1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24
25 extern pgd_t swapper_pg_dir[];
26 extern pgd_t invalid_pg_dir[];
27 extern void paging_init(void);
28 extern unsigned long s390_invalid_asce;
29
30 enum {
31 PG_DIRECT_MAP_4K = 0,
32 PG_DIRECT_MAP_1M,
33 PG_DIRECT_MAP_2G,
34 PG_DIRECT_MAP_MAX
35 };
36
37 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
38
update_page_count(int level,long count)39 static inline void update_page_count(int level, long count)
40 {
41 if (IS_ENABLED(CONFIG_PROC_FS))
42 atomic_long_add(count, &direct_pages_count[level]);
43 }
44
45 struct seq_file;
46 void arch_report_meminfo(struct seq_file *m);
47
48 /*
49 * The S390 doesn't have any external MMU info: the kernel page
50 * tables contain all the necessary information.
51 */
52 #define update_mmu_cache(vma, address, ptep) do { } while (0)
53 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
54
55 /*
56 * ZERO_PAGE is a global shared page that is always zero; used
57 * for zero-mapped memory areas etc..
58 */
59
60 extern unsigned long empty_zero_page;
61 extern unsigned long zero_page_mask;
62
63 #define ZERO_PAGE(vaddr) \
64 (virt_to_page((void *)(empty_zero_page + \
65 (((unsigned long)(vaddr)) &zero_page_mask))))
66 #define __HAVE_COLOR_ZERO_PAGE
67
68 /* TODO: s390 cannot support io_remap_pfn_range... */
69
70 #define pte_ERROR(e) \
71 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
72 #define pmd_ERROR(e) \
73 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
74 #define pud_ERROR(e) \
75 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
76 #define p4d_ERROR(e) \
77 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
78 #define pgd_ERROR(e) \
79 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
80
81 /*
82 * The vmalloc and module area will always be on the topmost area of the
83 * kernel mapping. 512GB are reserved for vmalloc by default.
84 * At the top of the vmalloc area a 2GB area is reserved where modules
85 * will reside. That makes sure that inter module branches always
86 * happen without trampolines and in addition the placement within a
87 * 2GB frame is branch prediction unit friendly.
88 */
89 extern unsigned long __bootdata_preserved(VMALLOC_START);
90 extern unsigned long __bootdata_preserved(VMALLOC_END);
91 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
92 extern struct page *__bootdata_preserved(vmemmap);
93 extern unsigned long __bootdata_preserved(vmemmap_size);
94
95 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
96
97 extern unsigned long __bootdata_preserved(MODULES_VADDR);
98 extern unsigned long __bootdata_preserved(MODULES_END);
99 #define MODULES_VADDR MODULES_VADDR
100 #define MODULES_END MODULES_END
101 #define MODULES_LEN (1UL << 31)
102
is_module_addr(void * addr)103 static inline int is_module_addr(void *addr)
104 {
105 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
106 if (addr < (void *)MODULES_VADDR)
107 return 0;
108 if (addr > (void *)MODULES_END)
109 return 0;
110 return 1;
111 }
112
113 /*
114 * A 64 bit pagetable entry of S390 has following format:
115 * | PFRA |0IPC| OS |
116 * 0000000000111111111122222222223333333333444444444455555555556666
117 * 0123456789012345678901234567890123456789012345678901234567890123
118 *
119 * I Page-Invalid Bit: Page is not available for address-translation
120 * P Page-Protection Bit: Store access not possible for page
121 * C Change-bit override: HW is not required to set change bit
122 *
123 * A 64 bit segmenttable entry of S390 has following format:
124 * | P-table origin | TT
125 * 0000000000111111111122222222223333333333444444444455555555556666
126 * 0123456789012345678901234567890123456789012345678901234567890123
127 *
128 * I Segment-Invalid Bit: Segment is not available for address-translation
129 * C Common-Segment Bit: Segment is not private (PoP 3-30)
130 * P Page-Protection Bit: Store access not possible for page
131 * TT Type 00
132 *
133 * A 64 bit region table entry of S390 has following format:
134 * | S-table origin | TF TTTL
135 * 0000000000111111111122222222223333333333444444444455555555556666
136 * 0123456789012345678901234567890123456789012345678901234567890123
137 *
138 * I Segment-Invalid Bit: Segment is not available for address-translation
139 * TT Type 01
140 * TF
141 * TL Table length
142 *
143 * The 64 bit regiontable origin of S390 has following format:
144 * | region table origon | DTTL
145 * 0000000000111111111122222222223333333333444444444455555555556666
146 * 0123456789012345678901234567890123456789012345678901234567890123
147 *
148 * X Space-Switch event:
149 * G Segment-Invalid Bit:
150 * P Private-Space Bit:
151 * S Storage-Alteration:
152 * R Real space
153 * TL Table-Length:
154 *
155 * A storage key has the following format:
156 * | ACC |F|R|C|0|
157 * 0 3 4 5 6 7
158 * ACC: access key
159 * F : fetch protection bit
160 * R : referenced bit
161 * C : changed bit
162 */
163
164 /* Hardware bits in the page table entry */
165 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
166 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
167 #define _PAGE_INVALID 0x400 /* HW invalid bit */
168 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
169
170 /* Software bits in the page table entry */
171 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
172 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
173 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
174 #define _PAGE_READ 0x010 /* SW pte read bit */
175 #define _PAGE_WRITE 0x020 /* SW pte write bit */
176 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
177 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
178
179 #ifdef CONFIG_MEM_SOFT_DIRTY
180 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
181 #else
182 #define _PAGE_SOFT_DIRTY 0x000
183 #endif
184
185 #define _PAGE_SW_BITS 0xffUL /* All SW bits */
186
187 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
188
189 /* Set of bits not changed in pte_modify */
190 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
191 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
192
193 /*
194 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
195 * HW bit and all SW bits.
196 */
197 #define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
198
199 /*
200 * handle_pte_fault uses pte_present and pte_none to find out the pte type
201 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
202 * distinguish present from not-present ptes. It is changed only with the page
203 * table lock held.
204 *
205 * The following table gives the different possible bit combinations for
206 * the pte hardware and software bits in the last 12 bits of a pte
207 * (. unassigned bit, x don't care, t swap type):
208 *
209 * 842100000000
210 * 000084210000
211 * 000000008421
212 * .IR.uswrdy.p
213 * empty .10.00000000
214 * swap .11..ttttt.0
215 * prot-none, clean, old .11.xx0000.1
216 * prot-none, clean, young .11.xx0001.1
217 * prot-none, dirty, old .11.xx0010.1
218 * prot-none, dirty, young .11.xx0011.1
219 * read-only, clean, old .11.xx0100.1
220 * read-only, clean, young .01.xx0101.1
221 * read-only, dirty, old .11.xx0110.1
222 * read-only, dirty, young .01.xx0111.1
223 * read-write, clean, old .11.xx1100.1
224 * read-write, clean, young .01.xx1101.1
225 * read-write, dirty, old .10.xx1110.1
226 * read-write, dirty, young .00.xx1111.1
227 * HW-bits: R read-only, I invalid
228 * SW-bits: p present, y young, d dirty, r read, w write, s special,
229 * u unused, l large
230 *
231 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
232 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
233 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
234 */
235
236 /* Bits in the segment/region table address-space-control-element */
237 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
238 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
239 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
240 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
241 #define _ASCE_REAL_SPACE 0x20 /* real space control */
242 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
243 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
244 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
245 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
246 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
247 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
248
249 /* Bits in the region table entry */
250 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
251 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
252 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
253 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
254 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
255 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
256 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
257 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
258 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
259 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
260
261 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
262 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
263 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
264 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
265 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
266 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
267
268 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
269 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
270 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
271 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
272 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
273 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
274
275 #ifdef CONFIG_MEM_SOFT_DIRTY
276 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
277 #else
278 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
279 #endif
280
281 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
282
283 /* Bits in the segment table entry */
284 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
285 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
286 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
287 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
288 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
289 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
290 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
291 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
292 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
293
294 #define _SEGMENT_ENTRY (0)
295 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
296
297 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
298 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
299 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
300 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
301 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
302
303 #ifdef CONFIG_MEM_SOFT_DIRTY
304 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
305 #else
306 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
307 #endif
308
309 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
310 #define _PAGE_ENTRIES 256 /* number of page table entries */
311
312 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
313 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
314
315 #define _REGION1_SHIFT 53
316 #define _REGION2_SHIFT 42
317 #define _REGION3_SHIFT 31
318 #define _SEGMENT_SHIFT 20
319
320 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
321 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
322 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
323 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
324 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
325
326 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
327 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
328 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
329 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
330
331 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
332 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
333 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
334 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
335
336 #define PMD_SHIFT _SEGMENT_SHIFT
337 #define PUD_SHIFT _REGION3_SHIFT
338 #define P4D_SHIFT _REGION2_SHIFT
339 #define PGDIR_SHIFT _REGION1_SHIFT
340
341 #define PMD_SIZE _SEGMENT_SIZE
342 #define PUD_SIZE _REGION3_SIZE
343 #define P4D_SIZE _REGION2_SIZE
344 #define PGDIR_SIZE _REGION1_SIZE
345
346 #define PMD_MASK _SEGMENT_MASK
347 #define PUD_MASK _REGION3_MASK
348 #define P4D_MASK _REGION2_MASK
349 #define PGDIR_MASK _REGION1_MASK
350
351 #define PTRS_PER_PTE _PAGE_ENTRIES
352 #define PTRS_PER_PMD _CRST_ENTRIES
353 #define PTRS_PER_PUD _CRST_ENTRIES
354 #define PTRS_PER_P4D _CRST_ENTRIES
355 #define PTRS_PER_PGD _CRST_ENTRIES
356
357 /*
358 * Segment table and region3 table entry encoding
359 * (R = read-only, I = invalid, y = young bit):
360 * dy..R...I...wr
361 * prot-none, clean, old 00..1...1...00
362 * prot-none, clean, young 01..1...1...00
363 * prot-none, dirty, old 10..1...1...00
364 * prot-none, dirty, young 11..1...1...00
365 * read-only, clean, old 00..1...1...01
366 * read-only, clean, young 01..1...0...01
367 * read-only, dirty, old 10..1...1...01
368 * read-only, dirty, young 11..1...0...01
369 * read-write, clean, old 00..1...1...11
370 * read-write, clean, young 01..1...0...11
371 * read-write, dirty, old 10..0...1...11
372 * read-write, dirty, young 11..0...0...11
373 * The segment table origin is used to distinguish empty (origin==0) from
374 * read-write, old segment table entries (origin!=0)
375 * HW-bits: R read-only, I invalid
376 * SW-bits: y young, d dirty, r read, w write
377 */
378
379 /* Page status table bits for virtualization */
380 #define PGSTE_ACC_BITS 0xf000000000000000UL
381 #define PGSTE_FP_BIT 0x0800000000000000UL
382 #define PGSTE_PCL_BIT 0x0080000000000000UL
383 #define PGSTE_HR_BIT 0x0040000000000000UL
384 #define PGSTE_HC_BIT 0x0020000000000000UL
385 #define PGSTE_GR_BIT 0x0004000000000000UL
386 #define PGSTE_GC_BIT 0x0002000000000000UL
387 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
388 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
389 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
390
391 /* Guest Page State used for virtualization */
392 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
393 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
394 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
395 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
396 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
397 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
398 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
399
400 /*
401 * A user page table pointer has the space-switch-event bit, the
402 * private-space-control bit and the storage-alteration-event-control
403 * bit set. A kernel page table pointer doesn't need them.
404 */
405 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
406 _ASCE_ALT_EVENT)
407
408 /*
409 * Page protection definitions.
410 */
411 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
412 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
413 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
414 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
415 _PAGE_INVALID | _PAGE_PROTECT)
416 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
418 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_INVALID | _PAGE_PROTECT)
420
421 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
422 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
423 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
425 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
426 _PAGE_PROTECT | _PAGE_NOEXEC)
427 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
428 _PAGE_YOUNG | _PAGE_DIRTY)
429
430 /*
431 * On s390 the page table entry has an invalid bit and a read-only bit.
432 * Read permission implies execute permission and write permission
433 * implies read permission.
434 */
435 /*xwr*/
436
437 /*
438 * Segment entry (large page) protection definitions.
439 */
440 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
441 _SEGMENT_ENTRY_PROTECT)
442 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
443 _SEGMENT_ENTRY_READ | \
444 _SEGMENT_ENTRY_NOEXEC)
445 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
446 _SEGMENT_ENTRY_READ)
447 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
448 _SEGMENT_ENTRY_WRITE | \
449 _SEGMENT_ENTRY_NOEXEC)
450 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_WRITE)
452 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
453 _SEGMENT_ENTRY_LARGE | \
454 _SEGMENT_ENTRY_READ | \
455 _SEGMENT_ENTRY_WRITE | \
456 _SEGMENT_ENTRY_YOUNG | \
457 _SEGMENT_ENTRY_DIRTY | \
458 _SEGMENT_ENTRY_NOEXEC)
459 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
460 _SEGMENT_ENTRY_LARGE | \
461 _SEGMENT_ENTRY_READ | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_PROTECT | \
464 _SEGMENT_ENTRY_NOEXEC)
465 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_WRITE | \
469 _SEGMENT_ENTRY_YOUNG | \
470 _SEGMENT_ENTRY_DIRTY)
471
472 /*
473 * Region3 entry (large page) protection definitions.
474 */
475
476 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
477 _REGION3_ENTRY_LARGE | \
478 _REGION3_ENTRY_READ | \
479 _REGION3_ENTRY_WRITE | \
480 _REGION3_ENTRY_YOUNG | \
481 _REGION3_ENTRY_DIRTY | \
482 _REGION_ENTRY_NOEXEC)
483 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
484 _REGION3_ENTRY_LARGE | \
485 _REGION3_ENTRY_READ | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION_ENTRY_PROTECT | \
488 _REGION_ENTRY_NOEXEC)
489 #define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_WRITE | \
493 _REGION3_ENTRY_YOUNG | \
494 _REGION3_ENTRY_DIRTY)
495
mm_p4d_folded(struct mm_struct * mm)496 static inline bool mm_p4d_folded(struct mm_struct *mm)
497 {
498 return mm->context.asce_limit <= _REGION1_SIZE;
499 }
500 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
501
mm_pud_folded(struct mm_struct * mm)502 static inline bool mm_pud_folded(struct mm_struct *mm)
503 {
504 return mm->context.asce_limit <= _REGION2_SIZE;
505 }
506 #define mm_pud_folded(mm) mm_pud_folded(mm)
507
mm_pmd_folded(struct mm_struct * mm)508 static inline bool mm_pmd_folded(struct mm_struct *mm)
509 {
510 return mm->context.asce_limit <= _REGION3_SIZE;
511 }
512 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
513
mm_has_pgste(struct mm_struct * mm)514 static inline int mm_has_pgste(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.has_pgste))
518 return 1;
519 #endif
520 return 0;
521 }
522
mm_is_protected(struct mm_struct * mm)523 static inline int mm_is_protected(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_PGSTE
526 if (unlikely(atomic_read(&mm->context.protected_count)))
527 return 1;
528 #endif
529 return 0;
530 }
531
mm_alloc_pgste(struct mm_struct * mm)532 static inline int mm_alloc_pgste(struct mm_struct *mm)
533 {
534 #ifdef CONFIG_PGSTE
535 if (unlikely(mm->context.alloc_pgste))
536 return 1;
537 #endif
538 return 0;
539 }
540
clear_pte_bit(pte_t pte,pgprot_t prot)541 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
542 {
543 return __pte(pte_val(pte) & ~pgprot_val(prot));
544 }
545
set_pte_bit(pte_t pte,pgprot_t prot)546 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
547 {
548 return __pte(pte_val(pte) | pgprot_val(prot));
549 }
550
clear_pmd_bit(pmd_t pmd,pgprot_t prot)551 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
552 {
553 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
554 }
555
set_pmd_bit(pmd_t pmd,pgprot_t prot)556 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
557 {
558 return __pmd(pmd_val(pmd) | pgprot_val(prot));
559 }
560
clear_pud_bit(pud_t pud,pgprot_t prot)561 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
562 {
563 return __pud(pud_val(pud) & ~pgprot_val(prot));
564 }
565
set_pud_bit(pud_t pud,pgprot_t prot)566 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
567 {
568 return __pud(pud_val(pud) | pgprot_val(prot));
569 }
570
571 /*
572 * In the case that a guest uses storage keys
573 * faults should no longer be backed by zero pages
574 */
575 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)576 static inline int mm_uses_skeys(struct mm_struct *mm)
577 {
578 #ifdef CONFIG_PGSTE
579 if (mm->context.uses_skeys)
580 return 1;
581 #endif
582 return 0;
583 }
584
csp(unsigned int * ptr,unsigned int old,unsigned int new)585 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
586 {
587 union register_pair r1 = { .even = old, .odd = new, };
588 unsigned long address = (unsigned long)ptr | 1;
589
590 asm volatile(
591 " csp %[r1],%[address]"
592 : [r1] "+&d" (r1.pair), "+m" (*ptr)
593 : [address] "d" (address)
594 : "cc");
595 }
596
cspg(unsigned long * ptr,unsigned long old,unsigned long new)597 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
598 {
599 union register_pair r1 = { .even = old, .odd = new, };
600 unsigned long address = (unsigned long)ptr | 1;
601
602 asm volatile(
603 " cspg %[r1],%[address]"
604 : [r1] "+&d" (r1.pair), "+m" (*ptr)
605 : [address] "d" (address)
606 : "cc");
607 }
608
609 #define CRDTE_DTT_PAGE 0x00UL
610 #define CRDTE_DTT_SEGMENT 0x10UL
611 #define CRDTE_DTT_REGION3 0x14UL
612 #define CRDTE_DTT_REGION2 0x18UL
613 #define CRDTE_DTT_REGION1 0x1cUL
614
crdte(unsigned long old,unsigned long new,unsigned long * table,unsigned long dtt,unsigned long address,unsigned long asce)615 static inline void crdte(unsigned long old, unsigned long new,
616 unsigned long *table, unsigned long dtt,
617 unsigned long address, unsigned long asce)
618 {
619 union register_pair r1 = { .even = old, .odd = new, };
620 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
621
622 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
623 : [r1] "+&d" (r1.pair)
624 : [r2] "d" (r2.pair), [asce] "a" (asce)
625 : "memory", "cc");
626 }
627
628 /*
629 * pgd/p4d/pud/pmd/pte query functions
630 */
pgd_folded(pgd_t pgd)631 static inline int pgd_folded(pgd_t pgd)
632 {
633 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
634 }
635
pgd_present(pgd_t pgd)636 static inline int pgd_present(pgd_t pgd)
637 {
638 if (pgd_folded(pgd))
639 return 1;
640 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
641 }
642
pgd_none(pgd_t pgd)643 static inline int pgd_none(pgd_t pgd)
644 {
645 if (pgd_folded(pgd))
646 return 0;
647 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
648 }
649
pgd_bad(pgd_t pgd)650 static inline int pgd_bad(pgd_t pgd)
651 {
652 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
653 return 0;
654 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
655 }
656
pgd_pfn(pgd_t pgd)657 static inline unsigned long pgd_pfn(pgd_t pgd)
658 {
659 unsigned long origin_mask;
660
661 origin_mask = _REGION_ENTRY_ORIGIN;
662 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
663 }
664
p4d_folded(p4d_t p4d)665 static inline int p4d_folded(p4d_t p4d)
666 {
667 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
668 }
669
p4d_present(p4d_t p4d)670 static inline int p4d_present(p4d_t p4d)
671 {
672 if (p4d_folded(p4d))
673 return 1;
674 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
675 }
676
p4d_none(p4d_t p4d)677 static inline int p4d_none(p4d_t p4d)
678 {
679 if (p4d_folded(p4d))
680 return 0;
681 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
682 }
683
p4d_pfn(p4d_t p4d)684 static inline unsigned long p4d_pfn(p4d_t p4d)
685 {
686 unsigned long origin_mask;
687
688 origin_mask = _REGION_ENTRY_ORIGIN;
689 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
690 }
691
pud_folded(pud_t pud)692 static inline int pud_folded(pud_t pud)
693 {
694 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
695 }
696
pud_present(pud_t pud)697 static inline int pud_present(pud_t pud)
698 {
699 if (pud_folded(pud))
700 return 1;
701 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
702 }
703
pud_none(pud_t pud)704 static inline int pud_none(pud_t pud)
705 {
706 if (pud_folded(pud))
707 return 0;
708 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
709 }
710
711 #define pud_leaf pud_large
pud_large(pud_t pud)712 static inline int pud_large(pud_t pud)
713 {
714 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
715 return 0;
716 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
717 }
718
719 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)720 static inline int pmd_large(pmd_t pmd)
721 {
722 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
723 }
724
pmd_bad(pmd_t pmd)725 static inline int pmd_bad(pmd_t pmd)
726 {
727 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
728 return 1;
729 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
730 }
731
pud_bad(pud_t pud)732 static inline int pud_bad(pud_t pud)
733 {
734 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
735
736 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
737 return 1;
738 if (type < _REGION_ENTRY_TYPE_R3)
739 return 0;
740 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
741 }
742
p4d_bad(p4d_t p4d)743 static inline int p4d_bad(p4d_t p4d)
744 {
745 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
746
747 if (type > _REGION_ENTRY_TYPE_R2)
748 return 1;
749 if (type < _REGION_ENTRY_TYPE_R2)
750 return 0;
751 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
752 }
753
pmd_present(pmd_t pmd)754 static inline int pmd_present(pmd_t pmd)
755 {
756 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
757 }
758
pmd_none(pmd_t pmd)759 static inline int pmd_none(pmd_t pmd)
760 {
761 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
762 }
763
764 #define pmd_write pmd_write
pmd_write(pmd_t pmd)765 static inline int pmd_write(pmd_t pmd)
766 {
767 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
768 }
769
770 #define pud_write pud_write
pud_write(pud_t pud)771 static inline int pud_write(pud_t pud)
772 {
773 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
774 }
775
pmd_dirty(pmd_t pmd)776 static inline int pmd_dirty(pmd_t pmd)
777 {
778 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
779 }
780
781 #define pmd_young pmd_young
pmd_young(pmd_t pmd)782 static inline int pmd_young(pmd_t pmd)
783 {
784 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
785 }
786
pte_present(pte_t pte)787 static inline int pte_present(pte_t pte)
788 {
789 /* Bit pattern: (pte & 0x001) == 0x001 */
790 return (pte_val(pte) & _PAGE_PRESENT) != 0;
791 }
792
pte_none(pte_t pte)793 static inline int pte_none(pte_t pte)
794 {
795 /* Bit pattern: pte == 0x400 */
796 return pte_val(pte) == _PAGE_INVALID;
797 }
798
pte_swap(pte_t pte)799 static inline int pte_swap(pte_t pte)
800 {
801 /* Bit pattern: (pte & 0x201) == 0x200 */
802 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
803 == _PAGE_PROTECT;
804 }
805
pte_special(pte_t pte)806 static inline int pte_special(pte_t pte)
807 {
808 return (pte_val(pte) & _PAGE_SPECIAL);
809 }
810
811 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)812 static inline int pte_same(pte_t a, pte_t b)
813 {
814 return pte_val(a) == pte_val(b);
815 }
816
817 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)818 static inline int pte_protnone(pte_t pte)
819 {
820 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
821 }
822
pmd_protnone(pmd_t pmd)823 static inline int pmd_protnone(pmd_t pmd)
824 {
825 /* pmd_large(pmd) implies pmd_present(pmd) */
826 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
827 }
828 #endif
829
pte_swp_exclusive(pte_t pte)830 static inline int pte_swp_exclusive(pte_t pte)
831 {
832 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
833 }
834
pte_swp_mkexclusive(pte_t pte)835 static inline pte_t pte_swp_mkexclusive(pte_t pte)
836 {
837 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
838 }
839
pte_swp_clear_exclusive(pte_t pte)840 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
841 {
842 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
843 }
844
pte_soft_dirty(pte_t pte)845 static inline int pte_soft_dirty(pte_t pte)
846 {
847 return pte_val(pte) & _PAGE_SOFT_DIRTY;
848 }
849 #define pte_swp_soft_dirty pte_soft_dirty
850
pte_mksoft_dirty(pte_t pte)851 static inline pte_t pte_mksoft_dirty(pte_t pte)
852 {
853 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
854 }
855 #define pte_swp_mksoft_dirty pte_mksoft_dirty
856
pte_clear_soft_dirty(pte_t pte)857 static inline pte_t pte_clear_soft_dirty(pte_t pte)
858 {
859 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
860 }
861 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
862
pmd_soft_dirty(pmd_t pmd)863 static inline int pmd_soft_dirty(pmd_t pmd)
864 {
865 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
866 }
867
pmd_mksoft_dirty(pmd_t pmd)868 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
869 {
870 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
871 }
872
pmd_clear_soft_dirty(pmd_t pmd)873 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
874 {
875 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
876 }
877
878 /*
879 * query functions pte_write/pte_dirty/pte_young only work if
880 * pte_present() is true. Undefined behaviour if not..
881 */
pte_write(pte_t pte)882 static inline int pte_write(pte_t pte)
883 {
884 return (pte_val(pte) & _PAGE_WRITE) != 0;
885 }
886
pte_dirty(pte_t pte)887 static inline int pte_dirty(pte_t pte)
888 {
889 return (pte_val(pte) & _PAGE_DIRTY) != 0;
890 }
891
pte_young(pte_t pte)892 static inline int pte_young(pte_t pte)
893 {
894 return (pte_val(pte) & _PAGE_YOUNG) != 0;
895 }
896
897 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)898 static inline int pte_unused(pte_t pte)
899 {
900 return pte_val(pte) & _PAGE_UNUSED;
901 }
902
903 /*
904 * Extract the pgprot value from the given pte while at the same time making it
905 * usable for kernel address space mappings where fault driven dirty and
906 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
907 * must not be set.
908 */
pte_pgprot(pte_t pte)909 static inline pgprot_t pte_pgprot(pte_t pte)
910 {
911 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
912
913 if (pte_write(pte))
914 pte_flags |= pgprot_val(PAGE_KERNEL);
915 else
916 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
917 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
918
919 return __pgprot(pte_flags);
920 }
921
922 /*
923 * pgd/pmd/pte modification functions
924 */
925
set_pgd(pgd_t * pgdp,pgd_t pgd)926 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
927 {
928 WRITE_ONCE(*pgdp, pgd);
929 }
930
set_p4d(p4d_t * p4dp,p4d_t p4d)931 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
932 {
933 WRITE_ONCE(*p4dp, p4d);
934 }
935
set_pud(pud_t * pudp,pud_t pud)936 static inline void set_pud(pud_t *pudp, pud_t pud)
937 {
938 WRITE_ONCE(*pudp, pud);
939 }
940
set_pmd(pmd_t * pmdp,pmd_t pmd)941 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
942 {
943 WRITE_ONCE(*pmdp, pmd);
944 }
945
set_pte(pte_t * ptep,pte_t pte)946 static inline void set_pte(pte_t *ptep, pte_t pte)
947 {
948 WRITE_ONCE(*ptep, pte);
949 }
950
pgd_clear(pgd_t * pgd)951 static inline void pgd_clear(pgd_t *pgd)
952 {
953 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
954 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
955 }
956
p4d_clear(p4d_t * p4d)957 static inline void p4d_clear(p4d_t *p4d)
958 {
959 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
960 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
961 }
962
pud_clear(pud_t * pud)963 static inline void pud_clear(pud_t *pud)
964 {
965 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
966 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
967 }
968
pmd_clear(pmd_t * pmdp)969 static inline void pmd_clear(pmd_t *pmdp)
970 {
971 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
972 }
973
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)974 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
975 {
976 set_pte(ptep, __pte(_PAGE_INVALID));
977 }
978
979 /*
980 * The following pte modification functions only work if
981 * pte_present() is true. Undefined behaviour if not..
982 */
pte_modify(pte_t pte,pgprot_t newprot)983 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
984 {
985 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
986 pte = set_pte_bit(pte, newprot);
987 /*
988 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
989 * has the invalid bit set, clear it again for readable, young pages
990 */
991 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
992 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
993 /*
994 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
995 * protection bit set, clear it again for writable, dirty pages
996 */
997 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
998 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
999 return pte;
1000 }
1001
pte_wrprotect(pte_t pte)1002 static inline pte_t pte_wrprotect(pte_t pte)
1003 {
1004 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1005 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1006 }
1007
pte_mkwrite(pte_t pte)1008 static inline pte_t pte_mkwrite(pte_t pte)
1009 {
1010 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1011 if (pte_val(pte) & _PAGE_DIRTY)
1012 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013 return pte;
1014 }
1015
pte_mkclean(pte_t pte)1016 static inline pte_t pte_mkclean(pte_t pte)
1017 {
1018 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1019 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1020 }
1021
pte_mkdirty(pte_t pte)1022 static inline pte_t pte_mkdirty(pte_t pte)
1023 {
1024 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1025 if (pte_val(pte) & _PAGE_WRITE)
1026 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1027 return pte;
1028 }
1029
pte_mkold(pte_t pte)1030 static inline pte_t pte_mkold(pte_t pte)
1031 {
1032 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1033 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1034 }
1035
pte_mkyoung(pte_t pte)1036 static inline pte_t pte_mkyoung(pte_t pte)
1037 {
1038 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1039 if (pte_val(pte) & _PAGE_READ)
1040 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1041 return pte;
1042 }
1043
pte_mkspecial(pte_t pte)1044 static inline pte_t pte_mkspecial(pte_t pte)
1045 {
1046 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1047 }
1048
1049 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)1050 static inline pte_t pte_mkhuge(pte_t pte)
1051 {
1052 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1053 }
1054 #endif
1055
1056 #define IPTE_GLOBAL 0
1057 #define IPTE_LOCAL 1
1058
1059 #define IPTE_NODAT 0x400
1060 #define IPTE_GUEST_ASCE 0x800
1061
__ptep_rdp(unsigned long addr,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1062 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1063 unsigned long opt, unsigned long asce,
1064 int local)
1065 {
1066 unsigned long pto;
1067
1068 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1069 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1070 : "+m" (*ptep)
1071 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1072 [asce] "a" (asce), [m4] "i" (local));
1073 }
1074
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1075 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1076 unsigned long opt, unsigned long asce,
1077 int local)
1078 {
1079 unsigned long pto = __pa(ptep);
1080
1081 if (__builtin_constant_p(opt) && opt == 0) {
1082 /* Invalidation + TLB flush for the pte */
1083 asm volatile(
1084 " ipte %[r1],%[r2],0,%[m4]"
1085 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1086 [m4] "i" (local));
1087 return;
1088 }
1089
1090 /* Invalidate ptes with options + TLB flush of the ptes */
1091 opt = opt | (asce & _ASCE_ORIGIN);
1092 asm volatile(
1093 " ipte %[r1],%[r2],%[r3],%[m4]"
1094 : [r2] "+a" (address), [r3] "+a" (opt)
1095 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1096 }
1097
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1098 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1099 pte_t *ptep, int local)
1100 {
1101 unsigned long pto = __pa(ptep);
1102
1103 /* Invalidate a range of ptes + TLB flush of the ptes */
1104 do {
1105 asm volatile(
1106 " ipte %[r1],%[r2],%[r3],%[m4]"
1107 : [r2] "+a" (address), [r3] "+a" (nr)
1108 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1109 } while (nr != 255);
1110 }
1111
1112 /*
1113 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1114 * both clear the TLB for the unmapped pte. The reason is that
1115 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1116 * to modify an active pte. The sequence is
1117 * 1) ptep_get_and_clear
1118 * 2) set_pte_at
1119 * 3) flush_tlb_range
1120 * On s390 the tlb needs to get flushed with the modification of the pte
1121 * if the pte is active. The only way how this can be implemented is to
1122 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1123 * is a nop.
1124 */
1125 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1126 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1127
1128 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1129 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1130 unsigned long addr, pte_t *ptep)
1131 {
1132 pte_t pte = *ptep;
1133
1134 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1135 return pte_young(pte);
1136 }
1137
1138 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1139 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1140 unsigned long address, pte_t *ptep)
1141 {
1142 return ptep_test_and_clear_young(vma, address, ptep);
1143 }
1144
1145 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1146 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1147 unsigned long addr, pte_t *ptep)
1148 {
1149 pte_t res;
1150
1151 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1152 /* At this point the reference through the mapping is still present */
1153 if (mm_is_protected(mm) && pte_present(res))
1154 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1155 return res;
1156 }
1157
1158 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1159 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1160 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1161 pte_t *, pte_t, pte_t);
1162
1163 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1164 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1165 unsigned long addr, pte_t *ptep)
1166 {
1167 pte_t res;
1168
1169 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1170 /* At this point the reference through the mapping is still present */
1171 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1172 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1173 return res;
1174 }
1175
1176 /*
1177 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1178 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1179 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1180 * cannot be accessed while the batched unmap is running. In this case
1181 * full==1 and a simple pte_clear is enough. See tlb.h.
1182 */
1183 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1184 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1185 unsigned long addr,
1186 pte_t *ptep, int full)
1187 {
1188 pte_t res;
1189
1190 if (full) {
1191 res = *ptep;
1192 set_pte(ptep, __pte(_PAGE_INVALID));
1193 } else {
1194 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1195 }
1196 /* Nothing to do */
1197 if (!mm_is_protected(mm) || !pte_present(res))
1198 return res;
1199 /*
1200 * At this point the reference through the mapping is still present.
1201 * The notifier should have destroyed all protected vCPUs at this
1202 * point, so the destroy should be successful.
1203 */
1204 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1205 return res;
1206 /*
1207 * If something went wrong and the page could not be destroyed, or
1208 * if this is not a mm teardown, the slower export is used as
1209 * fallback instead.
1210 */
1211 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1212 return res;
1213 }
1214
1215 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1216 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1217 unsigned long addr, pte_t *ptep)
1218 {
1219 pte_t pte = *ptep;
1220
1221 if (pte_write(pte))
1222 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1223 }
1224
1225 /*
1226 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1227 * bits in the comparison. Those might change e.g. because of dirty and young
1228 * tracking.
1229 */
pte_allow_rdp(pte_t old,pte_t new)1230 static inline int pte_allow_rdp(pte_t old, pte_t new)
1231 {
1232 /*
1233 * Only allow changes from RO to RW
1234 */
1235 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1236 return 0;
1237
1238 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1239 }
1240
flush_tlb_fix_spurious_fault(struct vm_area_struct * vma,unsigned long address)1241 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1242 unsigned long address)
1243 {
1244 /*
1245 * RDP might not have propagated the PTE protection reset to all CPUs,
1246 * so there could be spurious TLB protection faults.
1247 * NOTE: This will also be called when a racing pagetable update on
1248 * another thread already installed the correct PTE. Both cases cannot
1249 * really be distinguished.
1250 * Therefore, only do the local TLB flush when RDP can be used, to avoid
1251 * unnecessary overhead.
1252 */
1253 if (MACHINE_HAS_RDP)
1254 asm volatile("ptlb" : : : "memory");
1255 }
1256 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1257
1258 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1259 pte_t new);
1260
1261 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1262 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1263 unsigned long addr, pte_t *ptep,
1264 pte_t entry, int dirty)
1265 {
1266 if (pte_same(*ptep, entry))
1267 return 0;
1268 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1269 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1270 else
1271 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1272 return 1;
1273 }
1274
1275 /*
1276 * Additional functions to handle KVM guest page tables
1277 */
1278 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1279 pte_t *ptep, pte_t entry);
1280 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1281 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1282 pte_t *ptep, unsigned long bits);
1283 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1284 pte_t *ptep, int prot, unsigned long bit);
1285 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1286 pte_t *ptep , int reset);
1287 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1288 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1289 pte_t *sptep, pte_t *tptep, pte_t pte);
1290 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1291
1292 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1293 pte_t *ptep);
1294 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1295 unsigned char key, bool nq);
1296 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1297 unsigned char key, unsigned char *oldkey,
1298 bool nq, bool mr, bool mc);
1299 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1300 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1301 unsigned char *key);
1302
1303 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1304 unsigned long bits, unsigned long value);
1305 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1306 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1307 unsigned long *oldpte, unsigned long *oldpgste);
1308 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1309 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1310 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1311 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1312
1313 #define pgprot_writecombine pgprot_writecombine
1314 pgprot_t pgprot_writecombine(pgprot_t prot);
1315
1316 #define pgprot_writethrough pgprot_writethrough
1317 pgprot_t pgprot_writethrough(pgprot_t prot);
1318
1319 /*
1320 * Certain architectures need to do special things when PTEs
1321 * within a page table are directly modified. Thus, the following
1322 * hook is made available.
1323 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1324 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1325 pte_t *ptep, pte_t entry)
1326 {
1327 if (pte_present(entry))
1328 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1329 if (mm_has_pgste(mm))
1330 ptep_set_pte_at(mm, addr, ptep, entry);
1331 else
1332 set_pte(ptep, entry);
1333 }
1334
1335 /*
1336 * Conversion functions: convert a page and protection to a page entry,
1337 * and a page entry and page directory to the page they refer to.
1338 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1339 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1340 {
1341 pte_t __pte;
1342
1343 __pte = __pte(physpage | pgprot_val(pgprot));
1344 if (!MACHINE_HAS_NX)
1345 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1346 return pte_mkyoung(__pte);
1347 }
1348
mk_pte(struct page * page,pgprot_t pgprot)1349 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1350 {
1351 unsigned long physpage = page_to_phys(page);
1352 pte_t __pte = mk_pte_phys(physpage, pgprot);
1353
1354 if (pte_write(__pte) && PageDirty(page))
1355 __pte = pte_mkdirty(__pte);
1356 return __pte;
1357 }
1358
1359 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1360 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1361 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1362 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1363
1364 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1365 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1366
pmd_deref(pmd_t pmd)1367 static inline unsigned long pmd_deref(pmd_t pmd)
1368 {
1369 unsigned long origin_mask;
1370
1371 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1372 if (pmd_large(pmd))
1373 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1374 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1375 }
1376
pmd_pfn(pmd_t pmd)1377 static inline unsigned long pmd_pfn(pmd_t pmd)
1378 {
1379 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1380 }
1381
pud_deref(pud_t pud)1382 static inline unsigned long pud_deref(pud_t pud)
1383 {
1384 unsigned long origin_mask;
1385
1386 origin_mask = _REGION_ENTRY_ORIGIN;
1387 if (pud_large(pud))
1388 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1389 return (unsigned long)__va(pud_val(pud) & origin_mask);
1390 }
1391
pud_pfn(pud_t pud)1392 static inline unsigned long pud_pfn(pud_t pud)
1393 {
1394 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1395 }
1396
1397 /*
1398 * The pgd_offset function *always* adds the index for the top-level
1399 * region/segment table. This is done to get a sequence like the
1400 * following to work:
1401 * pgdp = pgd_offset(current->mm, addr);
1402 * pgd = READ_ONCE(*pgdp);
1403 * p4dp = p4d_offset(&pgd, addr);
1404 * ...
1405 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1406 * only add an index if they dereferenced the pointer.
1407 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1408 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1409 {
1410 unsigned long rste;
1411 unsigned int shift;
1412
1413 /* Get the first entry of the top level table */
1414 rste = pgd_val(*pgd);
1415 /* Pick up the shift from the table type of the first entry */
1416 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1417 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1418 }
1419
1420 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1421
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1422 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1423 {
1424 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1425 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1426 return (p4d_t *) pgdp;
1427 }
1428 #define p4d_offset_lockless p4d_offset_lockless
1429
p4d_offset(pgd_t * pgdp,unsigned long address)1430 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1431 {
1432 return p4d_offset_lockless(pgdp, *pgdp, address);
1433 }
1434
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1435 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1436 {
1437 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1438 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1439 return (pud_t *) p4dp;
1440 }
1441 #define pud_offset_lockless pud_offset_lockless
1442
pud_offset(p4d_t * p4dp,unsigned long address)1443 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1444 {
1445 return pud_offset_lockless(p4dp, *p4dp, address);
1446 }
1447 #define pud_offset pud_offset
1448
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1449 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1450 {
1451 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1452 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1453 return (pmd_t *) pudp;
1454 }
1455 #define pmd_offset_lockless pmd_offset_lockless
1456
pmd_offset(pud_t * pudp,unsigned long address)1457 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1458 {
1459 return pmd_offset_lockless(pudp, *pudp, address);
1460 }
1461 #define pmd_offset pmd_offset
1462
pmd_page_vaddr(pmd_t pmd)1463 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1464 {
1465 return (unsigned long) pmd_deref(pmd);
1466 }
1467
gup_fast_permitted(unsigned long start,unsigned long end)1468 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1469 {
1470 return end <= current->mm->context.asce_limit;
1471 }
1472 #define gup_fast_permitted gup_fast_permitted
1473
1474 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1475 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1476 #define pte_page(x) pfn_to_page(pte_pfn(x))
1477
1478 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1479 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1480 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1481 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1482
pmd_wrprotect(pmd_t pmd)1483 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1484 {
1485 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1486 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1487 }
1488
pmd_mkwrite(pmd_t pmd)1489 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1490 {
1491 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1492 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1493 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1494 return pmd;
1495 }
1496
pmd_mkclean(pmd_t pmd)1497 static inline pmd_t pmd_mkclean(pmd_t pmd)
1498 {
1499 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1500 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1501 }
1502
pmd_mkdirty(pmd_t pmd)1503 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1504 {
1505 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1506 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1507 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1508 return pmd;
1509 }
1510
pud_wrprotect(pud_t pud)1511 static inline pud_t pud_wrprotect(pud_t pud)
1512 {
1513 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1514 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1515 }
1516
pud_mkwrite(pud_t pud)1517 static inline pud_t pud_mkwrite(pud_t pud)
1518 {
1519 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1520 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1521 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1522 return pud;
1523 }
1524
pud_mkclean(pud_t pud)1525 static inline pud_t pud_mkclean(pud_t pud)
1526 {
1527 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1528 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1529 }
1530
pud_mkdirty(pud_t pud)1531 static inline pud_t pud_mkdirty(pud_t pud)
1532 {
1533 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1534 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1535 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1536 return pud;
1537 }
1538
1539 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1540 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1541 {
1542 /*
1543 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1544 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1545 */
1546 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1547 return pgprot_val(SEGMENT_NONE);
1548 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1549 return pgprot_val(SEGMENT_RO);
1550 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1551 return pgprot_val(SEGMENT_RX);
1552 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1553 return pgprot_val(SEGMENT_RW);
1554 return pgprot_val(SEGMENT_RWX);
1555 }
1556
pmd_mkyoung(pmd_t pmd)1557 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1558 {
1559 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1560 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1561 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1562 return pmd;
1563 }
1564
pmd_mkold(pmd_t pmd)1565 static inline pmd_t pmd_mkold(pmd_t pmd)
1566 {
1567 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1568 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1569 }
1570
pmd_modify(pmd_t pmd,pgprot_t newprot)1571 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1572 {
1573 unsigned long mask;
1574
1575 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1576 mask |= _SEGMENT_ENTRY_DIRTY;
1577 mask |= _SEGMENT_ENTRY_YOUNG;
1578 mask |= _SEGMENT_ENTRY_LARGE;
1579 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1580 pmd = __pmd(pmd_val(pmd) & mask);
1581 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1582 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1583 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1584 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1585 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1586 return pmd;
1587 }
1588
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1589 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1590 {
1591 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1592 }
1593
1594 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1595
__pmdp_csp(pmd_t * pmdp)1596 static inline void __pmdp_csp(pmd_t *pmdp)
1597 {
1598 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1599 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1600 }
1601
1602 #define IDTE_GLOBAL 0
1603 #define IDTE_LOCAL 1
1604
1605 #define IDTE_PTOA 0x0800
1606 #define IDTE_NODAT 0x1000
1607 #define IDTE_GUEST_ASCE 0x2000
1608
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1609 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1610 unsigned long opt, unsigned long asce,
1611 int local)
1612 {
1613 unsigned long sto;
1614
1615 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1616 if (__builtin_constant_p(opt) && opt == 0) {
1617 /* flush without guest asce */
1618 asm volatile(
1619 " idte %[r1],0,%[r2],%[m4]"
1620 : "+m" (*pmdp)
1621 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1622 [m4] "i" (local)
1623 : "cc" );
1624 } else {
1625 /* flush with guest asce */
1626 asm volatile(
1627 " idte %[r1],%[r3],%[r2],%[m4]"
1628 : "+m" (*pmdp)
1629 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1630 [r3] "a" (asce), [m4] "i" (local)
1631 : "cc" );
1632 }
1633 }
1634
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1635 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1636 unsigned long opt, unsigned long asce,
1637 int local)
1638 {
1639 unsigned long r3o;
1640
1641 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1642 r3o |= _ASCE_TYPE_REGION3;
1643 if (__builtin_constant_p(opt) && opt == 0) {
1644 /* flush without guest asce */
1645 asm volatile(
1646 " idte %[r1],0,%[r2],%[m4]"
1647 : "+m" (*pudp)
1648 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1649 [m4] "i" (local)
1650 : "cc");
1651 } else {
1652 /* flush with guest asce */
1653 asm volatile(
1654 " idte %[r1],%[r3],%[r2],%[m4]"
1655 : "+m" (*pudp)
1656 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1657 [r3] "a" (asce), [m4] "i" (local)
1658 : "cc" );
1659 }
1660 }
1661
1662 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1663 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1664 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1665
1666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1667
1668 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1669 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1670 pgtable_t pgtable);
1671
1672 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1673 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1674
1675 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1676 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1677 unsigned long addr, pmd_t *pmdp,
1678 pmd_t entry, int dirty)
1679 {
1680 VM_BUG_ON(addr & ~HPAGE_MASK);
1681
1682 entry = pmd_mkyoung(entry);
1683 if (dirty)
1684 entry = pmd_mkdirty(entry);
1685 if (pmd_val(*pmdp) == pmd_val(entry))
1686 return 0;
1687 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1688 return 1;
1689 }
1690
1691 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1692 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1693 unsigned long addr, pmd_t *pmdp)
1694 {
1695 pmd_t pmd = *pmdp;
1696
1697 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1698 return pmd_young(pmd);
1699 }
1700
1701 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1702 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1703 unsigned long addr, pmd_t *pmdp)
1704 {
1705 VM_BUG_ON(addr & ~HPAGE_MASK);
1706 return pmdp_test_and_clear_young(vma, addr, pmdp);
1707 }
1708
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1709 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1710 pmd_t *pmdp, pmd_t entry)
1711 {
1712 if (!MACHINE_HAS_NX)
1713 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1714 set_pmd(pmdp, entry);
1715 }
1716
pmd_mkhuge(pmd_t pmd)1717 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1718 {
1719 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1720 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1721 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1722 }
1723
1724 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1725 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1726 unsigned long addr, pmd_t *pmdp)
1727 {
1728 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1729 }
1730
1731 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1732 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1733 unsigned long addr,
1734 pmd_t *pmdp, int full)
1735 {
1736 if (full) {
1737 pmd_t pmd = *pmdp;
1738 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1739 return pmd;
1740 }
1741 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1742 }
1743
1744 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1745 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1746 unsigned long addr, pmd_t *pmdp)
1747 {
1748 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1749 }
1750
1751 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1752 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1753 unsigned long addr, pmd_t *pmdp)
1754 {
1755 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1756
1757 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1758 }
1759
1760 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1761 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1762 unsigned long addr, pmd_t *pmdp)
1763 {
1764 pmd_t pmd = *pmdp;
1765
1766 if (pmd_write(pmd))
1767 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1768 }
1769
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1770 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1771 unsigned long address,
1772 pmd_t *pmdp)
1773 {
1774 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1775 }
1776 #define pmdp_collapse_flush pmdp_collapse_flush
1777
1778 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1779 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1780
pmd_trans_huge(pmd_t pmd)1781 static inline int pmd_trans_huge(pmd_t pmd)
1782 {
1783 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1784 }
1785
1786 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1787 static inline int has_transparent_hugepage(void)
1788 {
1789 return MACHINE_HAS_EDAT1 ? 1 : 0;
1790 }
1791 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1792
1793 /*
1794 * 64 bit swap entry format:
1795 * A page-table entry has some bits we have to treat in a special way.
1796 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1797 * as invalid.
1798 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1799 * | offset |E11XX|type |S0|
1800 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1801 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1802 *
1803 * Bits 0-51 store the offset.
1804 * Bit 52 (E) is used to remember PG_anon_exclusive.
1805 * Bits 57-61 store the type.
1806 * Bit 62 (S) is used for softdirty tracking.
1807 * Bits 55 and 56 (X) are unused.
1808 */
1809
1810 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1811 #define __SWP_OFFSET_SHIFT 12
1812 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1813 #define __SWP_TYPE_SHIFT 2
1814
mk_swap_pte(unsigned long type,unsigned long offset)1815 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1816 {
1817 unsigned long pteval;
1818
1819 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1820 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1821 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1822 return __pte(pteval);
1823 }
1824
__swp_type(swp_entry_t entry)1825 static inline unsigned long __swp_type(swp_entry_t entry)
1826 {
1827 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1828 }
1829
__swp_offset(swp_entry_t entry)1830 static inline unsigned long __swp_offset(swp_entry_t entry)
1831 {
1832 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1833 }
1834
__swp_entry(unsigned long type,unsigned long offset)1835 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1836 {
1837 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1838 }
1839
1840 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1841 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1842
1843 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1844 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1845 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1846 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1847 extern void vmem_unmap_4k_page(unsigned long addr);
1848 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1849 extern int s390_enable_sie(void);
1850 extern int s390_enable_skey(void);
1851 extern void s390_reset_cmma(struct mm_struct *mm);
1852
1853 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1854 #define HAVE_ARCH_UNMAPPED_AREA
1855 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1856
1857 #define pmd_pgtable(pmd) \
1858 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1859
1860 #endif /* _S390_PAGE_H */
1861