem_struct_alloc().
84  * Alternatively, make the ctor passed to kmem_cache_create() initialize
85  * the locks at page-allocation time, as is done in __i915_request_ctor(),
86  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
87  * to safely acquire those ctor-initialized locks under rcu_read_lock()
88  * protection.
89  *
90  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
91  */
92 /* Defer freeing slabs to RCU */
93 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
94 /* Spread some memory over cpuset */
95 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
96 /* Trace allocations and frees */
97 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
98 
99 /* Flag to prevent checks on free */
100 #ifdef CONFIG_DEBUG_OBJECTS
101 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
102 #else
103 # define SLAB_DEBUG_OBJECTS	0
104 #endif
105 
106 /* Avoid kmemleak tracing */
107 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
108 
109 /* Fault injection mark */
110 #ifdef CONFIG_FAILSLAB
111 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
112 #else
113 # define SLAB_FAILSLAB		0
114 #endif
115 /* Account to memcg */
116 #ifdef CONFIG_MEMCG_KMEM
117 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
118 #else
119 # define SLAB_ACCOUNT		0
120 #endif
121 
122 #ifdef CONFIG_KASAN_GENERIC
123 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
124 #else
125 #define SLAB_KASAN		0
126 #endif
127 
128 /*
129  * Ignore user specified debugging flags.
130  * Intended for caches created for self-tests so they have only flags
131  * specified in the code and other flags are ignored.
132  */
133 #define SLAB_NO_USER_FLAGS	((slab_flags_t __force)0x10000000U)
134 
135 #ifdef CONFIG_KFENCE
136 #define SLAB_SKIP_KFENCE	((slab_flags_t __force)0x20000000U)
137 #else
138 #define SLAB_SKIP_KFENCE	0
139 #endif
140 
141 /* The following flags affect the page allocator grouping pages by mobility */
142 /* Objects are reclaimable */
143 #ifndef CONFIG_SLUB_TINY
144 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
145 #else
146 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0)
147 #endif
148 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
149 
150 /*
151  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
152  *
153  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
154  *
155  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
156  * Both make kfree a no-op.
157  */
158 #define ZERO_SIZE_PTR ((void *)16)
159 
160 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
161 				(unsigned long)ZERO_SIZE_PTR)
162 
163 #include <linux/kasan.h>
164 
165 struct list_lru;
166 struct mem_cgroup;
167 /*
168  * struct kmem_cache related prototypes
169  */
170 void __init kmem_cache_init(void);
171 bool slab_is_available(void);
172 
173 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
174 			unsigned int align, slab_flags_t flags,
175 			void (*ctor)(void *));
176 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
177 			unsigned int size, unsigned int align,
178 			slab_flags_t flags,
179 			unsigned int useroffset, unsigned int usersize,
180 			void (*ctor)(void *));
181 void kmem_cache_destroy(struct kmem_cache *s);
182 int kmem_cache_shrink(struct kmem_cache *s);
183 
184 /*
185  * Please use this macro to create slab caches. Simply specify the
186  * name of the structure and maybe some flags that are listed above.
187  *
188  * The alignment of the struct determines object alignment. If you
189  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
190  * then the objects will be properly aligned in SMP configurations.
191  */
192 #define KMEM_CACHE(__struct, __flags)					\
193 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
194 			__alignof__(struct __struct), (__flags), NULL)
195 
196 /*
197  * To whitelist a single field for copying to/from usercopy, use this
198  * macro instead for KMEM_CACHE() above.
199  */
200 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
201 		kmem_cache_create_usercopy(#__struct,			\
202 			sizeof(struct __struct),			\
203 			__alignof__(struct __struct), (__flags),	\
204 			offsetof(struct __struct, __field),		\
205 			sizeof_field(struct __struct, __field), NULL)
206 
207 /*
208  * Common kmalloc functions provided by all allocators
209  */
210 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
211 void kfree(const void *objp);
212 void kfree_sensitive(const void *objp);
213 size_t __ksize(const void *objp);
214 
215 /**
216  * ksize - Report actual allocation size of associated object
217  *
218  * @objp: Pointer returned from a prior kmalloc()-family allocation.
219  *
220  * This should not be used for writing beyond the originally requested
221  * allocation size. Either use krealloc() or round up the allocation size
222  * with kmalloc_size_roundup() prior to allocation. If this is used to
223  * access beyond the originally requested allocation size, UBSAN_BOUNDS
224  * and/or FORTIFY_SOURCE may trip, since they only know about the
225  * originally allocated size via the __alloc_size attribute.
226  */
227 size_t ksize(const void *objp);
228 
229 #ifdef CONFIG_PRINTK
230 bool kmem_valid_obj(void *object);
231 void kmem_dump_obj(void *object);
232 #endif
233 
234 /*
235  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
236  * alignment larger than the alignment of a 64-bit integer.
237  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
238  */
239 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
240 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
241 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
242 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
243 #else
244 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
245 #endif
246 
247 /*
248  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
249  * Intended for arches that get misalignment faults even for 64 bit integer
250  * aligned buffers.
251  */
252 #ifndef ARCH_SLAB_MINALIGN
253 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
254 #endif
255 
256 /*
257  * Arches can define this function if they want to decide the minimum slab
258  * alignment at runtime. The value returned by the function must be a power
259  * of two and >= ARCH_SLAB_MINALIGN.
260  */
261 #ifndef arch_slab_minalign
arch_slab_minalign(void)262 static inline unsigned int arch_slab_minalign(void)
263 {
264 	return ARCH_SLAB_MINALIGN;
265 }
266 #endif
267 
268 /*
269  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
270  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
271  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
272  */
273 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
274 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
275 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
276 
277 /*
278  * Kmalloc array related definitions
279  */
280 
281 #ifdef CONFIG_SLAB
282 /*
283  * SLAB and SLUB directly allocates requests fitting in to an order-1 page
284  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
285  */
286 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
287 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
288 #ifndef KMALLOC_SHIFT_LOW
289 #define KMALLOC_SHIFT_LOW	5
290 #endif
291 #endif
292 
293 #ifdef CONFIG_SLUB
294 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
295 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
296 #ifndef KMALLOC_SHIFT_LOW
297 #define KMALLOC_SHIFT_LOW	3
298 #endif
299 #endif
300 
301 #ifdef CONFIG_SLOB
302 /*
303  * SLOB passes all requests larger than one page to the page allocator.
304  * No kmalloc array is necessary since objects of different sizes can
305  * be allocated from the same page.
306  */
307 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
308 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
309 #ifndef KMALLOC_SHIFT_LOW
310 #define KMALLOC_SHIFT_LOW	3
311 #endif
312 #endif
313 
314 /* Maximum allocatable size */
315 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
316 /* Maximum size for which we actually use a slab cache */
317 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
318 /* Maximum order allocatable via the slab allocator */
319 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
320 
321 /*
322  * Kmalloc subsystem.
323  */
324 #ifndef KMALLOC_MIN_SIZE
325 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
326 #endif
327 
328 /*
329  * This restriction comes from byte sized index implementation.
330  * Page size is normally 2^12 bytes and, in this case, if we want to use
331  * byte sized index which can represent 2^8 entries, the size of the object
332  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
333  * If minimum size of kmalloc is less than 16, we use it as minimum object
334  * size and give up to use byte sized index.
335  */
336 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
337                                (KMALLOC_MIN_SIZE) : 16)
338 
339 /*
340  * Whenever changing this, take care of that kmalloc_type() and
341  * create_kmalloc_caches() still work as intended.
342  *
343  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
344  * is for accounted but unreclaimable and non-dma objects. All the other
345  * kmem caches can have both accounted and unaccounted objects.
346  */
347 enum kmalloc_cache_type {
348 	KMALLOC_NORMAL = 0,
349 #ifndef CONFIG_ZONE_DMA
350 	KMALLOC_DMA = KMALLOC_NORMAL,
351 #endif
352 #ifndef CONFIG_MEMCG_KMEM
353 	KMALLOC_CGROUP = KMALLOC_NORMAL,
354 #endif
355 #ifdef CONFIG_SLUB_TINY
356 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
357 #else
358 	KMALLOC_RECLAIM,
359 #endif
360 #ifdef CONFIG_ZONE_DMA
361 	KMALLOC_DMA,
362 #endif
363 #ifdef CONFIG_MEMCG_KMEM
364 	KMALLOC_CGROUP,
365 #endif
366 	NR_KMALLOC_TYPES
367 };
368 
369 #ifndef CONFIG_SLOB
370 extern struct kmem_cache *
371 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
372 
373 /*
374  * Define gfp bits that should not be set for KMALLOC_NORMAL.
375  */
376 #define KMALLOC_NOT_NORMAL_BITS					\
377 	(__GFP_RECLAIMABLE |					\
378 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
379 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
380 
kmalloc_type(gfp_t flags)381 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
382 {
383 	/*
384 	 * The most common case is KMALLOC_NORMAL, so test for it
385 	 * with a single branch for all the relevant flags.
386 	 */
387 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
388 		return KMALLOC_NORMAL;
389 
390 	/*
391 	 * At least one of the flags has to be set. Their priorities in
392 	 * decreasing order are:
393 	 *  1) __GFP_DMA
394 	 *  2) __GFP_RECLAIMABLE
395 	 *  3) __GFP_ACCOUNT
396 	 */
397 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
398 		return KMALLOC_DMA;
399 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
400 		return KMALLOC_RECLAIM;
401 	else
402 		return KMALLOC_CGROUP;
403 }
404 
405 /*
406  * Figure out which kmalloc slab an allocation of a certain size
407  * belongs to.
408  * 0 = zero alloc
409  * 1 =  65 .. 96 bytes
410  * 2 = 129 .. 192 bytes
411  * n = 2^(n-1)+1 .. 2^n
412  *
413  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
414  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
415  * Callers where !size_is_constant should only be test modules, where runtime
416  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
417  */
__kmalloc_index(size_t size,bool size_is_constant)418 static __always_inline unsigned int __kmalloc_index(size_t size,
419 						    bool size_is_constant)
420 {
421 	if (!size)
422 		return 0;
423 
424 	if (size <= KMALLOC_MIN_SIZE)
425 		return KMALLOC_SHIFT_LOW;
426 
427 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
428 		return 1;
429 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
430 		return 2;
431 	if (size <=          8) return 3;
432 	if (size <=         16) return 4;
433 	if (size <=         32) return 5;
434 	if (size <=         64) return 6;
435 	if (size <=        128) return 7;
436 	if (size <=        256) return 8;
437 	if (size <=        512) return 9;
438 	if (size <=       1024) return 10;
439 	if (size <=   2 * 1024) return 11;
440 	if (size <=   4 * 1024) return 12;
441 	if (size <=   8 * 1024) return 13;
442 	if (size <=  16 * 1024) return 14;
443 	if (size <=  32 * 1024) return 15;
444 	if (size <=  64 * 1024) return 16;
445 	if (size <= 128 * 1024) return 17;
446 	if (size <= 256 * 1024) return 18;
447 	if (size <= 512 * 1024) return 19;
448 	if (size <= 1024 * 1024) return 20;
449 	if (size <=  2 * 1024 * 1024) return 21;
450 
451 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
452 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
453 	else
454 		BUG();
455 
456 	/* Will never be reached. Needed because the compiler may complain */
457 	return -1;
458 }
459 static_assert(PAGE_SHIFT <= 20);
460 #define kmalloc_index(s) __kmalloc_index(s, true)
461 #endif /* !CONFIG_SLOB */
462 
463 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
464 
465 /**
466  * kmem_cache_alloc - Allocate an object
467  * @cachep: The cache to allocate from.
468  * @flags: See kmalloc().
469  *
470  * Allocate an object from this cache.
471  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
472  *
473  * Return: pointer to the new object or %NULL in case of error
474  */
475 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc;
476 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
477 			   gfp_t gfpflags) __assume_slab_alignment __malloc;
478 void kmem_cache_free(struct kmem_cache *s, void *objp);
479 
480 /*
481  * Bulk allocation and freeing operations. These are accelerated in an
482  * allocator specific way to avoid taking locks repeatedly or building
483  * metadata structures unnecessarily.
484  *
485  * Note that interrupts must be enabled when calling these functions.
486  */
487 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
488 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
489 
490 /*
491  * Caller must not use kfree_bulk() on memory not originally allocated
492  * by kmalloc(), because the SLOB allocator cannot handle this.
493  */
kfree_bulk(size_t size,void ** p)494 static __always_inline void kfree_bulk(size_t size, void **p)
495 {
496 	kmem_cache_free_bulk(NULL, size, p);
497 }
498 
499 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
500 							 __alloc_size(1);
501 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
502 									 __malloc;
503 
504 void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
505 		    __assume_kmalloc_alignment __alloc_size(3);
506 
507 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
508 			 int node, size_t size) __assume_kmalloc_alignment
509 						__alloc_size(4);
510 void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
511 					      __alloc_size(1);
512 
513 void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
514 							     __alloc_size(1);
515 
516 /**
517  * kmalloc - allocate kernel memory
518  * @size: how many bytes of memory are required.
519  * @flags: describe the allocation context
520  *
521  * kmalloc is the normal method of allocating memory
522  * for objects smaller than page size in the kernel.
523  *
524  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
525  * bytes. For @size of power of two bytes, the alignment is also guaranteed
526  * to be at least to the size.
527  *
528  * The @flags argument may be one of the GFP flags defined at
529  * include/linux/gfp.h and described at
530  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
531  *
532  * The recommended usage of the @flags is described at
533  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
534  *
535  * Below is a brief outline of the most useful GFP flags
536  *
537  * %GFP_KERNEL
538  *	Allocate normal kernel ram. May sleep.
539  *
540  * %GFP_NOWAIT
541  *	Allocation will not sleep.
542  *
543  * %GFP_ATOMIC
544  *	Allocation will not sleep.  May use emergency pools.
545  *
546  * Also it is possible to set different flags by OR'ing
547  * in one or more of the following additional @flags:
548  *
549  * %__GFP_ZERO
550  *	Zero the allocated memory before returning. Also see kzalloc().
551  *
552  * %__GFP_HIGH
553  *	This allocation has high priority and may use emergency pools.
554  *
555  * %__GFP_NOFAIL
556  *	Indicate that this allocation is in no way allowed to fail
557  *	(think twice before using).
558  *
559  * %__GFP_NORETRY
560  *	If memory is not immediately available,
561  *	then give up at once.
562  *
563  * %__GFP_NOWARN
564  *	If allocation fails, don't issue any warnings.
565  *
566  * %__GFP_RETRY_MAYFAIL
567  *	Try really hard to succeed the allocation but fail
568  *	eventually.
569  */
570 #ifndef CONFIG_SLOB
kmalloc(size_t size,gfp_t flags)571 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
572 {
573 	if (__builtin_constant_p(size) && size) {
574 		unsigned int index;
575 
576 		if (size > KMALLOC_MAX_CACHE_SIZE)
577 			return kmalloc_large(size, flags);
578 
579 		index = kmalloc_index(size);
580 		return kmalloc_trace(
581 				kmalloc_caches[kmalloc_type(flags)][index],
582 				flags, size);
583 	}
584 	return __kmalloc(size, flags);
585 }
586 #else
kmalloc(size_t size,gfp_t flags)587 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
588 {
589 	if (__builtin_constant_p(size) && size > KMALLOC_MAX_CACHE_SIZE)
590 		return kmalloc_large(size, flags);
591 
592 	return __kmalloc(size, flags);
593 }
594 #endif
595 
596 #ifndef CONFIG_SLOB
kmalloc_node(size_t size,gfp_t flags,int node)597 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
598 {
599 	if (__builtin_constant_p(size) && size) {
600 		unsigned int index;
601 
602 		if (size > KMALLOC_MAX_CACHE_SIZE)
603 			return kmalloc_large_node(size, flags, node);
604 
605 		index = kmalloc_index(size);
606 		return kmalloc_node_trace(
607 				kmalloc_caches[kmalloc_type(flags)][index],
608 				flags, node, size);
609 	}
610 	return __kmalloc_node(size, flags, node);
611 }
612 #else
kmalloc_node(size_t size,gfp_t flags,int node)613 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
614 {
615 	if (__builtin_constant_p(size) && size > KMALLOC_MAX_CACHE_SIZE)
616 		return kmalloc_large_node(size, flags, node);
617 
618 	return __kmalloc_node(size, flags, node);
619 }
620 #endif
621 
622 /**
623  * kmalloc_array - allocate memory for an array.
624  * @n: number of elements.
625  * @size: element size.
626  * @flags: the type of memory to allocate (see kmalloc).
627  */
kmalloc_array(size_t n,size_t size,gfp_t flags)628 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
629 {
630 	size_t bytes;
631 
632 	if (unlikely(check_mul_overflow(n, size, &bytes)))
633 		return NULL;
634 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
635 		return kmalloc(bytes, flags);
636 	return __kmalloc(bytes, flags);
637 }
638 
639 /**
640  * krealloc_array - reallocate memory for an array.
641  * @p: pointer to the memory chunk to reallocate
642  * @new_n: new number of elements to alloc
643  * @new_size: new size of a single member of the array
644  * @flags: the type of memory to allocate (see kmalloc)
645  */
krealloc_array(void * p,size_t new_n,size_t new_size,gfp_t flags)646 static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
647 								      size_t new_n,
648 								      size_t new_size,
649 								      gfp_t flags)
650 {
651 	size_t bytes;
652 
653 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
654 		return NULL;
655 
656 	return krealloc(p, bytes, flags);
657 }
658 
659 /**
660  * kcalloc - allocate memory for an array. The memory is set to zero.
661  * @n: number of elements.
662  * @size: element size.
663  * @flags: the type of memory to allocate (see kmalloc).
664  */
kcalloc(size_t n,size_t size,gfp_t flags)665 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
666 {
667 	return kmalloc_array(n, size, flags | __GFP_ZERO);
668 }
669 
670 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
671 				  unsigned long caller) __alloc_size(1);
672 #define kmalloc_node_track_caller(size, flags, node) \
673 	__kmalloc_node_track_caller(size, flags, node, \
674 				    _RET_IP_)
675 
676 /*
677  * kmalloc_track_caller is a special version of kmalloc that records the
678  * calling function of the routine calling it for slab leak tracking instead
679  * of just the calling function (confusing, eh?).
680  * It's useful when the call to kmalloc comes from a widely-used standard
681  * allocator where we care about the real place the memory allocation
682  * request comes from.
683  */
684 #define kmalloc_track_caller(size, flags) \
685 	__kmalloc_node_track_caller(size, flags, \
686 				    NUMA_NO_NODE, _RET_IP_)
687 
kmalloc_array_node(size_t n,size_t size,gfp_t flags,int node)688 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
689 							  int node)
690 {
691 	size_t bytes;
692 
693 	if (unlikely(check_mul_overflow(n, size, &bytes)))
694 		return NULL;
695 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
696 		return kmalloc_node(bytes, flags, node);
697 	return __kmalloc_node(bytes, flags, node);
698 }
699 
kcalloc_node(size_t n,size_t size,gfp_t flags,int node)700 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
701 {
702 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
703 }
704 
705 /*
706  * Shortcuts
707  */
kmem_cache_zalloc(struct kmem_cache * k,gfp_t flags)708 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
709 {
710 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
711 }
712 
713 /**
714  * kzalloc - allocate memory. The memory is set to zero.
715  * @size: how many bytes of memory are required.
716  * @flags: the type of memory to allocate (see kmalloc).
717  */
kzalloc(size_t size,gfp_t flags)718 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
719 {
720 	return kmalloc(size, flags | __GFP_ZERO);
721 }
722 
723 /**
724  * kzalloc_node - allocate zeroed memory from a particular memory node.
725  * @size: how many bytes of memory are required.
726  * @flags: the type of memory to allocate (see kmalloc).
727  * @node: memory node from which to allocate
728  */
kzalloc_node(size_t size,gfp_t flags,int node)729 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
730 {
731 	return kmalloc_node(size, flags | __GFP_ZERO, node);
732 }
733 
734 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
kvmalloc(size_t size,gfp_t flags)735 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
736 {
737 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
738 }
kvzalloc_node(size_t size,gfp_t flags,int node)739 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
740 {
741 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
742 }
kvzalloc(size_t size,gfp_t flags)743 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
744 {
745 	return kvmalloc(size, flags | __GFP_ZERO);
746 }
747 
kvmalloc_array(size_t n,size_t size,gfp_t flags)748 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
749 {
750 	size_t bytes;
751 
752 	if (unlikely(check_mul_overflow(n, size, &bytes)))
753 		return NULL;
754 
755 	return kvmalloc(bytes, flags);
756 }
757 
kvcalloc(size_t n,size_t size,gfp_t flags)758 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
759 {
760 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
761 }
762 
763 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
764 		      __realloc_size(3);
765 extern void kvfree(const void *addr);
766 extern void kvfree_sensitive(const void *addr, size_t len);
767 
768 unsigned int kmem_cache_size(struct kmem_cache *s);
769 
770 /**
771  * kmalloc_size_roundup - Report allocation bucket size for the given size
772  *
773  * @size: Number of bytes to round up from.
774  *
775  * This returns the number of bytes that would be available in a kmalloc()
776  * allocation of @size bytes. For example, a 126 byte request would be
777  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
778  * for the general-purpose kmalloc()-based allocations, and is not for the
779  * pre-sized kmem_cache_alloc()-based allocations.)
780  *
781  * Use this to kmalloc() the full bucket size ahead of time instead of using
782  * ksize() to query the size after an allocation.
783  */
784 size_t kmalloc_size_roundup(size_t size);
785 
786 void __init kmem_cache_init_late(void);
787 
788 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
789 int slab_prepare_cpu(unsigned int cpu);
790 int slab_dead_cpu(unsigned int cpu);
791 #else
792 #define slab_prepare_cpu	NULL
793 #define slab_dead_cpu		NULL
794 #endif
795 
796 #endif	/* _LINUX_SLAB_H */
797