1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 union {
165 __addrpair skc_addrpair;
166 struct {
167 __be32 skc_daddr;
168 __be32 skc_rcv_saddr;
169 };
170 };
171 union {
172 unsigned int skc_hash;
173 __u16 skc_u16hashes[2];
174 };
175 /* skc_dport && skc_num must be grouped as well */
176 union {
177 __portpair skc_portpair;
178 struct {
179 __be16 skc_dport;
180 __u16 skc_num;
181 };
182 };
183
184 unsigned short skc_family;
185 volatile unsigned char skc_state;
186 unsigned char skc_reuse:4;
187 unsigned char skc_reuseport:1;
188 unsigned char skc_ipv6only:1;
189 unsigned char skc_net_refcnt:1;
190 int skc_bound_dev_if;
191 union {
192 struct hlist_node skc_bind_node;
193 struct hlist_node skc_portaddr_node;
194 };
195 struct proto *skc_prot;
196 possible_net_t skc_net;
197
198 #if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
201 #endif
202
203 atomic64_t skc_cookie;
204
205 /* following fields are padding to force
206 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 * assuming IPV6 is enabled. We use this padding differently
208 * for different kind of 'sockets'
209 */
210 union {
211 unsigned long skc_flags;
212 struct sock *skc_listener; /* request_sock */
213 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 };
215 /*
216 * fields between dontcopy_begin/dontcopy_end
217 * are not copied in sock_copy()
218 */
219 /* private: */
220 int skc_dontcopy_begin[0];
221 /* public: */
222 union {
223 struct hlist_node skc_node;
224 struct hlist_nulls_node skc_nulls_node;
225 };
226 unsigned short skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 unsigned short skc_rx_queue_mapping;
229 #endif
230 union {
231 int skc_incoming_cpu;
232 u32 skc_rcv_wnd;
233 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
234 };
235
236 refcount_t skc_refcnt;
237 /* private: */
238 int skc_dontcopy_end[0];
239 union {
240 u32 skc_rxhash;
241 u32 skc_window_clamp;
242 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 };
244 /* public: */
245 };
246
247 struct bpf_local_storage;
248 struct sk_filter;
249
250 /**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
304 * @sk_busy_poll_budget: napi processing budget when busypolling
305 * @sk_priority: %SO_PRIORITY setting
306 * @sk_type: socket type (%SOCK_STREAM, etc)
307 * @sk_protocol: which protocol this socket belongs in this network family
308 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_txrehash: enable TX hash rethink
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
322 * Sockets that can be used under memory reclaim should
323 * set this to false.
324 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325 * for timestamping
326 * @sk_tskey: counter to disambiguate concurrent tstamp requests
327 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
328 * @sk_socket: Identd and reporting IO signals
329 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
330 * @sk_frag: cached page frag
331 * @sk_peek_off: current peek_offset value
332 * @sk_send_head: front of stuff to transmit
333 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334 * @sk_security: used by security modules
335 * @sk_mark: generic packet mark
336 * @sk_cgrp_data: cgroup data for this cgroup
337 * @sk_memcg: this socket's memory cgroup association
338 * @sk_write_pending: a write to stream socket waits to start
339 * @sk_state_change: callback to indicate change in the state of the sock
340 * @sk_data_ready: callback to indicate there is data to be processed
341 * @sk_write_space: callback to indicate there is bf sending space available
342 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343 * @sk_backlog_rcv: callback to process the backlog
344 * @sk_validate_xmit_skb: ptr to an optional validate function
345 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346 * @sk_reuseport_cb: reuseport group container
347 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348 * @sk_rcu: used during RCU grace period
349 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
352 * @sk_txtime_unused: unused txtime flags
353 * @ns_tracker: tracker for netns reference
354 * @sk_bind2_node: bind node in the bhash2 table
355 */
356 struct sock {
357 /*
358 * Now struct inet_timewait_sock also uses sock_common, so please just
359 * don't add nothing before this first member (__sk_common) --acme
360 */
361 struct sock_common __sk_common;
362 #define sk_node __sk_common.skc_node
363 #define sk_nulls_node __sk_common.skc_nulls_node
364 #define sk_refcnt __sk_common.skc_refcnt
365 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
366 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
367 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
368 #endif
369
370 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
371 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
372 #define sk_hash __sk_common.skc_hash
373 #define sk_portpair __sk_common.skc_portpair
374 #define sk_num __sk_common.skc_num
375 #define sk_dport __sk_common.skc_dport
376 #define sk_addrpair __sk_common.skc_addrpair
377 #define sk_daddr __sk_common.skc_daddr
378 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
379 #define sk_family __sk_common.skc_family
380 #define sk_state __sk_common.skc_state
381 #define sk_reuse __sk_common.skc_reuse
382 #define sk_reuseport __sk_common.skc_reuseport
383 #define sk_ipv6only __sk_common.skc_ipv6only
384 #define sk_net_refcnt __sk_common.skc_net_refcnt
385 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
386 #define sk_bind_node __sk_common.skc_bind_node
387 #define sk_prot __sk_common.skc_prot
388 #define sk_net __sk_common.skc_net
389 #define sk_v6_daddr __sk_common.skc_v6_daddr
390 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
391 #define sk_cookie __sk_common.skc_cookie
392 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
393 #define sk_flags __sk_common.skc_flags
394 #define sk_rxhash __sk_common.skc_rxhash
395
396 /* early demux fields */
397 struct dst_entry __rcu *sk_rx_dst;
398 int sk_rx_dst_ifindex;
399 u32 sk_rx_dst_cookie;
400
401 socket_lock_t sk_lock;
402 atomic_t sk_drops;
403 int sk_rcvlowat;
404 struct sk_buff_head sk_error_queue;
405 struct sk_buff_head sk_receive_queue;
406 /*
407 * The backlog queue is special, it is always used with
408 * the per-socket spinlock held and requires low latency
409 * access. Therefore we special case it's implementation.
410 * Note : rmem_alloc is in this structure to fill a hole
411 * on 64bit arches, not because its logically part of
412 * backlog.
413 */
414 struct {
415 atomic_t rmem_alloc;
416 int len;
417 struct sk_buff *head;
418 struct sk_buff *tail;
419 } sk_backlog;
420
421 #define sk_rmem_alloc sk_backlog.rmem_alloc
422
423 int sk_forward_alloc;
424 u32 sk_reserved_mem;
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 unsigned int sk_ll_usec;
427 /* ===== mostly read cache line ===== */
428 unsigned int sk_napi_id;
429 #endif
430 int sk_rcvbuf;
431
432 struct sk_filter __rcu *sk_filter;
433 union {
434 struct socket_wq __rcu *sk_wq;
435 /* private: */
436 struct socket_wq *sk_wq_raw;
437 /* public: */
438 };
439 #ifdef CONFIG_XFRM
440 struct xfrm_policy __rcu *sk_policy[2];
441 #endif
442
443 struct dst_entry __rcu *sk_dst_cache;
444 atomic_t sk_omem_alloc;
445 int sk_sndbuf;
446
447 /* ===== cache line for TX ===== */
448 int sk_wmem_queued;
449 refcount_t sk_wmem_alloc;
450 unsigned long sk_tsq_flags;
451 union {
452 struct sk_buff *sk_send_head;
453 struct rb_root tcp_rtx_queue;
454 };
455 struct sk_buff_head sk_write_queue;
456 __s32 sk_peek_off;
457 int sk_write_pending;
458 __u32 sk_dst_pending_confirm;
459 u32 sk_pacing_status; /* see enum sk_pacing */
460 long sk_sndtimeo;
461 struct timer_list sk_timer;
462 __u32 sk_priority;
463 __u32 sk_mark;
464 unsigned long sk_pacing_rate; /* bytes per second */
465 unsigned long sk_max_pacing_rate;
466 struct page_frag sk_frag;
467 netdev_features_t sk_route_caps;
468 int sk_gso_type;
469 unsigned int sk_gso_max_size;
470 gfp_t sk_allocation;
471 __u32 sk_txhash;
472
473 /*
474 * Because of non atomicity rules, all
475 * changes are protected by socket lock.
476 */
477 u8 sk_gso_disabled : 1,
478 sk_kern_sock : 1,
479 sk_no_check_tx : 1,
480 sk_no_check_rx : 1,
481 sk_userlocks : 4;
482 u8 sk_pacing_shift;
483 u16 sk_type;
484 u16 sk_protocol;
485 u16 sk_gso_max_segs;
486 unsigned long sk_lingertime;
487 struct proto *sk_prot_creator;
488 rwlock_t sk_callback_lock;
489 int sk_err,
490 sk_err_soft;
491 u32 sk_ack_backlog;
492 u32 sk_max_ack_backlog;
493 kuid_t sk_uid;
494 u8 sk_txrehash;
495 #ifdef CONFIG_NET_RX_BUSY_POLL
496 u8 sk_prefer_busy_poll;
497 u16 sk_busy_poll_budget;
498 #endif
499 spinlock_t sk_peer_lock;
500 int sk_bind_phc;
501 struct pid *sk_peer_pid;
502 const struct cred *sk_peer_cred;
503
504 long sk_rcvtimeo;
505 ktime_t sk_stamp;
506 #if BITS_PER_LONG==32
507 seqlock_t sk_stamp_seq;
508 #endif
509 atomic_t sk_tskey;
510 atomic_t sk_zckey;
511 u32 sk_tsflags;
512 u8 sk_shutdown;
513
514 u8 sk_clockid;
515 u8 sk_txtime_deadline_mode : 1,
516 sk_txtime_report_errors : 1,
517 sk_txtime_unused : 6;
518 bool sk_use_task_frag;
519
520 struct socket *sk_socket;
521 void *sk_user_data;
522 #ifdef CONFIG_SECURITY
523 void *sk_security;
524 #endif
525 struct sock_cgroup_data sk_cgrp_data;
526 struct mem_cgroup *sk_memcg;
527 void (*sk_state_change)(struct sock *sk);
528 void (*sk_data_ready)(struct sock *sk);
529 void (*sk_write_space)(struct sock *sk);
530 void (*sk_error_report)(struct sock *sk);
531 int (*sk_backlog_rcv)(struct sock *sk,
532 struct sk_buff *skb);
533 #ifdef CONFIG_SOCK_VALIDATE_XMIT
534 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
535 struct net_device *dev,
536 struct sk_buff *skb);
537 #endif
538 void (*sk_destruct)(struct sock *sk);
539 struct sock_reuseport __rcu *sk_reuseport_cb;
540 #ifdef CONFIG_BPF_SYSCALL
541 struct bpf_local_storage __rcu *sk_bpf_storage;
542 #endif
543 struct rcu_head sk_rcu;
544 netns_tracker ns_tracker;
545 struct hlist_node sk_bind2_node;
546 };
547
548 enum sk_pacing {
549 SK_PACING_NONE = 0,
550 SK_PACING_NEEDED = 1,
551 SK_PACING_FQ = 2,
552 };
553
554 /* flag bits in sk_user_data
555 *
556 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
557 * not be suitable for copying when cloning the socket. For instance,
558 * it can point to a reference counted object. sk_user_data bottom
559 * bit is set if pointer must not be copied.
560 *
561 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
562 * managed/owned by a BPF reuseport array. This bit should be set
563 * when sk_user_data's sk is added to the bpf's reuseport_array.
564 *
565 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
566 * sk_user_data points to psock type. This bit should be set
567 * when sk_user_data is assigned to a psock object.
568 */
569 #define SK_USER_DATA_NOCOPY 1UL
570 #define SK_USER_DATA_BPF 2UL
571 #define SK_USER_DATA_PSOCK 4UL
572 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
573 SK_USER_DATA_PSOCK)
574
575 /**
576 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
577 * @sk: socket
578 */
sk_user_data_is_nocopy(const struct sock * sk)579 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
580 {
581 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
582 }
583
584 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
585
586 /**
587 * __locked_read_sk_user_data_with_flags - return the pointer
588 * only if argument flags all has been set in sk_user_data. Otherwise
589 * return NULL
590 *
591 * @sk: socket
592 * @flags: flag bits
593 *
594 * The caller must be holding sk->sk_callback_lock.
595 */
596 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)597 __locked_read_sk_user_data_with_flags(const struct sock *sk,
598 uintptr_t flags)
599 {
600 uintptr_t sk_user_data =
601 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
602 lockdep_is_held(&sk->sk_callback_lock));
603
604 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
605
606 if ((sk_user_data & flags) == flags)
607 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
608 return NULL;
609 }
610
611 /**
612 * __rcu_dereference_sk_user_data_with_flags - return the pointer
613 * only if argument flags all has been set in sk_user_data. Otherwise
614 * return NULL
615 *
616 * @sk: socket
617 * @flags: flag bits
618 */
619 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)620 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
621 uintptr_t flags)
622 {
623 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
624
625 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
626
627 if ((sk_user_data & flags) == flags)
628 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
629 return NULL;
630 }
631
632 #define rcu_dereference_sk_user_data(sk) \
633 __rcu_dereference_sk_user_data_with_flags(sk, 0)
634 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
635 ({ \
636 uintptr_t __tmp1 = (uintptr_t)(ptr), \
637 __tmp2 = (uintptr_t)(flags); \
638 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
639 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
640 rcu_assign_pointer(__sk_user_data((sk)), \
641 __tmp1 | __tmp2); \
642 })
643 #define rcu_assign_sk_user_data(sk, ptr) \
644 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
645
646 static inline
sock_net(const struct sock * sk)647 struct net *sock_net(const struct sock *sk)
648 {
649 return read_pnet(&sk->sk_net);
650 }
651
652 static inline
sock_net_set(struct sock * sk,struct net * net)653 void sock_net_set(struct sock *sk, struct net *net)
654 {
655 write_pnet(&sk->sk_net, net);
656 }
657
658 /*
659 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
660 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
661 * on a socket means that the socket will reuse everybody else's port
662 * without looking at the other's sk_reuse value.
663 */
664
665 #define SK_NO_REUSE 0
666 #define SK_CAN_REUSE 1
667 #define SK_FORCE_REUSE 2
668
669 int sk_set_peek_off(struct sock *sk, int val);
670
sk_peek_offset(const struct sock * sk,int flags)671 static inline int sk_peek_offset(const struct sock *sk, int flags)
672 {
673 if (unlikely(flags & MSG_PEEK)) {
674 return READ_ONCE(sk->sk_peek_off);
675 }
676
677 return 0;
678 }
679
sk_peek_offset_bwd(struct sock * sk,int val)680 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
681 {
682 s32 off = READ_ONCE(sk->sk_peek_off);
683
684 if (unlikely(off >= 0)) {
685 off = max_t(s32, off - val, 0);
686 WRITE_ONCE(sk->sk_peek_off, off);
687 }
688 }
689
sk_peek_offset_fwd(struct sock * sk,int val)690 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
691 {
692 sk_peek_offset_bwd(sk, -val);
693 }
694
695 /*
696 * Hashed lists helper routines
697 */
sk_entry(const struct hlist_node * node)698 static inline struct sock *sk_entry(const struct hlist_node *node)
699 {
700 return hlist_entry(node, struct sock, sk_node);
701 }
702
__sk_head(const struct hlist_head * head)703 static inline struct sock *__sk_head(const struct hlist_head *head)
704 {
705 return hlist_entry(head->first, struct sock, sk_node);
706 }
707
sk_head(const struct hlist_head * head)708 static inline struct sock *sk_head(const struct hlist_head *head)
709 {
710 return hlist_empty(head) ? NULL : __sk_head(head);
711 }
712
__sk_nulls_head(const struct hlist_nulls_head * head)713 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
714 {
715 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
716 }
717
sk_nulls_head(const struct hlist_nulls_head * head)718 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
719 {
720 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
721 }
722
sk_next(const struct sock * sk)723 static inline struct sock *sk_next(const struct sock *sk)
724 {
725 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
726 }
727
sk_nulls_next(const struct sock * sk)728 static inline struct sock *sk_nulls_next(const struct sock *sk)
729 {
730 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
731 hlist_nulls_entry(sk->sk_nulls_node.next,
732 struct sock, sk_nulls_node) :
733 NULL;
734 }
735
sk_unhashed(const struct sock * sk)736 static inline bool sk_unhashed(const struct sock *sk)
737 {
738 return hlist_unhashed(&sk->sk_node);
739 }
740
sk_hashed(const struct sock * sk)741 static inline bool sk_hashed(const struct sock *sk)
742 {
743 return !sk_unhashed(sk);
744 }
745
sk_node_init(struct hlist_node * node)746 static inline void sk_node_init(struct hlist_node *node)
747 {
748 node->pprev = NULL;
749 }
750
__sk_del_node(struct sock * sk)751 static inline void __sk_del_node(struct sock *sk)
752 {
753 __hlist_del(&sk->sk_node);
754 }
755
756 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)757 static inline bool __sk_del_node_init(struct sock *sk)
758 {
759 if (sk_hashed(sk)) {
760 __sk_del_node(sk);
761 sk_node_init(&sk->sk_node);
762 return true;
763 }
764 return false;
765 }
766
767 /* Grab socket reference count. This operation is valid only
768 when sk is ALREADY grabbed f.e. it is found in hash table
769 or a list and the lookup is made under lock preventing hash table
770 modifications.
771 */
772
sock_hold(struct sock * sk)773 static __always_inline void sock_hold(struct sock *sk)
774 {
775 refcount_inc(&sk->sk_refcnt);
776 }
777
778 /* Ungrab socket in the context, which assumes that socket refcnt
779 cannot hit zero, f.e. it is true in context of any socketcall.
780 */
__sock_put(struct sock * sk)781 static __always_inline void __sock_put(struct sock *sk)
782 {
783 refcount_dec(&sk->sk_refcnt);
784 }
785
sk_del_node_init(struct sock * sk)786 static inline bool sk_del_node_init(struct sock *sk)
787 {
788 bool rc = __sk_del_node_init(sk);
789
790 if (rc) {
791 /* paranoid for a while -acme */
792 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
793 __sock_put(sk);
794 }
795 return rc;
796 }
797 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
798
__sk_nulls_del_node_init_rcu(struct sock * sk)799 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
800 {
801 if (sk_hashed(sk)) {
802 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
803 return true;
804 }
805 return false;
806 }
807
sk_nulls_del_node_init_rcu(struct sock * sk)808 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
809 {
810 bool rc = __sk_nulls_del_node_init_rcu(sk);
811
812 if (rc) {
813 /* paranoid for a while -acme */
814 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
815 __sock_put(sk);
816 }
817 return rc;
818 }
819
__sk_add_node(struct sock * sk,struct hlist_head * list)820 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
821 {
822 hlist_add_head(&sk->sk_node, list);
823 }
824
sk_add_node(struct sock * sk,struct hlist_head * list)825 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
826 {
827 sock_hold(sk);
828 __sk_add_node(sk, list);
829 }
830
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)831 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
832 {
833 sock_hold(sk);
834 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
835 sk->sk_family == AF_INET6)
836 hlist_add_tail_rcu(&sk->sk_node, list);
837 else
838 hlist_add_head_rcu(&sk->sk_node, list);
839 }
840
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)841 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
842 {
843 sock_hold(sk);
844 hlist_add_tail_rcu(&sk->sk_node, list);
845 }
846
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)847 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
848 {
849 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
850 }
851
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)852 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
853 {
854 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
855 }
856
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)857 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
858 {
859 sock_hold(sk);
860 __sk_nulls_add_node_rcu(sk, list);
861 }
862
__sk_del_bind_node(struct sock * sk)863 static inline void __sk_del_bind_node(struct sock *sk)
864 {
865 __hlist_del(&sk->sk_bind_node);
866 }
867
sk_add_bind_node(struct sock * sk,struct hlist_head * list)868 static inline void sk_add_bind_node(struct sock *sk,
869 struct hlist_head *list)
870 {
871 hlist_add_head(&sk->sk_bind_node, list);
872 }
873
__sk_del_bind2_node(struct sock * sk)874 static inline void __sk_del_bind2_node(struct sock *sk)
875 {
876 __hlist_del(&sk->sk_bind2_node);
877 }
878
sk_add_bind2_node(struct sock * sk,struct hlist_head * list)879 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
880 {
881 hlist_add_head(&sk->sk_bind2_node, list);
882 }
883
884 #define sk_for_each(__sk, list) \
885 hlist_for_each_entry(__sk, list, sk_node)
886 #define sk_for_each_rcu(__sk, list) \
887 hlist_for_each_entry_rcu(__sk, list, sk_node)
888 #define sk_nulls_for_each(__sk, node, list) \
889 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
890 #define sk_nulls_for_each_rcu(__sk, node, list) \
891 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
892 #define sk_for_each_from(__sk) \
893 hlist_for_each_entry_from(__sk, sk_node)
894 #define sk_nulls_for_each_from(__sk, node) \
895 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
896 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
897 #define sk_for_each_safe(__sk, tmp, list) \
898 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
899 #define sk_for_each_bound(__sk, list) \
900 hlist_for_each_entry(__sk, list, sk_bind_node)
901 #define sk_for_each_bound_bhash2(__sk, list) \
902 hlist_for_each_entry(__sk, list, sk_bind2_node)
903
904 /**
905 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
906 * @tpos: the type * to use as a loop cursor.
907 * @pos: the &struct hlist_node to use as a loop cursor.
908 * @head: the head for your list.
909 * @offset: offset of hlist_node within the struct.
910 *
911 */
912 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
913 for (pos = rcu_dereference(hlist_first_rcu(head)); \
914 pos != NULL && \
915 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
916 pos = rcu_dereference(hlist_next_rcu(pos)))
917
sk_user_ns(const struct sock * sk)918 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
919 {
920 /* Careful only use this in a context where these parameters
921 * can not change and must all be valid, such as recvmsg from
922 * userspace.
923 */
924 return sk->sk_socket->file->f_cred->user_ns;
925 }
926
927 /* Sock flags */
928 enum sock_flags {
929 SOCK_DEAD,
930 SOCK_DONE,
931 SOCK_URGINLINE,
932 SOCK_KEEPOPEN,
933 SOCK_LINGER,
934 SOCK_DESTROY,
935 SOCK_BROADCAST,
936 SOCK_TIMESTAMP,
937 SOCK_ZAPPED,
938 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
939 SOCK_DBG, /* %SO_DEBUG setting */
940 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
941 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
942 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
943 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
944 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
945 SOCK_FASYNC, /* fasync() active */
946 SOCK_RXQ_OVFL,
947 SOCK_ZEROCOPY, /* buffers from userspace */
948 SOCK_WIFI_STATUS, /* push wifi status to userspace */
949 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
950 * Will use last 4 bytes of packet sent from
951 * user-space instead.
952 */
953 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
954 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
955 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
956 SOCK_TXTIME,
957 SOCK_XDP, /* XDP is attached */
958 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
959 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
960 };
961
962 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
963
sock_copy_flags(struct sock * nsk,const struct sock * osk)964 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
965 {
966 nsk->sk_flags = osk->sk_flags;
967 }
968
sock_set_flag(struct sock * sk,enum sock_flags flag)969 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
970 {
971 __set_bit(flag, &sk->sk_flags);
972 }
973
sock_reset_flag(struct sock * sk,enum sock_flags flag)974 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
975 {
976 __clear_bit(flag, &sk->sk_flags);
977 }
978
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)979 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
980 int valbool)
981 {
982 if (valbool)
983 sock_set_flag(sk, bit);
984 else
985 sock_reset_flag(sk, bit);
986 }
987
sock_flag(const struct sock * sk,enum sock_flags flag)988 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
989 {
990 return test_bit(flag, &sk->sk_flags);
991 }
992
993 #ifdef CONFIG_NET
994 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)995 static inline int sk_memalloc_socks(void)
996 {
997 return static_branch_unlikely(&memalloc_socks_key);
998 }
999
1000 void __receive_sock(struct file *file);
1001 #else
1002
sk_memalloc_socks(void)1003 static inline int sk_memalloc_socks(void)
1004 {
1005 return 0;
1006 }
1007
__receive_sock(struct file * file)1008 static inline void __receive_sock(struct file *file)
1009 { }
1010 #endif
1011
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1012 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1013 {
1014 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1015 }
1016
sk_acceptq_removed(struct sock * sk)1017 static inline void sk_acceptq_removed(struct sock *sk)
1018 {
1019 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1020 }
1021
sk_acceptq_added(struct sock * sk)1022 static inline void sk_acceptq_added(struct sock *sk)
1023 {
1024 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1025 }
1026
1027 /* Note: If you think the test should be:
1028 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1029 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1030 */
sk_acceptq_is_full(const struct sock * sk)1031 static inline bool sk_acceptq_is_full(const struct sock *sk)
1032 {
1033 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1034 }
1035
1036 /*
1037 * Compute minimal free write space needed to queue new packets.
1038 */
sk_stream_min_wspace(const struct sock * sk)1039 static inline int sk_stream_min_wspace(const struct sock *sk)
1040 {
1041 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1042 }
1043
sk_stream_wspace(const struct sock * sk)1044 static inline int sk_stream_wspace(const struct sock *sk)
1045 {
1046 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1047 }
1048
sk_wmem_queued_add(struct sock * sk,int val)1049 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1050 {
1051 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1052 }
1053
1054 void sk_stream_write_space(struct sock *sk);
1055
1056 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1057 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1058 {
1059 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1060 skb_dst_force(skb);
1061
1062 if (!sk->sk_backlog.tail)
1063 WRITE_ONCE(sk->sk_backlog.head, skb);
1064 else
1065 sk->sk_backlog.tail->next = skb;
1066
1067 WRITE_ONCE(sk->sk_backlog.tail, skb);
1068 skb->next = NULL;
1069 }
1070
1071 /*
1072 * Take into account size of receive queue and backlog queue
1073 * Do not take into account this skb truesize,
1074 * to allow even a single big packet to come.
1075 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1076 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1077 {
1078 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1079
1080 return qsize > limit;
1081 }
1082
1083 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1084 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1085 unsigned int limit)
1086 {
1087 if (sk_rcvqueues_full(sk, limit))
1088 return -ENOBUFS;
1089
1090 /*
1091 * If the skb was allocated from pfmemalloc reserves, only
1092 * allow SOCK_MEMALLOC sockets to use it as this socket is
1093 * helping free memory
1094 */
1095 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1096 return -ENOMEM;
1097
1098 __sk_add_backlog(sk, skb);
1099 sk->sk_backlog.len += skb->truesize;
1100 return 0;
1101 }
1102
1103 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1104
1105 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1106 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1107
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1108 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1109 {
1110 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1111 return __sk_backlog_rcv(sk, skb);
1112
1113 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1114 tcp_v6_do_rcv,
1115 tcp_v4_do_rcv,
1116 sk, skb);
1117 }
1118
sk_incoming_cpu_update(struct sock * sk)1119 static inline void sk_incoming_cpu_update(struct sock *sk)
1120 {
1121 int cpu = raw_smp_processor_id();
1122
1123 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1124 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1125 }
1126
sock_rps_record_flow_hash(__u32 hash)1127 static inline void sock_rps_record_flow_hash(__u32 hash)
1128 {
1129 #ifdef CONFIG_RPS
1130 struct rps_sock_flow_table *sock_flow_table;
1131
1132 rcu_read_lock();
1133 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1134 rps_record_sock_flow(sock_flow_table, hash);
1135 rcu_read_unlock();
1136 #endif
1137 }
1138
sock_rps_record_flow(const struct sock * sk)1139 static inline void sock_rps_record_flow(const struct sock *sk)
1140 {
1141 #ifdef CONFIG_RPS
1142 if (static_branch_unlikely(&rfs_needed)) {
1143 /* Reading sk->sk_rxhash might incur an expensive cache line
1144 * miss.
1145 *
1146 * TCP_ESTABLISHED does cover almost all states where RFS
1147 * might be useful, and is cheaper [1] than testing :
1148 * IPv4: inet_sk(sk)->inet_daddr
1149 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1150 * OR an additional socket flag
1151 * [1] : sk_state and sk_prot are in the same cache line.
1152 */
1153 if (sk->sk_state == TCP_ESTABLISHED)
1154 sock_rps_record_flow_hash(sk->sk_rxhash);
1155 }
1156 #endif
1157 }
1158
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1159 static inline void sock_rps_save_rxhash(struct sock *sk,
1160 const struct sk_buff *skb)
1161 {
1162 #ifdef CONFIG_RPS
1163 if (unlikely(sk->sk_rxhash != skb->hash))
1164 sk->sk_rxhash = skb->hash;
1165 #endif
1166 }
1167
sock_rps_reset_rxhash(struct sock * sk)1168 static inline void sock_rps_reset_rxhash(struct sock *sk)
1169 {
1170 #ifdef CONFIG_RPS
1171 sk->sk_rxhash = 0;
1172 #endif
1173 }
1174
1175 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1176 ({ int __rc; \
1177 release_sock(__sk); \
1178 __rc = __condition; \
1179 if (!__rc) { \
1180 *(__timeo) = wait_woken(__wait, \
1181 TASK_INTERRUPTIBLE, \
1182 *(__timeo)); \
1183 } \
1184 sched_annotate_sleep(); \
1185 lock_sock(__sk); \
1186 __rc = __condition; \
1187 __rc; \
1188 })
1189
1190 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1191 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1192 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1193 int sk_stream_error(struct sock *sk, int flags, int err);
1194 void sk_stream_kill_queues(struct sock *sk);
1195 void sk_set_memalloc(struct sock *sk);
1196 void sk_clear_memalloc(struct sock *sk);
1197
1198 void __sk_flush_backlog(struct sock *sk);
1199
sk_flush_backlog(struct sock * sk)1200 static inline bool sk_flush_backlog(struct sock *sk)
1201 {
1202 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1203 __sk_flush_backlog(sk);
1204 return true;
1205 }
1206 return false;
1207 }
1208
1209 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1210
1211 struct request_sock_ops;
1212 struct timewait_sock_ops;
1213 struct inet_hashinfo;
1214 struct raw_hashinfo;
1215 struct smc_hashinfo;
1216 struct module;
1217 struct sk_psock;
1218
1219 /*
1220 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1221 * un-modified. Special care is taken when initializing object to zero.
1222 */
sk_prot_clear_nulls(struct sock * sk,int size)1223 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1224 {
1225 if (offsetof(struct sock, sk_node.next) != 0)
1226 memset(sk, 0, offsetof(struct sock, sk_node.next));
1227 memset(&sk->sk_node.pprev, 0,
1228 size - offsetof(struct sock, sk_node.pprev));
1229 }
1230
1231 /* Networking protocol blocks we attach to sockets.
1232 * socket layer -> transport layer interface
1233 */
1234 struct proto {
1235 void (*close)(struct sock *sk,
1236 long timeout);
1237 int (*pre_connect)(struct sock *sk,
1238 struct sockaddr *uaddr,
1239 int addr_len);
1240 int (*connect)(struct sock *sk,
1241 struct sockaddr *uaddr,
1242 int addr_len);
1243 int (*disconnect)(struct sock *sk, int flags);
1244
1245 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1246 bool kern);
1247
1248 int (*ioctl)(struct sock *sk, int cmd,
1249 unsigned long arg);
1250 int (*init)(struct sock *sk);
1251 void (*destroy)(struct sock *sk);
1252 void (*shutdown)(struct sock *sk, int how);
1253 int (*setsockopt)(struct sock *sk, int level,
1254 int optname, sockptr_t optval,
1255 unsigned int optlen);
1256 int (*getsockopt)(struct sock *sk, int level,
1257 int optname, char __user *optval,
1258 int __user *option);
1259 void (*keepalive)(struct sock *sk, int valbool);
1260 #ifdef CONFIG_COMPAT
1261 int (*compat_ioctl)(struct sock *sk,
1262 unsigned int cmd, unsigned long arg);
1263 #endif
1264 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1265 size_t len);
1266 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1267 size_t len, int flags, int *addr_len);
1268 int (*sendpage)(struct sock *sk, struct page *page,
1269 int offset, size_t size, int flags);
1270 int (*bind)(struct sock *sk,
1271 struct sockaddr *addr, int addr_len);
1272 int (*bind_add)(struct sock *sk,
1273 struct sockaddr *addr, int addr_len);
1274
1275 int (*backlog_rcv) (struct sock *sk,
1276 struct sk_buff *skb);
1277 bool (*bpf_bypass_getsockopt)(int level,
1278 int optname);
1279
1280 void (*release_cb)(struct sock *sk);
1281
1282 /* Keeping track of sk's, looking them up, and port selection methods. */
1283 int (*hash)(struct sock *sk);
1284 void (*unhash)(struct sock *sk);
1285 void (*rehash)(struct sock *sk);
1286 int (*get_port)(struct sock *sk, unsigned short snum);
1287 void (*put_port)(struct sock *sk);
1288 #ifdef CONFIG_BPF_SYSCALL
1289 int (*psock_update_sk_prot)(struct sock *sk,
1290 struct sk_psock *psock,
1291 bool restore);
1292 #endif
1293
1294 /* Keeping track of sockets in use */
1295 #ifdef CONFIG_PROC_FS
1296 unsigned int inuse_idx;
1297 #endif
1298
1299 #if IS_ENABLED(CONFIG_MPTCP)
1300 int (*forward_alloc_get)(const struct sock *sk);
1301 #endif
1302
1303 bool (*stream_memory_free)(const struct sock *sk, int wake);
1304 bool (*sock_is_readable)(struct sock *sk);
1305 /* Memory pressure */
1306 void (*enter_memory_pressure)(struct sock *sk);
1307 void (*leave_memory_pressure)(struct sock *sk);
1308 atomic_long_t *memory_allocated; /* Current allocated memory. */
1309 int __percpu *per_cpu_fw_alloc;
1310 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1311
1312 /*
1313 * Pressure flag: try to collapse.
1314 * Technical note: it is used by multiple contexts non atomically.
1315 * All the __sk_mem_schedule() is of this nature: accounting
1316 * is strict, actions are advisory and have some latency.
1317 */
1318 unsigned long *memory_pressure;
1319 long *sysctl_mem;
1320
1321 int *sysctl_wmem;
1322 int *sysctl_rmem;
1323 u32 sysctl_wmem_offset;
1324 u32 sysctl_rmem_offset;
1325
1326 int max_header;
1327 bool no_autobind;
1328
1329 struct kmem_cache *slab;
1330 unsigned int obj_size;
1331 slab_flags_t slab_flags;
1332 unsigned int useroffset; /* Usercopy region offset */
1333 unsigned int usersize; /* Usercopy region size */
1334
1335 unsigned int __percpu *orphan_count;
1336
1337 struct request_sock_ops *rsk_prot;
1338 struct timewait_sock_ops *twsk_prot;
1339
1340 union {
1341 struct inet_hashinfo *hashinfo;
1342 struct udp_table *udp_table;
1343 struct raw_hashinfo *raw_hash;
1344 struct smc_hashinfo *smc_hash;
1345 } h;
1346
1347 struct module *owner;
1348
1349 char name[32];
1350
1351 struct list_head node;
1352 int (*diag_destroy)(struct sock *sk, int err);
1353 } __randomize_layout;
1354
1355 int proto_register(struct proto *prot, int alloc_slab);
1356 void proto_unregister(struct proto *prot);
1357 int sock_load_diag_module(int family, int protocol);
1358
1359 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1360
sk_forward_alloc_get(const struct sock * sk)1361 static inline int sk_forward_alloc_get(const struct sock *sk)
1362 {
1363 #if IS_ENABLED(CONFIG_MPTCP)
1364 if (sk->sk_prot->forward_alloc_get)
1365 return sk->sk_prot->forward_alloc_get(sk);
1366 #endif
1367 return sk->sk_forward_alloc;
1368 }
1369
__sk_stream_memory_free(const struct sock * sk,int wake)1370 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1371 {
1372 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1373 return false;
1374
1375 return sk->sk_prot->stream_memory_free ?
1376 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1377 tcp_stream_memory_free, sk, wake) : true;
1378 }
1379
sk_stream_memory_free(const struct sock * sk)1380 static inline bool sk_stream_memory_free(const struct sock *sk)
1381 {
1382 return __sk_stream_memory_free(sk, 0);
1383 }
1384
__sk_stream_is_writeable(const struct sock * sk,int wake)1385 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1386 {
1387 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1388 __sk_stream_memory_free(sk, wake);
1389 }
1390
sk_stream_is_writeable(const struct sock * sk)1391 static inline bool sk_stream_is_writeable(const struct sock *sk)
1392 {
1393 return __sk_stream_is_writeable(sk, 0);
1394 }
1395
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1396 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1397 struct cgroup *ancestor)
1398 {
1399 #ifdef CONFIG_SOCK_CGROUP_DATA
1400 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1401 ancestor);
1402 #else
1403 return -ENOTSUPP;
1404 #endif
1405 }
1406
sk_has_memory_pressure(const struct sock * sk)1407 static inline bool sk_has_memory_pressure(const struct sock *sk)
1408 {
1409 return sk->sk_prot->memory_pressure != NULL;
1410 }
1411
sk_under_memory_pressure(const struct sock * sk)1412 static inline bool sk_under_memory_pressure(const struct sock *sk)
1413 {
1414 if (!sk->sk_prot->memory_pressure)
1415 return false;
1416
1417 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1418 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1419 return true;
1420
1421 return !!*sk->sk_prot->memory_pressure;
1422 }
1423
1424 static inline long
proto_memory_allocated(const struct proto * prot)1425 proto_memory_allocated(const struct proto *prot)
1426 {
1427 return max(0L, atomic_long_read(prot->memory_allocated));
1428 }
1429
1430 static inline long
sk_memory_allocated(const struct sock * sk)1431 sk_memory_allocated(const struct sock *sk)
1432 {
1433 return proto_memory_allocated(sk->sk_prot);
1434 }
1435
1436 /* 1 MB per cpu, in page units */
1437 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1438
1439 static inline void
sk_memory_allocated_add(struct sock * sk,int amt)1440 sk_memory_allocated_add(struct sock *sk, int amt)
1441 {
1442 int local_reserve;
1443
1444 preempt_disable();
1445 local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1446 if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1447 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1448 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1449 }
1450 preempt_enable();
1451 }
1452
1453 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1454 sk_memory_allocated_sub(struct sock *sk, int amt)
1455 {
1456 int local_reserve;
1457
1458 preempt_disable();
1459 local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1460 if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1461 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1462 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1463 }
1464 preempt_enable();
1465 }
1466
1467 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1468
sk_sockets_allocated_dec(struct sock * sk)1469 static inline void sk_sockets_allocated_dec(struct sock *sk)
1470 {
1471 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1472 SK_ALLOC_PERCPU_COUNTER_BATCH);
1473 }
1474
sk_sockets_allocated_inc(struct sock * sk)1475 static inline void sk_sockets_allocated_inc(struct sock *sk)
1476 {
1477 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1478 SK_ALLOC_PERCPU_COUNTER_BATCH);
1479 }
1480
1481 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1482 sk_sockets_allocated_read_positive(struct sock *sk)
1483 {
1484 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1485 }
1486
1487 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1488 proto_sockets_allocated_sum_positive(struct proto *prot)
1489 {
1490 return percpu_counter_sum_positive(prot->sockets_allocated);
1491 }
1492
1493 static inline bool
proto_memory_pressure(struct proto * prot)1494 proto_memory_pressure(struct proto *prot)
1495 {
1496 if (!prot->memory_pressure)
1497 return false;
1498 return !!*prot->memory_pressure;
1499 }
1500
1501
1502 #ifdef CONFIG_PROC_FS
1503 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1504 struct prot_inuse {
1505 int all;
1506 int val[PROTO_INUSE_NR];
1507 };
1508
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1509 static inline void sock_prot_inuse_add(const struct net *net,
1510 const struct proto *prot, int val)
1511 {
1512 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1513 }
1514
sock_inuse_add(const struct net * net,int val)1515 static inline void sock_inuse_add(const struct net *net, int val)
1516 {
1517 this_cpu_add(net->core.prot_inuse->all, val);
1518 }
1519
1520 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1521 int sock_inuse_get(struct net *net);
1522 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1523 static inline void sock_prot_inuse_add(const struct net *net,
1524 const struct proto *prot, int val)
1525 {
1526 }
1527
sock_inuse_add(const struct net * net,int val)1528 static inline void sock_inuse_add(const struct net *net, int val)
1529 {
1530 }
1531 #endif
1532
1533
1534 /* With per-bucket locks this operation is not-atomic, so that
1535 * this version is not worse.
1536 */
__sk_prot_rehash(struct sock * sk)1537 static inline int __sk_prot_rehash(struct sock *sk)
1538 {
1539 sk->sk_prot->unhash(sk);
1540 return sk->sk_prot->hash(sk);
1541 }
1542
1543 /* About 10 seconds */
1544 #define SOCK_DESTROY_TIME (10*HZ)
1545
1546 /* Sockets 0-1023 can't be bound to unless you are superuser */
1547 #define PROT_SOCK 1024
1548
1549 #define SHUTDOWN_MASK 3
1550 #define RCV_SHUTDOWN 1
1551 #define SEND_SHUTDOWN 2
1552
1553 #define SOCK_BINDADDR_LOCK 4
1554 #define SOCK_BINDPORT_LOCK 8
1555
1556 struct socket_alloc {
1557 struct socket socket;
1558 struct inode vfs_inode;
1559 };
1560
SOCKET_I(struct inode * inode)1561 static inline struct socket *SOCKET_I(struct inode *inode)
1562 {
1563 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1564 }
1565
SOCK_INODE(struct socket * socket)1566 static inline struct inode *SOCK_INODE(struct socket *socket)
1567 {
1568 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1569 }
1570
1571 /*
1572 * Functions for memory accounting
1573 */
1574 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1575 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1576 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1577 void __sk_mem_reclaim(struct sock *sk, int amount);
1578
1579 #define SK_MEM_SEND 0
1580 #define SK_MEM_RECV 1
1581
1582 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1583 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1584 {
1585 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1586 }
1587
sk_mem_pages(int amt)1588 static inline int sk_mem_pages(int amt)
1589 {
1590 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1591 }
1592
sk_has_account(struct sock * sk)1593 static inline bool sk_has_account(struct sock *sk)
1594 {
1595 /* return true if protocol supports memory accounting */
1596 return !!sk->sk_prot->memory_allocated;
1597 }
1598
sk_wmem_schedule(struct sock * sk,int size)1599 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1600 {
1601 int delta;
1602
1603 if (!sk_has_account(sk))
1604 return true;
1605 delta = size - sk->sk_forward_alloc;
1606 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1607 }
1608
1609 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1610 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1611 {
1612 int delta;
1613
1614 if (!sk_has_account(sk))
1615 return true;
1616 delta = size - sk->sk_forward_alloc;
1617 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1618 skb_pfmemalloc(skb);
1619 }
1620
sk_unused_reserved_mem(const struct sock * sk)1621 static inline int sk_unused_reserved_mem(const struct sock *sk)
1622 {
1623 int unused_mem;
1624
1625 if (likely(!sk->sk_reserved_mem))
1626 return 0;
1627
1628 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1629 atomic_read(&sk->sk_rmem_alloc);
1630
1631 return unused_mem > 0 ? unused_mem : 0;
1632 }
1633
sk_mem_reclaim(struct sock * sk)1634 static inline void sk_mem_reclaim(struct sock *sk)
1635 {
1636 int reclaimable;
1637
1638 if (!sk_has_account(sk))
1639 return;
1640
1641 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1642
1643 if (reclaimable >= (int)PAGE_SIZE)
1644 __sk_mem_reclaim(sk, reclaimable);
1645 }
1646
sk_mem_reclaim_final(struct sock * sk)1647 static inline void sk_mem_reclaim_final(struct sock *sk)
1648 {
1649 sk->sk_reserved_mem = 0;
1650 sk_mem_reclaim(sk);
1651 }
1652
sk_mem_charge(struct sock * sk,int size)1653 static inline void sk_mem_charge(struct sock *sk, int size)
1654 {
1655 if (!sk_has_account(sk))
1656 return;
1657 sk->sk_forward_alloc -= size;
1658 }
1659
sk_mem_uncharge(struct sock * sk,int size)1660 static inline void sk_mem_uncharge(struct sock *sk, int size)
1661 {
1662 if (!sk_has_account(sk))
1663 return;
1664 sk->sk_forward_alloc += size;
1665 sk_mem_reclaim(sk);
1666 }
1667
1668 /*
1669 * Macro so as to not evaluate some arguments when
1670 * lockdep is not enabled.
1671 *
1672 * Mark both the sk_lock and the sk_lock.slock as a
1673 * per-address-family lock class.
1674 */
1675 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1676 do { \
1677 sk->sk_lock.owned = 0; \
1678 init_waitqueue_head(&sk->sk_lock.wq); \
1679 spin_lock_init(&(sk)->sk_lock.slock); \
1680 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1681 sizeof((sk)->sk_lock)); \
1682 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1683 (skey), (sname)); \
1684 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1685 } while (0)
1686
lockdep_sock_is_held(const struct sock * sk)1687 static inline bool lockdep_sock_is_held(const struct sock *sk)
1688 {
1689 return lockdep_is_held(&sk->sk_lock) ||
1690 lockdep_is_held(&sk->sk_lock.slock);
1691 }
1692
1693 void lock_sock_nested(struct sock *sk, int subclass);
1694
lock_sock(struct sock * sk)1695 static inline void lock_sock(struct sock *sk)
1696 {
1697 lock_sock_nested(sk, 0);
1698 }
1699
1700 void __lock_sock(struct sock *sk);
1701 void __release_sock(struct sock *sk);
1702 void release_sock(struct sock *sk);
1703
1704 /* BH context may only use the following locking interface. */
1705 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1706 #define bh_lock_sock_nested(__sk) \
1707 spin_lock_nested(&((__sk)->sk_lock.slock), \
1708 SINGLE_DEPTH_NESTING)
1709 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1710
1711 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1712
1713 /**
1714 * lock_sock_fast - fast version of lock_sock
1715 * @sk: socket
1716 *
1717 * This version should be used for very small section, where process wont block
1718 * return false if fast path is taken:
1719 *
1720 * sk_lock.slock locked, owned = 0, BH disabled
1721 *
1722 * return true if slow path is taken:
1723 *
1724 * sk_lock.slock unlocked, owned = 1, BH enabled
1725 */
lock_sock_fast(struct sock * sk)1726 static inline bool lock_sock_fast(struct sock *sk)
1727 {
1728 /* The sk_lock has mutex_lock() semantics here. */
1729 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1730
1731 return __lock_sock_fast(sk);
1732 }
1733
1734 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1735 static inline bool lock_sock_fast_nested(struct sock *sk)
1736 {
1737 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1738
1739 return __lock_sock_fast(sk);
1740 }
1741
1742 /**
1743 * unlock_sock_fast - complement of lock_sock_fast
1744 * @sk: socket
1745 * @slow: slow mode
1746 *
1747 * fast unlock socket for user context.
1748 * If slow mode is on, we call regular release_sock()
1749 */
unlock_sock_fast(struct sock * sk,bool slow)1750 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1751 __releases(&sk->sk_lock.slock)
1752 {
1753 if (slow) {
1754 release_sock(sk);
1755 __release(&sk->sk_lock.slock);
1756 } else {
1757 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1758 spin_unlock_bh(&sk->sk_lock.slock);
1759 }
1760 }
1761
1762 void sockopt_lock_sock(struct sock *sk);
1763 void sockopt_release_sock(struct sock *sk);
1764 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1765 bool sockopt_capable(int cap);
1766
1767 /* Used by processes to "lock" a socket state, so that
1768 * interrupts and bottom half handlers won't change it
1769 * from under us. It essentially blocks any incoming
1770 * packets, so that we won't get any new data or any
1771 * packets that change the state of the socket.
1772 *
1773 * While locked, BH processing will add new packets to
1774 * the backlog queue. This queue is processed by the
1775 * owner of the socket lock right before it is released.
1776 *
1777 * Since ~2.3.5 it is also exclusive sleep lock serializing
1778 * accesses from user process context.
1779 */
1780
sock_owned_by_me(const struct sock * sk)1781 static inline void sock_owned_by_me(const struct sock *sk)
1782 {
1783 #ifdef CONFIG_LOCKDEP
1784 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1785 #endif
1786 }
1787
sock_owned_by_user(const struct sock * sk)1788 static inline bool sock_owned_by_user(const struct sock *sk)
1789 {
1790 sock_owned_by_me(sk);
1791 return sk->sk_lock.owned;
1792 }
1793
sock_owned_by_user_nocheck(const struct sock * sk)1794 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1795 {
1796 return sk->sk_lock.owned;
1797 }
1798
sock_release_ownership(struct sock * sk)1799 static inline void sock_release_ownership(struct sock *sk)
1800 {
1801 if (sock_owned_by_user_nocheck(sk)) {
1802 sk->sk_lock.owned = 0;
1803
1804 /* The sk_lock has mutex_unlock() semantics: */
1805 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1806 }
1807 }
1808
1809 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1810 static inline bool sock_allow_reclassification(const struct sock *csk)
1811 {
1812 struct sock *sk = (struct sock *)csk;
1813
1814 return !sock_owned_by_user_nocheck(sk) &&
1815 !spin_is_locked(&sk->sk_lock.slock);
1816 }
1817
1818 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1819 struct proto *prot, int kern);
1820 void sk_free(struct sock *sk);
1821 void sk_destruct(struct sock *sk);
1822 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1823 void sk_free_unlock_clone(struct sock *sk);
1824
1825 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1826 gfp_t priority);
1827 void __sock_wfree(struct sk_buff *skb);
1828 void sock_wfree(struct sk_buff *skb);
1829 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1830 gfp_t priority);
1831 void skb_orphan_partial(struct sk_buff *skb);
1832 void sock_rfree(struct sk_buff *skb);
1833 void sock_efree(struct sk_buff *skb);
1834 #ifdef CONFIG_INET
1835 void sock_edemux(struct sk_buff *skb);
1836 void sock_pfree(struct sk_buff *skb);
1837 #else
1838 #define sock_edemux sock_efree
1839 #endif
1840
1841 int sk_setsockopt(struct sock *sk, int level, int optname,
1842 sockptr_t optval, unsigned int optlen);
1843 int sock_setsockopt(struct socket *sock, int level, int op,
1844 sockptr_t optval, unsigned int optlen);
1845
1846 int sk_getsockopt(struct sock *sk, int level, int optname,
1847 sockptr_t optval, sockptr_t optlen);
1848 int sock_getsockopt(struct socket *sock, int level, int op,
1849 char __user *optval, int __user *optlen);
1850 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1851 bool timeval, bool time32);
1852 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1853 unsigned long data_len, int noblock,
1854 int *errcode, int max_page_order);
1855
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1856 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1857 unsigned long size,
1858 int noblock, int *errcode)
1859 {
1860 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1861 }
1862
1863 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1864 void sock_kfree_s(struct sock *sk, void *mem, int size);
1865 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1866 void sk_send_sigurg(struct sock *sk);
1867
sock_replace_proto(struct sock * sk,struct proto * proto)1868 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1869 {
1870 if (sk->sk_socket)
1871 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1872 WRITE_ONCE(sk->sk_prot, proto);
1873 }
1874
1875 struct sockcm_cookie {
1876 u64 transmit_time;
1877 u32 mark;
1878 u32 tsflags;
1879 };
1880
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1881 static inline void sockcm_init(struct sockcm_cookie *sockc,
1882 const struct sock *sk)
1883 {
1884 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1885 }
1886
1887 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1888 struct sockcm_cookie *sockc);
1889 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1890 struct sockcm_cookie *sockc);
1891
1892 /*
1893 * Functions to fill in entries in struct proto_ops when a protocol
1894 * does not implement a particular function.
1895 */
1896 int sock_no_bind(struct socket *, struct sockaddr *, int);
1897 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1898 int sock_no_socketpair(struct socket *, struct socket *);
1899 int sock_no_accept(struct socket *, struct socket *, int, bool);
1900 int sock_no_getname(struct socket *, struct sockaddr *, int);
1901 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1902 int sock_no_listen(struct socket *, int);
1903 int sock_no_shutdown(struct socket *, int);
1904 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1905 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1906 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1907 int sock_no_mmap(struct file *file, struct socket *sock,
1908 struct vm_area_struct *vma);
1909 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1910 size_t size, int flags);
1911 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1912 int offset, size_t size, int flags);
1913
1914 /*
1915 * Functions to fill in entries in struct proto_ops when a protocol
1916 * uses the inet style.
1917 */
1918 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1919 char __user *optval, int __user *optlen);
1920 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1921 int flags);
1922 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1923 sockptr_t optval, unsigned int optlen);
1924
1925 void sk_common_release(struct sock *sk);
1926
1927 /*
1928 * Default socket callbacks and setup code
1929 */
1930
1931 /* Initialise core socket variables using an explicit uid. */
1932 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1933
1934 /* Initialise core socket variables.
1935 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1936 */
1937 void sock_init_data(struct socket *sock, struct sock *sk);
1938
1939 /*
1940 * Socket reference counting postulates.
1941 *
1942 * * Each user of socket SHOULD hold a reference count.
1943 * * Each access point to socket (an hash table bucket, reference from a list,
1944 * running timer, skb in flight MUST hold a reference count.
1945 * * When reference count hits 0, it means it will never increase back.
1946 * * When reference count hits 0, it means that no references from
1947 * outside exist to this socket and current process on current CPU
1948 * is last user and may/should destroy this socket.
1949 * * sk_free is called from any context: process, BH, IRQ. When
1950 * it is called, socket has no references from outside -> sk_free
1951 * may release descendant resources allocated by the socket, but
1952 * to the time when it is called, socket is NOT referenced by any
1953 * hash tables, lists etc.
1954 * * Packets, delivered from outside (from network or from another process)
1955 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1956 * when they sit in queue. Otherwise, packets will leak to hole, when
1957 * socket is looked up by one cpu and unhasing is made by another CPU.
1958 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1959 * (leak to backlog). Packet socket does all the processing inside
1960 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1961 * use separate SMP lock, so that they are prone too.
1962 */
1963
1964 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1965 static inline void sock_put(struct sock *sk)
1966 {
1967 if (refcount_dec_and_test(&sk->sk_refcnt))
1968 sk_free(sk);
1969 }
1970 /* Generic version of sock_put(), dealing with all sockets
1971 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1972 */
1973 void sock_gen_put(struct sock *sk);
1974
1975 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1976 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1977 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1978 const int nested)
1979 {
1980 return __sk_receive_skb(sk, skb, nested, 1, true);
1981 }
1982
sk_tx_queue_set(struct sock * sk,int tx_queue)1983 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1984 {
1985 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1986 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1987 return;
1988 sk->sk_tx_queue_mapping = tx_queue;
1989 }
1990
1991 #define NO_QUEUE_MAPPING USHRT_MAX
1992
sk_tx_queue_clear(struct sock * sk)1993 static inline void sk_tx_queue_clear(struct sock *sk)
1994 {
1995 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1996 }
1997
sk_tx_queue_get(const struct sock * sk)1998 static inline int sk_tx_queue_get(const struct sock *sk)
1999 {
2000 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
2001 return sk->sk_tx_queue_mapping;
2002
2003 return -1;
2004 }
2005
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2006 static inline void __sk_rx_queue_set(struct sock *sk,
2007 const struct sk_buff *skb,
2008 bool force_set)
2009 {
2010 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2011 if (skb_rx_queue_recorded(skb)) {
2012 u16 rx_queue = skb_get_rx_queue(skb);
2013
2014 if (force_set ||
2015 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2016 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2017 }
2018 #endif
2019 }
2020
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2021 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2022 {
2023 __sk_rx_queue_set(sk, skb, true);
2024 }
2025
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2026 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2027 {
2028 __sk_rx_queue_set(sk, skb, false);
2029 }
2030
sk_rx_queue_clear(struct sock * sk)2031 static inline void sk_rx_queue_clear(struct sock *sk)
2032 {
2033 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2034 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2035 #endif
2036 }
2037
sk_rx_queue_get(const struct sock * sk)2038 static inline int sk_rx_queue_get(const struct sock *sk)
2039 {
2040 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2041 if (sk) {
2042 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2043
2044 if (res != NO_QUEUE_MAPPING)
2045 return res;
2046 }
2047 #endif
2048
2049 return -1;
2050 }
2051
sk_set_socket(struct sock * sk,struct socket * sock)2052 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2053 {
2054 sk->sk_socket = sock;
2055 }
2056
sk_sleep(struct sock * sk)2057 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2058 {
2059 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2060 return &rcu_dereference_raw(sk->sk_wq)->wait;
2061 }
2062 /* Detach socket from process context.
2063 * Announce socket dead, detach it from wait queue and inode.
2064 * Note that parent inode held reference count on this struct sock,
2065 * we do not release it in this function, because protocol
2066 * probably wants some additional cleanups or even continuing
2067 * to work with this socket (TCP).
2068 */
sock_orphan(struct sock * sk)2069 static inline void sock_orphan(struct sock *sk)
2070 {
2071 write_lock_bh(&sk->sk_callback_lock);
2072 sock_set_flag(sk, SOCK_DEAD);
2073 sk_set_socket(sk, NULL);
2074 sk->sk_wq = NULL;
2075 write_unlock_bh(&sk->sk_callback_lock);
2076 }
2077
sock_graft(struct sock * sk,struct socket * parent)2078 static inline void sock_graft(struct sock *sk, struct socket *parent)
2079 {
2080 WARN_ON(parent->sk);
2081 write_lock_bh(&sk->sk_callback_lock);
2082 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2083 parent->sk = sk;
2084 sk_set_socket(sk, parent);
2085 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2086 security_sock_graft(sk, parent);
2087 write_unlock_bh(&sk->sk_callback_lock);
2088 }
2089
2090 kuid_t sock_i_uid(struct sock *sk);
2091 unsigned long sock_i_ino(struct sock *sk);
2092
sock_net_uid(const struct net * net,const struct sock * sk)2093 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2094 {
2095 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2096 }
2097
net_tx_rndhash(void)2098 static inline u32 net_tx_rndhash(void)
2099 {
2100 u32 v = get_random_u32();
2101
2102 return v ?: 1;
2103 }
2104
sk_set_txhash(struct sock * sk)2105 static inline void sk_set_txhash(struct sock *sk)
2106 {
2107 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2108 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2109 }
2110
sk_rethink_txhash(struct sock * sk)2111 static inline bool sk_rethink_txhash(struct sock *sk)
2112 {
2113 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2114 sk_set_txhash(sk);
2115 return true;
2116 }
2117 return false;
2118 }
2119
2120 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)2121 __sk_dst_get(struct sock *sk)
2122 {
2123 return rcu_dereference_check(sk->sk_dst_cache,
2124 lockdep_sock_is_held(sk));
2125 }
2126
2127 static inline struct dst_entry *
sk_dst_get(struct sock * sk)2128 sk_dst_get(struct sock *sk)
2129 {
2130 struct dst_entry *dst;
2131
2132 rcu_read_lock();
2133 dst = rcu_dereference(sk->sk_dst_cache);
2134 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2135 dst = NULL;
2136 rcu_read_unlock();
2137 return dst;
2138 }
2139
__dst_negative_advice(struct sock * sk)2140 static inline void __dst_negative_advice(struct sock *sk)
2141 {
2142 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2143
2144 if (dst && dst->ops->negative_advice) {
2145 ndst = dst->ops->negative_advice(dst);
2146
2147 if (ndst != dst) {
2148 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2149 sk_tx_queue_clear(sk);
2150 sk->sk_dst_pending_confirm = 0;
2151 }
2152 }
2153 }
2154
dst_negative_advice(struct sock * sk)2155 static inline void dst_negative_advice(struct sock *sk)
2156 {
2157 sk_rethink_txhash(sk);
2158 __dst_negative_advice(sk);
2159 }
2160
2161 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2162 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2163 {
2164 struct dst_entry *old_dst;
2165
2166 sk_tx_queue_clear(sk);
2167 sk->sk_dst_pending_confirm = 0;
2168 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2169 lockdep_sock_is_held(sk));
2170 rcu_assign_pointer(sk->sk_dst_cache, dst);
2171 dst_release(old_dst);
2172 }
2173
2174 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2175 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2176 {
2177 struct dst_entry *old_dst;
2178
2179 sk_tx_queue_clear(sk);
2180 sk->sk_dst_pending_confirm = 0;
2181 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2182 dst_release(old_dst);
2183 }
2184
2185 static inline void
__sk_dst_reset(struct sock * sk)2186 __sk_dst_reset(struct sock *sk)
2187 {
2188 __sk_dst_set(sk, NULL);
2189 }
2190
2191 static inline void
sk_dst_reset(struct sock * sk)2192 sk_dst_reset(struct sock *sk)
2193 {
2194 sk_dst_set(sk, NULL);
2195 }
2196
2197 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2198
2199 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2200
sk_dst_confirm(struct sock * sk)2201 static inline void sk_dst_confirm(struct sock *sk)
2202 {
2203 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2204 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2205 }
2206
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2207 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2208 {
2209 if (skb_get_dst_pending_confirm(skb)) {
2210 struct sock *sk = skb->sk;
2211
2212 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2213 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2214 neigh_confirm(n);
2215 }
2216 }
2217
2218 bool sk_mc_loop(struct sock *sk);
2219
sk_can_gso(const struct sock * sk)2220 static inline bool sk_can_gso(const struct sock *sk)
2221 {
2222 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2223 }
2224
2225 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2226
sk_gso_disable(struct sock * sk)2227 static inline void sk_gso_disable(struct sock *sk)
2228 {
2229 sk->sk_gso_disabled = 1;
2230 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2231 }
2232
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2233 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2234 struct iov_iter *from, char *to,
2235 int copy, int offset)
2236 {
2237 if (skb->ip_summed == CHECKSUM_NONE) {
2238 __wsum csum = 0;
2239 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2240 return -EFAULT;
2241 skb->csum = csum_block_add(skb->csum, csum, offset);
2242 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2243 if (!copy_from_iter_full_nocache(to, copy, from))
2244 return -EFAULT;
2245 } else if (!copy_from_iter_full(to, copy, from))
2246 return -EFAULT;
2247
2248 return 0;
2249 }
2250
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2251 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2252 struct iov_iter *from, int copy)
2253 {
2254 int err, offset = skb->len;
2255
2256 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2257 copy, offset);
2258 if (err)
2259 __skb_trim(skb, offset);
2260
2261 return err;
2262 }
2263
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2264 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2265 struct sk_buff *skb,
2266 struct page *page,
2267 int off, int copy)
2268 {
2269 int err;
2270
2271 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2272 copy, skb->len);
2273 if (err)
2274 return err;
2275
2276 skb_len_add(skb, copy);
2277 sk_wmem_queued_add(sk, copy);
2278 sk_mem_charge(sk, copy);
2279 return 0;
2280 }
2281
2282 /**
2283 * sk_wmem_alloc_get - returns write allocations
2284 * @sk: socket
2285 *
2286 * Return: sk_wmem_alloc minus initial offset of one
2287 */
sk_wmem_alloc_get(const struct sock * sk)2288 static inline int sk_wmem_alloc_get(const struct sock *sk)
2289 {
2290 return refcount_read(&sk->sk_wmem_alloc) - 1;
2291 }
2292
2293 /**
2294 * sk_rmem_alloc_get - returns read allocations
2295 * @sk: socket
2296 *
2297 * Return: sk_rmem_alloc
2298 */
sk_rmem_alloc_get(const struct sock * sk)2299 static inline int sk_rmem_alloc_get(const struct sock *sk)
2300 {
2301 return atomic_read(&sk->sk_rmem_alloc);
2302 }
2303
2304 /**
2305 * sk_has_allocations - check if allocations are outstanding
2306 * @sk: socket
2307 *
2308 * Return: true if socket has write or read allocations
2309 */
sk_has_allocations(const struct sock * sk)2310 static inline bool sk_has_allocations(const struct sock *sk)
2311 {
2312 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2313 }
2314
2315 /**
2316 * skwq_has_sleeper - check if there are any waiting processes
2317 * @wq: struct socket_wq
2318 *
2319 * Return: true if socket_wq has waiting processes
2320 *
2321 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2322 * barrier call. They were added due to the race found within the tcp code.
2323 *
2324 * Consider following tcp code paths::
2325 *
2326 * CPU1 CPU2
2327 * sys_select receive packet
2328 * ... ...
2329 * __add_wait_queue update tp->rcv_nxt
2330 * ... ...
2331 * tp->rcv_nxt check sock_def_readable
2332 * ... {
2333 * schedule rcu_read_lock();
2334 * wq = rcu_dereference(sk->sk_wq);
2335 * if (wq && waitqueue_active(&wq->wait))
2336 * wake_up_interruptible(&wq->wait)
2337 * ...
2338 * }
2339 *
2340 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2341 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2342 * could then endup calling schedule and sleep forever if there are no more
2343 * data on the socket.
2344 *
2345 */
skwq_has_sleeper(struct socket_wq * wq)2346 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2347 {
2348 return wq && wq_has_sleeper(&wq->wait);
2349 }
2350
2351 /**
2352 * sock_poll_wait - place memory barrier behind the poll_wait call.
2353 * @filp: file
2354 * @sock: socket to wait on
2355 * @p: poll_table
2356 *
2357 * See the comments in the wq_has_sleeper function.
2358 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2359 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2360 poll_table *p)
2361 {
2362 if (!poll_does_not_wait(p)) {
2363 poll_wait(filp, &sock->wq.wait, p);
2364 /* We need to be sure we are in sync with the
2365 * socket flags modification.
2366 *
2367 * This memory barrier is paired in the wq_has_sleeper.
2368 */
2369 smp_mb();
2370 }
2371 }
2372
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2373 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2374 {
2375 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2376 u32 txhash = READ_ONCE(sk->sk_txhash);
2377
2378 if (txhash) {
2379 skb->l4_hash = 1;
2380 skb->hash = txhash;
2381 }
2382 }
2383
2384 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2385
2386 /*
2387 * Queue a received datagram if it will fit. Stream and sequenced
2388 * protocols can't normally use this as they need to fit buffers in
2389 * and play with them.
2390 *
2391 * Inlined as it's very short and called for pretty much every
2392 * packet ever received.
2393 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2394 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2395 {
2396 skb_orphan(skb);
2397 skb->sk = sk;
2398 skb->destructor = sock_rfree;
2399 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2400 sk_mem_charge(sk, skb->truesize);
2401 }
2402
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2403 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2404 {
2405 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2406 skb_orphan(skb);
2407 skb->destructor = sock_efree;
2408 skb->sk = sk;
2409 return true;
2410 }
2411 return false;
2412 }
2413
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2414 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2415 {
2416 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2417 if (skb) {
2418 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2419 skb_set_owner_r(skb, sk);
2420 return skb;
2421 }
2422 __kfree_skb(skb);
2423 }
2424 return NULL;
2425 }
2426
skb_prepare_for_gro(struct sk_buff * skb)2427 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2428 {
2429 if (skb->destructor != sock_wfree) {
2430 skb_orphan(skb);
2431 return;
2432 }
2433 skb->slow_gro = 1;
2434 }
2435
2436 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2437 unsigned long expires);
2438
2439 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2440
2441 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2442
2443 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2444 struct sk_buff *skb, unsigned int flags,
2445 void (*destructor)(struct sock *sk,
2446 struct sk_buff *skb));
2447 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2448
2449 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2450 enum skb_drop_reason *reason);
2451
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2452 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2453 {
2454 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2455 }
2456
2457 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2458 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2459
2460 /*
2461 * Recover an error report and clear atomically
2462 */
2463
sock_error(struct sock * sk)2464 static inline int sock_error(struct sock *sk)
2465 {
2466 int err;
2467
2468 /* Avoid an atomic operation for the common case.
2469 * This is racy since another cpu/thread can change sk_err under us.
2470 */
2471 if (likely(data_race(!sk->sk_err)))
2472 return 0;
2473
2474 err = xchg(&sk->sk_err, 0);
2475 return -err;
2476 }
2477
2478 void sk_error_report(struct sock *sk);
2479
sock_wspace(struct sock * sk)2480 static inline unsigned long sock_wspace(struct sock *sk)
2481 {
2482 int amt = 0;
2483
2484 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2485 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2486 if (amt < 0)
2487 amt = 0;
2488 }
2489 return amt;
2490 }
2491
2492 /* Note:
2493 * We use sk->sk_wq_raw, from contexts knowing this
2494 * pointer is not NULL and cannot disappear/change.
2495 */
sk_set_bit(int nr,struct sock * sk)2496 static inline void sk_set_bit(int nr, struct sock *sk)
2497 {
2498 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2499 !sock_flag(sk, SOCK_FASYNC))
2500 return;
2501
2502 set_bit(nr, &sk->sk_wq_raw->flags);
2503 }
2504
sk_clear_bit(int nr,struct sock * sk)2505 static inline void sk_clear_bit(int nr, struct sock *sk)
2506 {
2507 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2508 !sock_flag(sk, SOCK_FASYNC))
2509 return;
2510
2511 clear_bit(nr, &sk->sk_wq_raw->flags);
2512 }
2513
sk_wake_async(const struct sock * sk,int how,int band)2514 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2515 {
2516 if (sock_flag(sk, SOCK_FASYNC)) {
2517 rcu_read_lock();
2518 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2519 rcu_read_unlock();
2520 }
2521 }
2522
2523 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2524 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2525 * Note: for send buffers, TCP works better if we can build two skbs at
2526 * minimum.
2527 */
2528 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2529
2530 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2531 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2532
sk_stream_moderate_sndbuf(struct sock * sk)2533 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2534 {
2535 u32 val;
2536
2537 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2538 return;
2539
2540 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2541 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2542
2543 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2544 }
2545
2546 /**
2547 * sk_page_frag - return an appropriate page_frag
2548 * @sk: socket
2549 *
2550 * Use the per task page_frag instead of the per socket one for
2551 * optimization when we know that we're in process context and own
2552 * everything that's associated with %current.
2553 *
2554 * Both direct reclaim and page faults can nest inside other
2555 * socket operations and end up recursing into sk_page_frag()
2556 * while it's already in use: explicitly avoid task page_frag
2557 * when users disable sk_use_task_frag.
2558 *
2559 * Return: a per task page_frag if context allows that,
2560 * otherwise a per socket one.
2561 */
sk_page_frag(struct sock * sk)2562 static inline struct page_frag *sk_page_frag(struct sock *sk)
2563 {
2564 if (sk->sk_use_task_frag)
2565 return ¤t->task_frag;
2566
2567 return &sk->sk_frag;
2568 }
2569
2570 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2571
2572 /*
2573 * Default write policy as shown to user space via poll/select/SIGIO
2574 */
sock_writeable(const struct sock * sk)2575 static inline bool sock_writeable(const struct sock *sk)
2576 {
2577 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2578 }
2579
gfp_any(void)2580 static inline gfp_t gfp_any(void)
2581 {
2582 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2583 }
2584
gfp_memcg_charge(void)2585 static inline gfp_t gfp_memcg_charge(void)
2586 {
2587 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2588 }
2589
sock_rcvtimeo(const struct sock * sk,bool noblock)2590 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2591 {
2592 return noblock ? 0 : sk->sk_rcvtimeo;
2593 }
2594
sock_sndtimeo(const struct sock * sk,bool noblock)2595 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2596 {
2597 return noblock ? 0 : sk->sk_sndtimeo;
2598 }
2599
sock_rcvlowat(const struct sock * sk,int waitall,int len)2600 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2601 {
2602 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2603
2604 return v ?: 1;
2605 }
2606
2607 /* Alas, with timeout socket operations are not restartable.
2608 * Compare this to poll().
2609 */
sock_intr_errno(long timeo)2610 static inline int sock_intr_errno(long timeo)
2611 {
2612 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2613 }
2614
2615 struct sock_skb_cb {
2616 u32 dropcount;
2617 };
2618
2619 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2620 * using skb->cb[] would keep using it directly and utilize its
2621 * alignement guarantee.
2622 */
2623 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2624 sizeof(struct sock_skb_cb)))
2625
2626 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2627 SOCK_SKB_CB_OFFSET))
2628
2629 #define sock_skb_cb_check_size(size) \
2630 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2631
2632 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2633 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2634 {
2635 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2636 atomic_read(&sk->sk_drops) : 0;
2637 }
2638
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2639 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2640 {
2641 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2642
2643 atomic_add(segs, &sk->sk_drops);
2644 }
2645
sock_read_timestamp(struct sock * sk)2646 static inline ktime_t sock_read_timestamp(struct sock *sk)
2647 {
2648 #if BITS_PER_LONG==32
2649 unsigned int seq;
2650 ktime_t kt;
2651
2652 do {
2653 seq = read_seqbegin(&sk->sk_stamp_seq);
2654 kt = sk->sk_stamp;
2655 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2656
2657 return kt;
2658 #else
2659 return READ_ONCE(sk->sk_stamp);
2660 #endif
2661 }
2662
sock_write_timestamp(struct sock * sk,ktime_t kt)2663 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2664 {
2665 #if BITS_PER_LONG==32
2666 write_seqlock(&sk->sk_stamp_seq);
2667 sk->sk_stamp = kt;
2668 write_sequnlock(&sk->sk_stamp_seq);
2669 #else
2670 WRITE_ONCE(sk->sk_stamp, kt);
2671 #endif
2672 }
2673
2674 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2675 struct sk_buff *skb);
2676 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2677 struct sk_buff *skb);
2678
2679 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2680 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2681 {
2682 ktime_t kt = skb->tstamp;
2683 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2684
2685 /*
2686 * generate control messages if
2687 * - receive time stamping in software requested
2688 * - software time stamp available and wanted
2689 * - hardware time stamps available and wanted
2690 */
2691 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2692 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2693 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2694 (hwtstamps->hwtstamp &&
2695 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2696 __sock_recv_timestamp(msg, sk, skb);
2697 else
2698 sock_write_timestamp(sk, kt);
2699
2700 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2701 __sock_recv_wifi_status(msg, sk, skb);
2702 }
2703
2704 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2705 struct sk_buff *skb);
2706
2707 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2708 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2709 struct sk_buff *skb)
2710 {
2711 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2712 (1UL << SOCK_RCVTSTAMP) | \
2713 (1UL << SOCK_RCVMARK))
2714 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2715 SOF_TIMESTAMPING_RAW_HARDWARE)
2716
2717 if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2718 __sock_recv_cmsgs(msg, sk, skb);
2719 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2720 sock_write_timestamp(sk, skb->tstamp);
2721 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2722 sock_write_timestamp(sk, 0);
2723 }
2724
2725 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2726
2727 /**
2728 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2729 * @sk: socket sending this packet
2730 * @tsflags: timestamping flags to use
2731 * @tx_flags: completed with instructions for time stamping
2732 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2733 *
2734 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2735 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2736 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2737 __u8 *tx_flags, __u32 *tskey)
2738 {
2739 if (unlikely(tsflags)) {
2740 __sock_tx_timestamp(tsflags, tx_flags);
2741 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2742 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2743 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2744 }
2745 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2746 *tx_flags |= SKBTX_WIFI_STATUS;
2747 }
2748
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2749 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2750 __u8 *tx_flags)
2751 {
2752 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2753 }
2754
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2755 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2756 {
2757 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2758 &skb_shinfo(skb)->tskey);
2759 }
2760
sk_is_tcp(const struct sock * sk)2761 static inline bool sk_is_tcp(const struct sock *sk)
2762 {
2763 return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2764 }
2765
2766 /**
2767 * sk_eat_skb - Release a skb if it is no longer needed
2768 * @sk: socket to eat this skb from
2769 * @skb: socket buffer to eat
2770 *
2771 * This routine must be called with interrupts disabled or with the socket
2772 * locked so that the sk_buff queue operation is ok.
2773 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2774 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2775 {
2776 __skb_unlink(skb, &sk->sk_receive_queue);
2777 __kfree_skb(skb);
2778 }
2779
2780 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2781 skb_sk_is_prefetched(struct sk_buff *skb)
2782 {
2783 #ifdef CONFIG_INET
2784 return skb->destructor == sock_pfree;
2785 #else
2786 return false;
2787 #endif /* CONFIG_INET */
2788 }
2789
2790 /* This helper checks if a socket is a full socket,
2791 * ie _not_ a timewait or request socket.
2792 */
sk_fullsock(const struct sock * sk)2793 static inline bool sk_fullsock(const struct sock *sk)
2794 {
2795 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2796 }
2797
2798 static inline bool
sk_is_refcounted(struct sock * sk)2799 sk_is_refcounted(struct sock *sk)
2800 {
2801 /* Only full sockets have sk->sk_flags. */
2802 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2803 }
2804
2805 /**
2806 * skb_steal_sock - steal a socket from an sk_buff
2807 * @skb: sk_buff to steal the socket from
2808 * @refcounted: is set to true if the socket is reference-counted
2809 */
2810 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2811 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2812 {
2813 if (skb->sk) {
2814 struct sock *sk = skb->sk;
2815
2816 *refcounted = true;
2817 if (skb_sk_is_prefetched(skb))
2818 *refcounted = sk_is_refcounted(sk);
2819 skb->destructor = NULL;
2820 skb->sk = NULL;
2821 return sk;
2822 }
2823 *refcounted = false;
2824 return NULL;
2825 }
2826
2827 /* Checks if this SKB belongs to an HW offloaded socket
2828 * and whether any SW fallbacks are required based on dev.
2829 * Check decrypted mark in case skb_orphan() cleared socket.
2830 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2831 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2832 struct net_device *dev)
2833 {
2834 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2835 struct sock *sk = skb->sk;
2836
2837 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2838 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2839 #ifdef CONFIG_TLS_DEVICE
2840 } else if (unlikely(skb->decrypted)) {
2841 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2842 kfree_skb(skb);
2843 skb = NULL;
2844 #endif
2845 }
2846 #endif
2847
2848 return skb;
2849 }
2850
2851 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2852 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2853 */
sk_listener(const struct sock * sk)2854 static inline bool sk_listener(const struct sock *sk)
2855 {
2856 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2857 }
2858
2859 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2860 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2861 int type);
2862
2863 bool sk_ns_capable(const struct sock *sk,
2864 struct user_namespace *user_ns, int cap);
2865 bool sk_capable(const struct sock *sk, int cap);
2866 bool sk_net_capable(const struct sock *sk, int cap);
2867
2868 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2869
2870 /* Take into consideration the size of the struct sk_buff overhead in the
2871 * determination of these values, since that is non-constant across
2872 * platforms. This makes socket queueing behavior and performance
2873 * not depend upon such differences.
2874 */
2875 #define _SK_MEM_PACKETS 256
2876 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2877 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2878 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2879
2880 extern __u32 sysctl_wmem_max;
2881 extern __u32 sysctl_rmem_max;
2882
2883 extern int sysctl_tstamp_allow_data;
2884 extern int sysctl_optmem_max;
2885
2886 extern __u32 sysctl_wmem_default;
2887 extern __u32 sysctl_rmem_default;
2888
2889 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2890 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2891
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2892 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2893 {
2894 /* Does this proto have per netns sysctl_wmem ? */
2895 if (proto->sysctl_wmem_offset)
2896 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2897
2898 return READ_ONCE(*proto->sysctl_wmem);
2899 }
2900
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2901 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2902 {
2903 /* Does this proto have per netns sysctl_rmem ? */
2904 if (proto->sysctl_rmem_offset)
2905 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2906
2907 return READ_ONCE(*proto->sysctl_rmem);
2908 }
2909
2910 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2911 * Some wifi drivers need to tweak it to get more chunks.
2912 * They can use this helper from their ndo_start_xmit()
2913 */
sk_pacing_shift_update(struct sock * sk,int val)2914 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2915 {
2916 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2917 return;
2918 WRITE_ONCE(sk->sk_pacing_shift, val);
2919 }
2920
2921 /* if a socket is bound to a device, check that the given device
2922 * index is either the same or that the socket is bound to an L3
2923 * master device and the given device index is also enslaved to
2924 * that L3 master
2925 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2926 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2927 {
2928 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2929 int mdif;
2930
2931 if (!bound_dev_if || bound_dev_if == dif)
2932 return true;
2933
2934 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2935 if (mdif && mdif == bound_dev_if)
2936 return true;
2937
2938 return false;
2939 }
2940
2941 void sock_def_readable(struct sock *sk);
2942
2943 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2944 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2945 int sock_set_timestamping(struct sock *sk, int optname,
2946 struct so_timestamping timestamping);
2947
2948 void sock_enable_timestamps(struct sock *sk);
2949 void sock_no_linger(struct sock *sk);
2950 void sock_set_keepalive(struct sock *sk);
2951 void sock_set_priority(struct sock *sk, u32 priority);
2952 void sock_set_rcvbuf(struct sock *sk, int val);
2953 void sock_set_mark(struct sock *sk, u32 val);
2954 void sock_set_reuseaddr(struct sock *sk);
2955 void sock_set_reuseport(struct sock *sk);
2956 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2957
2958 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2959
2960 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2961 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2962 sockptr_t optval, int optlen, bool old_timeval);
2963
sk_is_readable(struct sock * sk)2964 static inline bool sk_is_readable(struct sock *sk)
2965 {
2966 if (sk->sk_prot->sock_is_readable)
2967 return sk->sk_prot->sock_is_readable(sk);
2968 return false;
2969 }
2970 #endif /* _SOCK_H */
2971