1 /* k_tanf.c -- float version of k_tan.c
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  * Optimized by Bruce D. Evans.
4  */
5 
6 /*
7  * ====================================================
8  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
9  *
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #ifndef INLINE_KERNEL_TANDF
17 #include <sys/cdefs.h>
18 __FBSDID("$FreeBSD$");
19 #endif
20 
21 #include "math.h"
22 #include "math_private.h"
23 
24 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
25 static const double
26 T[] =  {
27     0x15554d3418c99f.0p-54,   /* 0.333331395030791399758 */
28     0x1112fd38999f72.0p-55,   /* 0.133392002712976742718 */
29     0x1b54c91d865afe.0p-57,   /* 0.0533812378445670393523 */
30     0x191df3908c33ce.0p-58,   /* 0.0245283181166547278873 */
31     0x185dadfcecf44e.0p-61,   /* 0.00297435743359967304927 */
32     0x1362b9bf971bcd.0p-59,   /* 0.00946564784943673166728 */
33 };
34 
35 #ifdef INLINE_KERNEL_TANDF
36 static __inline
37 #endif
38 float
__kernel_tandf(double x,int iy)39 __kernel_tandf(double x, int iy)
40 {
41     double z,r,w,s,t,u;
42 
43     z   =  x*x;
44     /*
45      * Split up the polynomial into small independent terms to give
46      * opportunities for parallel evaluation.  The chosen splitting is
47      * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
48      * relative to Horner's method on sequential machines.
49      *
50      * We add the small terms from lowest degree up for efficiency on
51      * non-sequential machines (the lowest degree terms tend to be ready
52      * earlier).  Apart from this, we don't care about order of
53      * operations, and don't need to to care since we have precision to
54      * spare.  However, the chosen splitting is good for accuracy too,
55      * and would give results as accurate as Horner's method if the
56      * small terms were added from highest degree down.
57      */
58     r = T[4]+z*T[5];
59     t = T[2]+z*T[3];
60     w = z*z;
61     s = z*x;
62     u = T[0]+z*T[1];
63     r = (x+s*u)+(s*w)*(t+w*r);
64     if (iy==1) return r;
65     else return -1.0/r;
66 }
67