1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * tools/testing/selftests/kvm/include/kvm_util_base.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #ifndef SELFTEST_KVM_UTIL_BASE_H
8 #define SELFTEST_KVM_UTIL_BASE_H
9
10 #include "test_util.h"
11
12 #include <linux/compiler.h>
13 #include "linux/hashtable.h"
14 #include "linux/list.h"
15 #include <linux/kernel.h>
16 #include <linux/kvm.h>
17 #include "linux/rbtree.h"
18
19 #include <asm/atomic.h>
20
21 #include <sys/ioctl.h>
22
23 #include "sparsebit.h"
24
25 /*
26 * Provide a version of static_assert() that is guaranteed to have an optional
27 * message param. If _ISOC11_SOURCE is defined, glibc (/usr/include/assert.h)
28 * #undefs and #defines static_assert() as a direct alias to _Static_assert(),
29 * i.e. effectively makes the message mandatory. Many KVM selftests #define
30 * _GNU_SOURCE for various reasons, and _GNU_SOURCE implies _ISOC11_SOURCE. As
31 * a result, static_assert() behavior is non-deterministic and may or may not
32 * require a message depending on #include order.
33 */
34 #define __kvm_static_assert(expr, msg, ...) _Static_assert(expr, msg)
35 #define kvm_static_assert(expr, ...) __kvm_static_assert(expr, ##__VA_ARGS__, #expr)
36
37 #define KVM_DEV_PATH "/dev/kvm"
38 #define KVM_MAX_VCPUS 512
39
40 #define NSEC_PER_SEC 1000000000L
41
42 typedef uint64_t vm_paddr_t; /* Virtual Machine (Guest) physical address */
43 typedef uint64_t vm_vaddr_t; /* Virtual Machine (Guest) virtual address */
44
45 struct userspace_mem_region {
46 struct kvm_userspace_memory_region region;
47 struct sparsebit *unused_phy_pages;
48 int fd;
49 off_t offset;
50 enum vm_mem_backing_src_type backing_src_type;
51 void *host_mem;
52 void *host_alias;
53 void *mmap_start;
54 void *mmap_alias;
55 size_t mmap_size;
56 struct rb_node gpa_node;
57 struct rb_node hva_node;
58 struct hlist_node slot_node;
59 };
60
61 struct kvm_vcpu {
62 struct list_head list;
63 uint32_t id;
64 int fd;
65 struct kvm_vm *vm;
66 struct kvm_run *run;
67 #ifdef __x86_64__
68 struct kvm_cpuid2 *cpuid;
69 #endif
70 struct kvm_dirty_gfn *dirty_gfns;
71 uint32_t fetch_index;
72 uint32_t dirty_gfns_count;
73 };
74
75 struct userspace_mem_regions {
76 struct rb_root gpa_tree;
77 struct rb_root hva_tree;
78 DECLARE_HASHTABLE(slot_hash, 9);
79 };
80
81 enum kvm_mem_region_type {
82 MEM_REGION_CODE,
83 MEM_REGION_DATA,
84 MEM_REGION_PT,
85 MEM_REGION_TEST_DATA,
86 NR_MEM_REGIONS,
87 };
88
89 struct kvm_vm {
90 int mode;
91 unsigned long type;
92 int kvm_fd;
93 int fd;
94 unsigned int pgtable_levels;
95 unsigned int page_size;
96 unsigned int page_shift;
97 unsigned int pa_bits;
98 unsigned int va_bits;
99 uint64_t max_gfn;
100 struct list_head vcpus;
101 struct userspace_mem_regions regions;
102 struct sparsebit *vpages_valid;
103 struct sparsebit *vpages_mapped;
104 bool has_irqchip;
105 bool pgd_created;
106 vm_paddr_t ucall_mmio_addr;
107 vm_paddr_t pgd;
108 vm_vaddr_t gdt;
109 vm_vaddr_t tss;
110 vm_vaddr_t idt;
111 vm_vaddr_t handlers;
112 uint32_t dirty_ring_size;
113
114 /* Cache of information for binary stats interface */
115 int stats_fd;
116 struct kvm_stats_header stats_header;
117 struct kvm_stats_desc *stats_desc;
118
119 /*
120 * KVM region slots. These are the default memslots used by page
121 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
122 * memslot.
123 */
124 uint32_t memslots[NR_MEM_REGIONS];
125 };
126
127
128 #define kvm_for_each_vcpu(vm, i, vcpu) \
129 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
130 if (!((vcpu) = vm->vcpus[i])) \
131 continue; \
132 else
133
134 struct userspace_mem_region *
135 memslot2region(struct kvm_vm *vm, uint32_t memslot);
136
vm_get_mem_region(struct kvm_vm * vm,enum kvm_mem_region_type type)137 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
138 enum kvm_mem_region_type type)
139 {
140 assert(type < NR_MEM_REGIONS);
141 return memslot2region(vm, vm->memslots[type]);
142 }
143
144 /* Minimum allocated guest virtual and physical addresses */
145 #define KVM_UTIL_MIN_VADDR 0x2000
146 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
147
148 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
149 #define DEFAULT_STACK_PGS 5
150
151 enum vm_guest_mode {
152 VM_MODE_P52V48_4K,
153 VM_MODE_P52V48_64K,
154 VM_MODE_P48V48_4K,
155 VM_MODE_P48V48_16K,
156 VM_MODE_P48V48_64K,
157 VM_MODE_P40V48_4K,
158 VM_MODE_P40V48_16K,
159 VM_MODE_P40V48_64K,
160 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
161 VM_MODE_P47V64_4K,
162 VM_MODE_P44V64_4K,
163 VM_MODE_P36V48_4K,
164 VM_MODE_P36V48_16K,
165 VM_MODE_P36V48_64K,
166 VM_MODE_P36V47_16K,
167 NUM_VM_MODES,
168 };
169
170 #if defined(__aarch64__)
171
172 extern enum vm_guest_mode vm_mode_default;
173
174 #define VM_MODE_DEFAULT vm_mode_default
175 #define MIN_PAGE_SHIFT 12U
176 #define ptes_per_page(page_size) ((page_size) / 8)
177
178 #elif defined(__x86_64__)
179
180 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
181 #define MIN_PAGE_SHIFT 12U
182 #define ptes_per_page(page_size) ((page_size) / 8)
183
184 #elif defined(__s390x__)
185
186 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K
187 #define MIN_PAGE_SHIFT 12U
188 #define ptes_per_page(page_size) ((page_size) / 16)
189
190 #elif defined(__riscv)
191
192 #if __riscv_xlen == 32
193 #error "RISC-V 32-bit kvm selftests not supported"
194 #endif
195
196 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K
197 #define MIN_PAGE_SHIFT 12U
198 #define ptes_per_page(page_size) ((page_size) / 8)
199
200 #endif
201
202 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
203 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
204
205 struct vm_guest_mode_params {
206 unsigned int pa_bits;
207 unsigned int va_bits;
208 unsigned int page_size;
209 unsigned int page_shift;
210 };
211 extern const struct vm_guest_mode_params vm_guest_mode_params[];
212
213 int open_path_or_exit(const char *path, int flags);
214 int open_kvm_dev_path_or_exit(void);
215
216 bool get_kvm_intel_param_bool(const char *param);
217 bool get_kvm_amd_param_bool(const char *param);
218
219 unsigned int kvm_check_cap(long cap);
220
kvm_has_cap(long cap)221 static inline bool kvm_has_cap(long cap)
222 {
223 return kvm_check_cap(cap);
224 }
225
226 #define __KVM_SYSCALL_ERROR(_name, _ret) \
227 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
228
229 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
230 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
231
232 #define kvm_do_ioctl(fd, cmd, arg) \
233 ({ \
234 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
235 ioctl(fd, cmd, arg); \
236 })
237
238 #define __kvm_ioctl(kvm_fd, cmd, arg) \
239 kvm_do_ioctl(kvm_fd, cmd, arg)
240
241
242 #define _kvm_ioctl(kvm_fd, cmd, name, arg) \
243 ({ \
244 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
245 \
246 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \
247 })
248
249 #define kvm_ioctl(kvm_fd, cmd, arg) \
250 _kvm_ioctl(kvm_fd, cmd, #cmd, arg)
251
static_assert_is_vm(struct kvm_vm * vm)252 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
253
254 #define __vm_ioctl(vm, cmd, arg) \
255 ({ \
256 static_assert_is_vm(vm); \
257 kvm_do_ioctl((vm)->fd, cmd, arg); \
258 })
259
260 #define _vm_ioctl(vm, cmd, name, arg) \
261 ({ \
262 int ret = __vm_ioctl(vm, cmd, arg); \
263 \
264 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \
265 })
266
267 #define vm_ioctl(vm, cmd, arg) \
268 _vm_ioctl(vm, cmd, #cmd, arg)
269
270
static_assert_is_vcpu(struct kvm_vcpu * vcpu)271 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
272
273 #define __vcpu_ioctl(vcpu, cmd, arg) \
274 ({ \
275 static_assert_is_vcpu(vcpu); \
276 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
277 })
278
279 #define _vcpu_ioctl(vcpu, cmd, name, arg) \
280 ({ \
281 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
282 \
283 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \
284 })
285
286 #define vcpu_ioctl(vcpu, cmd, arg) \
287 _vcpu_ioctl(vcpu, cmd, #cmd, arg)
288
289 /*
290 * Looks up and returns the value corresponding to the capability
291 * (KVM_CAP_*) given by cap.
292 */
vm_check_cap(struct kvm_vm * vm,long cap)293 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
294 {
295 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
296
297 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
298 return ret;
299 }
300
__vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)301 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
302 {
303 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
304
305 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
306 }
vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)307 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
308 {
309 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
310
311 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
312 }
313
314 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
315 const char *vm_guest_mode_string(uint32_t i);
316
317 void kvm_vm_free(struct kvm_vm *vmp);
318 void kvm_vm_restart(struct kvm_vm *vmp);
319 void kvm_vm_release(struct kvm_vm *vmp);
320 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva,
321 size_t len);
322 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
323 int kvm_memfd_alloc(size_t size, bool hugepages);
324
325 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
326
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)327 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
328 {
329 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
330
331 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
332 }
333
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)334 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
335 uint64_t first_page, uint32_t num_pages)
336 {
337 struct kvm_clear_dirty_log args = {
338 .dirty_bitmap = log,
339 .slot = slot,
340 .first_page = first_page,
341 .num_pages = num_pages
342 };
343
344 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
345 }
346
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)347 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
348 {
349 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
350 }
351
vm_get_stats_fd(struct kvm_vm * vm)352 static inline int vm_get_stats_fd(struct kvm_vm *vm)
353 {
354 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
355
356 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd));
357 return fd;
358 }
359
read_stats_header(int stats_fd,struct kvm_stats_header * header)360 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
361 {
362 ssize_t ret;
363
364 ret = read(stats_fd, header, sizeof(*header));
365 TEST_ASSERT(ret == sizeof(*header), "Read stats header");
366 }
367
368 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
369 struct kvm_stats_header *header);
370
get_stats_descriptor_size(struct kvm_stats_header * header)371 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
372 {
373 /*
374 * The base size of the descriptor is defined by KVM's ABI, but the
375 * size of the name field is variable, as far as KVM's ABI is
376 * concerned. For a given instance of KVM, the name field is the same
377 * size for all stats and is provided in the overall stats header.
378 */
379 return sizeof(struct kvm_stats_desc) + header->name_size;
380 }
381
get_stats_descriptor(struct kvm_stats_desc * stats,int index,struct kvm_stats_header * header)382 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
383 int index,
384 struct kvm_stats_header *header)
385 {
386 /*
387 * Note, size_desc includes the size of the name field, which is
388 * variable. i.e. this is NOT equivalent to &stats_desc[i].
389 */
390 return (void *)stats + index * get_stats_descriptor_size(header);
391 }
392
393 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
394 struct kvm_stats_desc *desc, uint64_t *data,
395 size_t max_elements);
396
397 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
398 size_t max_elements);
399
vm_get_stat(struct kvm_vm * vm,const char * stat_name)400 static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
401 {
402 uint64_t data;
403
404 __vm_get_stat(vm, stat_name, &data, 1);
405 return data;
406 }
407
408 void vm_create_irqchip(struct kvm_vm *vm);
409
410 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
411 uint64_t gpa, uint64_t size, void *hva);
412 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
413 uint64_t gpa, uint64_t size, void *hva);
414 void vm_userspace_mem_region_add(struct kvm_vm *vm,
415 enum vm_mem_backing_src_type src_type,
416 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
417 uint32_t flags);
418
419 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
420 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
421 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
422 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
423 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
424 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
425 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
426 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
427 enum kvm_mem_region_type type);
428 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
429 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
430 enum kvm_mem_region_type type);
431 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
432
433 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
434 unsigned int npages);
435 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
436 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
437 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
438 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
439
440 void vcpu_run(struct kvm_vcpu *vcpu);
441 int _vcpu_run(struct kvm_vcpu *vcpu);
442
__vcpu_run(struct kvm_vcpu * vcpu)443 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
444 {
445 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
446 }
447
448 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
449 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
450
vcpu_enable_cap(struct kvm_vcpu * vcpu,uint32_t cap,uint64_t arg0)451 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
452 uint64_t arg0)
453 {
454 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
455
456 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
457 }
458
vcpu_guest_debug_set(struct kvm_vcpu * vcpu,struct kvm_guest_debug * debug)459 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
460 struct kvm_guest_debug *debug)
461 {
462 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
463 }
464
vcpu_mp_state_get(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)465 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
466 struct kvm_mp_state *mp_state)
467 {
468 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
469 }
vcpu_mp_state_set(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)470 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
471 struct kvm_mp_state *mp_state)
472 {
473 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
474 }
475
vcpu_regs_get(struct kvm_vcpu * vcpu,struct kvm_regs * regs)476 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
477 {
478 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
479 }
480
vcpu_regs_set(struct kvm_vcpu * vcpu,struct kvm_regs * regs)481 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
482 {
483 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
484 }
vcpu_sregs_get(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)485 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
486 {
487 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
488
489 }
vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)490 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
491 {
492 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
493 }
_vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)494 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
495 {
496 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
497 }
vcpu_fpu_get(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)498 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
499 {
500 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
501 }
vcpu_fpu_set(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)502 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
503 {
504 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
505 }
506
__vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)507 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
508 {
509 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
510
511 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
512 }
__vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)513 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
514 {
515 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
516
517 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
518 }
vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)519 static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
520 {
521 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
522
523 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
524 }
vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)525 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
526 {
527 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
528
529 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
530 }
531
532 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)533 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
534 struct kvm_vcpu_events *events)
535 {
536 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
537 }
vcpu_events_set(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)538 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
539 struct kvm_vcpu_events *events)
540 {
541 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
542 }
543 #endif
544 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)545 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
546 struct kvm_nested_state *state)
547 {
548 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
549 }
__vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)550 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
551 struct kvm_nested_state *state)
552 {
553 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
554 }
555
vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)556 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
557 struct kvm_nested_state *state)
558 {
559 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
560 }
561 #endif
vcpu_get_stats_fd(struct kvm_vcpu * vcpu)562 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
563 {
564 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
565
566 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd));
567 return fd;
568 }
569
570 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
571
kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)572 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
573 {
574 int ret = __kvm_has_device_attr(dev_fd, group, attr);
575
576 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
577 }
578
579 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
580
kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)581 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
582 uint64_t attr, void *val)
583 {
584 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
585
586 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
587 }
588
589 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
590
kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)591 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
592 uint64_t attr, void *val)
593 {
594 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
595
596 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
597 }
598
__vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)599 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
600 uint64_t attr)
601 {
602 return __kvm_has_device_attr(vcpu->fd, group, attr);
603 }
604
vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)605 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
606 uint64_t attr)
607 {
608 kvm_has_device_attr(vcpu->fd, group, attr);
609 }
610
__vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)611 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
612 uint64_t attr, void *val)
613 {
614 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
615 }
616
vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)617 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
618 uint64_t attr, void *val)
619 {
620 kvm_device_attr_get(vcpu->fd, group, attr, val);
621 }
622
__vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)623 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
624 uint64_t attr, void *val)
625 {
626 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
627 }
628
vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)629 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
630 uint64_t attr, void *val)
631 {
632 kvm_device_attr_set(vcpu->fd, group, attr, val);
633 }
634
635 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
636 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
637
kvm_create_device(struct kvm_vm * vm,uint64_t type)638 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
639 {
640 int fd = __kvm_create_device(vm, type);
641
642 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
643 return fd;
644 }
645
646 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
647
648 /*
649 * VM VCPU Args Set
650 *
651 * Input Args:
652 * vm - Virtual Machine
653 * num - number of arguments
654 * ... - arguments, each of type uint64_t
655 *
656 * Output Args: None
657 *
658 * Return: None
659 *
660 * Sets the first @num input parameters for the function at @vcpu's entry point,
661 * per the C calling convention of the architecture, to the values given as
662 * variable args. Each of the variable args is expected to be of type uint64_t.
663 * The maximum @num can be is specific to the architecture.
664 */
665 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
666
667 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
668 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
669
670 #define KVM_MAX_IRQ_ROUTES 4096
671
672 struct kvm_irq_routing *kvm_gsi_routing_create(void);
673 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
674 uint32_t gsi, uint32_t pin);
675 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
676 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
677
678 const char *exit_reason_str(unsigned int exit_reason);
679
680 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
681 uint32_t memslot);
682 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
683 vm_paddr_t paddr_min, uint32_t memslot);
684 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
685
686 /*
687 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
688 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
689 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
690 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
691 */
692 struct kvm_vm *____vm_create(enum vm_guest_mode mode);
693 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
694 uint64_t nr_extra_pages);
695
vm_create_barebones(void)696 static inline struct kvm_vm *vm_create_barebones(void)
697 {
698 return ____vm_create(VM_MODE_DEFAULT);
699 }
700
vm_create(uint32_t nr_runnable_vcpus)701 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
702 {
703 return __vm_create(VM_MODE_DEFAULT, nr_runnable_vcpus, 0);
704 }
705
706 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
707 uint64_t extra_mem_pages,
708 void *guest_code, struct kvm_vcpu *vcpus[]);
709
vm_create_with_vcpus(uint32_t nr_vcpus,void * guest_code,struct kvm_vcpu * vcpus[])710 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
711 void *guest_code,
712 struct kvm_vcpu *vcpus[])
713 {
714 return __vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, 0,
715 guest_code, vcpus);
716 }
717
718 /*
719 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
720 * additional pages of guest memory. Returns the VM and vCPU (via out param).
721 */
722 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
723 uint64_t extra_mem_pages,
724 void *guest_code);
725
vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,void * guest_code)726 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
727 void *guest_code)
728 {
729 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
730 }
731
732 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
733
734 void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
735 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
736 int nr_vcpus);
737
738 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
739 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
740 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
741 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
742 static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)743 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
744 {
745 unsigned int n;
746 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
747 #ifdef __s390x__
748 /* s390 requires 1M aligned guest sizes */
749 n = (n + 255) & ~255;
750 #endif
751 return n;
752 }
753
754 struct kvm_userspace_memory_region *
755 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
756 uint64_t end);
757
758 #define sync_global_to_guest(vm, g) ({ \
759 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
760 memcpy(_p, &(g), sizeof(g)); \
761 })
762
763 #define sync_global_from_guest(vm, g) ({ \
764 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
765 memcpy(&(g), _p, sizeof(g)); \
766 })
767
768 /*
769 * Write a global value, but only in the VM's (guest's) domain. Primarily used
770 * for "globals" that hold per-VM values (VMs always duplicate code and global
771 * data into their own region of physical memory), but can be used anytime it's
772 * undesirable to change the host's copy of the global.
773 */
774 #define write_guest_global(vm, g, val) ({ \
775 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
776 typeof(g) _val = val; \
777 \
778 memcpy(_p, &(_val), sizeof(g)); \
779 })
780
781 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
782
783 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
784 uint8_t indent);
785
vcpu_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)786 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
787 uint8_t indent)
788 {
789 vcpu_arch_dump(stream, vcpu, indent);
790 }
791
792 /*
793 * Adds a vCPU with reasonable defaults (e.g. a stack)
794 *
795 * Input Args:
796 * vm - Virtual Machine
797 * vcpu_id - The id of the VCPU to add to the VM.
798 * guest_code - The vCPU's entry point
799 */
800 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
801 void *guest_code);
802
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)803 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
804 void *guest_code)
805 {
806 return vm_arch_vcpu_add(vm, vcpu_id, guest_code);
807 }
808
809 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
810 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
811
vm_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)812 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
813 uint32_t vcpu_id)
814 {
815 return vm_arch_vcpu_recreate(vm, vcpu_id);
816 }
817
818 void vcpu_arch_free(struct kvm_vcpu *vcpu);
819
820 void virt_arch_pgd_alloc(struct kvm_vm *vm);
821
virt_pgd_alloc(struct kvm_vm * vm)822 static inline void virt_pgd_alloc(struct kvm_vm *vm)
823 {
824 virt_arch_pgd_alloc(vm);
825 }
826
827 /*
828 * VM Virtual Page Map
829 *
830 * Input Args:
831 * vm - Virtual Machine
832 * vaddr - VM Virtual Address
833 * paddr - VM Physical Address
834 * memslot - Memory region slot for new virtual translation tables
835 *
836 * Output Args: None
837 *
838 * Return: None
839 *
840 * Within @vm, creates a virtual translation for the page starting
841 * at @vaddr to the page starting at @paddr.
842 */
843 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
844
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)845 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
846 {
847 virt_arch_pg_map(vm, vaddr, paddr);
848 }
849
850
851 /*
852 * Address Guest Virtual to Guest Physical
853 *
854 * Input Args:
855 * vm - Virtual Machine
856 * gva - VM virtual address
857 *
858 * Output Args: None
859 *
860 * Return:
861 * Equivalent VM physical address
862 *
863 * Returns the VM physical address of the translated VM virtual
864 * address given by @gva.
865 */
866 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
867
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)868 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
869 {
870 return addr_arch_gva2gpa(vm, gva);
871 }
872
873 /*
874 * Virtual Translation Tables Dump
875 *
876 * Input Args:
877 * stream - Output FILE stream
878 * vm - Virtual Machine
879 * indent - Left margin indent amount
880 *
881 * Output Args: None
882 *
883 * Return: None
884 *
885 * Dumps to the FILE stream given by @stream, the contents of all the
886 * virtual translation tables for the VM given by @vm.
887 */
888 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
889
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)890 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
891 {
892 virt_arch_dump(stream, vm, indent);
893 }
894
895
__vm_disable_nx_huge_pages(struct kvm_vm * vm)896 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
897 {
898 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
899 }
900
901 /*
902 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
903 * to allow for arch-specific setup that is common to all tests, e.g. computing
904 * the default guest "mode".
905 */
906 void kvm_selftest_arch_init(void);
907
908 void kvm_arch_vm_post_create(struct kvm_vm *vm);
909
910 #endif /* SELFTEST_KVM_UTIL_BASE_H */
911