1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* __ieee754_log(x)
13  * Return the logrithm of x
14  *
15  * Method :
16  *   1. Argument Reduction: find k and f such that
17  *			x = 2^k * (1+f),
18  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
19  *
20  *   2. Approximation of log(1+f).
21  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
22  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
23  *	     	 = 2s + s*R
24  *      We use a special Reme algorithm on [0,0.1716] to generate
25  * 	a polynomial of degree 14 to approximate R The maximum error
26  *	of this polynomial approximation is bounded by 2**-58.45. In
27  *	other words,
28  *		        2      4      6      8      10      12      14
29  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
30  *  	(the values of Lg1 to Lg7 are listed in the program)
31  *	and
32  *	    |      2          14          |     -58.45
33  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
34  *	    |                             |
35  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
36  *	In order to guarantee error in log below 1ulp, we compute log
37  *	by
38  *		log(1+f) = f - s*(f - R)	(if f is not too large)
39  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
40  *
41  *	3. Finally,  log(x) = k*ln2 + log(1+f).
42  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
43  *	   Here ln2 is split into two floating point number:
44  *			ln2_hi + ln2_lo,
45  *	   where n*ln2_hi is always exact for |n| < 2000.
46  *
47  * Special cases:
48  *	log(x) is NaN with signal if x < 0 (including -INF) ;
49  *	log(+INF) is +INF; log(0) is -INF with signal;
50  *	log(NaN) is that NaN with no signal.
51  *
52  * Accuracy:
53  *	according to an error analysis, the error is always less than
54  *	1 ulp (unit in the last place).
55  *
56  * Constants:
57  * The hexadecimal values are the intended ones for the following
58  * constants. The decimal values may be used, provided that the
59  * compiler will convert from decimal to binary accurately enough
60  * to produce the hexadecimal values shown.
61  */
62 
63 #include "math.h"
64 #include "math_private.h"
65 
66 static const double
67 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
68 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
69 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
70 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
71 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
72 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
73 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
74 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
75 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
76 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
77 
78 static const double zero   =  0.0;
79 
__ieee754_log(double x)80 double __ieee754_log(double x)
81 {
82 	double hfsq,f,s,z,R,w,t1,t2,dk;
83 	int32_t k,hx,i,j;
84 	u_int32_t lx;
85 
86 	EXTRACT_WORDS(hx,lx,x);
87 
88 	k=0;
89 	if (hx < 0x00100000) {			/* x < 2**-1022  */
90 	    if (((hx&0x7fffffff)|lx)==0)
91 		return -two54/zero;		/* log(+-0)=-inf */
92 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
93 	    k -= 54; x *= two54; /* subnormal number, scale up x */
94 	    GET_HIGH_WORD(hx,x);
95 	}
96 	if (hx >= 0x7ff00000) return x+x;
97 	k += (hx>>20)-1023;
98 	hx &= 0x000fffff;
99 	i = (hx+0x95f64)&0x100000;
100 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
101 	k += (i>>20);
102 	f = x-1.0;
103 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
104 	    if(f==zero) {if(k==0) return zero;  else {dk=(double)k;
105 				 return dk*ln2_hi+dk*ln2_lo;}
106 	    }
107 	    R = f*f*(0.5-0.33333333333333333*f);
108 	    if(k==0) return f-R; else {dk=(double)k;
109 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
110 	}
111  	s = f/(2.0+f);
112 	dk = (double)k;
113 	z = s*s;
114 	i = hx-0x6147a;
115 	w = z*z;
116 	j = 0x6b851-hx;
117 	t1= w*(Lg2+w*(Lg4+w*Lg6));
118 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
119 	i |= j;
120 	R = t2+t1;
121 	if(i>0) {
122 	    hfsq=0.5*f*f;
123 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
124 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
125 	} else {
126 	    if(k==0) return f-s*(f-R); else
127 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
128 	}
129 }
130 
131 /*
132  * wrapper log(x)
133  */
134 #ifndef _IEEE_LIBM
log(double x)135 double log(double x)
136 {
137 	double z = __ieee754_log(x);
138 	if (_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0)
139 		return z;
140 	if (x == 0.0)
141 		return __kernel_standard(x, x, 16); /* log(0) */
142 	return __kernel_standard(x, x, 17); /* log(x<0) */
143 }
144 #else
145 strong_alias(__ieee754_log, log)
146 #endif
147 libm_hidden_def(log)
148