1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <linux/pipe_fs_i.h>
46 #include <linux/splice.h>
47 #include <asm/pgalloc.h>
48 #include <asm/tlbflush.h>
49 #include "internal.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/filemap.h>
53
54 /*
55 * FIXME: remove all knowledge of the buffer layer from the core VM
56 */
57 #include <linux/buffer_head.h> /* for try_to_free_buffers */
58
59 #include <asm/mman.h>
60
61 /*
62 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * though.
64 *
65 * Shared mappings now work. 15.8.1995 Bruno.
66 *
67 * finished 'unifying' the page and buffer cache and SMP-threaded the
68 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
69 *
70 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
71 */
72
73 /*
74 * Lock ordering:
75 *
76 * ->i_mmap_rwsem (truncate_pagecache)
77 * ->private_lock (__free_pte->block_dirty_folio)
78 * ->swap_lock (exclusive_swap_page, others)
79 * ->i_pages lock
80 *
81 * ->i_rwsem
82 * ->invalidate_lock (acquired by fs in truncate path)
83 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
84 *
85 * ->mmap_lock
86 * ->i_mmap_rwsem
87 * ->page_table_lock or pte_lock (various, mainly in memory.c)
88 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
89 *
90 * ->mmap_lock
91 * ->invalidate_lock (filemap_fault)
92 * ->lock_page (filemap_fault, access_process_vm)
93 *
94 * ->i_rwsem (generic_perform_write)
95 * ->mmap_lock (fault_in_readable->do_page_fault)
96 *
97 * bdi->wb.list_lock
98 * sb_lock (fs/fs-writeback.c)
99 * ->i_pages lock (__sync_single_inode)
100 *
101 * ->i_mmap_rwsem
102 * ->anon_vma.lock (vma_merge)
103 *
104 * ->anon_vma.lock
105 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
106 *
107 * ->page_table_lock or pte_lock
108 * ->swap_lock (try_to_unmap_one)
109 * ->private_lock (try_to_unmap_one)
110 * ->i_pages lock (try_to_unmap_one)
111 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
112 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
113 * ->private_lock (page_remove_rmap->set_page_dirty)
114 * ->i_pages lock (page_remove_rmap->set_page_dirty)
115 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
116 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
117 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
118 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
119 * ->inode->i_lock (zap_pte_range->set_page_dirty)
120 * ->private_lock (zap_pte_range->block_dirty_folio)
121 *
122 * ->i_mmap_rwsem
123 * ->tasklist_lock (memory_failure, collect_procs_ao)
124 */
125
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)126 static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
128 {
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
131
132 mapping_set_update(&xas, mapping);
133
134 /* hugetlb pages are represented by a single entry in the xarray */
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138 }
139
140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
144
145 folio->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
147 mapping->nrpages -= nr;
148 }
149
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)150 static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
152 {
153 long nr;
154
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
176 }
177 }
178
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
181 return;
182
183 nr = folio_nr_pages(folio);
184
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 filemap_nr_thps_dec(mapping);
193 }
194
195 /*
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
198 * unwritten data - on ordinary filesystems.
199 *
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
207 * buddy allocator.
208 */
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213
214 /*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
217 * is safe. The caller must hold the i_pages lock.
218 */
__filemap_remove_folio(struct folio * folio,void * shadow)219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 struct address_space *mapping = folio->mapping;
222
223 trace_mm_filemap_delete_from_page_cache(folio);
224 filemap_unaccount_folio(mapping, folio);
225 page_cache_delete(mapping, folio, shadow);
226 }
227
filemap_free_folio(struct address_space * mapping,struct folio * folio)228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 void (*free_folio)(struct folio *);
231 int refs = 1;
232
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
236
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
240 }
241
242 /**
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
245 *
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
249 */
filemap_remove_folio(struct folio * folio)250 void filemap_remove_folio(struct folio *folio)
251 {
252 struct address_space *mapping = folio->mapping;
253
254 BUG_ON(!folio_test_locked(folio));
255 spin_lock(&mapping->host->i_lock);
256 xa_lock_irq(&mapping->i_pages);
257 __filemap_remove_folio(folio, NULL);
258 xa_unlock_irq(&mapping->i_pages);
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
262
263 filemap_free_folio(mapping, folio);
264 }
265
266 /*
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
270 *
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
276 *
277 * The function expects the i_pages lock to be held.
278 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)279 static void page_cache_delete_batch(struct address_space *mapping,
280 struct folio_batch *fbatch)
281 {
282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 long total_pages = 0;
284 int i = 0;
285 struct folio *folio;
286
287 mapping_set_update(&xas, mapping);
288 xas_for_each(&xas, folio, ULONG_MAX) {
289 if (i >= folio_batch_count(fbatch))
290 break;
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
293 if (xa_is_value(folio))
294 continue;
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
302 if (folio != fbatch->folios[i]) {
303 VM_BUG_ON_FOLIO(folio->index >
304 fbatch->folios[i]->index, folio);
305 continue;
306 }
307
308 WARN_ON_ONCE(!folio_test_locked(folio));
309
310 folio->mapping = NULL;
311 /* Leave folio->index set: truncation lookup relies on it */
312
313 i++;
314 xas_store(&xas, NULL);
315 total_pages += folio_nr_pages(folio);
316 }
317 mapping->nrpages -= total_pages;
318 }
319
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)320 void delete_from_page_cache_batch(struct address_space *mapping,
321 struct folio_batch *fbatch)
322 {
323 int i;
324
325 if (!folio_batch_count(fbatch))
326 return;
327
328 spin_lock(&mapping->host->i_lock);
329 xa_lock_irq(&mapping->i_pages);
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
332
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
335 }
336 page_cache_delete_batch(mapping, fbatch);
337 xa_unlock_irq(&mapping->i_pages);
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
341
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345
filemap_check_errors(struct address_space * mapping)346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
filemap_check_and_keep_errors(struct address_space * mapping)360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368 }
369
370 /**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382 {
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
396 /**
397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
400 * @end: offset in bytes where the range ends (inclusive)
401 * @sync_mode: enable synchronous operation
402 *
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407 * opposed to a regular memory cleansing writeback. The difference between
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
410 *
411 * Return: %0 on success, negative error code otherwise.
412 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
415 {
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
418 .nr_to_write = LONG_MAX,
419 .range_start = start,
420 .range_end = end,
421 };
422
423 return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
filemap_fdatawrite(struct address_space * mapping)432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
filemap_flush(struct address_space * mapping)454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct folio *folio;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(folio))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return folio != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
512
513 while (index <= end) {
514 unsigned i;
515
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
520 break;
521
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
524
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
527 }
528 folio_batch_release(&fbatch);
529 cond_resched();
530 }
531 }
532
533 /**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
546 *
547 * Return: error status of the address space.
548 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551 {
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556
557 /**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573 {
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
579 /**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603
604 /**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
615 *
616 * Return: error status of the address space.
617 */
filemap_fdatawait_keep_errors(struct address_space * mapping)618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624
625 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 return mapping->nrpages;
629 }
630
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)631 bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
633 {
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
636 struct folio *folio;
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
644 continue;
645 if (xa_is_value(folio))
646 continue;
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
649 break;
650 }
651 rcu_read_unlock();
652 return folio != NULL;
653 }
654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655
656 /**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
664 * Note that @lend is inclusive (describes the last byte to be written) so
665 * that this function can be used to write to the very end-of-file (end = -1).
666 *
667 * Return: error status of the address space.
668 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)669 int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671 {
672 int err = 0, err2;
673
674 if (lend < lstart)
675 return 0;
676
677 if (mapping_needs_writeback(mapping)) {
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
688 }
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
692 return err;
693 }
694 EXPORT_SYMBOL(filemap_write_and_wait_range);
695
__filemap_set_wb_err(struct address_space * mapping,int err)696 void __filemap_set_wb_err(struct address_space *mapping, int err)
697 {
698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
699
700 trace_filemap_set_wb_err(mapping, eseq);
701 }
702 EXPORT_SYMBOL(__filemap_set_wb_err);
703
704 /**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
725 *
726 * Return: %0 on success, negative error code otherwise.
727 */
file_check_and_advance_wb_err(struct file * file)728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
752 return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
769 *
770 * Return: %0 on success, negative error code otherwise.
771 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 {
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
777 if (lend < lstart)
778 return 0;
779
780 if (mapping_needs_writeback(mapping)) {
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793
794 /**
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
803 * caller must do that.
804 *
805 * The remove + add is atomic. This function cannot fail.
806 */
replace_page_cache_folio(struct folio * old,struct folio * new)807 void replace_page_cache_folio(struct folio *old, struct folio *new)
808 {
809 struct address_space *mapping = old->mapping;
810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
813
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
817
818 folio_get(new);
819 new->mapping = mapping;
820 new->index = offset;
821
822 mem_cgroup_migrate(old, new);
823
824 xas_lock_irq(&xas);
825 xas_store(&xas, new);
826
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
838 if (free_folio)
839 free_folio(old);
840 folio_put(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
843
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)844 noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 bool charged = false;
850 long nr = 1;
851
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 mapping_set_update(&xas, mapping);
855
856 if (!huge) {
857 int error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 if (error)
860 return error;
861 charged = true;
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
864 }
865
866 gfp &= GFP_RECLAIM_MASK;
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
870
871 do {
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
875 if (order > folio_order(folio))
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
878 xas_lock_irq(&xas);
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
892 if (order > folio_order(folio)) {
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
900 xas_store(&xas, folio);
901 if (xas_error(&xas))
902 goto unlock;
903
904 mapping->nrpages += nr;
905
906 /* hugetlb pages do not participate in page cache accounting */
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
913 unlock:
914 xas_unlock_irq(&xas);
915 } while (xas_nomem(&xas, gfp));
916
917 if (xas_error(&xas))
918 goto error;
919
920 trace_mm_filemap_add_to_page_cache(folio);
921 return 0;
922 error:
923 if (charged)
924 mem_cgroup_uncharge(folio);
925 folio->mapping = NULL;
926 /* Leave page->index set: truncation relies upon it */
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
929 }
930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)932 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
933 pgoff_t index, gfp_t gfp)
934 {
935 void *shadow = NULL;
936 int ret;
937
938 __folio_set_locked(folio);
939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
940 if (unlikely(ret))
941 __folio_clear_locked(folio);
942 else {
943 /*
944 * The folio might have been evicted from cache only
945 * recently, in which case it should be activated like
946 * any other repeatedly accessed folio.
947 * The exception is folios getting rewritten; evicting other
948 * data from the working set, only to cache data that will
949 * get overwritten with something else, is a waste of memory.
950 */
951 WARN_ON_ONCE(folio_test_active(folio));
952 if (!(gfp & __GFP_WRITE) && shadow)
953 workingset_refault(folio, shadow);
954 folio_add_lru(folio);
955 }
956 return ret;
957 }
958 EXPORT_SYMBOL_GPL(filemap_add_folio);
959
960 #ifdef CONFIG_NUMA
filemap_alloc_folio(gfp_t gfp,unsigned int order)961 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
962 {
963 int n;
964 struct folio *folio;
965
966 if (cpuset_do_page_mem_spread()) {
967 unsigned int cpuset_mems_cookie;
968 do {
969 cpuset_mems_cookie = read_mems_allowed_begin();
970 n = cpuset_mem_spread_node();
971 folio = __folio_alloc_node(gfp, order, n);
972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
973
974 return folio;
975 }
976 return folio_alloc(gfp, order);
977 }
978 EXPORT_SYMBOL(filemap_alloc_folio);
979 #endif
980
981 /*
982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983 *
984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985 *
986 * @mapping1: the first mapping to lock
987 * @mapping2: the second mapping to lock
988 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)989 void filemap_invalidate_lock_two(struct address_space *mapping1,
990 struct address_space *mapping2)
991 {
992 if (mapping1 > mapping2)
993 swap(mapping1, mapping2);
994 if (mapping1)
995 down_write(&mapping1->invalidate_lock);
996 if (mapping2 && mapping1 != mapping2)
997 down_write_nested(&mapping2->invalidate_lock, 1);
998 }
999 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000
1001 /*
1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003 *
1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to unlock
1007 * @mapping2: the second mapping to unlock
1008 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1009 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011 {
1012 if (mapping1)
1013 up_write(&mapping1->invalidate_lock);
1014 if (mapping2 && mapping1 != mapping2)
1015 up_write(&mapping2->invalidate_lock);
1016 }
1017 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018
1019 /*
1020 * In order to wait for pages to become available there must be
1021 * waitqueues associated with pages. By using a hash table of
1022 * waitqueues where the bucket discipline is to maintain all
1023 * waiters on the same queue and wake all when any of the pages
1024 * become available, and for the woken contexts to check to be
1025 * sure the appropriate page became available, this saves space
1026 * at a cost of "thundering herd" phenomena during rare hash
1027 * collisions.
1028 */
1029 #define PAGE_WAIT_TABLE_BITS 8
1030 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1031 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1032
folio_waitqueue(struct folio * folio)1033 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1034 {
1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1036 }
1037
pagecache_init(void)1038 void __init pagecache_init(void)
1039 {
1040 int i;
1041
1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1043 init_waitqueue_head(&folio_wait_table[i]);
1044
1045 page_writeback_init();
1046 }
1047
1048 /*
1049 * The page wait code treats the "wait->flags" somewhat unusually, because
1050 * we have multiple different kinds of waits, not just the usual "exclusive"
1051 * one.
1052 *
1053 * We have:
1054 *
1055 * (a) no special bits set:
1056 *
1057 * We're just waiting for the bit to be released, and when a waker
1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1059 * and remove it from the wait queue.
1060 *
1061 * Simple and straightforward.
1062 *
1063 * (b) WQ_FLAG_EXCLUSIVE:
1064 *
1065 * The waiter is waiting to get the lock, and only one waiter should
1066 * be woken up to avoid any thundering herd behavior. We'll set the
1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068 *
1069 * This is the traditional exclusive wait.
1070 *
1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1072 *
1073 * The waiter is waiting to get the bit, and additionally wants the
1074 * lock to be transferred to it for fair lock behavior. If the lock
1075 * cannot be taken, we stop walking the wait queue without waking
1076 * the waiter.
1077 *
1078 * This is the "fair lock handoff" case, and in addition to setting
1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1080 * that it now has the lock.
1081 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1082 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1083 {
1084 unsigned int flags;
1085 struct wait_page_key *key = arg;
1086 struct wait_page_queue *wait_page
1087 = container_of(wait, struct wait_page_queue, wait);
1088
1089 if (!wake_page_match(wait_page, key))
1090 return 0;
1091
1092 /*
1093 * If it's a lock handoff wait, we get the bit for it, and
1094 * stop walking (and do not wake it up) if we can't.
1095 */
1096 flags = wait->flags;
1097 if (flags & WQ_FLAG_EXCLUSIVE) {
1098 if (test_bit(key->bit_nr, &key->folio->flags))
1099 return -1;
1100 if (flags & WQ_FLAG_CUSTOM) {
1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1102 return -1;
1103 flags |= WQ_FLAG_DONE;
1104 }
1105 }
1106
1107 /*
1108 * We are holding the wait-queue lock, but the waiter that
1109 * is waiting for this will be checking the flags without
1110 * any locking.
1111 *
1112 * So update the flags atomically, and wake up the waiter
1113 * afterwards to avoid any races. This store-release pairs
1114 * with the load-acquire in folio_wait_bit_common().
1115 */
1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1117 wake_up_state(wait->private, mode);
1118
1119 /*
1120 * Ok, we have successfully done what we're waiting for,
1121 * and we can unconditionally remove the wait entry.
1122 *
1123 * Note that this pairs with the "finish_wait()" in the
1124 * waiter, and has to be the absolute last thing we do.
1125 * After this list_del_init(&wait->entry) the wait entry
1126 * might be de-allocated and the process might even have
1127 * exited.
1128 */
1129 list_del_init_careful(&wait->entry);
1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1131 }
1132
folio_wake_bit(struct folio * folio,int bit_nr)1133 static void folio_wake_bit(struct folio *folio, int bit_nr)
1134 {
1135 wait_queue_head_t *q = folio_waitqueue(folio);
1136 struct wait_page_key key;
1137 unsigned long flags;
1138 wait_queue_entry_t bookmark;
1139
1140 key.folio = folio;
1141 key.bit_nr = bit_nr;
1142 key.page_match = 0;
1143
1144 bookmark.flags = 0;
1145 bookmark.private = NULL;
1146 bookmark.func = NULL;
1147 INIT_LIST_HEAD(&bookmark.entry);
1148
1149 spin_lock_irqsave(&q->lock, flags);
1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151
1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1153 /*
1154 * Take a breather from holding the lock,
1155 * allow pages that finish wake up asynchronously
1156 * to acquire the lock and remove themselves
1157 * from wait queue
1158 */
1159 spin_unlock_irqrestore(&q->lock, flags);
1160 cpu_relax();
1161 spin_lock_irqsave(&q->lock, flags);
1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1163 }
1164
1165 /*
1166 * It's possible to miss clearing waiters here, when we woke our page
1167 * waiters, but the hashed waitqueue has waiters for other pages on it.
1168 * That's okay, it's a rare case. The next waker will clear it.
1169 *
1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1171 * other), the flag may be cleared in the course of freeing the page;
1172 * but that is not required for correctness.
1173 */
1174 if (!waitqueue_active(q) || !key.page_match)
1175 folio_clear_waiters(folio);
1176
1177 spin_unlock_irqrestore(&q->lock, flags);
1178 }
1179
folio_wake(struct folio * folio,int bit)1180 static void folio_wake(struct folio *folio, int bit)
1181 {
1182 if (!folio_test_waiters(folio))
1183 return;
1184 folio_wake_bit(folio, bit);
1185 }
1186
1187 /*
1188 * A choice of three behaviors for folio_wait_bit_common():
1189 */
1190 enum behavior {
1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1192 * __folio_lock() waiting on then setting PG_locked.
1193 */
1194 SHARED, /* Hold ref to page and check the bit when woken, like
1195 * folio_wait_writeback() waiting on PG_writeback.
1196 */
1197 DROP, /* Drop ref to page before wait, no check when woken,
1198 * like folio_put_wait_locked() on PG_locked.
1199 */
1200 };
1201
1202 /*
1203 * Attempt to check (or get) the folio flag, and mark us done
1204 * if successful.
1205 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1206 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1207 struct wait_queue_entry *wait)
1208 {
1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1210 if (test_and_set_bit(bit_nr, &folio->flags))
1211 return false;
1212 } else if (test_bit(bit_nr, &folio->flags))
1213 return false;
1214
1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1216 return true;
1217 }
1218
1219 /* How many times do we accept lock stealing from under a waiter? */
1220 int sysctl_page_lock_unfairness = 5;
1221
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1222 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1223 int state, enum behavior behavior)
1224 {
1225 wait_queue_head_t *q = folio_waitqueue(folio);
1226 int unfairness = sysctl_page_lock_unfairness;
1227 struct wait_page_queue wait_page;
1228 wait_queue_entry_t *wait = &wait_page.wait;
1229 bool thrashing = false;
1230 unsigned long pflags;
1231 bool in_thrashing;
1232
1233 if (bit_nr == PG_locked &&
1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1235 delayacct_thrashing_start(&in_thrashing);
1236 psi_memstall_enter(&pflags);
1237 thrashing = true;
1238 }
1239
1240 init_wait(wait);
1241 wait->func = wake_page_function;
1242 wait_page.folio = folio;
1243 wait_page.bit_nr = bit_nr;
1244
1245 repeat:
1246 wait->flags = 0;
1247 if (behavior == EXCLUSIVE) {
1248 wait->flags = WQ_FLAG_EXCLUSIVE;
1249 if (--unfairness < 0)
1250 wait->flags |= WQ_FLAG_CUSTOM;
1251 }
1252
1253 /*
1254 * Do one last check whether we can get the
1255 * page bit synchronously.
1256 *
1257 * Do the folio_set_waiters() marking before that
1258 * to let any waker we _just_ missed know they
1259 * need to wake us up (otherwise they'll never
1260 * even go to the slow case that looks at the
1261 * page queue), and add ourselves to the wait
1262 * queue if we need to sleep.
1263 *
1264 * This part needs to be done under the queue
1265 * lock to avoid races.
1266 */
1267 spin_lock_irq(&q->lock);
1268 folio_set_waiters(folio);
1269 if (!folio_trylock_flag(folio, bit_nr, wait))
1270 __add_wait_queue_entry_tail(q, wait);
1271 spin_unlock_irq(&q->lock);
1272
1273 /*
1274 * From now on, all the logic will be based on
1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 * see whether the page bit testing has already
1277 * been done by the wake function.
1278 *
1279 * We can drop our reference to the folio.
1280 */
1281 if (behavior == DROP)
1282 folio_put(folio);
1283
1284 /*
1285 * Note that until the "finish_wait()", or until
1286 * we see the WQ_FLAG_WOKEN flag, we need to
1287 * be very careful with the 'wait->flags', because
1288 * we may race with a waker that sets them.
1289 */
1290 for (;;) {
1291 unsigned int flags;
1292
1293 set_current_state(state);
1294
1295 /* Loop until we've been woken or interrupted */
1296 flags = smp_load_acquire(&wait->flags);
1297 if (!(flags & WQ_FLAG_WOKEN)) {
1298 if (signal_pending_state(state, current))
1299 break;
1300
1301 io_schedule();
1302 continue;
1303 }
1304
1305 /* If we were non-exclusive, we're done */
1306 if (behavior != EXCLUSIVE)
1307 break;
1308
1309 /* If the waker got the lock for us, we're done */
1310 if (flags & WQ_FLAG_DONE)
1311 break;
1312
1313 /*
1314 * Otherwise, if we're getting the lock, we need to
1315 * try to get it ourselves.
1316 *
1317 * And if that fails, we'll have to retry this all.
1318 */
1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1320 goto repeat;
1321
1322 wait->flags |= WQ_FLAG_DONE;
1323 break;
1324 }
1325
1326 /*
1327 * If a signal happened, this 'finish_wait()' may remove the last
1328 * waiter from the wait-queues, but the folio waiters bit will remain
1329 * set. That's ok. The next wakeup will take care of it, and trying
1330 * to do it here would be difficult and prone to races.
1331 */
1332 finish_wait(q, wait);
1333
1334 if (thrashing) {
1335 delayacct_thrashing_end(&in_thrashing);
1336 psi_memstall_leave(&pflags);
1337 }
1338
1339 /*
1340 * NOTE! The wait->flags weren't stable until we've done the
1341 * 'finish_wait()', and we could have exited the loop above due
1342 * to a signal, and had a wakeup event happen after the signal
1343 * test but before the 'finish_wait()'.
1344 *
1345 * So only after the finish_wait() can we reliably determine
1346 * if we got woken up or not, so we can now figure out the final
1347 * return value based on that state without races.
1348 *
1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1350 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1351 */
1352 if (behavior == EXCLUSIVE)
1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1354
1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1356 }
1357
1358 #ifdef CONFIG_MIGRATION
1359 /**
1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1361 * @entry: migration swap entry.
1362 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1363 * for pte entries, pass NULL for pmd entries.
1364 * @ptl: already locked ptl. This function will drop the lock.
1365 *
1366 * Wait for a migration entry referencing the given page to be removed. This is
1367 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1368 * this can be called without taking a reference on the page. Instead this
1369 * should be called while holding the ptl for the migration entry referencing
1370 * the page.
1371 *
1372 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1373 *
1374 * This follows the same logic as folio_wait_bit_common() so see the comments
1375 * there.
1376 */
migration_entry_wait_on_locked(swp_entry_t entry,pte_t * ptep,spinlock_t * ptl)1377 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1378 spinlock_t *ptl)
1379 {
1380 struct wait_page_queue wait_page;
1381 wait_queue_entry_t *wait = &wait_page.wait;
1382 bool thrashing = false;
1383 unsigned long pflags;
1384 bool in_thrashing;
1385 wait_queue_head_t *q;
1386 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1387
1388 q = folio_waitqueue(folio);
1389 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1390 delayacct_thrashing_start(&in_thrashing);
1391 psi_memstall_enter(&pflags);
1392 thrashing = true;
1393 }
1394
1395 init_wait(wait);
1396 wait->func = wake_page_function;
1397 wait_page.folio = folio;
1398 wait_page.bit_nr = PG_locked;
1399 wait->flags = 0;
1400
1401 spin_lock_irq(&q->lock);
1402 folio_set_waiters(folio);
1403 if (!folio_trylock_flag(folio, PG_locked, wait))
1404 __add_wait_queue_entry_tail(q, wait);
1405 spin_unlock_irq(&q->lock);
1406
1407 /*
1408 * If a migration entry exists for the page the migration path must hold
1409 * a valid reference to the page, and it must take the ptl to remove the
1410 * migration entry. So the page is valid until the ptl is dropped.
1411 */
1412 if (ptep)
1413 pte_unmap_unlock(ptep, ptl);
1414 else
1415 spin_unlock(ptl);
1416
1417 for (;;) {
1418 unsigned int flags;
1419
1420 set_current_state(TASK_UNINTERRUPTIBLE);
1421
1422 /* Loop until we've been woken or interrupted */
1423 flags = smp_load_acquire(&wait->flags);
1424 if (!(flags & WQ_FLAG_WOKEN)) {
1425 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1426 break;
1427
1428 io_schedule();
1429 continue;
1430 }
1431 break;
1432 }
1433
1434 finish_wait(q, wait);
1435
1436 if (thrashing) {
1437 delayacct_thrashing_end(&in_thrashing);
1438 psi_memstall_leave(&pflags);
1439 }
1440 }
1441 #endif
1442
folio_wait_bit(struct folio * folio,int bit_nr)1443 void folio_wait_bit(struct folio *folio, int bit_nr)
1444 {
1445 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1446 }
1447 EXPORT_SYMBOL(folio_wait_bit);
1448
folio_wait_bit_killable(struct folio * folio,int bit_nr)1449 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1450 {
1451 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1452 }
1453 EXPORT_SYMBOL(folio_wait_bit_killable);
1454
1455 /**
1456 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1457 * @folio: The folio to wait for.
1458 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1459 *
1460 * The caller should hold a reference on @folio. They expect the page to
1461 * become unlocked relatively soon, but do not wish to hold up migration
1462 * (for example) by holding the reference while waiting for the folio to
1463 * come unlocked. After this function returns, the caller should not
1464 * dereference @folio.
1465 *
1466 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1467 */
folio_put_wait_locked(struct folio * folio,int state)1468 static int folio_put_wait_locked(struct folio *folio, int state)
1469 {
1470 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1471 }
1472
1473 /**
1474 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1475 * @folio: Folio defining the wait queue of interest
1476 * @waiter: Waiter to add to the queue
1477 *
1478 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1479 */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1480 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1481 {
1482 wait_queue_head_t *q = folio_waitqueue(folio);
1483 unsigned long flags;
1484
1485 spin_lock_irqsave(&q->lock, flags);
1486 __add_wait_queue_entry_tail(q, waiter);
1487 folio_set_waiters(folio);
1488 spin_unlock_irqrestore(&q->lock, flags);
1489 }
1490 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1491
1492 #ifndef clear_bit_unlock_is_negative_byte
1493
1494 /*
1495 * PG_waiters is the high bit in the same byte as PG_lock.
1496 *
1497 * On x86 (and on many other architectures), we can clear PG_lock and
1498 * test the sign bit at the same time. But if the architecture does
1499 * not support that special operation, we just do this all by hand
1500 * instead.
1501 *
1502 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1503 * being cleared, but a memory barrier should be unnecessary since it is
1504 * in the same byte as PG_locked.
1505 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1506 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1507 {
1508 clear_bit_unlock(nr, mem);
1509 /* smp_mb__after_atomic(); */
1510 return test_bit(PG_waiters, mem);
1511 }
1512
1513 #endif
1514
1515 /**
1516 * folio_unlock - Unlock a locked folio.
1517 * @folio: The folio.
1518 *
1519 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1520 *
1521 * Context: May be called from interrupt or process context. May not be
1522 * called from NMI context.
1523 */
folio_unlock(struct folio * folio)1524 void folio_unlock(struct folio *folio)
1525 {
1526 /* Bit 7 allows x86 to check the byte's sign bit */
1527 BUILD_BUG_ON(PG_waiters != 7);
1528 BUILD_BUG_ON(PG_locked > 7);
1529 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1530 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1531 folio_wake_bit(folio, PG_locked);
1532 }
1533 EXPORT_SYMBOL(folio_unlock);
1534
1535 /**
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
1538 *
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it. The folio reference held for PG_private_2 being set is released.
1541 *
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
1544 * serialised.
1545 */
folio_end_private_2(struct folio * folio)1546 void folio_end_private_2(struct folio *folio)
1547 {
1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550 folio_wake_bit(folio, PG_private_2);
1551 folio_put(folio);
1552 }
1553 EXPORT_SYMBOL(folio_end_private_2);
1554
1555 /**
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
1558 *
1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1560 */
folio_wait_private_2(struct folio * folio)1561 void folio_wait_private_2(struct folio *folio)
1562 {
1563 while (folio_test_private_2(folio))
1564 folio_wait_bit(folio, PG_private_2);
1565 }
1566 EXPORT_SYMBOL(folio_wait_private_2);
1567
1568 /**
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
1571 *
1572 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1573 * fatal signal is received by the calling task.
1574 *
1575 * Return:
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1578 */
folio_wait_private_2_killable(struct folio * folio)1579 int folio_wait_private_2_killable(struct folio *folio)
1580 {
1581 int ret = 0;
1582
1583 while (folio_test_private_2(folio)) {
1584 ret = folio_wait_bit_killable(folio, PG_private_2);
1585 if (ret < 0)
1586 break;
1587 }
1588
1589 return ret;
1590 }
1591 EXPORT_SYMBOL(folio_wait_private_2_killable);
1592
1593 /**
1594 * folio_end_writeback - End writeback against a folio.
1595 * @folio: The folio.
1596 */
folio_end_writeback(struct folio * folio)1597 void folio_end_writeback(struct folio *folio)
1598 {
1599 /*
1600 * folio_test_clear_reclaim() could be used here but it is an
1601 * atomic operation and overkill in this particular case. Failing
1602 * to shuffle a folio marked for immediate reclaim is too mild
1603 * a gain to justify taking an atomic operation penalty at the
1604 * end of every folio writeback.
1605 */
1606 if (folio_test_reclaim(folio)) {
1607 folio_clear_reclaim(folio);
1608 folio_rotate_reclaimable(folio);
1609 }
1610
1611 /*
1612 * Writeback does not hold a folio reference of its own, relying
1613 * on truncation to wait for the clearing of PG_writeback.
1614 * But here we must make sure that the folio is not freed and
1615 * reused before the folio_wake().
1616 */
1617 folio_get(folio);
1618 if (!__folio_end_writeback(folio))
1619 BUG();
1620
1621 smp_mb__after_atomic();
1622 folio_wake(folio, PG_writeback);
1623 acct_reclaim_writeback(folio);
1624 folio_put(folio);
1625 }
1626 EXPORT_SYMBOL(folio_end_writeback);
1627
1628 /*
1629 * After completing I/O on a page, call this routine to update the page
1630 * flags appropriately
1631 */
page_endio(struct page * page,bool is_write,int err)1632 void page_endio(struct page *page, bool is_write, int err)
1633 {
1634 struct folio *folio = page_folio(page);
1635
1636 if (!is_write) {
1637 if (!err) {
1638 folio_mark_uptodate(folio);
1639 } else {
1640 folio_clear_uptodate(folio);
1641 folio_set_error(folio);
1642 }
1643 folio_unlock(folio);
1644 } else {
1645 if (err) {
1646 struct address_space *mapping;
1647
1648 folio_set_error(folio);
1649 mapping = folio_mapping(folio);
1650 if (mapping)
1651 mapping_set_error(mapping, err);
1652 }
1653 folio_end_writeback(folio);
1654 }
1655 }
1656 EXPORT_SYMBOL_GPL(page_endio);
1657
1658 /**
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1661 */
__folio_lock(struct folio * folio)1662 void __folio_lock(struct folio *folio)
1663 {
1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1665 EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL(__folio_lock);
1668
__folio_lock_killable(struct folio * folio)1669 int __folio_lock_killable(struct folio *folio)
1670 {
1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1672 EXCLUSIVE);
1673 }
1674 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1675
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1677 {
1678 struct wait_queue_head *q = folio_waitqueue(folio);
1679 int ret = 0;
1680
1681 wait->folio = folio;
1682 wait->bit_nr = PG_locked;
1683
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
1688 /*
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1693 */
1694 if (!ret)
1695 __remove_wait_queue(q, &wait->wait);
1696 else
1697 ret = -EIOCBQUEUED;
1698 spin_unlock_irq(&q->lock);
1699 return ret;
1700 }
1701
1702 /*
1703 * Return values:
1704 * true - folio is locked; mmap_lock is still held.
1705 * false - folio is not locked.
1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1708 * which case mmap_lock is still held.
1709 *
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1711 * with the folio locked and the mmap_lock unperturbed.
1712 */
__folio_lock_or_retry(struct folio * folio,struct mm_struct * mm,unsigned int flags)1713 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1714 unsigned int flags)
1715 {
1716 if (fault_flag_allow_retry_first(flags)) {
1717 /*
1718 * CAUTION! In this case, mmap_lock is not released
1719 * even though return 0.
1720 */
1721 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1722 return false;
1723
1724 mmap_read_unlock(mm);
1725 if (flags & FAULT_FLAG_KILLABLE)
1726 folio_wait_locked_killable(folio);
1727 else
1728 folio_wait_locked(folio);
1729 return false;
1730 }
1731 if (flags & FAULT_FLAG_KILLABLE) {
1732 bool ret;
1733
1734 ret = __folio_lock_killable(folio);
1735 if (ret) {
1736 mmap_read_unlock(mm);
1737 return false;
1738 }
1739 } else {
1740 __folio_lock(folio);
1741 }
1742
1743 return true;
1744 }
1745
1746 /**
1747 * page_cache_next_miss() - Find the next gap in the page cache.
1748 * @mapping: Mapping.
1749 * @index: Index.
1750 * @max_scan: Maximum range to search.
1751 *
1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1753 * gap with the lowest index.
1754 *
1755 * This function may be called under the rcu_read_lock. However, this will
1756 * not atomically search a snapshot of the cache at a single point in time.
1757 * For example, if a gap is created at index 5, then subsequently a gap is
1758 * created at index 10, page_cache_next_miss covering both indices may
1759 * return 10 if called under the rcu_read_lock.
1760 *
1761 * Return: The index of the gap if found, otherwise an index outside the
1762 * range specified (in which case 'return - index >= max_scan' will be true).
1763 * In the rare case of index wrap-around, 0 will be returned.
1764 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1765 pgoff_t page_cache_next_miss(struct address_space *mapping,
1766 pgoff_t index, unsigned long max_scan)
1767 {
1768 XA_STATE(xas, &mapping->i_pages, index);
1769
1770 while (max_scan--) {
1771 void *entry = xas_next(&xas);
1772 if (!entry || xa_is_value(entry))
1773 break;
1774 if (xas.xa_index == 0)
1775 break;
1776 }
1777
1778 return xas.xa_index;
1779 }
1780 EXPORT_SYMBOL(page_cache_next_miss);
1781
1782 /**
1783 * page_cache_prev_miss() - Find the previous gap in the page cache.
1784 * @mapping: Mapping.
1785 * @index: Index.
1786 * @max_scan: Maximum range to search.
1787 *
1788 * Search the range [max(index - max_scan + 1, 0), index] for the
1789 * gap with the highest index.
1790 *
1791 * This function may be called under the rcu_read_lock. However, this will
1792 * not atomically search a snapshot of the cache at a single point in time.
1793 * For example, if a gap is created at index 10, then subsequently a gap is
1794 * created at index 5, page_cache_prev_miss() covering both indices may
1795 * return 5 if called under the rcu_read_lock.
1796 *
1797 * Return: The index of the gap if found, otherwise an index outside the
1798 * range specified (in which case 'index - return >= max_scan' will be true).
1799 * In the rare case of wrap-around, ULONG_MAX will be returned.
1800 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1801 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1802 pgoff_t index, unsigned long max_scan)
1803 {
1804 XA_STATE(xas, &mapping->i_pages, index);
1805
1806 while (max_scan--) {
1807 void *entry = xas_prev(&xas);
1808 if (!entry || xa_is_value(entry))
1809 break;
1810 if (xas.xa_index == ULONG_MAX)
1811 break;
1812 }
1813
1814 return xas.xa_index;
1815 }
1816 EXPORT_SYMBOL(page_cache_prev_miss);
1817
1818 /*
1819 * Lockless page cache protocol:
1820 * On the lookup side:
1821 * 1. Load the folio from i_pages
1822 * 2. Increment the refcount if it's not zero
1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1824 *
1825 * On the removal side:
1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1827 * B. Remove the page from i_pages
1828 * C. Return the page to the page allocator
1829 *
1830 * This means that any page may have its reference count temporarily
1831 * increased by a speculative page cache (or fast GUP) lookup as it can
1832 * be allocated by another user before the RCU grace period expires.
1833 * Because the refcount temporarily acquired here may end up being the
1834 * last refcount on the page, any page allocation must be freeable by
1835 * folio_put().
1836 */
1837
1838 /*
1839 * mapping_get_entry - Get a page cache entry.
1840 * @mapping: the address_space to search
1841 * @index: The page cache index.
1842 *
1843 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1844 * it is returned with an increased refcount. If it is a shadow entry
1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1846 * it is returned without further action.
1847 *
1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1849 */
mapping_get_entry(struct address_space * mapping,pgoff_t index)1850 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1851 {
1852 XA_STATE(xas, &mapping->i_pages, index);
1853 struct folio *folio;
1854
1855 rcu_read_lock();
1856 repeat:
1857 xas_reset(&xas);
1858 folio = xas_load(&xas);
1859 if (xas_retry(&xas, folio))
1860 goto repeat;
1861 /*
1862 * A shadow entry of a recently evicted page, or a swap entry from
1863 * shmem/tmpfs. Return it without attempting to raise page count.
1864 */
1865 if (!folio || xa_is_value(folio))
1866 goto out;
1867
1868 if (!folio_try_get_rcu(folio))
1869 goto repeat;
1870
1871 if (unlikely(folio != xas_reload(&xas))) {
1872 folio_put(folio);
1873 goto repeat;
1874 }
1875 out:
1876 rcu_read_unlock();
1877
1878 return folio;
1879 }
1880
1881 /**
1882 * __filemap_get_folio - Find and get a reference to a folio.
1883 * @mapping: The address_space to search.
1884 * @index: The page index.
1885 * @fgp_flags: %FGP flags modify how the folio is returned.
1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1887 *
1888 * Looks up the page cache entry at @mapping & @index.
1889 *
1890 * @fgp_flags can be zero or more of these flags:
1891 *
1892 * * %FGP_ACCESSED - The folio will be marked accessed.
1893 * * %FGP_LOCK - The folio is returned locked.
1894 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1895 * instead of allocating a new folio to replace it.
1896 * * %FGP_CREAT - If no page is present then a new page is allocated using
1897 * @gfp and added to the page cache and the VM's LRU list.
1898 * The page is returned locked and with an increased refcount.
1899 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1900 * page is already in cache. If the page was allocated, unlock it before
1901 * returning so the caller can do the same dance.
1902 * * %FGP_WRITE - The page will be written to by the caller.
1903 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1904 * * %FGP_NOWAIT - Don't get blocked by page lock.
1905 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1906 *
1907 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1908 * if the %GFP flags specified for %FGP_CREAT are atomic.
1909 *
1910 * If there is a page cache page, it is returned with an increased refcount.
1911 *
1912 * Return: The found folio or %NULL otherwise.
1913 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp)1914 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1915 int fgp_flags, gfp_t gfp)
1916 {
1917 struct folio *folio;
1918
1919 repeat:
1920 folio = mapping_get_entry(mapping, index);
1921 if (xa_is_value(folio)) {
1922 if (fgp_flags & FGP_ENTRY)
1923 return folio;
1924 folio = NULL;
1925 }
1926 if (!folio)
1927 goto no_page;
1928
1929 if (fgp_flags & FGP_LOCK) {
1930 if (fgp_flags & FGP_NOWAIT) {
1931 if (!folio_trylock(folio)) {
1932 folio_put(folio);
1933 return NULL;
1934 }
1935 } else {
1936 folio_lock(folio);
1937 }
1938
1939 /* Has the page been truncated? */
1940 if (unlikely(folio->mapping != mapping)) {
1941 folio_unlock(folio);
1942 folio_put(folio);
1943 goto repeat;
1944 }
1945 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1946 }
1947
1948 if (fgp_flags & FGP_ACCESSED)
1949 folio_mark_accessed(folio);
1950 else if (fgp_flags & FGP_WRITE) {
1951 /* Clear idle flag for buffer write */
1952 if (folio_test_idle(folio))
1953 folio_clear_idle(folio);
1954 }
1955
1956 if (fgp_flags & FGP_STABLE)
1957 folio_wait_stable(folio);
1958 no_page:
1959 if (!folio && (fgp_flags & FGP_CREAT)) {
1960 int err;
1961 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1962 gfp |= __GFP_WRITE;
1963 if (fgp_flags & FGP_NOFS)
1964 gfp &= ~__GFP_FS;
1965 if (fgp_flags & FGP_NOWAIT) {
1966 gfp &= ~GFP_KERNEL;
1967 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1968 }
1969
1970 folio = filemap_alloc_folio(gfp, 0);
1971 if (!folio)
1972 return NULL;
1973
1974 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1975 fgp_flags |= FGP_LOCK;
1976
1977 /* Init accessed so avoid atomic mark_page_accessed later */
1978 if (fgp_flags & FGP_ACCESSED)
1979 __folio_set_referenced(folio);
1980
1981 err = filemap_add_folio(mapping, folio, index, gfp);
1982 if (unlikely(err)) {
1983 folio_put(folio);
1984 folio = NULL;
1985 if (err == -EEXIST)
1986 goto repeat;
1987 }
1988
1989 /*
1990 * filemap_add_folio locks the page, and for mmap
1991 * we expect an unlocked page.
1992 */
1993 if (folio && (fgp_flags & FGP_FOR_MMAP))
1994 folio_unlock(folio);
1995 }
1996
1997 return folio;
1998 }
1999 EXPORT_SYMBOL(__filemap_get_folio);
2000
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2001 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2002 xa_mark_t mark)
2003 {
2004 struct folio *folio;
2005
2006 retry:
2007 if (mark == XA_PRESENT)
2008 folio = xas_find(xas, max);
2009 else
2010 folio = xas_find_marked(xas, max, mark);
2011
2012 if (xas_retry(xas, folio))
2013 goto retry;
2014 /*
2015 * A shadow entry of a recently evicted page, a swap
2016 * entry from shmem/tmpfs or a DAX entry. Return it
2017 * without attempting to raise page count.
2018 */
2019 if (!folio || xa_is_value(folio))
2020 return folio;
2021
2022 if (!folio_try_get_rcu(folio))
2023 goto reset;
2024
2025 if (unlikely(folio != xas_reload(xas))) {
2026 folio_put(folio);
2027 goto reset;
2028 }
2029
2030 return folio;
2031 reset:
2032 xas_reset(xas);
2033 goto retry;
2034 }
2035
2036 /**
2037 * find_get_entries - gang pagecache lookup
2038 * @mapping: The address_space to search
2039 * @start: The starting page cache index
2040 * @end: The final page index (inclusive).
2041 * @fbatch: Where the resulting entries are placed.
2042 * @indices: The cache indices corresponding to the entries in @entries
2043 *
2044 * find_get_entries() will search for and return a batch of entries in
2045 * the mapping. The entries are placed in @fbatch. find_get_entries()
2046 * takes a reference on any actual folios it returns.
2047 *
2048 * The entries have ascending indexes. The indices may not be consecutive
2049 * due to not-present entries or large folios.
2050 *
2051 * Any shadow entries of evicted folios, or swap entries from
2052 * shmem/tmpfs, are included in the returned array.
2053 *
2054 * Return: The number of entries which were found.
2055 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2056 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2057 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2058 {
2059 XA_STATE(xas, &mapping->i_pages, *start);
2060 struct folio *folio;
2061
2062 rcu_read_lock();
2063 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2064 indices[fbatch->nr] = xas.xa_index;
2065 if (!folio_batch_add(fbatch, folio))
2066 break;
2067 }
2068 rcu_read_unlock();
2069
2070 if (folio_batch_count(fbatch)) {
2071 unsigned long nr = 1;
2072 int idx = folio_batch_count(fbatch) - 1;
2073
2074 folio = fbatch->folios[idx];
2075 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2076 nr = folio_nr_pages(folio);
2077 *start = indices[idx] + nr;
2078 }
2079 return folio_batch_count(fbatch);
2080 }
2081
2082 /**
2083 * find_lock_entries - Find a batch of pagecache entries.
2084 * @mapping: The address_space to search.
2085 * @start: The starting page cache index.
2086 * @end: The final page index (inclusive).
2087 * @fbatch: Where the resulting entries are placed.
2088 * @indices: The cache indices of the entries in @fbatch.
2089 *
2090 * find_lock_entries() will return a batch of entries from @mapping.
2091 * Swap, shadow and DAX entries are included. Folios are returned
2092 * locked and with an incremented refcount. Folios which are locked
2093 * by somebody else or under writeback are skipped. Folios which are
2094 * partially outside the range are not returned.
2095 *
2096 * The entries have ascending indexes. The indices may not be consecutive
2097 * due to not-present entries, large folios, folios which could not be
2098 * locked or folios under writeback.
2099 *
2100 * Return: The number of entries which were found.
2101 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2102 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2103 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2104 {
2105 XA_STATE(xas, &mapping->i_pages, *start);
2106 struct folio *folio;
2107
2108 rcu_read_lock();
2109 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2110 if (!xa_is_value(folio)) {
2111 if (folio->index < *start)
2112 goto put;
2113 if (folio->index + folio_nr_pages(folio) - 1 > end)
2114 goto put;
2115 if (!folio_trylock(folio))
2116 goto put;
2117 if (folio->mapping != mapping ||
2118 folio_test_writeback(folio))
2119 goto unlock;
2120 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2121 folio);
2122 }
2123 indices[fbatch->nr] = xas.xa_index;
2124 if (!folio_batch_add(fbatch, folio))
2125 break;
2126 continue;
2127 unlock:
2128 folio_unlock(folio);
2129 put:
2130 folio_put(folio);
2131 }
2132 rcu_read_unlock();
2133
2134 if (folio_batch_count(fbatch)) {
2135 unsigned long nr = 1;
2136 int idx = folio_batch_count(fbatch) - 1;
2137
2138 folio = fbatch->folios[idx];
2139 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2140 nr = folio_nr_pages(folio);
2141 *start = indices[idx] + nr;
2142 }
2143 return folio_batch_count(fbatch);
2144 }
2145
2146 /**
2147 * filemap_get_folios - Get a batch of folios
2148 * @mapping: The address_space to search
2149 * @start: The starting page index
2150 * @end: The final page index (inclusive)
2151 * @fbatch: The batch to fill.
2152 *
2153 * Search for and return a batch of folios in the mapping starting at
2154 * index @start and up to index @end (inclusive). The folios are returned
2155 * in @fbatch with an elevated reference count.
2156 *
2157 * The first folio may start before @start; if it does, it will contain
2158 * @start. The final folio may extend beyond @end; if it does, it will
2159 * contain @end. The folios have ascending indices. There may be gaps
2160 * between the folios if there are indices which have no folio in the
2161 * page cache. If folios are added to or removed from the page cache
2162 * while this is running, they may or may not be found by this call.
2163 *
2164 * Return: The number of folios which were found.
2165 * We also update @start to index the next folio for the traversal.
2166 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2167 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2168 pgoff_t end, struct folio_batch *fbatch)
2169 {
2170 XA_STATE(xas, &mapping->i_pages, *start);
2171 struct folio *folio;
2172
2173 rcu_read_lock();
2174 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2175 /* Skip over shadow, swap and DAX entries */
2176 if (xa_is_value(folio))
2177 continue;
2178 if (!folio_batch_add(fbatch, folio)) {
2179 unsigned long nr = folio_nr_pages(folio);
2180
2181 if (folio_test_hugetlb(folio))
2182 nr = 1;
2183 *start = folio->index + nr;
2184 goto out;
2185 }
2186 }
2187
2188 /*
2189 * We come here when there is no page beyond @end. We take care to not
2190 * overflow the index @start as it confuses some of the callers. This
2191 * breaks the iteration when there is a page at index -1 but that is
2192 * already broken anyway.
2193 */
2194 if (end == (pgoff_t)-1)
2195 *start = (pgoff_t)-1;
2196 else
2197 *start = end + 1;
2198 out:
2199 rcu_read_unlock();
2200
2201 return folio_batch_count(fbatch);
2202 }
2203 EXPORT_SYMBOL(filemap_get_folios);
2204
2205 static inline
folio_more_pages(struct folio * folio,pgoff_t index,pgoff_t max)2206 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2207 {
2208 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2209 return false;
2210 if (index >= max)
2211 return false;
2212 return index < folio->index + folio_nr_pages(folio) - 1;
2213 }
2214
2215 /**
2216 * filemap_get_folios_contig - Get a batch of contiguous folios
2217 * @mapping: The address_space to search
2218 * @start: The starting page index
2219 * @end: The final page index (inclusive)
2220 * @fbatch: The batch to fill
2221 *
2222 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2223 * except the returned folios are guaranteed to be contiguous. This may
2224 * not return all contiguous folios if the batch gets filled up.
2225 *
2226 * Return: The number of folios found.
2227 * Also update @start to be positioned for traversal of the next folio.
2228 */
2229
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2230 unsigned filemap_get_folios_contig(struct address_space *mapping,
2231 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2232 {
2233 XA_STATE(xas, &mapping->i_pages, *start);
2234 unsigned long nr;
2235 struct folio *folio;
2236
2237 rcu_read_lock();
2238
2239 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2240 folio = xas_next(&xas)) {
2241 if (xas_retry(&xas, folio))
2242 continue;
2243 /*
2244 * If the entry has been swapped out, we can stop looking.
2245 * No current caller is looking for DAX entries.
2246 */
2247 if (xa_is_value(folio))
2248 goto update_start;
2249
2250 if (!folio_try_get_rcu(folio))
2251 goto retry;
2252
2253 if (unlikely(folio != xas_reload(&xas)))
2254 goto put_folio;
2255
2256 if (!folio_batch_add(fbatch, folio)) {
2257 nr = folio_nr_pages(folio);
2258
2259 if (folio_test_hugetlb(folio))
2260 nr = 1;
2261 *start = folio->index + nr;
2262 goto out;
2263 }
2264 continue;
2265 put_folio:
2266 folio_put(folio);
2267
2268 retry:
2269 xas_reset(&xas);
2270 }
2271
2272 update_start:
2273 nr = folio_batch_count(fbatch);
2274
2275 if (nr) {
2276 folio = fbatch->folios[nr - 1];
2277 if (folio_test_hugetlb(folio))
2278 *start = folio->index + 1;
2279 else
2280 *start = folio->index + folio_nr_pages(folio);
2281 }
2282 out:
2283 rcu_read_unlock();
2284 return folio_batch_count(fbatch);
2285 }
2286 EXPORT_SYMBOL(filemap_get_folios_contig);
2287
2288 /**
2289 * filemap_get_folios_tag - Get a batch of folios matching @tag
2290 * @mapping: The address_space to search
2291 * @start: The starting page index
2292 * @end: The final page index (inclusive)
2293 * @tag: The tag index
2294 * @fbatch: The batch to fill
2295 *
2296 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2297 *
2298 * Return: The number of folios found.
2299 * Also update @start to index the next folio for traversal.
2300 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2301 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2302 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2303 {
2304 XA_STATE(xas, &mapping->i_pages, *start);
2305 struct folio *folio;
2306
2307 rcu_read_lock();
2308 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2309 /*
2310 * Shadow entries should never be tagged, but this iteration
2311 * is lockless so there is a window for page reclaim to evict
2312 * a page we saw tagged. Skip over it.
2313 */
2314 if (xa_is_value(folio))
2315 continue;
2316 if (!folio_batch_add(fbatch, folio)) {
2317 unsigned long nr = folio_nr_pages(folio);
2318
2319 if (folio_test_hugetlb(folio))
2320 nr = 1;
2321 *start = folio->index + nr;
2322 goto out;
2323 }
2324 }
2325 /*
2326 * We come here when there is no page beyond @end. We take care to not
2327 * overflow the index @start as it confuses some of the callers. This
2328 * breaks the iteration when there is a page at index -1 but that is
2329 * already broke anyway.
2330 */
2331 if (end == (pgoff_t)-1)
2332 *start = (pgoff_t)-1;
2333 else
2334 *start = end + 1;
2335 out:
2336 rcu_read_unlock();
2337
2338 return folio_batch_count(fbatch);
2339 }
2340 EXPORT_SYMBOL(filemap_get_folios_tag);
2341
2342 /*
2343 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2344 * a _large_ part of the i/o request. Imagine the worst scenario:
2345 *
2346 * ---R__________________________________________B__________
2347 * ^ reading here ^ bad block(assume 4k)
2348 *
2349 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2350 * => failing the whole request => read(R) => read(R+1) =>
2351 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2352 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2353 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2354 *
2355 * It is going insane. Fix it by quickly scaling down the readahead size.
2356 */
shrink_readahead_size_eio(struct file_ra_state * ra)2357 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2358 {
2359 ra->ra_pages /= 4;
2360 }
2361
2362 /*
2363 * filemap_get_read_batch - Get a batch of folios for read
2364 *
2365 * Get a batch of folios which represent a contiguous range of bytes in
2366 * the file. No exceptional entries will be returned. If @index is in
2367 * the middle of a folio, the entire folio will be returned. The last
2368 * folio in the batch may have the readahead flag set or the uptodate flag
2369 * clear so that the caller can take the appropriate action.
2370 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2371 static void filemap_get_read_batch(struct address_space *mapping,
2372 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2373 {
2374 XA_STATE(xas, &mapping->i_pages, index);
2375 struct folio *folio;
2376
2377 rcu_read_lock();
2378 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2379 if (xas_retry(&xas, folio))
2380 continue;
2381 if (xas.xa_index > max || xa_is_value(folio))
2382 break;
2383 if (xa_is_sibling(folio))
2384 break;
2385 if (!folio_try_get_rcu(folio))
2386 goto retry;
2387
2388 if (unlikely(folio != xas_reload(&xas)))
2389 goto put_folio;
2390
2391 if (!folio_batch_add(fbatch, folio))
2392 break;
2393 if (!folio_test_uptodate(folio))
2394 break;
2395 if (folio_test_readahead(folio))
2396 break;
2397 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2398 continue;
2399 put_folio:
2400 folio_put(folio);
2401 retry:
2402 xas_reset(&xas);
2403 }
2404 rcu_read_unlock();
2405 }
2406
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2407 static int filemap_read_folio(struct file *file, filler_t filler,
2408 struct folio *folio)
2409 {
2410 bool workingset = folio_test_workingset(folio);
2411 unsigned long pflags;
2412 int error;
2413
2414 /*
2415 * A previous I/O error may have been due to temporary failures,
2416 * eg. multipath errors. PG_error will be set again if read_folio
2417 * fails.
2418 */
2419 folio_clear_error(folio);
2420
2421 /* Start the actual read. The read will unlock the page. */
2422 if (unlikely(workingset))
2423 psi_memstall_enter(&pflags);
2424 error = filler(file, folio);
2425 if (unlikely(workingset))
2426 psi_memstall_leave(&pflags);
2427 if (error)
2428 return error;
2429
2430 error = folio_wait_locked_killable(folio);
2431 if (error)
2432 return error;
2433 if (folio_test_uptodate(folio))
2434 return 0;
2435 if (file)
2436 shrink_readahead_size_eio(&file->f_ra);
2437 return -EIO;
2438 }
2439
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2440 static bool filemap_range_uptodate(struct address_space *mapping,
2441 loff_t pos, size_t count, struct folio *folio,
2442 bool need_uptodate)
2443 {
2444 if (folio_test_uptodate(folio))
2445 return true;
2446 /* pipes can't handle partially uptodate pages */
2447 if (need_uptodate)
2448 return false;
2449 if (!mapping->a_ops->is_partially_uptodate)
2450 return false;
2451 if (mapping->host->i_blkbits >= folio_shift(folio))
2452 return false;
2453
2454 if (folio_pos(folio) > pos) {
2455 count -= folio_pos(folio) - pos;
2456 pos = 0;
2457 } else {
2458 pos -= folio_pos(folio);
2459 }
2460
2461 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2462 }
2463
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2464 static int filemap_update_page(struct kiocb *iocb,
2465 struct address_space *mapping, size_t count,
2466 struct folio *folio, bool need_uptodate)
2467 {
2468 int error;
2469
2470 if (iocb->ki_flags & IOCB_NOWAIT) {
2471 if (!filemap_invalidate_trylock_shared(mapping))
2472 return -EAGAIN;
2473 } else {
2474 filemap_invalidate_lock_shared(mapping);
2475 }
2476
2477 if (!folio_trylock(folio)) {
2478 error = -EAGAIN;
2479 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2480 goto unlock_mapping;
2481 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2482 filemap_invalidate_unlock_shared(mapping);
2483 /*
2484 * This is where we usually end up waiting for a
2485 * previously submitted readahead to finish.
2486 */
2487 folio_put_wait_locked(folio, TASK_KILLABLE);
2488 return AOP_TRUNCATED_PAGE;
2489 }
2490 error = __folio_lock_async(folio, iocb->ki_waitq);
2491 if (error)
2492 goto unlock_mapping;
2493 }
2494
2495 error = AOP_TRUNCATED_PAGE;
2496 if (!folio->mapping)
2497 goto unlock;
2498
2499 error = 0;
2500 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2501 need_uptodate))
2502 goto unlock;
2503
2504 error = -EAGAIN;
2505 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2506 goto unlock;
2507
2508 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2509 folio);
2510 goto unlock_mapping;
2511 unlock:
2512 folio_unlock(folio);
2513 unlock_mapping:
2514 filemap_invalidate_unlock_shared(mapping);
2515 if (error == AOP_TRUNCATED_PAGE)
2516 folio_put(folio);
2517 return error;
2518 }
2519
filemap_create_folio(struct file * file,struct address_space * mapping,pgoff_t index,struct folio_batch * fbatch)2520 static int filemap_create_folio(struct file *file,
2521 struct address_space *mapping, pgoff_t index,
2522 struct folio_batch *fbatch)
2523 {
2524 struct folio *folio;
2525 int error;
2526
2527 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2528 if (!folio)
2529 return -ENOMEM;
2530
2531 /*
2532 * Protect against truncate / hole punch. Grabbing invalidate_lock
2533 * here assures we cannot instantiate and bring uptodate new
2534 * pagecache folios after evicting page cache during truncate
2535 * and before actually freeing blocks. Note that we could
2536 * release invalidate_lock after inserting the folio into
2537 * the page cache as the locked folio would then be enough to
2538 * synchronize with hole punching. But there are code paths
2539 * such as filemap_update_page() filling in partially uptodate
2540 * pages or ->readahead() that need to hold invalidate_lock
2541 * while mapping blocks for IO so let's hold the lock here as
2542 * well to keep locking rules simple.
2543 */
2544 filemap_invalidate_lock_shared(mapping);
2545 error = filemap_add_folio(mapping, folio, index,
2546 mapping_gfp_constraint(mapping, GFP_KERNEL));
2547 if (error == -EEXIST)
2548 error = AOP_TRUNCATED_PAGE;
2549 if (error)
2550 goto error;
2551
2552 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2553 if (error)
2554 goto error;
2555
2556 filemap_invalidate_unlock_shared(mapping);
2557 folio_batch_add(fbatch, folio);
2558 return 0;
2559 error:
2560 filemap_invalidate_unlock_shared(mapping);
2561 folio_put(folio);
2562 return error;
2563 }
2564
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2565 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2566 struct address_space *mapping, struct folio *folio,
2567 pgoff_t last_index)
2568 {
2569 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2570
2571 if (iocb->ki_flags & IOCB_NOIO)
2572 return -EAGAIN;
2573 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2574 return 0;
2575 }
2576
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2577 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2578 struct folio_batch *fbatch, bool need_uptodate)
2579 {
2580 struct file *filp = iocb->ki_filp;
2581 struct address_space *mapping = filp->f_mapping;
2582 struct file_ra_state *ra = &filp->f_ra;
2583 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2584 pgoff_t last_index;
2585 struct folio *folio;
2586 int err = 0;
2587
2588 /* "last_index" is the index of the page beyond the end of the read */
2589 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2590 retry:
2591 if (fatal_signal_pending(current))
2592 return -EINTR;
2593
2594 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2595 if (!folio_batch_count(fbatch)) {
2596 if (iocb->ki_flags & IOCB_NOIO)
2597 return -EAGAIN;
2598 page_cache_sync_readahead(mapping, ra, filp, index,
2599 last_index - index);
2600 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2601 }
2602 if (!folio_batch_count(fbatch)) {
2603 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2604 return -EAGAIN;
2605 err = filemap_create_folio(filp, mapping,
2606 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2607 if (err == AOP_TRUNCATED_PAGE)
2608 goto retry;
2609 return err;
2610 }
2611
2612 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2613 if (folio_test_readahead(folio)) {
2614 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2615 if (err)
2616 goto err;
2617 }
2618 if (!folio_test_uptodate(folio)) {
2619 if ((iocb->ki_flags & IOCB_WAITQ) &&
2620 folio_batch_count(fbatch) > 1)
2621 iocb->ki_flags |= IOCB_NOWAIT;
2622 err = filemap_update_page(iocb, mapping, count, folio,
2623 need_uptodate);
2624 if (err)
2625 goto err;
2626 }
2627
2628 return 0;
2629 err:
2630 if (err < 0)
2631 folio_put(folio);
2632 if (likely(--fbatch->nr))
2633 return 0;
2634 if (err == AOP_TRUNCATED_PAGE)
2635 goto retry;
2636 return err;
2637 }
2638
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2639 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2640 {
2641 unsigned int shift = folio_shift(folio);
2642
2643 return (pos1 >> shift == pos2 >> shift);
2644 }
2645
2646 /**
2647 * filemap_read - Read data from the page cache.
2648 * @iocb: The iocb to read.
2649 * @iter: Destination for the data.
2650 * @already_read: Number of bytes already read by the caller.
2651 *
2652 * Copies data from the page cache. If the data is not currently present,
2653 * uses the readahead and read_folio address_space operations to fetch it.
2654 *
2655 * Return: Total number of bytes copied, including those already read by
2656 * the caller. If an error happens before any bytes are copied, returns
2657 * a negative error number.
2658 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2659 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2660 ssize_t already_read)
2661 {
2662 struct file *filp = iocb->ki_filp;
2663 struct file_ra_state *ra = &filp->f_ra;
2664 struct address_space *mapping = filp->f_mapping;
2665 struct inode *inode = mapping->host;
2666 struct folio_batch fbatch;
2667 int i, error = 0;
2668 bool writably_mapped;
2669 loff_t isize, end_offset;
2670
2671 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2672 return 0;
2673 if (unlikely(!iov_iter_count(iter)))
2674 return 0;
2675
2676 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2677 folio_batch_init(&fbatch);
2678
2679 do {
2680 cond_resched();
2681
2682 /*
2683 * If we've already successfully copied some data, then we
2684 * can no longer safely return -EIOCBQUEUED. Hence mark
2685 * an async read NOWAIT at that point.
2686 */
2687 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2688 iocb->ki_flags |= IOCB_NOWAIT;
2689
2690 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2691 break;
2692
2693 error = filemap_get_pages(iocb, iter->count, &fbatch,
2694 iov_iter_is_pipe(iter));
2695 if (error < 0)
2696 break;
2697
2698 /*
2699 * i_size must be checked after we know the pages are Uptodate.
2700 *
2701 * Checking i_size after the check allows us to calculate
2702 * the correct value for "nr", which means the zero-filled
2703 * part of the page is not copied back to userspace (unless
2704 * another truncate extends the file - this is desired though).
2705 */
2706 isize = i_size_read(inode);
2707 if (unlikely(iocb->ki_pos >= isize))
2708 goto put_folios;
2709 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2710
2711 /*
2712 * Once we start copying data, we don't want to be touching any
2713 * cachelines that might be contended:
2714 */
2715 writably_mapped = mapping_writably_mapped(mapping);
2716
2717 /*
2718 * When a read accesses the same folio several times, only
2719 * mark it as accessed the first time.
2720 */
2721 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2722 fbatch.folios[0]))
2723 folio_mark_accessed(fbatch.folios[0]);
2724
2725 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2726 struct folio *folio = fbatch.folios[i];
2727 size_t fsize = folio_size(folio);
2728 size_t offset = iocb->ki_pos & (fsize - 1);
2729 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2730 fsize - offset);
2731 size_t copied;
2732
2733 if (end_offset < folio_pos(folio))
2734 break;
2735 if (i > 0)
2736 folio_mark_accessed(folio);
2737 /*
2738 * If users can be writing to this folio using arbitrary
2739 * virtual addresses, take care of potential aliasing
2740 * before reading the folio on the kernel side.
2741 */
2742 if (writably_mapped)
2743 flush_dcache_folio(folio);
2744
2745 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2746
2747 already_read += copied;
2748 iocb->ki_pos += copied;
2749 ra->prev_pos = iocb->ki_pos;
2750
2751 if (copied < bytes) {
2752 error = -EFAULT;
2753 break;
2754 }
2755 }
2756 put_folios:
2757 for (i = 0; i < folio_batch_count(&fbatch); i++)
2758 folio_put(fbatch.folios[i]);
2759 folio_batch_init(&fbatch);
2760 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2761
2762 file_accessed(filp);
2763
2764 return already_read ? already_read : error;
2765 }
2766 EXPORT_SYMBOL_GPL(filemap_read);
2767
2768 /**
2769 * generic_file_read_iter - generic filesystem read routine
2770 * @iocb: kernel I/O control block
2771 * @iter: destination for the data read
2772 *
2773 * This is the "read_iter()" routine for all filesystems
2774 * that can use the page cache directly.
2775 *
2776 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2777 * be returned when no data can be read without waiting for I/O requests
2778 * to complete; it doesn't prevent readahead.
2779 *
2780 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2781 * requests shall be made for the read or for readahead. When no data
2782 * can be read, -EAGAIN shall be returned. When readahead would be
2783 * triggered, a partial, possibly empty read shall be returned.
2784 *
2785 * Return:
2786 * * number of bytes copied, even for partial reads
2787 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2788 */
2789 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2790 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2791 {
2792 size_t count = iov_iter_count(iter);
2793 ssize_t retval = 0;
2794
2795 if (!count)
2796 return 0; /* skip atime */
2797
2798 if (iocb->ki_flags & IOCB_DIRECT) {
2799 struct file *file = iocb->ki_filp;
2800 struct address_space *mapping = file->f_mapping;
2801 struct inode *inode = mapping->host;
2802
2803 if (iocb->ki_flags & IOCB_NOWAIT) {
2804 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2805 iocb->ki_pos + count - 1))
2806 return -EAGAIN;
2807 } else {
2808 retval = filemap_write_and_wait_range(mapping,
2809 iocb->ki_pos,
2810 iocb->ki_pos + count - 1);
2811 if (retval < 0)
2812 return retval;
2813 }
2814
2815 file_accessed(file);
2816
2817 retval = mapping->a_ops->direct_IO(iocb, iter);
2818 if (retval >= 0) {
2819 iocb->ki_pos += retval;
2820 count -= retval;
2821 }
2822 if (retval != -EIOCBQUEUED)
2823 iov_iter_revert(iter, count - iov_iter_count(iter));
2824
2825 /*
2826 * Btrfs can have a short DIO read if we encounter
2827 * compressed extents, so if there was an error, or if
2828 * we've already read everything we wanted to, or if
2829 * there was a short read because we hit EOF, go ahead
2830 * and return. Otherwise fallthrough to buffered io for
2831 * the rest of the read. Buffered reads will not work for
2832 * DAX files, so don't bother trying.
2833 */
2834 if (retval < 0 || !count || IS_DAX(inode))
2835 return retval;
2836 if (iocb->ki_pos >= i_size_read(inode))
2837 return retval;
2838 }
2839
2840 return filemap_read(iocb, iter, retval);
2841 }
2842 EXPORT_SYMBOL(generic_file_read_iter);
2843
2844 /*
2845 * Splice subpages from a folio into a pipe.
2846 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2847 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2848 struct folio *folio, loff_t fpos, size_t size)
2849 {
2850 struct page *page;
2851 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2852
2853 page = folio_page(folio, offset / PAGE_SIZE);
2854 size = min(size, folio_size(folio) - offset);
2855 offset %= PAGE_SIZE;
2856
2857 while (spliced < size &&
2858 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2859 struct pipe_buffer *buf = pipe_head_buf(pipe);
2860 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2861
2862 *buf = (struct pipe_buffer) {
2863 .ops = &page_cache_pipe_buf_ops,
2864 .page = page,
2865 .offset = offset,
2866 .len = part,
2867 };
2868 folio_get(folio);
2869 pipe->head++;
2870 page++;
2871 spliced += part;
2872 offset = 0;
2873 }
2874
2875 return spliced;
2876 }
2877
2878 /*
2879 * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
2880 * a pipe.
2881 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2882 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2883 struct pipe_inode_info *pipe,
2884 size_t len, unsigned int flags)
2885 {
2886 struct folio_batch fbatch;
2887 struct kiocb iocb;
2888 size_t total_spliced = 0, used, npages;
2889 loff_t isize, end_offset;
2890 bool writably_mapped;
2891 int i, error = 0;
2892
2893 init_sync_kiocb(&iocb, in);
2894 iocb.ki_pos = *ppos;
2895
2896 /* Work out how much data we can actually add into the pipe */
2897 used = pipe_occupancy(pipe->head, pipe->tail);
2898 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2899 len = min_t(size_t, len, npages * PAGE_SIZE);
2900
2901 folio_batch_init(&fbatch);
2902
2903 do {
2904 cond_resched();
2905
2906 if (*ppos >= i_size_read(file_inode(in)))
2907 break;
2908
2909 iocb.ki_pos = *ppos;
2910 error = filemap_get_pages(&iocb, len, &fbatch, true);
2911 if (error < 0)
2912 break;
2913
2914 /*
2915 * i_size must be checked after we know the pages are Uptodate.
2916 *
2917 * Checking i_size after the check allows us to calculate
2918 * the correct value for "nr", which means the zero-filled
2919 * part of the page is not copied back to userspace (unless
2920 * another truncate extends the file - this is desired though).
2921 */
2922 isize = i_size_read(file_inode(in));
2923 if (unlikely(*ppos >= isize))
2924 break;
2925 end_offset = min_t(loff_t, isize, *ppos + len);
2926
2927 /*
2928 * Once we start copying data, we don't want to be touching any
2929 * cachelines that might be contended:
2930 */
2931 writably_mapped = mapping_writably_mapped(in->f_mapping);
2932
2933 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2934 struct folio *folio = fbatch.folios[i];
2935 size_t n;
2936
2937 if (folio_pos(folio) >= end_offset)
2938 goto out;
2939 folio_mark_accessed(folio);
2940
2941 /*
2942 * If users can be writing to this folio using arbitrary
2943 * virtual addresses, take care of potential aliasing
2944 * before reading the folio on the kernel side.
2945 */
2946 if (writably_mapped)
2947 flush_dcache_folio(folio);
2948
2949 n = min_t(loff_t, len, isize - *ppos);
2950 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2951 if (!n)
2952 goto out;
2953 len -= n;
2954 total_spliced += n;
2955 *ppos += n;
2956 in->f_ra.prev_pos = *ppos;
2957 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2958 goto out;
2959 }
2960
2961 folio_batch_release(&fbatch);
2962 } while (len);
2963
2964 out:
2965 folio_batch_release(&fbatch);
2966 file_accessed(in);
2967
2968 return total_spliced ? total_spliced : error;
2969 }
2970 EXPORT_SYMBOL(filemap_splice_read);
2971
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)2972 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2973 struct address_space *mapping, struct folio *folio,
2974 loff_t start, loff_t end, bool seek_data)
2975 {
2976 const struct address_space_operations *ops = mapping->a_ops;
2977 size_t offset, bsz = i_blocksize(mapping->host);
2978
2979 if (xa_is_value(folio) || folio_test_uptodate(folio))
2980 return seek_data ? start : end;
2981 if (!ops->is_partially_uptodate)
2982 return seek_data ? end : start;
2983
2984 xas_pause(xas);
2985 rcu_read_unlock();
2986 folio_lock(folio);
2987 if (unlikely(folio->mapping != mapping))
2988 goto unlock;
2989
2990 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2991
2992 do {
2993 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2994 seek_data)
2995 break;
2996 start = (start + bsz) & ~(bsz - 1);
2997 offset += bsz;
2998 } while (offset < folio_size(folio));
2999 unlock:
3000 folio_unlock(folio);
3001 rcu_read_lock();
3002 return start;
3003 }
3004
seek_folio_size(struct xa_state * xas,struct folio * folio)3005 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3006 {
3007 if (xa_is_value(folio))
3008 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3009 return folio_size(folio);
3010 }
3011
3012 /**
3013 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3014 * @mapping: Address space to search.
3015 * @start: First byte to consider.
3016 * @end: Limit of search (exclusive).
3017 * @whence: Either SEEK_HOLE or SEEK_DATA.
3018 *
3019 * If the page cache knows which blocks contain holes and which blocks
3020 * contain data, your filesystem can use this function to implement
3021 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3022 * entirely memory-based such as tmpfs, and filesystems which support
3023 * unwritten extents.
3024 *
3025 * Return: The requested offset on success, or -ENXIO if @whence specifies
3026 * SEEK_DATA and there is no data after @start. There is an implicit hole
3027 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3028 * and @end contain data.
3029 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3030 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3031 loff_t end, int whence)
3032 {
3033 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3034 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3035 bool seek_data = (whence == SEEK_DATA);
3036 struct folio *folio;
3037
3038 if (end <= start)
3039 return -ENXIO;
3040
3041 rcu_read_lock();
3042 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3043 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3044 size_t seek_size;
3045
3046 if (start < pos) {
3047 if (!seek_data)
3048 goto unlock;
3049 start = pos;
3050 }
3051
3052 seek_size = seek_folio_size(&xas, folio);
3053 pos = round_up((u64)pos + 1, seek_size);
3054 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3055 seek_data);
3056 if (start < pos)
3057 goto unlock;
3058 if (start >= end)
3059 break;
3060 if (seek_size > PAGE_SIZE)
3061 xas_set(&xas, pos >> PAGE_SHIFT);
3062 if (!xa_is_value(folio))
3063 folio_put(folio);
3064 }
3065 if (seek_data)
3066 start = -ENXIO;
3067 unlock:
3068 rcu_read_unlock();
3069 if (folio && !xa_is_value(folio))
3070 folio_put(folio);
3071 if (start > end)
3072 return end;
3073 return start;
3074 }
3075
3076 #ifdef CONFIG_MMU
3077 #define MMAP_LOTSAMISS (100)
3078 /*
3079 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3080 * @vmf - the vm_fault for this fault.
3081 * @folio - the folio to lock.
3082 * @fpin - the pointer to the file we may pin (or is already pinned).
3083 *
3084 * This works similar to lock_folio_or_retry in that it can drop the
3085 * mmap_lock. It differs in that it actually returns the folio locked
3086 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3087 * to drop the mmap_lock then fpin will point to the pinned file and
3088 * needs to be fput()'ed at a later point.
3089 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3090 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3091 struct file **fpin)
3092 {
3093 if (folio_trylock(folio))
3094 return 1;
3095
3096 /*
3097 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3098 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3099 * is supposed to work. We have way too many special cases..
3100 */
3101 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3102 return 0;
3103
3104 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3105 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3106 if (__folio_lock_killable(folio)) {
3107 /*
3108 * We didn't have the right flags to drop the mmap_lock,
3109 * but all fault_handlers only check for fatal signals
3110 * if we return VM_FAULT_RETRY, so we need to drop the
3111 * mmap_lock here and return 0 if we don't have a fpin.
3112 */
3113 if (*fpin == NULL)
3114 mmap_read_unlock(vmf->vma->vm_mm);
3115 return 0;
3116 }
3117 } else
3118 __folio_lock(folio);
3119
3120 return 1;
3121 }
3122
3123 /*
3124 * Synchronous readahead happens when we don't even find a page in the page
3125 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3126 * to drop the mmap sem we return the file that was pinned in order for us to do
3127 * that. If we didn't pin a file then we return NULL. The file that is
3128 * returned needs to be fput()'ed when we're done with it.
3129 */
do_sync_mmap_readahead(struct vm_fault * vmf)3130 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3131 {
3132 struct file *file = vmf->vma->vm_file;
3133 struct file_ra_state *ra = &file->f_ra;
3134 struct address_space *mapping = file->f_mapping;
3135 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3136 struct file *fpin = NULL;
3137 unsigned long vm_flags = vmf->vma->vm_flags;
3138 unsigned int mmap_miss;
3139
3140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3141 /* Use the readahead code, even if readahead is disabled */
3142 if (vm_flags & VM_HUGEPAGE) {
3143 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3144 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3145 ra->size = HPAGE_PMD_NR;
3146 /*
3147 * Fetch two PMD folios, so we get the chance to actually
3148 * readahead, unless we've been told not to.
3149 */
3150 if (!(vm_flags & VM_RAND_READ))
3151 ra->size *= 2;
3152 ra->async_size = HPAGE_PMD_NR;
3153 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3154 return fpin;
3155 }
3156 #endif
3157
3158 /* If we don't want any read-ahead, don't bother */
3159 if (vm_flags & VM_RAND_READ)
3160 return fpin;
3161 if (!ra->ra_pages)
3162 return fpin;
3163
3164 if (vm_flags & VM_SEQ_READ) {
3165 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3166 page_cache_sync_ra(&ractl, ra->ra_pages);
3167 return fpin;
3168 }
3169
3170 /* Avoid banging the cache line if not needed */
3171 mmap_miss = READ_ONCE(ra->mmap_miss);
3172 if (mmap_miss < MMAP_LOTSAMISS * 10)
3173 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3174
3175 /*
3176 * Do we miss much more than hit in this file? If so,
3177 * stop bothering with read-ahead. It will only hurt.
3178 */
3179 if (mmap_miss > MMAP_LOTSAMISS)
3180 return fpin;
3181
3182 /*
3183 * mmap read-around
3184 */
3185 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3186 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3187 ra->size = ra->ra_pages;
3188 ra->async_size = ra->ra_pages / 4;
3189 ractl._index = ra->start;
3190 page_cache_ra_order(&ractl, ra, 0);
3191 return fpin;
3192 }
3193
3194 /*
3195 * Asynchronous readahead happens when we find the page and PG_readahead,
3196 * so we want to possibly extend the readahead further. We return the file that
3197 * was pinned if we have to drop the mmap_lock in order to do IO.
3198 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3199 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3200 struct folio *folio)
3201 {
3202 struct file *file = vmf->vma->vm_file;
3203 struct file_ra_state *ra = &file->f_ra;
3204 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3205 struct file *fpin = NULL;
3206 unsigned int mmap_miss;
3207
3208 /* If we don't want any read-ahead, don't bother */
3209 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3210 return fpin;
3211
3212 mmap_miss = READ_ONCE(ra->mmap_miss);
3213 if (mmap_miss)
3214 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3215
3216 if (folio_test_readahead(folio)) {
3217 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3218 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3219 }
3220 return fpin;
3221 }
3222
3223 /**
3224 * filemap_fault - read in file data for page fault handling
3225 * @vmf: struct vm_fault containing details of the fault
3226 *
3227 * filemap_fault() is invoked via the vma operations vector for a
3228 * mapped memory region to read in file data during a page fault.
3229 *
3230 * The goto's are kind of ugly, but this streamlines the normal case of having
3231 * it in the page cache, and handles the special cases reasonably without
3232 * having a lot of duplicated code.
3233 *
3234 * vma->vm_mm->mmap_lock must be held on entry.
3235 *
3236 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3237 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3238 *
3239 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3240 * has not been released.
3241 *
3242 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3243 *
3244 * Return: bitwise-OR of %VM_FAULT_ codes.
3245 */
filemap_fault(struct vm_fault * vmf)3246 vm_fault_t filemap_fault(struct vm_fault *vmf)
3247 {
3248 int error;
3249 struct file *file = vmf->vma->vm_file;
3250 struct file *fpin = NULL;
3251 struct address_space *mapping = file->f_mapping;
3252 struct inode *inode = mapping->host;
3253 pgoff_t max_idx, index = vmf->pgoff;
3254 struct folio *folio;
3255 vm_fault_t ret = 0;
3256 bool mapping_locked = false;
3257
3258 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3259 if (unlikely(index >= max_idx))
3260 return VM_FAULT_SIGBUS;
3261
3262 /*
3263 * Do we have something in the page cache already?
3264 */
3265 folio = filemap_get_folio(mapping, index);
3266 if (likely(folio)) {
3267 /*
3268 * We found the page, so try async readahead before waiting for
3269 * the lock.
3270 */
3271 if (!(vmf->flags & FAULT_FLAG_TRIED))
3272 fpin = do_async_mmap_readahead(vmf, folio);
3273 if (unlikely(!folio_test_uptodate(folio))) {
3274 filemap_invalidate_lock_shared(mapping);
3275 mapping_locked = true;
3276 }
3277 } else {
3278 /* No page in the page cache at all */
3279 count_vm_event(PGMAJFAULT);
3280 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3281 ret = VM_FAULT_MAJOR;
3282 fpin = do_sync_mmap_readahead(vmf);
3283 retry_find:
3284 /*
3285 * See comment in filemap_create_folio() why we need
3286 * invalidate_lock
3287 */
3288 if (!mapping_locked) {
3289 filemap_invalidate_lock_shared(mapping);
3290 mapping_locked = true;
3291 }
3292 folio = __filemap_get_folio(mapping, index,
3293 FGP_CREAT|FGP_FOR_MMAP,
3294 vmf->gfp_mask);
3295 if (!folio) {
3296 if (fpin)
3297 goto out_retry;
3298 filemap_invalidate_unlock_shared(mapping);
3299 return VM_FAULT_OOM;
3300 }
3301 }
3302
3303 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3304 goto out_retry;
3305
3306 /* Did it get truncated? */
3307 if (unlikely(folio->mapping != mapping)) {
3308 folio_unlock(folio);
3309 folio_put(folio);
3310 goto retry_find;
3311 }
3312 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3313
3314 /*
3315 * We have a locked page in the page cache, now we need to check
3316 * that it's up-to-date. If not, it is going to be due to an error.
3317 */
3318 if (unlikely(!folio_test_uptodate(folio))) {
3319 /*
3320 * The page was in cache and uptodate and now it is not.
3321 * Strange but possible since we didn't hold the page lock all
3322 * the time. Let's drop everything get the invalidate lock and
3323 * try again.
3324 */
3325 if (!mapping_locked) {
3326 folio_unlock(folio);
3327 folio_put(folio);
3328 goto retry_find;
3329 }
3330 goto page_not_uptodate;
3331 }
3332
3333 /*
3334 * We've made it this far and we had to drop our mmap_lock, now is the
3335 * time to return to the upper layer and have it re-find the vma and
3336 * redo the fault.
3337 */
3338 if (fpin) {
3339 folio_unlock(folio);
3340 goto out_retry;
3341 }
3342 if (mapping_locked)
3343 filemap_invalidate_unlock_shared(mapping);
3344
3345 /*
3346 * Found the page and have a reference on it.
3347 * We must recheck i_size under page lock.
3348 */
3349 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3350 if (unlikely(index >= max_idx)) {
3351 folio_unlock(folio);
3352 folio_put(folio);
3353 return VM_FAULT_SIGBUS;
3354 }
3355
3356 vmf->page = folio_file_page(folio, index);
3357 return ret | VM_FAULT_LOCKED;
3358
3359 page_not_uptodate:
3360 /*
3361 * Umm, take care of errors if the page isn't up-to-date.
3362 * Try to re-read it _once_. We do this synchronously,
3363 * because there really aren't any performance issues here
3364 * and we need to check for errors.
3365 */
3366 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3367 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3368 if (fpin)
3369 goto out_retry;
3370 folio_put(folio);
3371
3372 if (!error || error == AOP_TRUNCATED_PAGE)
3373 goto retry_find;
3374 filemap_invalidate_unlock_shared(mapping);
3375
3376 return VM_FAULT_SIGBUS;
3377
3378 out_retry:
3379 /*
3380 * We dropped the mmap_lock, we need to return to the fault handler to
3381 * re-find the vma and come back and find our hopefully still populated
3382 * page.
3383 */
3384 if (folio)
3385 folio_put(folio);
3386 if (mapping_locked)
3387 filemap_invalidate_unlock_shared(mapping);
3388 if (fpin)
3389 fput(fpin);
3390 return ret | VM_FAULT_RETRY;
3391 }
3392 EXPORT_SYMBOL(filemap_fault);
3393
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3394 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3395 pgoff_t start)
3396 {
3397 struct mm_struct *mm = vmf->vma->vm_mm;
3398
3399 /* Huge page is mapped? No need to proceed. */
3400 if (pmd_trans_huge(*vmf->pmd)) {
3401 folio_unlock(folio);
3402 folio_put(folio);
3403 return true;
3404 }
3405
3406 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3407 struct page *page = folio_file_page(folio, start);
3408 vm_fault_t ret = do_set_pmd(vmf, page);
3409 if (!ret) {
3410 /* The page is mapped successfully, reference consumed. */
3411 folio_unlock(folio);
3412 return true;
3413 }
3414 }
3415
3416 if (pmd_none(*vmf->pmd))
3417 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3418
3419 /* See comment in handle_pte_fault() */
3420 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3421 folio_unlock(folio);
3422 folio_put(folio);
3423 return true;
3424 }
3425
3426 return false;
3427 }
3428
next_uptodate_page(struct folio * folio,struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3429 static struct folio *next_uptodate_page(struct folio *folio,
3430 struct address_space *mapping,
3431 struct xa_state *xas, pgoff_t end_pgoff)
3432 {
3433 unsigned long max_idx;
3434
3435 do {
3436 if (!folio)
3437 return NULL;
3438 if (xas_retry(xas, folio))
3439 continue;
3440 if (xa_is_value(folio))
3441 continue;
3442 if (folio_test_locked(folio))
3443 continue;
3444 if (!folio_try_get_rcu(folio))
3445 continue;
3446 /* Has the page moved or been split? */
3447 if (unlikely(folio != xas_reload(xas)))
3448 goto skip;
3449 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3450 goto skip;
3451 if (!folio_trylock(folio))
3452 goto skip;
3453 if (folio->mapping != mapping)
3454 goto unlock;
3455 if (!folio_test_uptodate(folio))
3456 goto unlock;
3457 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3458 if (xas->xa_index >= max_idx)
3459 goto unlock;
3460 return folio;
3461 unlock:
3462 folio_unlock(folio);
3463 skip:
3464 folio_put(folio);
3465 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3466
3467 return NULL;
3468 }
3469
first_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3470 static inline struct folio *first_map_page(struct address_space *mapping,
3471 struct xa_state *xas,
3472 pgoff_t end_pgoff)
3473 {
3474 return next_uptodate_page(xas_find(xas, end_pgoff),
3475 mapping, xas, end_pgoff);
3476 }
3477
next_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3478 static inline struct folio *next_map_page(struct address_space *mapping,
3479 struct xa_state *xas,
3480 pgoff_t end_pgoff)
3481 {
3482 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3483 mapping, xas, end_pgoff);
3484 }
3485
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3486 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3487 pgoff_t start_pgoff, pgoff_t end_pgoff)
3488 {
3489 struct vm_area_struct *vma = vmf->vma;
3490 struct file *file = vma->vm_file;
3491 struct address_space *mapping = file->f_mapping;
3492 pgoff_t last_pgoff = start_pgoff;
3493 unsigned long addr;
3494 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3495 struct folio *folio;
3496 struct page *page;
3497 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3498 vm_fault_t ret = 0;
3499
3500 rcu_read_lock();
3501 folio = first_map_page(mapping, &xas, end_pgoff);
3502 if (!folio)
3503 goto out;
3504
3505 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3506 ret = VM_FAULT_NOPAGE;
3507 goto out;
3508 }
3509
3510 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3511 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3512 do {
3513 again:
3514 page = folio_file_page(folio, xas.xa_index);
3515 if (PageHWPoison(page))
3516 goto unlock;
3517
3518 if (mmap_miss > 0)
3519 mmap_miss--;
3520
3521 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3522 vmf->pte += xas.xa_index - last_pgoff;
3523 last_pgoff = xas.xa_index;
3524
3525 /*
3526 * NOTE: If there're PTE markers, we'll leave them to be
3527 * handled in the specific fault path, and it'll prohibit the
3528 * fault-around logic.
3529 */
3530 if (!pte_none(*vmf->pte))
3531 goto unlock;
3532
3533 /* We're about to handle the fault */
3534 if (vmf->address == addr)
3535 ret = VM_FAULT_NOPAGE;
3536
3537 do_set_pte(vmf, page, addr);
3538 /* no need to invalidate: a not-present page won't be cached */
3539 update_mmu_cache(vma, addr, vmf->pte);
3540 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3541 xas.xa_index++;
3542 folio_ref_inc(folio);
3543 goto again;
3544 }
3545 folio_unlock(folio);
3546 continue;
3547 unlock:
3548 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3549 xas.xa_index++;
3550 goto again;
3551 }
3552 folio_unlock(folio);
3553 folio_put(folio);
3554 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3555 pte_unmap_unlock(vmf->pte, vmf->ptl);
3556 out:
3557 rcu_read_unlock();
3558 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3559 return ret;
3560 }
3561 EXPORT_SYMBOL(filemap_map_pages);
3562
filemap_page_mkwrite(struct vm_fault * vmf)3563 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3564 {
3565 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3566 struct folio *folio = page_folio(vmf->page);
3567 vm_fault_t ret = VM_FAULT_LOCKED;
3568
3569 sb_start_pagefault(mapping->host->i_sb);
3570 file_update_time(vmf->vma->vm_file);
3571 folio_lock(folio);
3572 if (folio->mapping != mapping) {
3573 folio_unlock(folio);
3574 ret = VM_FAULT_NOPAGE;
3575 goto out;
3576 }
3577 /*
3578 * We mark the folio dirty already here so that when freeze is in
3579 * progress, we are guaranteed that writeback during freezing will
3580 * see the dirty folio and writeprotect it again.
3581 */
3582 folio_mark_dirty(folio);
3583 folio_wait_stable(folio);
3584 out:
3585 sb_end_pagefault(mapping->host->i_sb);
3586 return ret;
3587 }
3588
3589 const struct vm_operations_struct generic_file_vm_ops = {
3590 .fault = filemap_fault,
3591 .map_pages = filemap_map_pages,
3592 .page_mkwrite = filemap_page_mkwrite,
3593 };
3594
3595 /* This is used for a general mmap of a disk file */
3596
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3597 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3598 {
3599 struct address_space *mapping = file->f_mapping;
3600
3601 if (!mapping->a_ops->read_folio)
3602 return -ENOEXEC;
3603 file_accessed(file);
3604 vma->vm_ops = &generic_file_vm_ops;
3605 return 0;
3606 }
3607
3608 /*
3609 * This is for filesystems which do not implement ->writepage.
3610 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3611 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3612 {
3613 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3614 return -EINVAL;
3615 return generic_file_mmap(file, vma);
3616 }
3617 #else
filemap_page_mkwrite(struct vm_fault * vmf)3618 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3619 {
3620 return VM_FAULT_SIGBUS;
3621 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3622 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3623 {
3624 return -ENOSYS;
3625 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3626 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3627 {
3628 return -ENOSYS;
3629 }
3630 #endif /* CONFIG_MMU */
3631
3632 EXPORT_SYMBOL(filemap_page_mkwrite);
3633 EXPORT_SYMBOL(generic_file_mmap);
3634 EXPORT_SYMBOL(generic_file_readonly_mmap);
3635
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3636 static struct folio *do_read_cache_folio(struct address_space *mapping,
3637 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3638 {
3639 struct folio *folio;
3640 int err;
3641
3642 if (!filler)
3643 filler = mapping->a_ops->read_folio;
3644 repeat:
3645 folio = filemap_get_folio(mapping, index);
3646 if (!folio) {
3647 folio = filemap_alloc_folio(gfp, 0);
3648 if (!folio)
3649 return ERR_PTR(-ENOMEM);
3650 err = filemap_add_folio(mapping, folio, index, gfp);
3651 if (unlikely(err)) {
3652 folio_put(folio);
3653 if (err == -EEXIST)
3654 goto repeat;
3655 /* Presumably ENOMEM for xarray node */
3656 return ERR_PTR(err);
3657 }
3658
3659 goto filler;
3660 }
3661 if (folio_test_uptodate(folio))
3662 goto out;
3663
3664 if (!folio_trylock(folio)) {
3665 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3666 goto repeat;
3667 }
3668
3669 /* Folio was truncated from mapping */
3670 if (!folio->mapping) {
3671 folio_unlock(folio);
3672 folio_put(folio);
3673 goto repeat;
3674 }
3675
3676 /* Someone else locked and filled the page in a very small window */
3677 if (folio_test_uptodate(folio)) {
3678 folio_unlock(folio);
3679 goto out;
3680 }
3681
3682 filler:
3683 err = filemap_read_folio(file, filler, folio);
3684 if (err) {
3685 folio_put(folio);
3686 if (err == AOP_TRUNCATED_PAGE)
3687 goto repeat;
3688 return ERR_PTR(err);
3689 }
3690
3691 out:
3692 folio_mark_accessed(folio);
3693 return folio;
3694 }
3695
3696 /**
3697 * read_cache_folio - Read into page cache, fill it if needed.
3698 * @mapping: The address_space to read from.
3699 * @index: The index to read.
3700 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3701 * @file: Passed to filler function, may be NULL if not required.
3702 *
3703 * Read one page into the page cache. If it succeeds, the folio returned
3704 * will contain @index, but it may not be the first page of the folio.
3705 *
3706 * If the filler function returns an error, it will be returned to the
3707 * caller.
3708 *
3709 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3710 * Return: An uptodate folio on success, ERR_PTR() on failure.
3711 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3712 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3713 filler_t filler, struct file *file)
3714 {
3715 return do_read_cache_folio(mapping, index, filler, file,
3716 mapping_gfp_mask(mapping));
3717 }
3718 EXPORT_SYMBOL(read_cache_folio);
3719
3720 /**
3721 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3722 * @mapping: The address_space for the folio.
3723 * @index: The index that the allocated folio will contain.
3724 * @gfp: The page allocator flags to use if allocating.
3725 *
3726 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3727 * any new memory allocations done using the specified allocation flags.
3728 *
3729 * The most likely error from this function is EIO, but ENOMEM is
3730 * possible and so is EINTR. If ->read_folio returns another error,
3731 * that will be returned to the caller.
3732 *
3733 * The function expects mapping->invalidate_lock to be already held.
3734 *
3735 * Return: Uptodate folio on success, ERR_PTR() on failure.
3736 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3737 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3738 pgoff_t index, gfp_t gfp)
3739 {
3740 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3741 }
3742 EXPORT_SYMBOL(mapping_read_folio_gfp);
3743
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3744 static struct page *do_read_cache_page(struct address_space *mapping,
3745 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3746 {
3747 struct folio *folio;
3748
3749 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3750 if (IS_ERR(folio))
3751 return &folio->page;
3752 return folio_file_page(folio, index);
3753 }
3754
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3755 struct page *read_cache_page(struct address_space *mapping,
3756 pgoff_t index, filler_t *filler, struct file *file)
3757 {
3758 return do_read_cache_page(mapping, index, filler, file,
3759 mapping_gfp_mask(mapping));
3760 }
3761 EXPORT_SYMBOL(read_cache_page);
3762
3763 /**
3764 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3765 * @mapping: the page's address_space
3766 * @index: the page index
3767 * @gfp: the page allocator flags to use if allocating
3768 *
3769 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3770 * any new page allocations done using the specified allocation flags.
3771 *
3772 * If the page does not get brought uptodate, return -EIO.
3773 *
3774 * The function expects mapping->invalidate_lock to be already held.
3775 *
3776 * Return: up to date page on success, ERR_PTR() on failure.
3777 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3778 struct page *read_cache_page_gfp(struct address_space *mapping,
3779 pgoff_t index,
3780 gfp_t gfp)
3781 {
3782 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3783 }
3784 EXPORT_SYMBOL(read_cache_page_gfp);
3785
3786 /*
3787 * Warn about a page cache invalidation failure during a direct I/O write.
3788 */
dio_warn_stale_pagecache(struct file * filp)3789 void dio_warn_stale_pagecache(struct file *filp)
3790 {
3791 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3792 char pathname[128];
3793 char *path;
3794
3795 errseq_set(&filp->f_mapping->wb_err, -EIO);
3796 if (__ratelimit(&_rs)) {
3797 path = file_path(filp, pathname, sizeof(pathname));
3798 if (IS_ERR(path))
3799 path = "(unknown)";
3800 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3801 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3802 current->comm);
3803 }
3804 }
3805
3806 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3807 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3808 {
3809 struct file *file = iocb->ki_filp;
3810 struct address_space *mapping = file->f_mapping;
3811 struct inode *inode = mapping->host;
3812 loff_t pos = iocb->ki_pos;
3813 ssize_t written;
3814 size_t write_len;
3815 pgoff_t end;
3816
3817 write_len = iov_iter_count(from);
3818 end = (pos + write_len - 1) >> PAGE_SHIFT;
3819
3820 if (iocb->ki_flags & IOCB_NOWAIT) {
3821 /* If there are pages to writeback, return */
3822 if (filemap_range_has_page(file->f_mapping, pos,
3823 pos + write_len - 1))
3824 return -EAGAIN;
3825 } else {
3826 written = filemap_write_and_wait_range(mapping, pos,
3827 pos + write_len - 1);
3828 if (written)
3829 goto out;
3830 }
3831
3832 /*
3833 * After a write we want buffered reads to be sure to go to disk to get
3834 * the new data. We invalidate clean cached page from the region we're
3835 * about to write. We do this *before* the write so that we can return
3836 * without clobbering -EIOCBQUEUED from ->direct_IO().
3837 */
3838 written = invalidate_inode_pages2_range(mapping,
3839 pos >> PAGE_SHIFT, end);
3840 /*
3841 * If a page can not be invalidated, return 0 to fall back
3842 * to buffered write.
3843 */
3844 if (written) {
3845 if (written == -EBUSY)
3846 return 0;
3847 goto out;
3848 }
3849
3850 written = mapping->a_ops->direct_IO(iocb, from);
3851
3852 /*
3853 * Finally, try again to invalidate clean pages which might have been
3854 * cached by non-direct readahead, or faulted in by get_user_pages()
3855 * if the source of the write was an mmap'ed region of the file
3856 * we're writing. Either one is a pretty crazy thing to do,
3857 * so we don't support it 100%. If this invalidation
3858 * fails, tough, the write still worked...
3859 *
3860 * Most of the time we do not need this since dio_complete() will do
3861 * the invalidation for us. However there are some file systems that
3862 * do not end up with dio_complete() being called, so let's not break
3863 * them by removing it completely.
3864 *
3865 * Noticeable example is a blkdev_direct_IO().
3866 *
3867 * Skip invalidation for async writes or if mapping has no pages.
3868 */
3869 if (written > 0 && mapping->nrpages &&
3870 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3871 dio_warn_stale_pagecache(file);
3872
3873 if (written > 0) {
3874 pos += written;
3875 write_len -= written;
3876 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3877 i_size_write(inode, pos);
3878 mark_inode_dirty(inode);
3879 }
3880 iocb->ki_pos = pos;
3881 }
3882 if (written != -EIOCBQUEUED)
3883 iov_iter_revert(from, write_len - iov_iter_count(from));
3884 out:
3885 return written;
3886 }
3887 EXPORT_SYMBOL(generic_file_direct_write);
3888
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)3889 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3890 {
3891 struct file *file = iocb->ki_filp;
3892 loff_t pos = iocb->ki_pos;
3893 struct address_space *mapping = file->f_mapping;
3894 const struct address_space_operations *a_ops = mapping->a_ops;
3895 long status = 0;
3896 ssize_t written = 0;
3897
3898 do {
3899 struct page *page;
3900 unsigned long offset; /* Offset into pagecache page */
3901 unsigned long bytes; /* Bytes to write to page */
3902 size_t copied; /* Bytes copied from user */
3903 void *fsdata = NULL;
3904
3905 offset = (pos & (PAGE_SIZE - 1));
3906 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3907 iov_iter_count(i));
3908
3909 again:
3910 /*
3911 * Bring in the user page that we will copy from _first_.
3912 * Otherwise there's a nasty deadlock on copying from the
3913 * same page as we're writing to, without it being marked
3914 * up-to-date.
3915 */
3916 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3917 status = -EFAULT;
3918 break;
3919 }
3920
3921 if (fatal_signal_pending(current)) {
3922 status = -EINTR;
3923 break;
3924 }
3925
3926 status = a_ops->write_begin(file, mapping, pos, bytes,
3927 &page, &fsdata);
3928 if (unlikely(status < 0))
3929 break;
3930
3931 if (mapping_writably_mapped(mapping))
3932 flush_dcache_page(page);
3933
3934 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3935 flush_dcache_page(page);
3936
3937 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3938 page, fsdata);
3939 if (unlikely(status != copied)) {
3940 iov_iter_revert(i, copied - max(status, 0L));
3941 if (unlikely(status < 0))
3942 break;
3943 }
3944 cond_resched();
3945
3946 if (unlikely(status == 0)) {
3947 /*
3948 * A short copy made ->write_end() reject the
3949 * thing entirely. Might be memory poisoning
3950 * halfway through, might be a race with munmap,
3951 * might be severe memory pressure.
3952 */
3953 if (copied)
3954 bytes = copied;
3955 goto again;
3956 }
3957 pos += status;
3958 written += status;
3959
3960 balance_dirty_pages_ratelimited(mapping);
3961 } while (iov_iter_count(i));
3962
3963 return written ? written : status;
3964 }
3965 EXPORT_SYMBOL(generic_perform_write);
3966
3967 /**
3968 * __generic_file_write_iter - write data to a file
3969 * @iocb: IO state structure (file, offset, etc.)
3970 * @from: iov_iter with data to write
3971 *
3972 * This function does all the work needed for actually writing data to a
3973 * file. It does all basic checks, removes SUID from the file, updates
3974 * modification times and calls proper subroutines depending on whether we
3975 * do direct IO or a standard buffered write.
3976 *
3977 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3978 * object which does not need locking at all.
3979 *
3980 * This function does *not* take care of syncing data in case of O_SYNC write.
3981 * A caller has to handle it. This is mainly due to the fact that we want to
3982 * avoid syncing under i_rwsem.
3983 *
3984 * Return:
3985 * * number of bytes written, even for truncated writes
3986 * * negative error code if no data has been written at all
3987 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3988 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3989 {
3990 struct file *file = iocb->ki_filp;
3991 struct address_space *mapping = file->f_mapping;
3992 struct inode *inode = mapping->host;
3993 ssize_t written = 0;
3994 ssize_t err;
3995 ssize_t status;
3996
3997 /* We can write back this queue in page reclaim */
3998 current->backing_dev_info = inode_to_bdi(inode);
3999 err = file_remove_privs(file);
4000 if (err)
4001 goto out;
4002
4003 err = file_update_time(file);
4004 if (err)
4005 goto out;
4006
4007 if (iocb->ki_flags & IOCB_DIRECT) {
4008 loff_t pos, endbyte;
4009
4010 written = generic_file_direct_write(iocb, from);
4011 /*
4012 * If the write stopped short of completing, fall back to
4013 * buffered writes. Some filesystems do this for writes to
4014 * holes, for example. For DAX files, a buffered write will
4015 * not succeed (even if it did, DAX does not handle dirty
4016 * page-cache pages correctly).
4017 */
4018 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
4019 goto out;
4020
4021 pos = iocb->ki_pos;
4022 status = generic_perform_write(iocb, from);
4023 /*
4024 * If generic_perform_write() returned a synchronous error
4025 * then we want to return the number of bytes which were
4026 * direct-written, or the error code if that was zero. Note
4027 * that this differs from normal direct-io semantics, which
4028 * will return -EFOO even if some bytes were written.
4029 */
4030 if (unlikely(status < 0)) {
4031 err = status;
4032 goto out;
4033 }
4034 /*
4035 * We need to ensure that the page cache pages are written to
4036 * disk and invalidated to preserve the expected O_DIRECT
4037 * semantics.
4038 */
4039 endbyte = pos + status - 1;
4040 err = filemap_write_and_wait_range(mapping, pos, endbyte);
4041 if (err == 0) {
4042 iocb->ki_pos = endbyte + 1;
4043 written += status;
4044 invalidate_mapping_pages(mapping,
4045 pos >> PAGE_SHIFT,
4046 endbyte >> PAGE_SHIFT);
4047 } else {
4048 /*
4049 * We don't know how much we wrote, so just return
4050 * the number of bytes which were direct-written
4051 */
4052 }
4053 } else {
4054 written = generic_perform_write(iocb, from);
4055 if (likely(written > 0))
4056 iocb->ki_pos += written;
4057 }
4058 out:
4059 current->backing_dev_info = NULL;
4060 return written ? written : err;
4061 }
4062 EXPORT_SYMBOL(__generic_file_write_iter);
4063
4064 /**
4065 * generic_file_write_iter - write data to a file
4066 * @iocb: IO state structure
4067 * @from: iov_iter with data to write
4068 *
4069 * This is a wrapper around __generic_file_write_iter() to be used by most
4070 * filesystems. It takes care of syncing the file in case of O_SYNC file
4071 * and acquires i_rwsem as needed.
4072 * Return:
4073 * * negative error code if no data has been written at all of
4074 * vfs_fsync_range() failed for a synchronous write
4075 * * number of bytes written, even for truncated writes
4076 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4077 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4078 {
4079 struct file *file = iocb->ki_filp;
4080 struct inode *inode = file->f_mapping->host;
4081 ssize_t ret;
4082
4083 inode_lock(inode);
4084 ret = generic_write_checks(iocb, from);
4085 if (ret > 0)
4086 ret = __generic_file_write_iter(iocb, from);
4087 inode_unlock(inode);
4088
4089 if (ret > 0)
4090 ret = generic_write_sync(iocb, ret);
4091 return ret;
4092 }
4093 EXPORT_SYMBOL(generic_file_write_iter);
4094
4095 /**
4096 * filemap_release_folio() - Release fs-specific metadata on a folio.
4097 * @folio: The folio which the kernel is trying to free.
4098 * @gfp: Memory allocation flags (and I/O mode).
4099 *
4100 * The address_space is trying to release any data attached to a folio
4101 * (presumably at folio->private).
4102 *
4103 * This will also be called if the private_2 flag is set on a page,
4104 * indicating that the folio has other metadata associated with it.
4105 *
4106 * The @gfp argument specifies whether I/O may be performed to release
4107 * this page (__GFP_IO), and whether the call may block
4108 * (__GFP_RECLAIM & __GFP_FS).
4109 *
4110 * Return: %true if the release was successful, otherwise %false.
4111 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4112 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4113 {
4114 struct address_space * const mapping = folio->mapping;
4115
4116 BUG_ON(!folio_test_locked(folio));
4117 if (folio_test_writeback(folio))
4118 return false;
4119
4120 if (mapping && mapping->a_ops->release_folio)
4121 return mapping->a_ops->release_folio(folio, gfp);
4122 return try_to_free_buffers(folio);
4123 }
4124 EXPORT_SYMBOL(filemap_release_folio);
4125