1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* __ieee754_hypot(x,y)
13  *
14  * Method :
15  *	If (assume round-to-nearest) z=x*x+y*y
16  *	has error less than sqrt(2)/2 ulp, than
17  *	sqrt(z) has error less than 1 ulp (exercise).
18  *
19  *	So, compute sqrt(x*x+y*y) with some care as
20  *	follows to get the error below 1 ulp:
21  *
22  *	Assume x>y>0;
23  *	(if possible, set rounding to round-to-nearest)
24  *	1. if x > 2y  use
25  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
26  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
27  *	2. if x <= 2y use
28  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
29  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
30  *	y1= y with lower 32 bits chopped, y2 = y-y1.
31  *
32  *	NOTE: scaling may be necessary if some argument is too
33  *	      large or too tiny
34  *
35  * Special cases:
36  *	hypot(x,y) is INF if x or y is +INF or -INF; else
37  *	hypot(x,y) is NAN if x or y is NAN.
38  *
39  * Accuracy:
40  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
41  * 	than 1 ulps (units in the last place)
42  */
43 
44 #include "math.h"
45 #include "math_private.h"
46 
__ieee754_hypot(double x,double y)47 double __ieee754_hypot(double x, double y)
48 {
49 	double a=x,b=y,t1,t2,_y1,y2,w;
50 	int32_t j,k,ha,hb;
51 
52 	GET_HIGH_WORD(ha,x);
53 	ha &= 0x7fffffff;
54 	GET_HIGH_WORD(hb,y);
55 	hb &= 0x7fffffff;
56 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
57 	SET_HIGH_WORD(a,ha);	/* a <- |a| */
58 	SET_HIGH_WORD(b,hb);	/* b <- |b| */
59 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
60 	k=0;
61 	if(ha > 0x5f300000) {	/* a>2**500 */
62 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
63 	       u_int32_t low;
64 	       w = a+b;			/* for sNaN */
65 	       GET_LOW_WORD(low,a);
66 	       if(((ha&0xfffff)|low)==0) w = a;
67 	       GET_LOW_WORD(low,b);
68 	       if(((hb^0x7ff00000)|low)==0) w = b;
69 	       return w;
70 	   }
71 	   /* scale a and b by 2**-600 */
72 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
73 	   SET_HIGH_WORD(a,ha);
74 	   SET_HIGH_WORD(b,hb);
75 	}
76 	if(hb < 0x20b00000) {	/* b < 2**-500 */
77 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
78 	        u_int32_t low;
79 		GET_LOW_WORD(low,b);
80 		if((hb|low)==0) return a;
81 		t1=0;
82 		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
83 		b *= t1;
84 		a *= t1;
85 		k -= 1022;
86 	    } else {		/* scale a and b by 2^600 */
87 	        ha += 0x25800000; 	/* a *= 2^600 */
88 		hb += 0x25800000;	/* b *= 2^600 */
89 		k -= 600;
90 		SET_HIGH_WORD(a,ha);
91 		SET_HIGH_WORD(b,hb);
92 	    }
93 	}
94     /* medium size a and b */
95 	w = a-b;
96 	if (w>b) {
97 	    t1 = 0;
98 	    SET_HIGH_WORD(t1,ha);
99 	    t2 = a-t1;
100 	    w  = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
101 	} else {
102 	    a  = a+a;
103 	    _y1 = 0;
104 	    SET_HIGH_WORD(_y1,hb);
105 	    y2 = b - _y1;
106 	    t1 = 0;
107 	    SET_HIGH_WORD(t1,ha+0x00100000);
108 	    t2 = a - t1;
109 	    w  = __ieee754_sqrt(t1*_y1-(w*(-w)-(t1*y2+t2*b)));
110 	}
111 	if(k!=0) {
112 	    u_int32_t high;
113 	    t1 = 1.0;
114 	    GET_HIGH_WORD(high,t1);
115 	    SET_HIGH_WORD(t1,high+(k<<20));
116 	    return t1*w;
117 	} else return w;
118 }
119 
120 /*
121  * wrapper hypot(x,y)
122  */
123 #ifndef _IEEE_LIBM
hypot(double x,double y)124 double hypot(double x, double y)
125 {
126 	double z = __ieee754_hypot(x, y);
127 	if (_LIB_VERSION == _IEEE_)
128 		return z;
129 	if ((!isfinite(z)) && isfinite(x) && isfinite(y))
130 		return __kernel_standard(x, y, 4); /* hypot overflow */
131 	return z;
132 }
133 #else
134 strong_alias(__ieee754_hypot, hypot)
135 #endif
136 libm_hidden_def(hypot)
137