1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26 
27 /* Free memory management - zoned buddy allocator.  */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 11
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
34 
35 /*
36  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
37  * costly to service.  That is between allocation orders which should
38  * coalesce naturally under reasonable reclaim pressure and those which
39  * will not.
40  */
41 #define PAGE_ALLOC_COSTLY_ORDER 3
42 
43 enum migratetype {
44 	MIGRATE_UNMOVABLE,
45 	MIGRATE_MOVABLE,
46 	MIGRATE_RECLAIMABLE,
47 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
48 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
49 #ifdef CONFIG_CMA
50 	/*
51 	 * MIGRATE_CMA migration type is designed to mimic the way
52 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
53 	 * from MIGRATE_CMA pageblocks and page allocator never
54 	 * implicitly change migration type of MIGRATE_CMA pageblock.
55 	 *
56 	 * The way to use it is to change migratetype of a range of
57 	 * pageblocks to MIGRATE_CMA which can be done by
58 	 * __free_pageblock_cma() function.
59 	 */
60 	MIGRATE_CMA,
61 #endif
62 #ifdef CONFIG_MEMORY_ISOLATION
63 	MIGRATE_ISOLATE,	/* can't allocate from here */
64 #endif
65 	MIGRATE_TYPES
66 };
67 
68 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
69 extern const char * const migratetype_names[MIGRATE_TYPES];
70 
71 #ifdef CONFIG_CMA
72 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
73 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
74 #else
75 #  define is_migrate_cma(migratetype) false
76 #  define is_migrate_cma_page(_page) false
77 #endif
78 
is_migrate_movable(int mt)79 static inline bool is_migrate_movable(int mt)
80 {
81 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
82 }
83 
84 /*
85  * Check whether a migratetype can be merged with another migratetype.
86  *
87  * It is only mergeable when it can fall back to other migratetypes for
88  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
89  */
migratetype_is_mergeable(int mt)90 static inline bool migratetype_is_mergeable(int mt)
91 {
92 	return mt < MIGRATE_PCPTYPES;
93 }
94 
95 #define for_each_migratetype_order(order, type) \
96 	for (order = 0; order < MAX_ORDER; order++) \
97 		for (type = 0; type < MIGRATE_TYPES; type++)
98 
99 extern int page_group_by_mobility_disabled;
100 
101 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
102 
103 #define get_pageblock_migratetype(page)					\
104 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
105 
106 struct free_area {
107 	struct list_head	free_list[MIGRATE_TYPES];
108 	unsigned long		nr_free;
109 };
110 
get_page_from_free_area(struct free_area * area,int migratetype)111 static inline struct page *get_page_from_free_area(struct free_area *area,
112 					    int migratetype)
113 {
114 	return list_first_entry_or_null(&area->free_list[migratetype],
115 					struct page, lru);
116 }
117 
free_area_empty(struct free_area * area,int migratetype)118 static inline bool free_area_empty(struct free_area *area, int migratetype)
119 {
120 	return list_empty(&area->free_list[migratetype]);
121 }
122 
123 struct pglist_data;
124 
125 #ifdef CONFIG_NUMA
126 enum numa_stat_item {
127 	NUMA_HIT,		/* allocated in intended node */
128 	NUMA_MISS,		/* allocated in non intended node */
129 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
130 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
131 	NUMA_LOCAL,		/* allocation from local node */
132 	NUMA_OTHER,		/* allocation from other node */
133 	NR_VM_NUMA_EVENT_ITEMS
134 };
135 #else
136 #define NR_VM_NUMA_EVENT_ITEMS 0
137 #endif
138 
139 enum zone_stat_item {
140 	/* First 128 byte cacheline (assuming 64 bit words) */
141 	NR_FREE_PAGES,
142 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
143 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
144 	NR_ZONE_ACTIVE_ANON,
145 	NR_ZONE_INACTIVE_FILE,
146 	NR_ZONE_ACTIVE_FILE,
147 	NR_ZONE_UNEVICTABLE,
148 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
149 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
150 	/* Second 128 byte cacheline */
151 	NR_BOUNCE,
152 #if IS_ENABLED(CONFIG_ZSMALLOC)
153 	NR_ZSPAGES,		/* allocated in zsmalloc */
154 #endif
155 	NR_FREE_CMA_PAGES,
156 	NR_VM_ZONE_STAT_ITEMS };
157 
158 enum node_stat_item {
159 	NR_LRU_BASE,
160 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
161 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
162 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
163 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
164 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
165 	NR_SLAB_RECLAIMABLE_B,
166 	NR_SLAB_UNRECLAIMABLE_B,
167 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
168 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
169 	WORKINGSET_NODES,
170 	WORKINGSET_REFAULT_BASE,
171 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
172 	WORKINGSET_REFAULT_FILE,
173 	WORKINGSET_ACTIVATE_BASE,
174 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
175 	WORKINGSET_ACTIVATE_FILE,
176 	WORKINGSET_RESTORE_BASE,
177 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
178 	WORKINGSET_RESTORE_FILE,
179 	WORKINGSET_NODERECLAIM,
180 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
181 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
182 			   only modified from process context */
183 	NR_FILE_PAGES,
184 	NR_FILE_DIRTY,
185 	NR_WRITEBACK,
186 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
187 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
188 	NR_SHMEM_THPS,
189 	NR_SHMEM_PMDMAPPED,
190 	NR_FILE_THPS,
191 	NR_FILE_PMDMAPPED,
192 	NR_ANON_THPS,
193 	NR_VMSCAN_WRITE,
194 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
195 	NR_DIRTIED,		/* page dirtyings since bootup */
196 	NR_WRITTEN,		/* page writings since bootup */
197 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
198 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
199 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
200 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
201 	NR_KERNEL_STACK_KB,	/* measured in KiB */
202 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
203 	NR_KERNEL_SCS_KB,	/* measured in KiB */
204 #endif
205 	NR_PAGETABLE,		/* used for pagetables */
206 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
207 #ifdef CONFIG_SWAP
208 	NR_SWAPCACHE,
209 #endif
210 #ifdef CONFIG_NUMA_BALANCING
211 	PGPROMOTE_SUCCESS,	/* promote successfully */
212 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
213 #endif
214 	NR_VM_NODE_STAT_ITEMS
215 };
216 
217 /*
218  * Returns true if the item should be printed in THPs (/proc/vmstat
219  * currently prints number of anon, file and shmem THPs. But the item
220  * is charged in pages).
221  */
vmstat_item_print_in_thp(enum node_stat_item item)222 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
223 {
224 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
225 		return false;
226 
227 	return item == NR_ANON_THPS ||
228 	       item == NR_FILE_THPS ||
229 	       item == NR_SHMEM_THPS ||
230 	       item == NR_SHMEM_PMDMAPPED ||
231 	       item == NR_FILE_PMDMAPPED;
232 }
233 
234 /*
235  * Returns true if the value is measured in bytes (most vmstat values are
236  * measured in pages). This defines the API part, the internal representation
237  * might be different.
238  */
vmstat_item_in_bytes(int idx)239 static __always_inline bool vmstat_item_in_bytes(int idx)
240 {
241 	/*
242 	 * Global and per-node slab counters track slab pages.
243 	 * It's expected that changes are multiples of PAGE_SIZE.
244 	 * Internally values are stored in pages.
245 	 *
246 	 * Per-memcg and per-lruvec counters track memory, consumed
247 	 * by individual slab objects. These counters are actually
248 	 * byte-precise.
249 	 */
250 	return (idx == NR_SLAB_RECLAIMABLE_B ||
251 		idx == NR_SLAB_UNRECLAIMABLE_B);
252 }
253 
254 /*
255  * We do arithmetic on the LRU lists in various places in the code,
256  * so it is important to keep the active lists LRU_ACTIVE higher in
257  * the array than the corresponding inactive lists, and to keep
258  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
259  *
260  * This has to be kept in sync with the statistics in zone_stat_item
261  * above and the descriptions in vmstat_text in mm/vmstat.c
262  */
263 #define LRU_BASE 0
264 #define LRU_ACTIVE 1
265 #define LRU_FILE 2
266 
267 enum lru_list {
268 	LRU_INACTIVE_ANON = LRU_BASE,
269 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
270 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
271 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
272 	LRU_UNEVICTABLE,
273 	NR_LRU_LISTS
274 };
275 
276 enum vmscan_throttle_state {
277 	VMSCAN_THROTTLE_WRITEBACK,
278 	VMSCAN_THROTTLE_ISOLATED,
279 	VMSCAN_THROTTLE_NOPROGRESS,
280 	VMSCAN_THROTTLE_CONGESTED,
281 	NR_VMSCAN_THROTTLE,
282 };
283 
284 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
285 
286 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
287 
is_file_lru(enum lru_list lru)288 static inline bool is_file_lru(enum lru_list lru)
289 {
290 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
291 }
292 
is_active_lru(enum lru_list lru)293 static inline bool is_active_lru(enum lru_list lru)
294 {
295 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
296 }
297 
298 #define WORKINGSET_ANON 0
299 #define WORKINGSET_FILE 1
300 #define ANON_AND_FILE 2
301 
302 enum lruvec_flags {
303 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
304 					 * backed by a congested BDI
305 					 */
306 };
307 
308 #endif /* !__GENERATING_BOUNDS_H */
309 
310 /*
311  * Evictable pages are divided into multiple generations. The youngest and the
312  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
313  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
314  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
315  * corresponding generation. The gen counter in folio->flags stores gen+1 while
316  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
317  *
318  * A page is added to the youngest generation on faulting. The aging needs to
319  * check the accessed bit at least twice before handing this page over to the
320  * eviction. The first check takes care of the accessed bit set on the initial
321  * fault; the second check makes sure this page hasn't been used since then.
322  * This process, AKA second chance, requires a minimum of two generations,
323  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
324  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
325  * rest of generations, if they exist, are considered inactive. See
326  * lru_gen_is_active().
327  *
328  * PG_active is always cleared while a page is on one of lrugen->folios[] so
329  * that the aging needs not to worry about it. And it's set again when a page
330  * considered active is isolated for non-reclaiming purposes, e.g., migration.
331  * See lru_gen_add_folio() and lru_gen_del_folio().
332  *
333  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
334  * number of categories of the active/inactive LRU when keeping track of
335  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
336  * in folio->flags.
337  */
338 #define MIN_NR_GENS		2U
339 #define MAX_NR_GENS		4U
340 
341 /*
342  * Each generation is divided into multiple tiers. A page accessed N times
343  * through file descriptors is in tier order_base_2(N). A page in the first tier
344  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
345  * tables or read ahead. A page in any other tier (N>1) is marked by
346  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
347  * supported without using additional bits in folio->flags.
348  *
349  * In contrast to moving across generations which requires the LRU lock, moving
350  * across tiers only involves atomic operations on folio->flags and therefore
351  * has a negligible cost in the buffered access path. In the eviction path,
352  * comparisons of refaulted/(evicted+protected) from the first tier and the
353  * rest infer whether pages accessed multiple times through file descriptors
354  * are statistically hot and thus worth protecting.
355  *
356  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
357  * number of categories of the active/inactive LRU when keeping track of
358  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
359  * folio->flags.
360  */
361 #define MAX_NR_TIERS		4U
362 
363 #ifndef __GENERATING_BOUNDS_H
364 
365 struct lruvec;
366 struct page_vma_mapped_walk;
367 
368 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
369 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
370 
371 #ifdef CONFIG_LRU_GEN
372 
373 enum {
374 	LRU_GEN_ANON,
375 	LRU_GEN_FILE,
376 };
377 
378 enum {
379 	LRU_GEN_CORE,
380 	LRU_GEN_MM_WALK,
381 	LRU_GEN_NONLEAF_YOUNG,
382 	NR_LRU_GEN_CAPS
383 };
384 
385 #define MIN_LRU_BATCH		BITS_PER_LONG
386 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
387 
388 /* whether to keep historical stats from evicted generations */
389 #ifdef CONFIG_LRU_GEN_STATS
390 #define NR_HIST_GENS		MAX_NR_GENS
391 #else
392 #define NR_HIST_GENS		1U
393 #endif
394 
395 /*
396  * The youngest generation number is stored in max_seq for both anon and file
397  * types as they are aged on an equal footing. The oldest generation numbers are
398  * stored in min_seq[] separately for anon and file types as clean file pages
399  * can be evicted regardless of swap constraints.
400  *
401  * Normally anon and file min_seq are in sync. But if swapping is constrained,
402  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
403  * min_seq behind.
404  *
405  * The number of pages in each generation is eventually consistent and therefore
406  * can be transiently negative when reset_batch_size() is pending.
407  */
408 struct lru_gen_folio {
409 	/* the aging increments the youngest generation number */
410 	unsigned long max_seq;
411 	/* the eviction increments the oldest generation numbers */
412 	unsigned long min_seq[ANON_AND_FILE];
413 	/* the birth time of each generation in jiffies */
414 	unsigned long timestamps[MAX_NR_GENS];
415 	/* the multi-gen LRU lists, lazily sorted on eviction */
416 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
417 	/* the multi-gen LRU sizes, eventually consistent */
418 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
419 	/* the exponential moving average of refaulted */
420 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
421 	/* the exponential moving average of evicted+protected */
422 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
423 	/* the first tier doesn't need protection, hence the minus one */
424 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
425 	/* can be modified without holding the LRU lock */
426 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
427 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
428 	/* whether the multi-gen LRU is enabled */
429 	bool enabled;
430 #ifdef CONFIG_MEMCG
431 	/* the memcg generation this lru_gen_folio belongs to */
432 	u8 gen;
433 	/* the list segment this lru_gen_folio belongs to */
434 	u8 seg;
435 	/* per-node lru_gen_folio list for global reclaim */
436 	struct hlist_nulls_node list;
437 #endif
438 };
439 
440 enum {
441 	MM_LEAF_TOTAL,		/* total leaf entries */
442 	MM_LEAF_OLD,		/* old leaf entries */
443 	MM_LEAF_YOUNG,		/* young leaf entries */
444 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
445 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
446 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
447 	NR_MM_STATS
448 };
449 
450 /* double-buffering Bloom filters */
451 #define NR_BLOOM_FILTERS	2
452 
453 struct lru_gen_mm_state {
454 	/* set to max_seq after each iteration */
455 	unsigned long seq;
456 	/* where the current iteration continues (inclusive) */
457 	struct list_head *head;
458 	/* where the last iteration ended (exclusive) */
459 	struct list_head *tail;
460 	/* to wait for the last page table walker to finish */
461 	struct wait_queue_head wait;
462 	/* Bloom filters flip after each iteration */
463 	unsigned long *filters[NR_BLOOM_FILTERS];
464 	/* the mm stats for debugging */
465 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
466 	/* the number of concurrent page table walkers */
467 	int nr_walkers;
468 };
469 
470 struct lru_gen_mm_walk {
471 	/* the lruvec under reclaim */
472 	struct lruvec *lruvec;
473 	/* unstable max_seq from lru_gen_folio */
474 	unsigned long max_seq;
475 	/* the next address within an mm to scan */
476 	unsigned long next_addr;
477 	/* to batch promoted pages */
478 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
479 	/* to batch the mm stats */
480 	int mm_stats[NR_MM_STATS];
481 	/* total batched items */
482 	int batched;
483 	bool can_swap;
484 	bool force_scan;
485 };
486 
487 void lru_gen_init_lruvec(struct lruvec *lruvec);
488 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
489 
490 #ifdef CONFIG_MEMCG
491 
492 /*
493  * For each node, memcgs are divided into two generations: the old and the
494  * young. For each generation, memcgs are randomly sharded into multiple bins
495  * to improve scalability. For each bin, the hlist_nulls is virtually divided
496  * into three segments: the head, the tail and the default.
497  *
498  * An onlining memcg is added to the tail of a random bin in the old generation.
499  * The eviction starts at the head of a random bin in the old generation. The
500  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
501  * the old generation, is incremented when all its bins become empty.
502  *
503  * There are four operations:
504  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
505  *    current generation (old or young) and updates its "seg" to "head";
506  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
507  *    current generation (old or young) and updates its "seg" to "tail";
508  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
509  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
510  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
511  *    young generation, updates its "gen" to "young" and resets its "seg" to
512  *    "default".
513  *
514  * The events that trigger the above operations are:
515  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
516  * 2. The first attempt to reclaim an memcg below low, which triggers
517  *    MEMCG_LRU_TAIL;
518  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
519  *    which triggers MEMCG_LRU_TAIL;
520  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
521  *    which triggers MEMCG_LRU_YOUNG;
522  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
523  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
524  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
525  *
526  * Note that memcg LRU only applies to global reclaim, and the round-robin
527  * incrementing of their max_seq counters ensures the eventual fairness to all
528  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
529  */
530 #define MEMCG_NR_GENS	2
531 #define MEMCG_NR_BINS	8
532 
533 struct lru_gen_memcg {
534 	/* the per-node memcg generation counter */
535 	unsigned long seq;
536 	/* each memcg has one lru_gen_folio per node */
537 	unsigned long nr_memcgs[MEMCG_NR_GENS];
538 	/* per-node lru_gen_folio list for global reclaim */
539 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
540 	/* protects the above */
541 	spinlock_t lock;
542 };
543 
544 void lru_gen_init_pgdat(struct pglist_data *pgdat);
545 
546 void lru_gen_init_memcg(struct mem_cgroup *memcg);
547 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
548 void lru_gen_online_memcg(struct mem_cgroup *memcg);
549 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
550 void lru_gen_release_memcg(struct mem_cgroup *memcg);
551 void lru_gen_soft_reclaim(struct lruvec *lruvec);
552 
553 #else /* !CONFIG_MEMCG */
554 
555 #define MEMCG_NR_GENS	1
556 
557 struct lru_gen_memcg {
558 };
559 
lru_gen_init_pgdat(struct pglist_data * pgdat)560 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
561 {
562 }
563 
564 #endif /* CONFIG_MEMCG */
565 
566 #else /* !CONFIG_LRU_GEN */
567 
lru_gen_init_pgdat(struct pglist_data * pgdat)568 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
569 {
570 }
571 
lru_gen_init_lruvec(struct lruvec * lruvec)572 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
573 {
574 }
575 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)576 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
577 {
578 }
579 
580 #ifdef CONFIG_MEMCG
581 
lru_gen_init_memcg(struct mem_cgroup * memcg)582 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
583 {
584 }
585 
lru_gen_exit_memcg(struct mem_cgroup * memcg)586 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
587 {
588 }
589 
lru_gen_online_memcg(struct mem_cgroup * memcg)590 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
591 {
592 }
593 
lru_gen_offline_memcg(struct mem_cgroup * memcg)594 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
595 {
596 }
597 
lru_gen_release_memcg(struct mem_cgroup * memcg)598 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
599 {
600 }
601 
lru_gen_soft_reclaim(struct lruvec * lruvec)602 static inline void lru_gen_soft_reclaim(struct lruvec *lruvec)
603 {
604 }
605 
606 #endif /* CONFIG_MEMCG */
607 
608 #endif /* CONFIG_LRU_GEN */
609 
610 struct lruvec {
611 	struct list_head		lists[NR_LRU_LISTS];
612 	/* per lruvec lru_lock for memcg */
613 	spinlock_t			lru_lock;
614 	/*
615 	 * These track the cost of reclaiming one LRU - file or anon -
616 	 * over the other. As the observed cost of reclaiming one LRU
617 	 * increases, the reclaim scan balance tips toward the other.
618 	 */
619 	unsigned long			anon_cost;
620 	unsigned long			file_cost;
621 	/* Non-resident age, driven by LRU movement */
622 	atomic_long_t			nonresident_age;
623 	/* Refaults at the time of last reclaim cycle */
624 	unsigned long			refaults[ANON_AND_FILE];
625 	/* Various lruvec state flags (enum lruvec_flags) */
626 	unsigned long			flags;
627 #ifdef CONFIG_LRU_GEN
628 	/* evictable pages divided into generations */
629 	struct lru_gen_folio		lrugen;
630 	/* to concurrently iterate lru_gen_mm_list */
631 	struct lru_gen_mm_state		mm_state;
632 #endif
633 #ifdef CONFIG_MEMCG
634 	struct pglist_data *pgdat;
635 #endif
636 };
637 
638 /* Isolate unmapped pages */
639 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
640 /* Isolate for asynchronous migration */
641 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
642 /* Isolate unevictable pages */
643 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
644 
645 /* LRU Isolation modes. */
646 typedef unsigned __bitwise isolate_mode_t;
647 
648 enum zone_watermarks {
649 	WMARK_MIN,
650 	WMARK_LOW,
651 	WMARK_HIGH,
652 	WMARK_PROMO,
653 	NR_WMARK
654 };
655 
656 /*
657  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
658  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
659  * it should not contribute to serious fragmentation causing THP allocation
660  * failures.
661  */
662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
663 #define NR_PCP_THP 1
664 #else
665 #define NR_PCP_THP 0
666 #endif
667 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
668 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
669 
670 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
671 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
672 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
673 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
674 
675 /* Fields and list protected by pagesets local_lock in page_alloc.c */
676 struct per_cpu_pages {
677 	spinlock_t lock;	/* Protects lists field */
678 	int count;		/* number of pages in the list */
679 	int high;		/* high watermark, emptying needed */
680 	int batch;		/* chunk size for buddy add/remove */
681 	short free_factor;	/* batch scaling factor during free */
682 #ifdef CONFIG_NUMA
683 	short expire;		/* When 0, remote pagesets are drained */
684 #endif
685 
686 	/* Lists of pages, one per migrate type stored on the pcp-lists */
687 	struct list_head lists[NR_PCP_LISTS];
688 } ____cacheline_aligned_in_smp;
689 
690 struct per_cpu_zonestat {
691 #ifdef CONFIG_SMP
692 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
693 	s8 stat_threshold;
694 #endif
695 #ifdef CONFIG_NUMA
696 	/*
697 	 * Low priority inaccurate counters that are only folded
698 	 * on demand. Use a large type to avoid the overhead of
699 	 * folding during refresh_cpu_vm_stats.
700 	 */
701 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
702 #endif
703 };
704 
705 struct per_cpu_nodestat {
706 	s8 stat_threshold;
707 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
708 };
709 
710 #endif /* !__GENERATING_BOUNDS.H */
711 
712 enum zone_type {
713 	/*
714 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
715 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
716 	 * On architectures where this area covers the whole 32 bit address
717 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
718 	 * DMA addressing constraints. This distinction is important as a 32bit
719 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
720 	 * platforms may need both zones as they support peripherals with
721 	 * different DMA addressing limitations.
722 	 */
723 #ifdef CONFIG_ZONE_DMA
724 	ZONE_DMA,
725 #endif
726 #ifdef CONFIG_ZONE_DMA32
727 	ZONE_DMA32,
728 #endif
729 	/*
730 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
731 	 * performed on pages in ZONE_NORMAL if the DMA devices support
732 	 * transfers to all addressable memory.
733 	 */
734 	ZONE_NORMAL,
735 #ifdef CONFIG_HIGHMEM
736 	/*
737 	 * A memory area that is only addressable by the kernel through
738 	 * mapping portions into its own address space. This is for example
739 	 * used by i386 to allow the kernel to address the memory beyond
740 	 * 900MB. The kernel will set up special mappings (page
741 	 * table entries on i386) for each page that the kernel needs to
742 	 * access.
743 	 */
744 	ZONE_HIGHMEM,
745 #endif
746 	/*
747 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
748 	 * movable pages with few exceptional cases described below. Main use
749 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
750 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
751 	 * to increase the number of THP/huge pages. Notable special cases are:
752 	 *
753 	 * 1. Pinned pages: (long-term) pinning of movable pages might
754 	 *    essentially turn such pages unmovable. Therefore, we do not allow
755 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
756 	 *    faulted, they come from the right zone right away. However, it is
757 	 *    still possible that address space already has pages in
758 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
759 	 *    touches that memory before pinning). In such case we migrate them
760 	 *    to a different zone. When migration fails - pinning fails.
761 	 * 2. memblock allocations: kernelcore/movablecore setups might create
762 	 *    situations where ZONE_MOVABLE contains unmovable allocations
763 	 *    after boot. Memory offlining and allocations fail early.
764 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
765 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
766 	 *    for example, if we have sections that are only partially
767 	 *    populated. Memory offlining and allocations fail early.
768 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
769 	 *    memory offlining, such pages cannot be allocated.
770 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
771 	 *    hotplugged memory blocks might only partially be managed by the
772 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
773 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
774 	 *    some cases (virtio-mem), such pages can be skipped during
775 	 *    memory offlining, however, cannot be moved/allocated. These
776 	 *    techniques might use alloc_contig_range() to hide previously
777 	 *    exposed pages from the buddy again (e.g., to implement some sort
778 	 *    of memory unplug in virtio-mem).
779 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
780 	 *    situations where ZERO_PAGE(0) which is allocated differently
781 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
782 	 *    cannot be migrated.
783 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
784 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
785 	 *    such zone. Such pages cannot be really moved around as they are
786 	 *    self-stored in the range, but they are treated as movable when
787 	 *    the range they describe is about to be offlined.
788 	 *
789 	 * In general, no unmovable allocations that degrade memory offlining
790 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
791 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
792 	 * if has_unmovable_pages() states that there are no unmovable pages,
793 	 * there can be false negatives).
794 	 */
795 	ZONE_MOVABLE,
796 #ifdef CONFIG_ZONE_DEVICE
797 	ZONE_DEVICE,
798 #endif
799 	__MAX_NR_ZONES
800 
801 };
802 
803 #ifndef __GENERATING_BOUNDS_H
804 
805 #define ASYNC_AND_SYNC 2
806 
807 struct zone {
808 	/* Read-mostly fields */
809 
810 	/* zone watermarks, access with *_wmark_pages(zone) macros */
811 	unsigned long _watermark[NR_WMARK];
812 	unsigned long watermark_boost;
813 
814 	unsigned long nr_reserved_highatomic;
815 
816 	/*
817 	 * We don't know if the memory that we're going to allocate will be
818 	 * freeable or/and it will be released eventually, so to avoid totally
819 	 * wasting several GB of ram we must reserve some of the lower zone
820 	 * memory (otherwise we risk to run OOM on the lower zones despite
821 	 * there being tons of freeable ram on the higher zones).  This array is
822 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
823 	 * changes.
824 	 */
825 	long lowmem_reserve[MAX_NR_ZONES];
826 
827 #ifdef CONFIG_NUMA
828 	int node;
829 #endif
830 	struct pglist_data	*zone_pgdat;
831 	struct per_cpu_pages	__percpu *per_cpu_pageset;
832 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
833 	/*
834 	 * the high and batch values are copied to individual pagesets for
835 	 * faster access
836 	 */
837 	int pageset_high;
838 	int pageset_batch;
839 
840 #ifndef CONFIG_SPARSEMEM
841 	/*
842 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
843 	 * In SPARSEMEM, this map is stored in struct mem_section
844 	 */
845 	unsigned long		*pageblock_flags;
846 #endif /* CONFIG_SPARSEMEM */
847 
848 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
849 	unsigned long		zone_start_pfn;
850 
851 	/*
852 	 * spanned_pages is the total pages spanned by the zone, including
853 	 * holes, which is calculated as:
854 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
855 	 *
856 	 * present_pages is physical pages existing within the zone, which
857 	 * is calculated as:
858 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
859 	 *
860 	 * present_early_pages is present pages existing within the zone
861 	 * located on memory available since early boot, excluding hotplugged
862 	 * memory.
863 	 *
864 	 * managed_pages is present pages managed by the buddy system, which
865 	 * is calculated as (reserved_pages includes pages allocated by the
866 	 * bootmem allocator):
867 	 *	managed_pages = present_pages - reserved_pages;
868 	 *
869 	 * cma pages is present pages that are assigned for CMA use
870 	 * (MIGRATE_CMA).
871 	 *
872 	 * So present_pages may be used by memory hotplug or memory power
873 	 * management logic to figure out unmanaged pages by checking
874 	 * (present_pages - managed_pages). And managed_pages should be used
875 	 * by page allocator and vm scanner to calculate all kinds of watermarks
876 	 * and thresholds.
877 	 *
878 	 * Locking rules:
879 	 *
880 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
881 	 * It is a seqlock because it has to be read outside of zone->lock,
882 	 * and it is done in the main allocator path.  But, it is written
883 	 * quite infrequently.
884 	 *
885 	 * The span_seq lock is declared along with zone->lock because it is
886 	 * frequently read in proximity to zone->lock.  It's good to
887 	 * give them a chance of being in the same cacheline.
888 	 *
889 	 * Write access to present_pages at runtime should be protected by
890 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
891 	 * present_pages should use get_online_mems() to get a stable value.
892 	 */
893 	atomic_long_t		managed_pages;
894 	unsigned long		spanned_pages;
895 	unsigned long		present_pages;
896 #if defined(CONFIG_MEMORY_HOTPLUG)
897 	unsigned long		present_early_pages;
898 #endif
899 #ifdef CONFIG_CMA
900 	unsigned long		cma_pages;
901 #endif
902 
903 	const char		*name;
904 
905 #ifdef CONFIG_MEMORY_ISOLATION
906 	/*
907 	 * Number of isolated pageblock. It is used to solve incorrect
908 	 * freepage counting problem due to racy retrieving migratetype
909 	 * of pageblock. Protected by zone->lock.
910 	 */
911 	unsigned long		nr_isolate_pageblock;
912 #endif
913 
914 #ifdef CONFIG_MEMORY_HOTPLUG
915 	/* see spanned/present_pages for more description */
916 	seqlock_t		span_seqlock;
917 #endif
918 
919 	int initialized;
920 
921 	/* Write-intensive fields used from the page allocator */
922 	CACHELINE_PADDING(_pad1_);
923 
924 	/* free areas of different sizes */
925 	struct free_area	free_area[MAX_ORDER];
926 
927 	/* zone flags, see below */
928 	unsigned long		flags;
929 
930 	/* Primarily protects free_area */
931 	spinlock_t		lock;
932 
933 	/* Write-intensive fields used by compaction and vmstats. */
934 	CACHELINE_PADDING(_pad2_);
935 
936 	/*
937 	 * When free pages are below this point, additional steps are taken
938 	 * when reading the number of free pages to avoid per-cpu counter
939 	 * drift allowing watermarks to be breached
940 	 */
941 	unsigned long percpu_drift_mark;
942 
943 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
944 	/* pfn where compaction free scanner should start */
945 	unsigned long		compact_cached_free_pfn;
946 	/* pfn where compaction migration scanner should start */
947 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
948 	unsigned long		compact_init_migrate_pfn;
949 	unsigned long		compact_init_free_pfn;
950 #endif
951 
952 #ifdef CONFIG_COMPACTION
953 	/*
954 	 * On compaction failure, 1<<compact_defer_shift compactions
955 	 * are skipped before trying again. The number attempted since
956 	 * last failure is tracked with compact_considered.
957 	 * compact_order_failed is the minimum compaction failed order.
958 	 */
959 	unsigned int		compact_considered;
960 	unsigned int		compact_defer_shift;
961 	int			compact_order_failed;
962 #endif
963 
964 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
965 	/* Set to true when the PG_migrate_skip bits should be cleared */
966 	bool			compact_blockskip_flush;
967 #endif
968 
969 	bool			contiguous;
970 
971 	CACHELINE_PADDING(_pad3_);
972 	/* Zone statistics */
973 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
974 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
975 } ____cacheline_internodealigned_in_smp;
976 
977 enum pgdat_flags {
978 	PGDAT_DIRTY,			/* reclaim scanning has recently found
979 					 * many dirty file pages at the tail
980 					 * of the LRU.
981 					 */
982 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
983 					 * many pages under writeback
984 					 */
985 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
986 };
987 
988 enum zone_flags {
989 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
990 					 * Cleared when kswapd is woken.
991 					 */
992 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
993 };
994 
zone_managed_pages(struct zone * zone)995 static inline unsigned long zone_managed_pages(struct zone *zone)
996 {
997 	return (unsigned long)atomic_long_read(&zone->managed_pages);
998 }
999 
zone_cma_pages(struct zone * zone)1000 static inline unsigned long zone_cma_pages(struct zone *zone)
1001 {
1002 #ifdef CONFIG_CMA
1003 	return zone->cma_pages;
1004 #else
1005 	return 0;
1006 #endif
1007 }
1008 
zone_end_pfn(const struct zone * zone)1009 static inline unsigned long zone_end_pfn(const struct zone *zone)
1010 {
1011 	return zone->zone_start_pfn + zone->spanned_pages;
1012 }
1013 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1014 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1015 {
1016 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1017 }
1018 
zone_is_initialized(struct zone * zone)1019 static inline bool zone_is_initialized(struct zone *zone)
1020 {
1021 	return zone->initialized;
1022 }
1023 
zone_is_empty(struct zone * zone)1024 static inline bool zone_is_empty(struct zone *zone)
1025 {
1026 	return zone->spanned_pages == 0;
1027 }
1028 
1029 #ifndef BUILD_VDSO32_64
1030 /*
1031  * The zone field is never updated after free_area_init_core()
1032  * sets it, so none of the operations on it need to be atomic.
1033  */
1034 
1035 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1036 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1037 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1038 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1039 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1040 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1041 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1042 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1043 
1044 /*
1045  * Define the bit shifts to access each section.  For non-existent
1046  * sections we define the shift as 0; that plus a 0 mask ensures
1047  * the compiler will optimise away reference to them.
1048  */
1049 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1050 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1051 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1052 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1053 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1054 
1055 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1056 #ifdef NODE_NOT_IN_PAGE_FLAGS
1057 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1058 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1059 						SECTIONS_PGOFF : ZONES_PGOFF)
1060 #else
1061 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1062 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1063 						NODES_PGOFF : ZONES_PGOFF)
1064 #endif
1065 
1066 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1067 
1068 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1069 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1070 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1071 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1072 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1073 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1074 
page_zonenum(const struct page * page)1075 static inline enum zone_type page_zonenum(const struct page *page)
1076 {
1077 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1078 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1079 }
1080 
folio_zonenum(const struct folio * folio)1081 static inline enum zone_type folio_zonenum(const struct folio *folio)
1082 {
1083 	return page_zonenum(&folio->page);
1084 }
1085 
1086 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1087 static inline bool is_zone_device_page(const struct page *page)
1088 {
1089 	return page_zonenum(page) == ZONE_DEVICE;
1090 }
1091 
1092 /*
1093  * Consecutive zone device pages should not be merged into the same sgl
1094  * or bvec segment with other types of pages or if they belong to different
1095  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1096  * without scanning the entire segment. This helper returns true either if
1097  * both pages are not zone device pages or both pages are zone device pages
1098  * with the same pgmap.
1099  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1100 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1101 						     const struct page *b)
1102 {
1103 	if (is_zone_device_page(a) != is_zone_device_page(b))
1104 		return false;
1105 	if (!is_zone_device_page(a))
1106 		return true;
1107 	return a->pgmap == b->pgmap;
1108 }
1109 
1110 extern void memmap_init_zone_device(struct zone *, unsigned long,
1111 				    unsigned long, struct dev_pagemap *);
1112 #else
is_zone_device_page(const struct page * page)1113 static inline bool is_zone_device_page(const struct page *page)
1114 {
1115 	return false;
1116 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1117 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1118 						     const struct page *b)
1119 {
1120 	return true;
1121 }
1122 #endif
1123 
folio_is_zone_device(const struct folio * folio)1124 static inline bool folio_is_zone_device(const struct folio *folio)
1125 {
1126 	return is_zone_device_page(&folio->page);
1127 }
1128 
is_zone_movable_page(const struct page * page)1129 static inline bool is_zone_movable_page(const struct page *page)
1130 {
1131 	return page_zonenum(page) == ZONE_MOVABLE;
1132 }
1133 #endif
1134 
1135 /*
1136  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1137  * intersection with the given zone
1138  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1139 static inline bool zone_intersects(struct zone *zone,
1140 		unsigned long start_pfn, unsigned long nr_pages)
1141 {
1142 	if (zone_is_empty(zone))
1143 		return false;
1144 	if (start_pfn >= zone_end_pfn(zone) ||
1145 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1146 		return false;
1147 
1148 	return true;
1149 }
1150 
1151 /*
1152  * The "priority" of VM scanning is how much of the queues we will scan in one
1153  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1154  * queues ("queue_length >> 12") during an aging round.
1155  */
1156 #define DEF_PRIORITY 12
1157 
1158 /* Maximum number of zones on a zonelist */
1159 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1160 
1161 enum {
1162 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1163 #ifdef CONFIG_NUMA
1164 	/*
1165 	 * The NUMA zonelists are doubled because we need zonelists that
1166 	 * restrict the allocations to a single node for __GFP_THISNODE.
1167 	 */
1168 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1169 #endif
1170 	MAX_ZONELISTS
1171 };
1172 
1173 /*
1174  * This struct contains information about a zone in a zonelist. It is stored
1175  * here to avoid dereferences into large structures and lookups of tables
1176  */
1177 struct zoneref {
1178 	struct zone *zone;	/* Pointer to actual zone */
1179 	int zone_idx;		/* zone_idx(zoneref->zone) */
1180 };
1181 
1182 /*
1183  * One allocation request operates on a zonelist. A zonelist
1184  * is a list of zones, the first one is the 'goal' of the
1185  * allocation, the other zones are fallback zones, in decreasing
1186  * priority.
1187  *
1188  * To speed the reading of the zonelist, the zonerefs contain the zone index
1189  * of the entry being read. Helper functions to access information given
1190  * a struct zoneref are
1191  *
1192  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1193  * zonelist_zone_idx()	- Return the index of the zone for an entry
1194  * zonelist_node_idx()	- Return the index of the node for an entry
1195  */
1196 struct zonelist {
1197 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1198 };
1199 
1200 /*
1201  * The array of struct pages for flatmem.
1202  * It must be declared for SPARSEMEM as well because there are configurations
1203  * that rely on that.
1204  */
1205 extern struct page *mem_map;
1206 
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208 struct deferred_split {
1209 	spinlock_t split_queue_lock;
1210 	struct list_head split_queue;
1211 	unsigned long split_queue_len;
1212 };
1213 #endif
1214 
1215 #ifdef CONFIG_MEMORY_FAILURE
1216 /*
1217  * Per NUMA node memory failure handling statistics.
1218  */
1219 struct memory_failure_stats {
1220 	/*
1221 	 * Number of raw pages poisoned.
1222 	 * Cases not accounted: memory outside kernel control, offline page,
1223 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1224 	 * error events, and unpoison actions from hwpoison_unpoison.
1225 	 */
1226 	unsigned long total;
1227 	/*
1228 	 * Recovery results of poisoned raw pages handled by memory_failure,
1229 	 * in sync with mf_result.
1230 	 * total = ignored + failed + delayed + recovered.
1231 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1232 	 */
1233 	unsigned long ignored;
1234 	unsigned long failed;
1235 	unsigned long delayed;
1236 	unsigned long recovered;
1237 };
1238 #endif
1239 
1240 /*
1241  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1242  * it's memory layout. On UMA machines there is a single pglist_data which
1243  * describes the whole memory.
1244  *
1245  * Memory statistics and page replacement data structures are maintained on a
1246  * per-zone basis.
1247  */
1248 typedef struct pglist_data {
1249 	/*
1250 	 * node_zones contains just the zones for THIS node. Not all of the
1251 	 * zones may be populated, but it is the full list. It is referenced by
1252 	 * this node's node_zonelists as well as other node's node_zonelists.
1253 	 */
1254 	struct zone node_zones[MAX_NR_ZONES];
1255 
1256 	/*
1257 	 * node_zonelists contains references to all zones in all nodes.
1258 	 * Generally the first zones will be references to this node's
1259 	 * node_zones.
1260 	 */
1261 	struct zonelist node_zonelists[MAX_ZONELISTS];
1262 
1263 	int nr_zones; /* number of populated zones in this node */
1264 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1265 	struct page *node_mem_map;
1266 #ifdef CONFIG_PAGE_EXTENSION
1267 	struct page_ext *node_page_ext;
1268 #endif
1269 #endif
1270 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1271 	/*
1272 	 * Must be held any time you expect node_start_pfn,
1273 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1274 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1275 	 * init.
1276 	 *
1277 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1278 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1279 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1280 	 *
1281 	 * Nests above zone->lock and zone->span_seqlock
1282 	 */
1283 	spinlock_t node_size_lock;
1284 #endif
1285 	unsigned long node_start_pfn;
1286 	unsigned long node_present_pages; /* total number of physical pages */
1287 	unsigned long node_spanned_pages; /* total size of physical page
1288 					     range, including holes */
1289 	int node_id;
1290 	wait_queue_head_t kswapd_wait;
1291 	wait_queue_head_t pfmemalloc_wait;
1292 
1293 	/* workqueues for throttling reclaim for different reasons. */
1294 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1295 
1296 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1297 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1298 					 * when throttling started. */
1299 #ifdef CONFIG_MEMORY_HOTPLUG
1300 	struct mutex kswapd_lock;
1301 #endif
1302 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1303 	int kswapd_order;
1304 	enum zone_type kswapd_highest_zoneidx;
1305 
1306 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1307 
1308 #ifdef CONFIG_COMPACTION
1309 	int kcompactd_max_order;
1310 	enum zone_type kcompactd_highest_zoneidx;
1311 	wait_queue_head_t kcompactd_wait;
1312 	struct task_struct *kcompactd;
1313 	bool proactive_compact_trigger;
1314 #endif
1315 	/*
1316 	 * This is a per-node reserve of pages that are not available
1317 	 * to userspace allocations.
1318 	 */
1319 	unsigned long		totalreserve_pages;
1320 
1321 #ifdef CONFIG_NUMA
1322 	/*
1323 	 * node reclaim becomes active if more unmapped pages exist.
1324 	 */
1325 	unsigned long		min_unmapped_pages;
1326 	unsigned long		min_slab_pages;
1327 #endif /* CONFIG_NUMA */
1328 
1329 	/* Write-intensive fields used by page reclaim */
1330 	CACHELINE_PADDING(_pad1_);
1331 
1332 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1333 	/*
1334 	 * If memory initialisation on large machines is deferred then this
1335 	 * is the first PFN that needs to be initialised.
1336 	 */
1337 	unsigned long first_deferred_pfn;
1338 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1339 
1340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1341 	struct deferred_split deferred_split_queue;
1342 #endif
1343 
1344 #ifdef CONFIG_NUMA_BALANCING
1345 	/* start time in ms of current promote rate limit period */
1346 	unsigned int nbp_rl_start;
1347 	/* number of promote candidate pages at start time of current rate limit period */
1348 	unsigned long nbp_rl_nr_cand;
1349 	/* promote threshold in ms */
1350 	unsigned int nbp_threshold;
1351 	/* start time in ms of current promote threshold adjustment period */
1352 	unsigned int nbp_th_start;
1353 	/*
1354 	 * number of promote candidate pages at start time of current promote
1355 	 * threshold adjustment period
1356 	 */
1357 	unsigned long nbp_th_nr_cand;
1358 #endif
1359 	/* Fields commonly accessed by the page reclaim scanner */
1360 
1361 	/*
1362 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1363 	 *
1364 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1365 	 */
1366 	struct lruvec		__lruvec;
1367 
1368 	unsigned long		flags;
1369 
1370 #ifdef CONFIG_LRU_GEN
1371 	/* kswap mm walk data */
1372 	struct lru_gen_mm_walk	mm_walk;
1373 	/* lru_gen_folio list */
1374 	struct lru_gen_memcg memcg_lru;
1375 #endif
1376 
1377 	CACHELINE_PADDING(_pad2_);
1378 
1379 	/* Per-node vmstats */
1380 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1381 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1382 #ifdef CONFIG_NUMA
1383 	struct memory_tier __rcu *memtier;
1384 #endif
1385 #ifdef CONFIG_MEMORY_FAILURE
1386 	struct memory_failure_stats mf_stats;
1387 #endif
1388 } pg_data_t;
1389 
1390 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1391 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1392 
1393 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1394 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1395 
pgdat_end_pfn(pg_data_t * pgdat)1396 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1397 {
1398 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1399 }
1400 
1401 #include <linux/memory_hotplug.h>
1402 
1403 void build_all_zonelists(pg_data_t *pgdat);
1404 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1405 		   enum zone_type highest_zoneidx);
1406 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1407 			 int highest_zoneidx, unsigned int alloc_flags,
1408 			 long free_pages);
1409 bool zone_watermark_ok(struct zone *z, unsigned int order,
1410 		unsigned long mark, int highest_zoneidx,
1411 		unsigned int alloc_flags);
1412 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1413 		unsigned long mark, int highest_zoneidx);
1414 /*
1415  * Memory initialization context, use to differentiate memory added by
1416  * the platform statically or via memory hotplug interface.
1417  */
1418 enum meminit_context {
1419 	MEMINIT_EARLY,
1420 	MEMINIT_HOTPLUG,
1421 };
1422 
1423 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1424 				     unsigned long size);
1425 
1426 extern void lruvec_init(struct lruvec *lruvec);
1427 
lruvec_pgdat(struct lruvec * lruvec)1428 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1429 {
1430 #ifdef CONFIG_MEMCG
1431 	return lruvec->pgdat;
1432 #else
1433 	return container_of(lruvec, struct pglist_data, __lruvec);
1434 #endif
1435 }
1436 
1437 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1438 int local_memory_node(int node_id);
1439 #else
local_memory_node(int node_id)1440 static inline int local_memory_node(int node_id) { return node_id; };
1441 #endif
1442 
1443 /*
1444  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1445  */
1446 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1447 
1448 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1449 static inline bool zone_is_zone_device(struct zone *zone)
1450 {
1451 	return zone_idx(zone) == ZONE_DEVICE;
1452 }
1453 #else
zone_is_zone_device(struct zone * zone)1454 static inline bool zone_is_zone_device(struct zone *zone)
1455 {
1456 	return false;
1457 }
1458 #endif
1459 
1460 /*
1461  * Returns true if a zone has pages managed by the buddy allocator.
1462  * All the reclaim decisions have to use this function rather than
1463  * populated_zone(). If the whole zone is reserved then we can easily
1464  * end up with populated_zone() && !managed_zone().
1465  */
managed_zone(struct zone * zone)1466 static inline bool managed_zone(struct zone *zone)
1467 {
1468 	return zone_managed_pages(zone);
1469 }
1470 
1471 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1472 static inline bool populated_zone(struct zone *zone)
1473 {
1474 	return zone->present_pages;
1475 }
1476 
1477 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1478 static inline int zone_to_nid(struct zone *zone)
1479 {
1480 	return zone->node;
1481 }
1482 
zone_set_nid(struct zone * zone,int nid)1483 static inline void zone_set_nid(struct zone *zone, int nid)
1484 {
1485 	zone->node = nid;
1486 }
1487 #else
zone_to_nid(struct zone * zone)1488 static inline int zone_to_nid(struct zone *zone)
1489 {
1490 	return 0;
1491 }
1492 
zone_set_nid(struct zone * zone,int nid)1493 static inline void zone_set_nid(struct zone *zone, int nid) {}
1494 #endif
1495 
1496 extern int movable_zone;
1497 
is_highmem_idx(enum zone_type idx)1498 static inline int is_highmem_idx(enum zone_type idx)
1499 {
1500 #ifdef CONFIG_HIGHMEM
1501 	return (idx == ZONE_HIGHMEM ||
1502 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1503 #else
1504 	return 0;
1505 #endif
1506 }
1507 
1508 /**
1509  * is_highmem - helper function to quickly check if a struct zone is a
1510  *              highmem zone or not.  This is an attempt to keep references
1511  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1512  * @zone: pointer to struct zone variable
1513  * Return: 1 for a highmem zone, 0 otherwise
1514  */
is_highmem(struct zone * zone)1515 static inline int is_highmem(struct zone *zone)
1516 {
1517 	return is_highmem_idx(zone_idx(zone));
1518 }
1519 
1520 #ifdef CONFIG_ZONE_DMA
1521 bool has_managed_dma(void);
1522 #else
has_managed_dma(void)1523 static inline bool has_managed_dma(void)
1524 {
1525 	return false;
1526 }
1527 #endif
1528 
1529 /* These two functions are used to setup the per zone pages min values */
1530 struct ctl_table;
1531 
1532 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1533 		loff_t *);
1534 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1535 		size_t *, loff_t *);
1536 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1537 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1538 		size_t *, loff_t *);
1539 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1540 		void *, size_t *, loff_t *);
1541 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1542 		void *, size_t *, loff_t *);
1543 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1544 		void *, size_t *, loff_t *);
1545 int numa_zonelist_order_handler(struct ctl_table *, int,
1546 		void *, size_t *, loff_t *);
1547 extern int percpu_pagelist_high_fraction;
1548 extern char numa_zonelist_order[];
1549 #define NUMA_ZONELIST_ORDER_LEN	16
1550 
1551 #ifndef CONFIG_NUMA
1552 
1553 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1554 static inline struct pglist_data *NODE_DATA(int nid)
1555 {
1556 	return &contig_page_data;
1557 }
1558 
1559 #else /* CONFIG_NUMA */
1560 
1561 #include <asm/mmzone.h>
1562 
1563 #endif /* !CONFIG_NUMA */
1564 
1565 extern struct pglist_data *first_online_pgdat(void);
1566 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1567 extern struct zone *next_zone(struct zone *zone);
1568 
1569 /**
1570  * for_each_online_pgdat - helper macro to iterate over all online nodes
1571  * @pgdat: pointer to a pg_data_t variable
1572  */
1573 #define for_each_online_pgdat(pgdat)			\
1574 	for (pgdat = first_online_pgdat();		\
1575 	     pgdat;					\
1576 	     pgdat = next_online_pgdat(pgdat))
1577 /**
1578  * for_each_zone - helper macro to iterate over all memory zones
1579  * @zone: pointer to struct zone variable
1580  *
1581  * The user only needs to declare the zone variable, for_each_zone
1582  * fills it in.
1583  */
1584 #define for_each_zone(zone)			        \
1585 	for (zone = (first_online_pgdat())->node_zones; \
1586 	     zone;					\
1587 	     zone = next_zone(zone))
1588 
1589 #define for_each_populated_zone(zone)		        \
1590 	for (zone = (first_online_pgdat())->node_zones; \
1591 	     zone;					\
1592 	     zone = next_zone(zone))			\
1593 		if (!populated_zone(zone))		\
1594 			; /* do nothing */		\
1595 		else
1596 
zonelist_zone(struct zoneref * zoneref)1597 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1598 {
1599 	return zoneref->zone;
1600 }
1601 
zonelist_zone_idx(struct zoneref * zoneref)1602 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1603 {
1604 	return zoneref->zone_idx;
1605 }
1606 
zonelist_node_idx(struct zoneref * zoneref)1607 static inline int zonelist_node_idx(struct zoneref *zoneref)
1608 {
1609 	return zone_to_nid(zoneref->zone);
1610 }
1611 
1612 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1613 					enum zone_type highest_zoneidx,
1614 					nodemask_t *nodes);
1615 
1616 /**
1617  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1618  * @z: The cursor used as a starting point for the search
1619  * @highest_zoneidx: The zone index of the highest zone to return
1620  * @nodes: An optional nodemask to filter the zonelist with
1621  *
1622  * This function returns the next zone at or below a given zone index that is
1623  * within the allowed nodemask using a cursor as the starting point for the
1624  * search. The zoneref returned is a cursor that represents the current zone
1625  * being examined. It should be advanced by one before calling
1626  * next_zones_zonelist again.
1627  *
1628  * Return: the next zone at or below highest_zoneidx within the allowed
1629  * nodemask using a cursor within a zonelist as a starting point
1630  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1631 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1632 					enum zone_type highest_zoneidx,
1633 					nodemask_t *nodes)
1634 {
1635 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1636 		return z;
1637 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1638 }
1639 
1640 /**
1641  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1642  * @zonelist: The zonelist to search for a suitable zone
1643  * @highest_zoneidx: The zone index of the highest zone to return
1644  * @nodes: An optional nodemask to filter the zonelist with
1645  *
1646  * This function returns the first zone at or below a given zone index that is
1647  * within the allowed nodemask. The zoneref returned is a cursor that can be
1648  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1649  * one before calling.
1650  *
1651  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1652  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1653  * update due to cpuset modification.
1654  *
1655  * Return: Zoneref pointer for the first suitable zone found
1656  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1657 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1658 					enum zone_type highest_zoneidx,
1659 					nodemask_t *nodes)
1660 {
1661 	return next_zones_zonelist(zonelist->_zonerefs,
1662 							highest_zoneidx, nodes);
1663 }
1664 
1665 /**
1666  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1667  * @zone: The current zone in the iterator
1668  * @z: The current pointer within zonelist->_zonerefs being iterated
1669  * @zlist: The zonelist being iterated
1670  * @highidx: The zone index of the highest zone to return
1671  * @nodemask: Nodemask allowed by the allocator
1672  *
1673  * This iterator iterates though all zones at or below a given zone index and
1674  * within a given nodemask
1675  */
1676 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1677 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1678 		zone;							\
1679 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1680 			zone = zonelist_zone(z))
1681 
1682 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1683 	for (zone = z->zone;	\
1684 		zone;							\
1685 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1686 			zone = zonelist_zone(z))
1687 
1688 
1689 /**
1690  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1691  * @zone: The current zone in the iterator
1692  * @z: The current pointer within zonelist->zones being iterated
1693  * @zlist: The zonelist being iterated
1694  * @highidx: The zone index of the highest zone to return
1695  *
1696  * This iterator iterates though all zones at or below a given zone index.
1697  */
1698 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1699 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1700 
1701 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1702 static inline bool movable_only_nodes(nodemask_t *nodes)
1703 {
1704 	struct zonelist *zonelist;
1705 	struct zoneref *z;
1706 	int nid;
1707 
1708 	if (nodes_empty(*nodes))
1709 		return false;
1710 
1711 	/*
1712 	 * We can chose arbitrary node from the nodemask to get a
1713 	 * zonelist as they are interlinked. We just need to find
1714 	 * at least one zone that can satisfy kernel allocations.
1715 	 */
1716 	nid = first_node(*nodes);
1717 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1718 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1719 	return (!z->zone) ? true : false;
1720 }
1721 
1722 
1723 #ifdef CONFIG_SPARSEMEM
1724 #include <asm/sparsemem.h>
1725 #endif
1726 
1727 #ifdef CONFIG_FLATMEM
1728 #define pfn_to_nid(pfn)		(0)
1729 #endif
1730 
1731 #ifdef CONFIG_SPARSEMEM
1732 
1733 /*
1734  * PA_SECTION_SHIFT		physical address to/from section number
1735  * PFN_SECTION_SHIFT		pfn to/from section number
1736  */
1737 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1738 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1739 
1740 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1741 
1742 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1743 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1744 
1745 #define SECTION_BLOCKFLAGS_BITS \
1746 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1747 
1748 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1749 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1750 #endif
1751 
pfn_to_section_nr(unsigned long pfn)1752 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1753 {
1754 	return pfn >> PFN_SECTION_SHIFT;
1755 }
section_nr_to_pfn(unsigned long sec)1756 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1757 {
1758 	return sec << PFN_SECTION_SHIFT;
1759 }
1760 
1761 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1762 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1763 
1764 #define SUBSECTION_SHIFT 21
1765 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1766 
1767 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1768 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1769 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1770 
1771 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1772 #error Subsection size exceeds section size
1773 #else
1774 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1775 #endif
1776 
1777 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1778 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1779 
1780 struct mem_section_usage {
1781 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1782 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1783 #endif
1784 	/* See declaration of similar field in struct zone */
1785 	unsigned long pageblock_flags[0];
1786 };
1787 
1788 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1789 
1790 struct page;
1791 struct page_ext;
1792 struct mem_section {
1793 	/*
1794 	 * This is, logically, a pointer to an array of struct
1795 	 * pages.  However, it is stored with some other magic.
1796 	 * (see sparse.c::sparse_init_one_section())
1797 	 *
1798 	 * Additionally during early boot we encode node id of
1799 	 * the location of the section here to guide allocation.
1800 	 * (see sparse.c::memory_present())
1801 	 *
1802 	 * Making it a UL at least makes someone do a cast
1803 	 * before using it wrong.
1804 	 */
1805 	unsigned long section_mem_map;
1806 
1807 	struct mem_section_usage *usage;
1808 #ifdef CONFIG_PAGE_EXTENSION
1809 	/*
1810 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1811 	 * section. (see page_ext.h about this.)
1812 	 */
1813 	struct page_ext *page_ext;
1814 	unsigned long pad;
1815 #endif
1816 	/*
1817 	 * WARNING: mem_section must be a power-of-2 in size for the
1818 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1819 	 */
1820 };
1821 
1822 #ifdef CONFIG_SPARSEMEM_EXTREME
1823 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1824 #else
1825 #define SECTIONS_PER_ROOT	1
1826 #endif
1827 
1828 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1829 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1830 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1831 
1832 #ifdef CONFIG_SPARSEMEM_EXTREME
1833 extern struct mem_section **mem_section;
1834 #else
1835 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1836 #endif
1837 
section_to_usemap(struct mem_section * ms)1838 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1839 {
1840 	return ms->usage->pageblock_flags;
1841 }
1842 
__nr_to_section(unsigned long nr)1843 static inline struct mem_section *__nr_to_section(unsigned long nr)
1844 {
1845 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1846 
1847 	if (unlikely(root >= NR_SECTION_ROOTS))
1848 		return NULL;
1849 
1850 #ifdef CONFIG_SPARSEMEM_EXTREME
1851 	if (!mem_section || !mem_section[root])
1852 		return NULL;
1853 #endif
1854 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1855 }
1856 extern size_t mem_section_usage_size(void);
1857 
1858 /*
1859  * We use the lower bits of the mem_map pointer to store
1860  * a little bit of information.  The pointer is calculated
1861  * as mem_map - section_nr_to_pfn(pnum).  The result is
1862  * aligned to the minimum alignment of the two values:
1863  *   1. All mem_map arrays are page-aligned.
1864  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1865  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1866  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1867  *      worst combination is powerpc with 256k pages,
1868  *      which results in PFN_SECTION_SHIFT equal 6.
1869  * To sum it up, at least 6 bits are available on all architectures.
1870  * However, we can exceed 6 bits on some other architectures except
1871  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1872  * with the worst case of 64K pages on arm64) if we make sure the
1873  * exceeded bit is not applicable to powerpc.
1874  */
1875 enum {
1876 	SECTION_MARKED_PRESENT_BIT,
1877 	SECTION_HAS_MEM_MAP_BIT,
1878 	SECTION_IS_ONLINE_BIT,
1879 	SECTION_IS_EARLY_BIT,
1880 #ifdef CONFIG_ZONE_DEVICE
1881 	SECTION_TAINT_ZONE_DEVICE_BIT,
1882 #endif
1883 	SECTION_MAP_LAST_BIT,
1884 };
1885 
1886 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1887 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1888 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1889 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1890 #ifdef CONFIG_ZONE_DEVICE
1891 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1892 #endif
1893 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1894 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1895 
__section_mem_map_addr(struct mem_section * section)1896 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1897 {
1898 	unsigned long map = section->section_mem_map;
1899 	map &= SECTION_MAP_MASK;
1900 	return (struct page *)map;
1901 }
1902 
present_section(struct mem_section * section)1903 static inline int present_section(struct mem_section *section)
1904 {
1905 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1906 }
1907 
present_section_nr(unsigned long nr)1908 static inline int present_section_nr(unsigned long nr)
1909 {
1910 	return present_section(__nr_to_section(nr));
1911 }
1912 
valid_section(struct mem_section * section)1913 static inline int valid_section(struct mem_section *section)
1914 {
1915 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1916 }
1917 
early_section(struct mem_section * section)1918 static inline int early_section(struct mem_section *section)
1919 {
1920 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1921 }
1922 
valid_section_nr(unsigned long nr)1923 static inline int valid_section_nr(unsigned long nr)
1924 {
1925 	return valid_section(__nr_to_section(nr));
1926 }
1927 
online_section(struct mem_section * section)1928 static inline int online_section(struct mem_section *section)
1929 {
1930 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1931 }
1932 
1933 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1934 static inline int online_device_section(struct mem_section *section)
1935 {
1936 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1937 
1938 	return section && ((section->section_mem_map & flags) == flags);
1939 }
1940 #else
online_device_section(struct mem_section * section)1941 static inline int online_device_section(struct mem_section *section)
1942 {
1943 	return 0;
1944 }
1945 #endif
1946 
online_section_nr(unsigned long nr)1947 static inline int online_section_nr(unsigned long nr)
1948 {
1949 	return online_section(__nr_to_section(nr));
1950 }
1951 
1952 #ifdef CONFIG_MEMORY_HOTPLUG
1953 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1954 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1955 #endif
1956 
__pfn_to_section(unsigned long pfn)1957 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1958 {
1959 	return __nr_to_section(pfn_to_section_nr(pfn));
1960 }
1961 
1962 extern unsigned long __highest_present_section_nr;
1963 
subsection_map_index(unsigned long pfn)1964 static inline int subsection_map_index(unsigned long pfn)
1965 {
1966 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1967 }
1968 
1969 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1970 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1971 {
1972 	int idx = subsection_map_index(pfn);
1973 
1974 	return test_bit(idx, ms->usage->subsection_map);
1975 }
1976 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1977 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1978 {
1979 	return 1;
1980 }
1981 #endif
1982 
1983 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1984 /**
1985  * pfn_valid - check if there is a valid memory map entry for a PFN
1986  * @pfn: the page frame number to check
1987  *
1988  * Check if there is a valid memory map entry aka struct page for the @pfn.
1989  * Note, that availability of the memory map entry does not imply that
1990  * there is actual usable memory at that @pfn. The struct page may
1991  * represent a hole or an unusable page frame.
1992  *
1993  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1994  */
pfn_valid(unsigned long pfn)1995 static inline int pfn_valid(unsigned long pfn)
1996 {
1997 	struct mem_section *ms;
1998 
1999 	/*
2000 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2001 	 * pfn. Else it might lead to false positives when
2002 	 * some of the upper bits are set, but the lower bits
2003 	 * match a valid pfn.
2004 	 */
2005 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2006 		return 0;
2007 
2008 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2009 		return 0;
2010 	ms = __pfn_to_section(pfn);
2011 	if (!valid_section(ms))
2012 		return 0;
2013 	/*
2014 	 * Traditionally early sections always returned pfn_valid() for
2015 	 * the entire section-sized span.
2016 	 */
2017 	return early_section(ms) || pfn_section_valid(ms, pfn);
2018 }
2019 #endif
2020 
pfn_in_present_section(unsigned long pfn)2021 static inline int pfn_in_present_section(unsigned long pfn)
2022 {
2023 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2024 		return 0;
2025 	return present_section(__pfn_to_section(pfn));
2026 }
2027 
next_present_section_nr(unsigned long section_nr)2028 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2029 {
2030 	while (++section_nr <= __highest_present_section_nr) {
2031 		if (present_section_nr(section_nr))
2032 			return section_nr;
2033 	}
2034 
2035 	return -1;
2036 }
2037 
2038 /*
2039  * These are _only_ used during initialisation, therefore they
2040  * can use __initdata ...  They could have names to indicate
2041  * this restriction.
2042  */
2043 #ifdef CONFIG_NUMA
2044 #define pfn_to_nid(pfn)							\
2045 ({									\
2046 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2047 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2048 })
2049 #else
2050 #define pfn_to_nid(pfn)		(0)
2051 #endif
2052 
2053 void sparse_init(void);
2054 #else
2055 #define sparse_init()	do {} while (0)
2056 #define sparse_index_init(_sec, _nid)  do {} while (0)
2057 #define pfn_in_present_section pfn_valid
2058 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2059 #endif /* CONFIG_SPARSEMEM */
2060 
2061 #endif /* !__GENERATING_BOUNDS.H */
2062 #endif /* !__ASSEMBLY__ */
2063 #endif /* _LINUX_MMZONE_H */
2064