1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 /* BPF memory accounting disabled? */
92 static bool cgroup_memory_nobpf __ro_after_init;
93
94 #ifdef CONFIG_CGROUP_WRITEBACK
95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
96 #endif
97
98 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)99 static bool do_memsw_account(void)
100 {
101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
102 }
103
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106
107 /*
108 * Cgroups above their limits are maintained in a RB-Tree, independent of
109 * their hierarchy representation
110 */
111
112 struct mem_cgroup_tree_per_node {
113 struct rb_root rb_root;
114 struct rb_node *rb_rightmost;
115 spinlock_t lock;
116 };
117
118 struct mem_cgroup_tree {
119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 struct list_head list;
127 struct eventfd_ctx *eventfd;
128 };
129
130 /*
131 * cgroup_event represents events which userspace want to receive.
132 */
133 struct mem_cgroup_event {
134 /*
135 * memcg which the event belongs to.
136 */
137 struct mem_cgroup *memcg;
138 /*
139 * eventfd to signal userspace about the event.
140 */
141 struct eventfd_ctx *eventfd;
142 /*
143 * Each of these stored in a list by the cgroup.
144 */
145 struct list_head list;
146 /*
147 * register_event() callback will be used to add new userspace
148 * waiter for changes related to this event. Use eventfd_signal()
149 * on eventfd to send notification to userspace.
150 */
151 int (*register_event)(struct mem_cgroup *memcg,
152 struct eventfd_ctx *eventfd, const char *args);
153 /*
154 * unregister_event() callback will be called when userspace closes
155 * the eventfd or on cgroup removing. This callback must be set,
156 * if you want provide notification functionality.
157 */
158 void (*unregister_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd);
160 /*
161 * All fields below needed to unregister event when
162 * userspace closes eventfd.
163 */
164 poll_table pt;
165 wait_queue_head_t *wqh;
166 wait_queue_entry_t wait;
167 struct work_struct remove;
168 };
169
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172
173 /* Stuffs for move charges at task migration. */
174 /*
175 * Types of charges to be moved.
176 */
177 #define MOVE_ANON 0x1U
178 #define MOVE_FILE 0x2U
179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
180
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 spinlock_t lock; /* for from, to */
184 struct mm_struct *mm;
185 struct mem_cgroup *from;
186 struct mem_cgroup *to;
187 unsigned long flags;
188 unsigned long precharge;
189 unsigned long moved_charge;
190 unsigned long moved_swap;
191 struct task_struct *moving_task; /* a task moving charges */
192 wait_queue_head_t waitq; /* a waitq for other context */
193 } mc = {
194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197
198 /*
199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200 * limit reclaim to prevent infinite loops, if they ever occur.
201 */
202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
204
205 /* for encoding cft->private value on file */
206 enum res_type {
207 _MEM,
208 _MEMSWAP,
209 _KMEM,
210 _TCP,
211 };
212
213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
214 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val) ((val) & 0xffff)
216
217 /*
218 * Iteration constructs for visiting all cgroups (under a tree). If
219 * loops are exited prematurely (break), mem_cgroup_iter_break() must
220 * be used for reference counting.
221 */
222 #define for_each_mem_cgroup_tree(iter, root) \
223 for (iter = mem_cgroup_iter(root, NULL, NULL); \
224 iter != NULL; \
225 iter = mem_cgroup_iter(root, iter, NULL))
226
227 #define for_each_mem_cgroup(iter) \
228 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(NULL, iter, NULL))
231
task_is_dying(void)232 static inline bool task_is_dying(void)
233 {
234 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
235 (current->flags & PF_EXITING);
236 }
237
238 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)239 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
240 {
241 if (!memcg)
242 memcg = root_mem_cgroup;
243 return &memcg->vmpressure;
244 }
245
vmpressure_to_memcg(struct vmpressure * vmpr)246 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
247 {
248 return container_of(vmpr, struct mem_cgroup, vmpressure);
249 }
250
251 #ifdef CONFIG_MEMCG_KMEM
252 static DEFINE_SPINLOCK(objcg_lock);
253
mem_cgroup_kmem_disabled(void)254 bool mem_cgroup_kmem_disabled(void)
255 {
256 return cgroup_memory_nokmem;
257 }
258
259 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
260 unsigned int nr_pages);
261
obj_cgroup_release(struct percpu_ref * ref)262 static void obj_cgroup_release(struct percpu_ref *ref)
263 {
264 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
265 unsigned int nr_bytes;
266 unsigned int nr_pages;
267 unsigned long flags;
268
269 /*
270 * At this point all allocated objects are freed, and
271 * objcg->nr_charged_bytes can't have an arbitrary byte value.
272 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273 *
274 * The following sequence can lead to it:
275 * 1) CPU0: objcg == stock->cached_objcg
276 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277 * PAGE_SIZE bytes are charged
278 * 3) CPU1: a process from another memcg is allocating something,
279 * the stock if flushed,
280 * objcg->nr_charged_bytes = PAGE_SIZE - 92
281 * 5) CPU0: we do release this object,
282 * 92 bytes are added to stock->nr_bytes
283 * 6) CPU0: stock is flushed,
284 * 92 bytes are added to objcg->nr_charged_bytes
285 *
286 * In the result, nr_charged_bytes == PAGE_SIZE.
287 * This page will be uncharged in obj_cgroup_release().
288 */
289 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291 nr_pages = nr_bytes >> PAGE_SHIFT;
292
293 if (nr_pages)
294 obj_cgroup_uncharge_pages(objcg, nr_pages);
295
296 spin_lock_irqsave(&objcg_lock, flags);
297 list_del(&objcg->list);
298 spin_unlock_irqrestore(&objcg_lock, flags);
299
300 percpu_ref_exit(ref);
301 kfree_rcu(objcg, rcu);
302 }
303
obj_cgroup_alloc(void)304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306 struct obj_cgroup *objcg;
307 int ret;
308
309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 if (!objcg)
311 return NULL;
312
313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 GFP_KERNEL);
315 if (ret) {
316 kfree(objcg);
317 return NULL;
318 }
319 INIT_LIST_HEAD(&objcg->list);
320 return objcg;
321 }
322
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 struct mem_cgroup *parent)
325 {
326 struct obj_cgroup *objcg, *iter;
327
328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330 spin_lock_irq(&objcg_lock);
331
332 /* 1) Ready to reparent active objcg. */
333 list_add(&objcg->list, &memcg->objcg_list);
334 /* 2) Reparent active objcg and already reparented objcgs to parent. */
335 list_for_each_entry(iter, &memcg->objcg_list, list)
336 WRITE_ONCE(iter->memcg, parent);
337 /* 3) Move already reparented objcgs to the parent's list */
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&objcg_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343 }
344
345 /*
346 * A lot of the calls to the cache allocation functions are expected to be
347 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
348 * conditional to this static branch, we'll have to allow modules that does
349 * kmem_cache_alloc and the such to see this symbol as well
350 */
351 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
352 EXPORT_SYMBOL(memcg_kmem_online_key);
353
354 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
355 EXPORT_SYMBOL(memcg_bpf_enabled_key);
356 #endif
357
358 /**
359 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
360 * @folio: folio of interest
361 *
362 * If memcg is bound to the default hierarchy, css of the memcg associated
363 * with @folio is returned. The returned css remains associated with @folio
364 * until it is released.
365 *
366 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
367 * is returned.
368 */
mem_cgroup_css_from_folio(struct folio * folio)369 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
370 {
371 struct mem_cgroup *memcg = folio_memcg(folio);
372
373 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
374 memcg = root_mem_cgroup;
375
376 return &memcg->css;
377 }
378
379 /**
380 * page_cgroup_ino - return inode number of the memcg a page is charged to
381 * @page: the page
382 *
383 * Look up the closest online ancestor of the memory cgroup @page is charged to
384 * and return its inode number or 0 if @page is not charged to any cgroup. It
385 * is safe to call this function without holding a reference to @page.
386 *
387 * Note, this function is inherently racy, because there is nothing to prevent
388 * the cgroup inode from getting torn down and potentially reallocated a moment
389 * after page_cgroup_ino() returns, so it only should be used by callers that
390 * do not care (such as procfs interfaces).
391 */
page_cgroup_ino(struct page * page)392 ino_t page_cgroup_ino(struct page *page)
393 {
394 struct mem_cgroup *memcg;
395 unsigned long ino = 0;
396
397 rcu_read_lock();
398 memcg = page_memcg_check(page);
399
400 while (memcg && !(memcg->css.flags & CSS_ONLINE))
401 memcg = parent_mem_cgroup(memcg);
402 if (memcg)
403 ino = cgroup_ino(memcg->css.cgroup);
404 rcu_read_unlock();
405 return ino;
406 }
407
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)408 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
409 struct mem_cgroup_tree_per_node *mctz,
410 unsigned long new_usage_in_excess)
411 {
412 struct rb_node **p = &mctz->rb_root.rb_node;
413 struct rb_node *parent = NULL;
414 struct mem_cgroup_per_node *mz_node;
415 bool rightmost = true;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess) {
428 p = &(*p)->rb_left;
429 rightmost = false;
430 } else {
431 p = &(*p)->rb_right;
432 }
433 }
434
435 if (rightmost)
436 mctz->rb_rightmost = &mz->tree_node;
437
438 rb_link_node(&mz->tree_node, parent, p);
439 rb_insert_color(&mz->tree_node, &mctz->rb_root);
440 mz->on_tree = true;
441 }
442
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)443 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
444 struct mem_cgroup_tree_per_node *mctz)
445 {
446 if (!mz->on_tree)
447 return;
448
449 if (&mz->tree_node == mctz->rb_rightmost)
450 mctz->rb_rightmost = rb_prev(&mz->tree_node);
451
452 rb_erase(&mz->tree_node, &mctz->rb_root);
453 mz->on_tree = false;
454 }
455
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)456 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
457 struct mem_cgroup_tree_per_node *mctz)
458 {
459 unsigned long flags;
460
461 spin_lock_irqsave(&mctz->lock, flags);
462 __mem_cgroup_remove_exceeded(mz, mctz);
463 spin_unlock_irqrestore(&mctz->lock, flags);
464 }
465
soft_limit_excess(struct mem_cgroup * memcg)466 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
467 {
468 unsigned long nr_pages = page_counter_read(&memcg->memory);
469 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
470 unsigned long excess = 0;
471
472 if (nr_pages > soft_limit)
473 excess = nr_pages - soft_limit;
474
475 return excess;
476 }
477
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)478 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
479 {
480 unsigned long excess;
481 struct mem_cgroup_per_node *mz;
482 struct mem_cgroup_tree_per_node *mctz;
483
484 if (lru_gen_enabled()) {
485 if (soft_limit_excess(memcg))
486 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
487 return;
488 }
489
490 mctz = soft_limit_tree.rb_tree_per_node[nid];
491 if (!mctz)
492 return;
493 /*
494 * Necessary to update all ancestors when hierarchy is used.
495 * because their event counter is not touched.
496 */
497 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
498 mz = memcg->nodeinfo[nid];
499 excess = soft_limit_excess(memcg);
500 /*
501 * We have to update the tree if mz is on RB-tree or
502 * mem is over its softlimit.
503 */
504 if (excess || mz->on_tree) {
505 unsigned long flags;
506
507 spin_lock_irqsave(&mctz->lock, flags);
508 /* if on-tree, remove it */
509 if (mz->on_tree)
510 __mem_cgroup_remove_exceeded(mz, mctz);
511 /*
512 * Insert again. mz->usage_in_excess will be updated.
513 * If excess is 0, no tree ops.
514 */
515 __mem_cgroup_insert_exceeded(mz, mctz, excess);
516 spin_unlock_irqrestore(&mctz->lock, flags);
517 }
518 }
519 }
520
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)521 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
522 {
523 struct mem_cgroup_tree_per_node *mctz;
524 struct mem_cgroup_per_node *mz;
525 int nid;
526
527 for_each_node(nid) {
528 mz = memcg->nodeinfo[nid];
529 mctz = soft_limit_tree.rb_tree_per_node[nid];
530 if (mctz)
531 mem_cgroup_remove_exceeded(mz, mctz);
532 }
533 }
534
535 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)536 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 {
538 struct mem_cgroup_per_node *mz;
539
540 retry:
541 mz = NULL;
542 if (!mctz->rb_rightmost)
543 goto done; /* Nothing to reclaim from */
544
545 mz = rb_entry(mctz->rb_rightmost,
546 struct mem_cgroup_per_node, tree_node);
547 /*
548 * Remove the node now but someone else can add it back,
549 * we will to add it back at the end of reclaim to its correct
550 * position in the tree.
551 */
552 __mem_cgroup_remove_exceeded(mz, mctz);
553 if (!soft_limit_excess(mz->memcg) ||
554 !css_tryget(&mz->memcg->css))
555 goto retry;
556 done:
557 return mz;
558 }
559
560 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)561 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
562 {
563 struct mem_cgroup_per_node *mz;
564
565 spin_lock_irq(&mctz->lock);
566 mz = __mem_cgroup_largest_soft_limit_node(mctz);
567 spin_unlock_irq(&mctz->lock);
568 return mz;
569 }
570
571 /*
572 * memcg and lruvec stats flushing
573 *
574 * Many codepaths leading to stats update or read are performance sensitive and
575 * adding stats flushing in such codepaths is not desirable. So, to optimize the
576 * flushing the kernel does:
577 *
578 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
579 * rstat update tree grow unbounded.
580 *
581 * 2) Flush the stats synchronously on reader side only when there are more than
582 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
583 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
584 * only for 2 seconds due to (1).
585 */
586 static void flush_memcg_stats_dwork(struct work_struct *w);
587 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
588 static DEFINE_SPINLOCK(stats_flush_lock);
589 static DEFINE_PER_CPU(unsigned int, stats_updates);
590 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
591 static u64 flush_next_time;
592
593 #define FLUSH_TIME (2UL*HZ)
594
595 /*
596 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
597 * not rely on this as part of an acquired spinlock_t lock. These functions are
598 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
599 * is sufficient.
600 */
memcg_stats_lock(void)601 static void memcg_stats_lock(void)
602 {
603 preempt_disable_nested();
604 VM_WARN_ON_IRQS_ENABLED();
605 }
606
__memcg_stats_lock(void)607 static void __memcg_stats_lock(void)
608 {
609 preempt_disable_nested();
610 }
611
memcg_stats_unlock(void)612 static void memcg_stats_unlock(void)
613 {
614 preempt_enable_nested();
615 }
616
memcg_rstat_updated(struct mem_cgroup * memcg,int val)617 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
618 {
619 unsigned int x;
620
621 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
622
623 x = __this_cpu_add_return(stats_updates, abs(val));
624 if (x > MEMCG_CHARGE_BATCH) {
625 /*
626 * If stats_flush_threshold exceeds the threshold
627 * (>num_online_cpus()), cgroup stats update will be triggered
628 * in __mem_cgroup_flush_stats(). Increasing this var further
629 * is redundant and simply adds overhead in atomic update.
630 */
631 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
632 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
633 __this_cpu_write(stats_updates, 0);
634 }
635 }
636
__mem_cgroup_flush_stats(void)637 static void __mem_cgroup_flush_stats(void)
638 {
639 unsigned long flag;
640
641 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
642 return;
643
644 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
645 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
646 atomic_set(&stats_flush_threshold, 0);
647 spin_unlock_irqrestore(&stats_flush_lock, flag);
648 }
649
mem_cgroup_flush_stats(void)650 void mem_cgroup_flush_stats(void)
651 {
652 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
653 __mem_cgroup_flush_stats();
654 }
655
mem_cgroup_flush_stats_delayed(void)656 void mem_cgroup_flush_stats_delayed(void)
657 {
658 if (time_after64(jiffies_64, flush_next_time))
659 mem_cgroup_flush_stats();
660 }
661
flush_memcg_stats_dwork(struct work_struct * w)662 static void flush_memcg_stats_dwork(struct work_struct *w)
663 {
664 __mem_cgroup_flush_stats();
665 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
666 }
667
668 /* Subset of vm_event_item to report for memcg event stats */
669 static const unsigned int memcg_vm_event_stat[] = {
670 PGPGIN,
671 PGPGOUT,
672 PGSCAN_KSWAPD,
673 PGSCAN_DIRECT,
674 PGSCAN_KHUGEPAGED,
675 PGSTEAL_KSWAPD,
676 PGSTEAL_DIRECT,
677 PGSTEAL_KHUGEPAGED,
678 PGFAULT,
679 PGMAJFAULT,
680 PGREFILL,
681 PGACTIVATE,
682 PGDEACTIVATE,
683 PGLAZYFREE,
684 PGLAZYFREED,
685 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
686 ZSWPIN,
687 ZSWPOUT,
688 #endif
689 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
690 THP_FAULT_ALLOC,
691 THP_COLLAPSE_ALLOC,
692 #endif
693 };
694
695 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
696 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
697
init_memcg_events(void)698 static void init_memcg_events(void)
699 {
700 int i;
701
702 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
703 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
704 }
705
memcg_events_index(enum vm_event_item idx)706 static inline int memcg_events_index(enum vm_event_item idx)
707 {
708 return mem_cgroup_events_index[idx] - 1;
709 }
710
711 struct memcg_vmstats_percpu {
712 /* Local (CPU and cgroup) page state & events */
713 long state[MEMCG_NR_STAT];
714 unsigned long events[NR_MEMCG_EVENTS];
715
716 /* Delta calculation for lockless upward propagation */
717 long state_prev[MEMCG_NR_STAT];
718 unsigned long events_prev[NR_MEMCG_EVENTS];
719
720 /* Cgroup1: threshold notifications & softlimit tree updates */
721 unsigned long nr_page_events;
722 unsigned long targets[MEM_CGROUP_NTARGETS];
723 };
724
725 struct memcg_vmstats {
726 /* Aggregated (CPU and subtree) page state & events */
727 long state[MEMCG_NR_STAT];
728 unsigned long events[NR_MEMCG_EVENTS];
729
730 /* Pending child counts during tree propagation */
731 long state_pending[MEMCG_NR_STAT];
732 unsigned long events_pending[NR_MEMCG_EVENTS];
733 };
734
memcg_page_state(struct mem_cgroup * memcg,int idx)735 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
736 {
737 long x = READ_ONCE(memcg->vmstats->state[idx]);
738 #ifdef CONFIG_SMP
739 if (x < 0)
740 x = 0;
741 #endif
742 return x;
743 }
744
745 /**
746 * __mod_memcg_state - update cgroup memory statistics
747 * @memcg: the memory cgroup
748 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
749 * @val: delta to add to the counter, can be negative
750 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)751 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
752 {
753 if (mem_cgroup_disabled())
754 return;
755
756 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
757 memcg_rstat_updated(memcg, val);
758 }
759
760 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)761 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
762 {
763 long x = 0;
764 int cpu;
765
766 for_each_possible_cpu(cpu)
767 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
768 #ifdef CONFIG_SMP
769 if (x < 0)
770 x = 0;
771 #endif
772 return x;
773 }
774
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)775 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
776 int val)
777 {
778 struct mem_cgroup_per_node *pn;
779 struct mem_cgroup *memcg;
780
781 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
782 memcg = pn->memcg;
783
784 /*
785 * The caller from rmap relay on disabled preemption becase they never
786 * update their counter from in-interrupt context. For these two
787 * counters we check that the update is never performed from an
788 * interrupt context while other caller need to have disabled interrupt.
789 */
790 __memcg_stats_lock();
791 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
792 switch (idx) {
793 case NR_ANON_MAPPED:
794 case NR_FILE_MAPPED:
795 case NR_ANON_THPS:
796 case NR_SHMEM_PMDMAPPED:
797 case NR_FILE_PMDMAPPED:
798 WARN_ON_ONCE(!in_task());
799 break;
800 default:
801 VM_WARN_ON_IRQS_ENABLED();
802 }
803 }
804
805 /* Update memcg */
806 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
807
808 /* Update lruvec */
809 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
810
811 memcg_rstat_updated(memcg, val);
812 memcg_stats_unlock();
813 }
814
815 /**
816 * __mod_lruvec_state - update lruvec memory statistics
817 * @lruvec: the lruvec
818 * @idx: the stat item
819 * @val: delta to add to the counter, can be negative
820 *
821 * The lruvec is the intersection of the NUMA node and a cgroup. This
822 * function updates the all three counters that are affected by a
823 * change of state at this level: per-node, per-cgroup, per-lruvec.
824 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)825 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
826 int val)
827 {
828 /* Update node */
829 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
830
831 /* Update memcg and lruvec */
832 if (!mem_cgroup_disabled())
833 __mod_memcg_lruvec_state(lruvec, idx, val);
834 }
835
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)836 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
837 int val)
838 {
839 struct page *head = compound_head(page); /* rmap on tail pages */
840 struct mem_cgroup *memcg;
841 pg_data_t *pgdat = page_pgdat(page);
842 struct lruvec *lruvec;
843
844 rcu_read_lock();
845 memcg = page_memcg(head);
846 /* Untracked pages have no memcg, no lruvec. Update only the node */
847 if (!memcg) {
848 rcu_read_unlock();
849 __mod_node_page_state(pgdat, idx, val);
850 return;
851 }
852
853 lruvec = mem_cgroup_lruvec(memcg, pgdat);
854 __mod_lruvec_state(lruvec, idx, val);
855 rcu_read_unlock();
856 }
857 EXPORT_SYMBOL(__mod_lruvec_page_state);
858
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)859 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
860 {
861 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
862 struct mem_cgroup *memcg;
863 struct lruvec *lruvec;
864
865 rcu_read_lock();
866 memcg = mem_cgroup_from_slab_obj(p);
867
868 /*
869 * Untracked pages have no memcg, no lruvec. Update only the
870 * node. If we reparent the slab objects to the root memcg,
871 * when we free the slab object, we need to update the per-memcg
872 * vmstats to keep it correct for the root memcg.
873 */
874 if (!memcg) {
875 __mod_node_page_state(pgdat, idx, val);
876 } else {
877 lruvec = mem_cgroup_lruvec(memcg, pgdat);
878 __mod_lruvec_state(lruvec, idx, val);
879 }
880 rcu_read_unlock();
881 }
882
883 /**
884 * __count_memcg_events - account VM events in a cgroup
885 * @memcg: the memory cgroup
886 * @idx: the event item
887 * @count: the number of events that occurred
888 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)889 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
890 unsigned long count)
891 {
892 int index = memcg_events_index(idx);
893
894 if (mem_cgroup_disabled() || index < 0)
895 return;
896
897 memcg_stats_lock();
898 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
899 memcg_rstat_updated(memcg, count);
900 memcg_stats_unlock();
901 }
902
memcg_events(struct mem_cgroup * memcg,int event)903 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
904 {
905 int index = memcg_events_index(event);
906
907 if (index < 0)
908 return 0;
909 return READ_ONCE(memcg->vmstats->events[index]);
910 }
911
memcg_events_local(struct mem_cgroup * memcg,int event)912 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
913 {
914 long x = 0;
915 int cpu;
916 int index = memcg_events_index(event);
917
918 if (index < 0)
919 return 0;
920
921 for_each_possible_cpu(cpu)
922 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
923 return x;
924 }
925
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)926 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
927 int nr_pages)
928 {
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
931 __count_memcg_events(memcg, PGPGIN, 1);
932 else {
933 __count_memcg_events(memcg, PGPGOUT, 1);
934 nr_pages = -nr_pages; /* for event */
935 }
936
937 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
938 }
939
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)940 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 enum mem_cgroup_events_target target)
942 {
943 unsigned long val, next;
944
945 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
946 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
947 /* from time_after() in jiffies.h */
948 if ((long)(next - val) < 0) {
949 switch (target) {
950 case MEM_CGROUP_TARGET_THRESH:
951 next = val + THRESHOLDS_EVENTS_TARGET;
952 break;
953 case MEM_CGROUP_TARGET_SOFTLIMIT:
954 next = val + SOFTLIMIT_EVENTS_TARGET;
955 break;
956 default:
957 break;
958 }
959 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
960 return true;
961 }
962 return false;
963 }
964
965 /*
966 * Check events in order.
967 *
968 */
memcg_check_events(struct mem_cgroup * memcg,int nid)969 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
970 {
971 if (IS_ENABLED(CONFIG_PREEMPT_RT))
972 return;
973
974 /* threshold event is triggered in finer grain than soft limit */
975 if (unlikely(mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_THRESH))) {
977 bool do_softlimit;
978
979 do_softlimit = mem_cgroup_event_ratelimit(memcg,
980 MEM_CGROUP_TARGET_SOFTLIMIT);
981 mem_cgroup_threshold(memcg);
982 if (unlikely(do_softlimit))
983 mem_cgroup_update_tree(memcg, nid);
984 }
985 }
986
mem_cgroup_from_task(struct task_struct * p)987 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
988 {
989 /*
990 * mm_update_next_owner() may clear mm->owner to NULL
991 * if it races with swapoff, page migration, etc.
992 * So this can be called with p == NULL.
993 */
994 if (unlikely(!p))
995 return NULL;
996
997 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
998 }
999 EXPORT_SYMBOL(mem_cgroup_from_task);
1000
active_memcg(void)1001 static __always_inline struct mem_cgroup *active_memcg(void)
1002 {
1003 if (!in_task())
1004 return this_cpu_read(int_active_memcg);
1005 else
1006 return current->active_memcg;
1007 }
1008
1009 /**
1010 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1011 * @mm: mm from which memcg should be extracted. It can be NULL.
1012 *
1013 * Obtain a reference on mm->memcg and returns it if successful. If mm
1014 * is NULL, then the memcg is chosen as follows:
1015 * 1) The active memcg, if set.
1016 * 2) current->mm->memcg, if available
1017 * 3) root memcg
1018 * If mem_cgroup is disabled, NULL is returned.
1019 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1020 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1021 {
1022 struct mem_cgroup *memcg;
1023
1024 if (mem_cgroup_disabled())
1025 return NULL;
1026
1027 /*
1028 * Page cache insertions can happen without an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 *
1032 * No need to css_get on root memcg as the reference
1033 * counting is disabled on the root level in the
1034 * cgroup core. See CSS_NO_REF.
1035 */
1036 if (unlikely(!mm)) {
1037 memcg = active_memcg();
1038 if (unlikely(memcg)) {
1039 /* remote memcg must hold a ref */
1040 css_get(&memcg->css);
1041 return memcg;
1042 }
1043 mm = current->mm;
1044 if (unlikely(!mm))
1045 return root_mem_cgroup;
1046 }
1047
1048 rcu_read_lock();
1049 do {
1050 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1051 if (unlikely(!memcg))
1052 memcg = root_mem_cgroup;
1053 } while (!css_tryget(&memcg->css));
1054 rcu_read_unlock();
1055 return memcg;
1056 }
1057 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1058
memcg_kmem_bypass(void)1059 static __always_inline bool memcg_kmem_bypass(void)
1060 {
1061 /* Allow remote memcg charging from any context. */
1062 if (unlikely(active_memcg()))
1063 return false;
1064
1065 /* Memcg to charge can't be determined. */
1066 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1067 return true;
1068
1069 return false;
1070 }
1071
1072 /**
1073 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1074 * @root: hierarchy root
1075 * @prev: previously returned memcg, NULL on first invocation
1076 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1077 *
1078 * Returns references to children of the hierarchy below @root, or
1079 * @root itself, or %NULL after a full round-trip.
1080 *
1081 * Caller must pass the return value in @prev on subsequent
1082 * invocations for reference counting, or use mem_cgroup_iter_break()
1083 * to cancel a hierarchy walk before the round-trip is complete.
1084 *
1085 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1086 * in the hierarchy among all concurrent reclaimers operating on the
1087 * same node.
1088 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1089 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1090 struct mem_cgroup *prev,
1091 struct mem_cgroup_reclaim_cookie *reclaim)
1092 {
1093 struct mem_cgroup_reclaim_iter *iter;
1094 struct cgroup_subsys_state *css = NULL;
1095 struct mem_cgroup *memcg = NULL;
1096 struct mem_cgroup *pos = NULL;
1097
1098 if (mem_cgroup_disabled())
1099 return NULL;
1100
1101 if (!root)
1102 root = root_mem_cgroup;
1103
1104 rcu_read_lock();
1105
1106 if (reclaim) {
1107 struct mem_cgroup_per_node *mz;
1108
1109 mz = root->nodeinfo[reclaim->pgdat->node_id];
1110 iter = &mz->iter;
1111
1112 /*
1113 * On start, join the current reclaim iteration cycle.
1114 * Exit when a concurrent walker completes it.
1115 */
1116 if (!prev)
1117 reclaim->generation = iter->generation;
1118 else if (reclaim->generation != iter->generation)
1119 goto out_unlock;
1120
1121 while (1) {
1122 pos = READ_ONCE(iter->position);
1123 if (!pos || css_tryget(&pos->css))
1124 break;
1125 /*
1126 * css reference reached zero, so iter->position will
1127 * be cleared by ->css_released. However, we should not
1128 * rely on this happening soon, because ->css_released
1129 * is called from a work queue, and by busy-waiting we
1130 * might block it. So we clear iter->position right
1131 * away.
1132 */
1133 (void)cmpxchg(&iter->position, pos, NULL);
1134 }
1135 } else if (prev) {
1136 pos = prev;
1137 }
1138
1139 if (pos)
1140 css = &pos->css;
1141
1142 for (;;) {
1143 css = css_next_descendant_pre(css, &root->css);
1144 if (!css) {
1145 /*
1146 * Reclaimers share the hierarchy walk, and a
1147 * new one might jump in right at the end of
1148 * the hierarchy - make sure they see at least
1149 * one group and restart from the beginning.
1150 */
1151 if (!prev)
1152 continue;
1153 break;
1154 }
1155
1156 /*
1157 * Verify the css and acquire a reference. The root
1158 * is provided by the caller, so we know it's alive
1159 * and kicking, and don't take an extra reference.
1160 */
1161 if (css == &root->css || css_tryget(css)) {
1162 memcg = mem_cgroup_from_css(css);
1163 break;
1164 }
1165 }
1166
1167 if (reclaim) {
1168 /*
1169 * The position could have already been updated by a competing
1170 * thread, so check that the value hasn't changed since we read
1171 * it to avoid reclaiming from the same cgroup twice.
1172 */
1173 (void)cmpxchg(&iter->position, pos, memcg);
1174
1175 if (pos)
1176 css_put(&pos->css);
1177
1178 if (!memcg)
1179 iter->generation++;
1180 }
1181
1182 out_unlock:
1183 rcu_read_unlock();
1184 if (prev && prev != root)
1185 css_put(&prev->css);
1186
1187 return memcg;
1188 }
1189
1190 /**
1191 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1192 * @root: hierarchy root
1193 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1194 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1195 void mem_cgroup_iter_break(struct mem_cgroup *root,
1196 struct mem_cgroup *prev)
1197 {
1198 if (!root)
1199 root = root_mem_cgroup;
1200 if (prev && prev != root)
1201 css_put(&prev->css);
1202 }
1203
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1204 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1205 struct mem_cgroup *dead_memcg)
1206 {
1207 struct mem_cgroup_reclaim_iter *iter;
1208 struct mem_cgroup_per_node *mz;
1209 int nid;
1210
1211 for_each_node(nid) {
1212 mz = from->nodeinfo[nid];
1213 iter = &mz->iter;
1214 cmpxchg(&iter->position, dead_memcg, NULL);
1215 }
1216 }
1217
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1218 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1219 {
1220 struct mem_cgroup *memcg = dead_memcg;
1221 struct mem_cgroup *last;
1222
1223 do {
1224 __invalidate_reclaim_iterators(memcg, dead_memcg);
1225 last = memcg;
1226 } while ((memcg = parent_mem_cgroup(memcg)));
1227
1228 /*
1229 * When cgroup1 non-hierarchy mode is used,
1230 * parent_mem_cgroup() does not walk all the way up to the
1231 * cgroup root (root_mem_cgroup). So we have to handle
1232 * dead_memcg from cgroup root separately.
1233 */
1234 if (!mem_cgroup_is_root(last))
1235 __invalidate_reclaim_iterators(root_mem_cgroup,
1236 dead_memcg);
1237 }
1238
1239 /**
1240 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1241 * @memcg: hierarchy root
1242 * @fn: function to call for each task
1243 * @arg: argument passed to @fn
1244 *
1245 * This function iterates over tasks attached to @memcg or to any of its
1246 * descendants and calls @fn for each task. If @fn returns a non-zero
1247 * value, the function breaks the iteration loop and returns the value.
1248 * Otherwise, it will iterate over all tasks and return 0.
1249 *
1250 * This function must not be called for the root memory cgroup.
1251 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1252 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1253 int (*fn)(struct task_struct *, void *), void *arg)
1254 {
1255 struct mem_cgroup *iter;
1256 int ret = 0;
1257
1258 BUG_ON(mem_cgroup_is_root(memcg));
1259
1260 for_each_mem_cgroup_tree(iter, memcg) {
1261 struct css_task_iter it;
1262 struct task_struct *task;
1263
1264 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1265 while (!ret && (task = css_task_iter_next(&it)))
1266 ret = fn(task, arg);
1267 css_task_iter_end(&it);
1268 if (ret) {
1269 mem_cgroup_iter_break(memcg, iter);
1270 break;
1271 }
1272 }
1273 return ret;
1274 }
1275
1276 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1277 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1278 {
1279 struct mem_cgroup *memcg;
1280
1281 if (mem_cgroup_disabled())
1282 return;
1283
1284 memcg = folio_memcg(folio);
1285
1286 if (!memcg)
1287 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1288 else
1289 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1290 }
1291 #endif
1292
1293 /**
1294 * folio_lruvec_lock - Lock the lruvec for a folio.
1295 * @folio: Pointer to the folio.
1296 *
1297 * These functions are safe to use under any of the following conditions:
1298 * - folio locked
1299 * - folio_test_lru false
1300 * - folio_memcg_lock()
1301 * - folio frozen (refcount of 0)
1302 *
1303 * Return: The lruvec this folio is on with its lock held.
1304 */
folio_lruvec_lock(struct folio * folio)1305 struct lruvec *folio_lruvec_lock(struct folio *folio)
1306 {
1307 struct lruvec *lruvec = folio_lruvec(folio);
1308
1309 spin_lock(&lruvec->lru_lock);
1310 lruvec_memcg_debug(lruvec, folio);
1311
1312 return lruvec;
1313 }
1314
1315 /**
1316 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1317 * @folio: Pointer to the folio.
1318 *
1319 * These functions are safe to use under any of the following conditions:
1320 * - folio locked
1321 * - folio_test_lru false
1322 * - folio_memcg_lock()
1323 * - folio frozen (refcount of 0)
1324 *
1325 * Return: The lruvec this folio is on with its lock held and interrupts
1326 * disabled.
1327 */
folio_lruvec_lock_irq(struct folio * folio)1328 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1329 {
1330 struct lruvec *lruvec = folio_lruvec(folio);
1331
1332 spin_lock_irq(&lruvec->lru_lock);
1333 lruvec_memcg_debug(lruvec, folio);
1334
1335 return lruvec;
1336 }
1337
1338 /**
1339 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1340 * @folio: Pointer to the folio.
1341 * @flags: Pointer to irqsave flags.
1342 *
1343 * These functions are safe to use under any of the following conditions:
1344 * - folio locked
1345 * - folio_test_lru false
1346 * - folio_memcg_lock()
1347 * - folio frozen (refcount of 0)
1348 *
1349 * Return: The lruvec this folio is on with its lock held and interrupts
1350 * disabled.
1351 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1352 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1353 unsigned long *flags)
1354 {
1355 struct lruvec *lruvec = folio_lruvec(folio);
1356
1357 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1358 lruvec_memcg_debug(lruvec, folio);
1359
1360 return lruvec;
1361 }
1362
1363 /**
1364 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1365 * @lruvec: mem_cgroup per zone lru vector
1366 * @lru: index of lru list the page is sitting on
1367 * @zid: zone id of the accounted pages
1368 * @nr_pages: positive when adding or negative when removing
1369 *
1370 * This function must be called under lru_lock, just before a page is added
1371 * to or just after a page is removed from an lru list.
1372 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1373 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1374 int zid, int nr_pages)
1375 {
1376 struct mem_cgroup_per_node *mz;
1377 unsigned long *lru_size;
1378 long size;
1379
1380 if (mem_cgroup_disabled())
1381 return;
1382
1383 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1384 lru_size = &mz->lru_zone_size[zid][lru];
1385
1386 if (nr_pages < 0)
1387 *lru_size += nr_pages;
1388
1389 size = *lru_size;
1390 if (WARN_ONCE(size < 0,
1391 "%s(%p, %d, %d): lru_size %ld\n",
1392 __func__, lruvec, lru, nr_pages, size)) {
1393 VM_BUG_ON(1);
1394 *lru_size = 0;
1395 }
1396
1397 if (nr_pages > 0)
1398 *lru_size += nr_pages;
1399 }
1400
1401 /**
1402 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1403 * @memcg: the memory cgroup
1404 *
1405 * Returns the maximum amount of memory @mem can be charged with, in
1406 * pages.
1407 */
mem_cgroup_margin(struct mem_cgroup * memcg)1408 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1409 {
1410 unsigned long margin = 0;
1411 unsigned long count;
1412 unsigned long limit;
1413
1414 count = page_counter_read(&memcg->memory);
1415 limit = READ_ONCE(memcg->memory.max);
1416 if (count < limit)
1417 margin = limit - count;
1418
1419 if (do_memsw_account()) {
1420 count = page_counter_read(&memcg->memsw);
1421 limit = READ_ONCE(memcg->memsw.max);
1422 if (count < limit)
1423 margin = min(margin, limit - count);
1424 else
1425 margin = 0;
1426 }
1427
1428 return margin;
1429 }
1430
1431 /*
1432 * A routine for checking "mem" is under move_account() or not.
1433 *
1434 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1435 * moving cgroups. This is for waiting at high-memory pressure
1436 * caused by "move".
1437 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1438 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1439 {
1440 struct mem_cgroup *from;
1441 struct mem_cgroup *to;
1442 bool ret = false;
1443 /*
1444 * Unlike task_move routines, we access mc.to, mc.from not under
1445 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1446 */
1447 spin_lock(&mc.lock);
1448 from = mc.from;
1449 to = mc.to;
1450 if (!from)
1451 goto unlock;
1452
1453 ret = mem_cgroup_is_descendant(from, memcg) ||
1454 mem_cgroup_is_descendant(to, memcg);
1455 unlock:
1456 spin_unlock(&mc.lock);
1457 return ret;
1458 }
1459
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1460 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1461 {
1462 if (mc.moving_task && current != mc.moving_task) {
1463 if (mem_cgroup_under_move(memcg)) {
1464 DEFINE_WAIT(wait);
1465 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1466 /* moving charge context might have finished. */
1467 if (mc.moving_task)
1468 schedule();
1469 finish_wait(&mc.waitq, &wait);
1470 return true;
1471 }
1472 }
1473 return false;
1474 }
1475
1476 struct memory_stat {
1477 const char *name;
1478 unsigned int idx;
1479 };
1480
1481 static const struct memory_stat memory_stats[] = {
1482 { "anon", NR_ANON_MAPPED },
1483 { "file", NR_FILE_PAGES },
1484 { "kernel", MEMCG_KMEM },
1485 { "kernel_stack", NR_KERNEL_STACK_KB },
1486 { "pagetables", NR_PAGETABLE },
1487 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1488 { "percpu", MEMCG_PERCPU_B },
1489 { "sock", MEMCG_SOCK },
1490 { "vmalloc", MEMCG_VMALLOC },
1491 { "shmem", NR_SHMEM },
1492 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1493 { "zswap", MEMCG_ZSWAP_B },
1494 { "zswapped", MEMCG_ZSWAPPED },
1495 #endif
1496 { "file_mapped", NR_FILE_MAPPED },
1497 { "file_dirty", NR_FILE_DIRTY },
1498 { "file_writeback", NR_WRITEBACK },
1499 #ifdef CONFIG_SWAP
1500 { "swapcached", NR_SWAPCACHE },
1501 #endif
1502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1503 { "anon_thp", NR_ANON_THPS },
1504 { "file_thp", NR_FILE_THPS },
1505 { "shmem_thp", NR_SHMEM_THPS },
1506 #endif
1507 { "inactive_anon", NR_INACTIVE_ANON },
1508 { "active_anon", NR_ACTIVE_ANON },
1509 { "inactive_file", NR_INACTIVE_FILE },
1510 { "active_file", NR_ACTIVE_FILE },
1511 { "unevictable", NR_UNEVICTABLE },
1512 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1513 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1514
1515 /* The memory events */
1516 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1517 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1518 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1519 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1520 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1521 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1522 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1523 };
1524
1525 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1526 static int memcg_page_state_unit(int item)
1527 {
1528 switch (item) {
1529 case MEMCG_PERCPU_B:
1530 case MEMCG_ZSWAP_B:
1531 case NR_SLAB_RECLAIMABLE_B:
1532 case NR_SLAB_UNRECLAIMABLE_B:
1533 case WORKINGSET_REFAULT_ANON:
1534 case WORKINGSET_REFAULT_FILE:
1535 case WORKINGSET_ACTIVATE_ANON:
1536 case WORKINGSET_ACTIVATE_FILE:
1537 case WORKINGSET_RESTORE_ANON:
1538 case WORKINGSET_RESTORE_FILE:
1539 case WORKINGSET_NODERECLAIM:
1540 return 1;
1541 case NR_KERNEL_STACK_KB:
1542 return SZ_1K;
1543 default:
1544 return PAGE_SIZE;
1545 }
1546 }
1547
memcg_page_state_output(struct mem_cgroup * memcg,int item)1548 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1549 int item)
1550 {
1551 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1552 }
1553
memory_stat_format(struct mem_cgroup * memcg,char * buf,int bufsize)1554 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1555 {
1556 struct seq_buf s;
1557 int i;
1558
1559 seq_buf_init(&s, buf, bufsize);
1560
1561 /*
1562 * Provide statistics on the state of the memory subsystem as
1563 * well as cumulative event counters that show past behavior.
1564 *
1565 * This list is ordered following a combination of these gradients:
1566 * 1) generic big picture -> specifics and details
1567 * 2) reflecting userspace activity -> reflecting kernel heuristics
1568 *
1569 * Current memory state:
1570 */
1571 mem_cgroup_flush_stats();
1572
1573 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1574 u64 size;
1575
1576 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1577 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1578
1579 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1580 size += memcg_page_state_output(memcg,
1581 NR_SLAB_RECLAIMABLE_B);
1582 seq_buf_printf(&s, "slab %llu\n", size);
1583 }
1584 }
1585
1586 /* Accumulated memory events */
1587 seq_buf_printf(&s, "pgscan %lu\n",
1588 memcg_events(memcg, PGSCAN_KSWAPD) +
1589 memcg_events(memcg, PGSCAN_DIRECT) +
1590 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1591 seq_buf_printf(&s, "pgsteal %lu\n",
1592 memcg_events(memcg, PGSTEAL_KSWAPD) +
1593 memcg_events(memcg, PGSTEAL_DIRECT) +
1594 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1595
1596 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1597 if (memcg_vm_event_stat[i] == PGPGIN ||
1598 memcg_vm_event_stat[i] == PGPGOUT)
1599 continue;
1600
1601 seq_buf_printf(&s, "%s %lu\n",
1602 vm_event_name(memcg_vm_event_stat[i]),
1603 memcg_events(memcg, memcg_vm_event_stat[i]));
1604 }
1605
1606 /* The above should easily fit into one page */
1607 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1608 }
1609
1610 #define K(x) ((x) << (PAGE_SHIFT-10))
1611 /**
1612 * mem_cgroup_print_oom_context: Print OOM information relevant to
1613 * memory controller.
1614 * @memcg: The memory cgroup that went over limit
1615 * @p: Task that is going to be killed
1616 *
1617 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1618 * enabled
1619 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1620 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1621 {
1622 rcu_read_lock();
1623
1624 if (memcg) {
1625 pr_cont(",oom_memcg=");
1626 pr_cont_cgroup_path(memcg->css.cgroup);
1627 } else
1628 pr_cont(",global_oom");
1629 if (p) {
1630 pr_cont(",task_memcg=");
1631 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1632 }
1633 rcu_read_unlock();
1634 }
1635
1636 /**
1637 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1638 * memory controller.
1639 * @memcg: The memory cgroup that went over limit
1640 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1641 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1642 {
1643 /* Use static buffer, for the caller is holding oom_lock. */
1644 static char buf[PAGE_SIZE];
1645
1646 lockdep_assert_held(&oom_lock);
1647
1648 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1649 K((u64)page_counter_read(&memcg->memory)),
1650 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1651 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1652 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1653 K((u64)page_counter_read(&memcg->swap)),
1654 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1655 else {
1656 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1657 K((u64)page_counter_read(&memcg->memsw)),
1658 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1659 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1660 K((u64)page_counter_read(&memcg->kmem)),
1661 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1662 }
1663
1664 pr_info("Memory cgroup stats for ");
1665 pr_cont_cgroup_path(memcg->css.cgroup);
1666 pr_cont(":");
1667 memory_stat_format(memcg, buf, sizeof(buf));
1668 pr_info("%s", buf);
1669 }
1670
1671 /*
1672 * Return the memory (and swap, if configured) limit for a memcg.
1673 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1674 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1675 {
1676 unsigned long max = READ_ONCE(memcg->memory.max);
1677
1678 if (do_memsw_account()) {
1679 if (mem_cgroup_swappiness(memcg)) {
1680 /* Calculate swap excess capacity from memsw limit */
1681 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1682
1683 max += min(swap, (unsigned long)total_swap_pages);
1684 }
1685 } else {
1686 if (mem_cgroup_swappiness(memcg))
1687 max += min(READ_ONCE(memcg->swap.max),
1688 (unsigned long)total_swap_pages);
1689 }
1690 return max;
1691 }
1692
mem_cgroup_size(struct mem_cgroup * memcg)1693 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1694 {
1695 return page_counter_read(&memcg->memory);
1696 }
1697
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1698 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1699 int order)
1700 {
1701 struct oom_control oc = {
1702 .zonelist = NULL,
1703 .nodemask = NULL,
1704 .memcg = memcg,
1705 .gfp_mask = gfp_mask,
1706 .order = order,
1707 };
1708 bool ret = true;
1709
1710 if (mutex_lock_killable(&oom_lock))
1711 return true;
1712
1713 if (mem_cgroup_margin(memcg) >= (1 << order))
1714 goto unlock;
1715
1716 /*
1717 * A few threads which were not waiting at mutex_lock_killable() can
1718 * fail to bail out. Therefore, check again after holding oom_lock.
1719 */
1720 ret = task_is_dying() || out_of_memory(&oc);
1721
1722 unlock:
1723 mutex_unlock(&oom_lock);
1724 return ret;
1725 }
1726
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1727 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1728 pg_data_t *pgdat,
1729 gfp_t gfp_mask,
1730 unsigned long *total_scanned)
1731 {
1732 struct mem_cgroup *victim = NULL;
1733 int total = 0;
1734 int loop = 0;
1735 unsigned long excess;
1736 unsigned long nr_scanned;
1737 struct mem_cgroup_reclaim_cookie reclaim = {
1738 .pgdat = pgdat,
1739 };
1740
1741 excess = soft_limit_excess(root_memcg);
1742
1743 while (1) {
1744 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1745 if (!victim) {
1746 loop++;
1747 if (loop >= 2) {
1748 /*
1749 * If we have not been able to reclaim
1750 * anything, it might because there are
1751 * no reclaimable pages under this hierarchy
1752 */
1753 if (!total)
1754 break;
1755 /*
1756 * We want to do more targeted reclaim.
1757 * excess >> 2 is not to excessive so as to
1758 * reclaim too much, nor too less that we keep
1759 * coming back to reclaim from this cgroup
1760 */
1761 if (total >= (excess >> 2) ||
1762 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1763 break;
1764 }
1765 continue;
1766 }
1767 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1768 pgdat, &nr_scanned);
1769 *total_scanned += nr_scanned;
1770 if (!soft_limit_excess(root_memcg))
1771 break;
1772 }
1773 mem_cgroup_iter_break(root_memcg, victim);
1774 return total;
1775 }
1776
1777 #ifdef CONFIG_LOCKDEP
1778 static struct lockdep_map memcg_oom_lock_dep_map = {
1779 .name = "memcg_oom_lock",
1780 };
1781 #endif
1782
1783 static DEFINE_SPINLOCK(memcg_oom_lock);
1784
1785 /*
1786 * Check OOM-Killer is already running under our hierarchy.
1787 * If someone is running, return false.
1788 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1789 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1790 {
1791 struct mem_cgroup *iter, *failed = NULL;
1792
1793 spin_lock(&memcg_oom_lock);
1794
1795 for_each_mem_cgroup_tree(iter, memcg) {
1796 if (iter->oom_lock) {
1797 /*
1798 * this subtree of our hierarchy is already locked
1799 * so we cannot give a lock.
1800 */
1801 failed = iter;
1802 mem_cgroup_iter_break(memcg, iter);
1803 break;
1804 } else
1805 iter->oom_lock = true;
1806 }
1807
1808 if (failed) {
1809 /*
1810 * OK, we failed to lock the whole subtree so we have
1811 * to clean up what we set up to the failing subtree
1812 */
1813 for_each_mem_cgroup_tree(iter, memcg) {
1814 if (iter == failed) {
1815 mem_cgroup_iter_break(memcg, iter);
1816 break;
1817 }
1818 iter->oom_lock = false;
1819 }
1820 } else
1821 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1822
1823 spin_unlock(&memcg_oom_lock);
1824
1825 return !failed;
1826 }
1827
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1828 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1829 {
1830 struct mem_cgroup *iter;
1831
1832 spin_lock(&memcg_oom_lock);
1833 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1834 for_each_mem_cgroup_tree(iter, memcg)
1835 iter->oom_lock = false;
1836 spin_unlock(&memcg_oom_lock);
1837 }
1838
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1839 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1840 {
1841 struct mem_cgroup *iter;
1842
1843 spin_lock(&memcg_oom_lock);
1844 for_each_mem_cgroup_tree(iter, memcg)
1845 iter->under_oom++;
1846 spin_unlock(&memcg_oom_lock);
1847 }
1848
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1849 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1850 {
1851 struct mem_cgroup *iter;
1852
1853 /*
1854 * Be careful about under_oom underflows because a child memcg
1855 * could have been added after mem_cgroup_mark_under_oom.
1856 */
1857 spin_lock(&memcg_oom_lock);
1858 for_each_mem_cgroup_tree(iter, memcg)
1859 if (iter->under_oom > 0)
1860 iter->under_oom--;
1861 spin_unlock(&memcg_oom_lock);
1862 }
1863
1864 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1865
1866 struct oom_wait_info {
1867 struct mem_cgroup *memcg;
1868 wait_queue_entry_t wait;
1869 };
1870
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1871 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1872 unsigned mode, int sync, void *arg)
1873 {
1874 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1875 struct mem_cgroup *oom_wait_memcg;
1876 struct oom_wait_info *oom_wait_info;
1877
1878 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1879 oom_wait_memcg = oom_wait_info->memcg;
1880
1881 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1882 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1883 return 0;
1884 return autoremove_wake_function(wait, mode, sync, arg);
1885 }
1886
memcg_oom_recover(struct mem_cgroup * memcg)1887 static void memcg_oom_recover(struct mem_cgroup *memcg)
1888 {
1889 /*
1890 * For the following lockless ->under_oom test, the only required
1891 * guarantee is that it must see the state asserted by an OOM when
1892 * this function is called as a result of userland actions
1893 * triggered by the notification of the OOM. This is trivially
1894 * achieved by invoking mem_cgroup_mark_under_oom() before
1895 * triggering notification.
1896 */
1897 if (memcg && memcg->under_oom)
1898 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1899 }
1900
1901 /*
1902 * Returns true if successfully killed one or more processes. Though in some
1903 * corner cases it can return true even without killing any process.
1904 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1905 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1906 {
1907 bool locked, ret;
1908
1909 if (order > PAGE_ALLOC_COSTLY_ORDER)
1910 return false;
1911
1912 memcg_memory_event(memcg, MEMCG_OOM);
1913
1914 /*
1915 * We are in the middle of the charge context here, so we
1916 * don't want to block when potentially sitting on a callstack
1917 * that holds all kinds of filesystem and mm locks.
1918 *
1919 * cgroup1 allows disabling the OOM killer and waiting for outside
1920 * handling until the charge can succeed; remember the context and put
1921 * the task to sleep at the end of the page fault when all locks are
1922 * released.
1923 *
1924 * On the other hand, in-kernel OOM killer allows for an async victim
1925 * memory reclaim (oom_reaper) and that means that we are not solely
1926 * relying on the oom victim to make a forward progress and we can
1927 * invoke the oom killer here.
1928 *
1929 * Please note that mem_cgroup_out_of_memory might fail to find a
1930 * victim and then we have to bail out from the charge path.
1931 */
1932 if (memcg->oom_kill_disable) {
1933 if (current->in_user_fault) {
1934 css_get(&memcg->css);
1935 current->memcg_in_oom = memcg;
1936 current->memcg_oom_gfp_mask = mask;
1937 current->memcg_oom_order = order;
1938 }
1939 return false;
1940 }
1941
1942 mem_cgroup_mark_under_oom(memcg);
1943
1944 locked = mem_cgroup_oom_trylock(memcg);
1945
1946 if (locked)
1947 mem_cgroup_oom_notify(memcg);
1948
1949 mem_cgroup_unmark_under_oom(memcg);
1950 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1951
1952 if (locked)
1953 mem_cgroup_oom_unlock(memcg);
1954
1955 return ret;
1956 }
1957
1958 /**
1959 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1960 * @handle: actually kill/wait or just clean up the OOM state
1961 *
1962 * This has to be called at the end of a page fault if the memcg OOM
1963 * handler was enabled.
1964 *
1965 * Memcg supports userspace OOM handling where failed allocations must
1966 * sleep on a waitqueue until the userspace task resolves the
1967 * situation. Sleeping directly in the charge context with all kinds
1968 * of locks held is not a good idea, instead we remember an OOM state
1969 * in the task and mem_cgroup_oom_synchronize() has to be called at
1970 * the end of the page fault to complete the OOM handling.
1971 *
1972 * Returns %true if an ongoing memcg OOM situation was detected and
1973 * completed, %false otherwise.
1974 */
mem_cgroup_oom_synchronize(bool handle)1975 bool mem_cgroup_oom_synchronize(bool handle)
1976 {
1977 struct mem_cgroup *memcg = current->memcg_in_oom;
1978 struct oom_wait_info owait;
1979 bool locked;
1980
1981 /* OOM is global, do not handle */
1982 if (!memcg)
1983 return false;
1984
1985 if (!handle)
1986 goto cleanup;
1987
1988 owait.memcg = memcg;
1989 owait.wait.flags = 0;
1990 owait.wait.func = memcg_oom_wake_function;
1991 owait.wait.private = current;
1992 INIT_LIST_HEAD(&owait.wait.entry);
1993
1994 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1995 mem_cgroup_mark_under_oom(memcg);
1996
1997 locked = mem_cgroup_oom_trylock(memcg);
1998
1999 if (locked)
2000 mem_cgroup_oom_notify(memcg);
2001
2002 if (locked && !memcg->oom_kill_disable) {
2003 mem_cgroup_unmark_under_oom(memcg);
2004 finish_wait(&memcg_oom_waitq, &owait.wait);
2005 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2006 current->memcg_oom_order);
2007 } else {
2008 schedule();
2009 mem_cgroup_unmark_under_oom(memcg);
2010 finish_wait(&memcg_oom_waitq, &owait.wait);
2011 }
2012
2013 if (locked) {
2014 mem_cgroup_oom_unlock(memcg);
2015 /*
2016 * There is no guarantee that an OOM-lock contender
2017 * sees the wakeups triggered by the OOM kill
2018 * uncharges. Wake any sleepers explicitly.
2019 */
2020 memcg_oom_recover(memcg);
2021 }
2022 cleanup:
2023 current->memcg_in_oom = NULL;
2024 css_put(&memcg->css);
2025 return true;
2026 }
2027
2028 /**
2029 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2030 * @victim: task to be killed by the OOM killer
2031 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2032 *
2033 * Returns a pointer to a memory cgroup, which has to be cleaned up
2034 * by killing all belonging OOM-killable tasks.
2035 *
2036 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2037 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2038 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2039 struct mem_cgroup *oom_domain)
2040 {
2041 struct mem_cgroup *oom_group = NULL;
2042 struct mem_cgroup *memcg;
2043
2044 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2045 return NULL;
2046
2047 if (!oom_domain)
2048 oom_domain = root_mem_cgroup;
2049
2050 rcu_read_lock();
2051
2052 memcg = mem_cgroup_from_task(victim);
2053 if (mem_cgroup_is_root(memcg))
2054 goto out;
2055
2056 /*
2057 * If the victim task has been asynchronously moved to a different
2058 * memory cgroup, we might end up killing tasks outside oom_domain.
2059 * In this case it's better to ignore memory.group.oom.
2060 */
2061 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2062 goto out;
2063
2064 /*
2065 * Traverse the memory cgroup hierarchy from the victim task's
2066 * cgroup up to the OOMing cgroup (or root) to find the
2067 * highest-level memory cgroup with oom.group set.
2068 */
2069 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2070 if (memcg->oom_group)
2071 oom_group = memcg;
2072
2073 if (memcg == oom_domain)
2074 break;
2075 }
2076
2077 if (oom_group)
2078 css_get(&oom_group->css);
2079 out:
2080 rcu_read_unlock();
2081
2082 return oom_group;
2083 }
2084
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2085 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2086 {
2087 pr_info("Tasks in ");
2088 pr_cont_cgroup_path(memcg->css.cgroup);
2089 pr_cont(" are going to be killed due to memory.oom.group set\n");
2090 }
2091
2092 /**
2093 * folio_memcg_lock - Bind a folio to its memcg.
2094 * @folio: The folio.
2095 *
2096 * This function prevents unlocked LRU folios from being moved to
2097 * another cgroup.
2098 *
2099 * It ensures lifetime of the bound memcg. The caller is responsible
2100 * for the lifetime of the folio.
2101 */
folio_memcg_lock(struct folio * folio)2102 void folio_memcg_lock(struct folio *folio)
2103 {
2104 struct mem_cgroup *memcg;
2105 unsigned long flags;
2106
2107 /*
2108 * The RCU lock is held throughout the transaction. The fast
2109 * path can get away without acquiring the memcg->move_lock
2110 * because page moving starts with an RCU grace period.
2111 */
2112 rcu_read_lock();
2113
2114 if (mem_cgroup_disabled())
2115 return;
2116 again:
2117 memcg = folio_memcg(folio);
2118 if (unlikely(!memcg))
2119 return;
2120
2121 #ifdef CONFIG_PROVE_LOCKING
2122 local_irq_save(flags);
2123 might_lock(&memcg->move_lock);
2124 local_irq_restore(flags);
2125 #endif
2126
2127 if (atomic_read(&memcg->moving_account) <= 0)
2128 return;
2129
2130 spin_lock_irqsave(&memcg->move_lock, flags);
2131 if (memcg != folio_memcg(folio)) {
2132 spin_unlock_irqrestore(&memcg->move_lock, flags);
2133 goto again;
2134 }
2135
2136 /*
2137 * When charge migration first begins, we can have multiple
2138 * critical sections holding the fast-path RCU lock and one
2139 * holding the slowpath move_lock. Track the task who has the
2140 * move_lock for unlock_page_memcg().
2141 */
2142 memcg->move_lock_task = current;
2143 memcg->move_lock_flags = flags;
2144 }
2145
lock_page_memcg(struct page * page)2146 void lock_page_memcg(struct page *page)
2147 {
2148 folio_memcg_lock(page_folio(page));
2149 }
2150
__folio_memcg_unlock(struct mem_cgroup * memcg)2151 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2152 {
2153 if (memcg && memcg->move_lock_task == current) {
2154 unsigned long flags = memcg->move_lock_flags;
2155
2156 memcg->move_lock_task = NULL;
2157 memcg->move_lock_flags = 0;
2158
2159 spin_unlock_irqrestore(&memcg->move_lock, flags);
2160 }
2161
2162 rcu_read_unlock();
2163 }
2164
2165 /**
2166 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2167 * @folio: The folio.
2168 *
2169 * This releases the binding created by folio_memcg_lock(). This does
2170 * not change the accounting of this folio to its memcg, but it does
2171 * permit others to change it.
2172 */
folio_memcg_unlock(struct folio * folio)2173 void folio_memcg_unlock(struct folio *folio)
2174 {
2175 __folio_memcg_unlock(folio_memcg(folio));
2176 }
2177
unlock_page_memcg(struct page * page)2178 void unlock_page_memcg(struct page *page)
2179 {
2180 folio_memcg_unlock(page_folio(page));
2181 }
2182
2183 struct memcg_stock_pcp {
2184 local_lock_t stock_lock;
2185 struct mem_cgroup *cached; /* this never be root cgroup */
2186 unsigned int nr_pages;
2187
2188 #ifdef CONFIG_MEMCG_KMEM
2189 struct obj_cgroup *cached_objcg;
2190 struct pglist_data *cached_pgdat;
2191 unsigned int nr_bytes;
2192 int nr_slab_reclaimable_b;
2193 int nr_slab_unreclaimable_b;
2194 #endif
2195
2196 struct work_struct work;
2197 unsigned long flags;
2198 #define FLUSHING_CACHED_CHARGE 0
2199 };
2200 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2201 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2202 };
2203 static DEFINE_MUTEX(percpu_charge_mutex);
2204
2205 #ifdef CONFIG_MEMCG_KMEM
2206 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2207 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2208 struct mem_cgroup *root_memcg);
2209 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2210
2211 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2212 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2213 {
2214 return NULL;
2215 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2216 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2217 struct mem_cgroup *root_memcg)
2218 {
2219 return false;
2220 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2221 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2222 {
2223 }
2224 #endif
2225
2226 /**
2227 * consume_stock: Try to consume stocked charge on this cpu.
2228 * @memcg: memcg to consume from.
2229 * @nr_pages: how many pages to charge.
2230 *
2231 * The charges will only happen if @memcg matches the current cpu's memcg
2232 * stock, and at least @nr_pages are available in that stock. Failure to
2233 * service an allocation will refill the stock.
2234 *
2235 * returns true if successful, false otherwise.
2236 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2237 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238 {
2239 struct memcg_stock_pcp *stock;
2240 unsigned long flags;
2241 bool ret = false;
2242
2243 if (nr_pages > MEMCG_CHARGE_BATCH)
2244 return ret;
2245
2246 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2247
2248 stock = this_cpu_ptr(&memcg_stock);
2249 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2250 stock->nr_pages -= nr_pages;
2251 ret = true;
2252 }
2253
2254 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2255
2256 return ret;
2257 }
2258
2259 /*
2260 * Returns stocks cached in percpu and reset cached information.
2261 */
drain_stock(struct memcg_stock_pcp * stock)2262 static void drain_stock(struct memcg_stock_pcp *stock)
2263 {
2264 struct mem_cgroup *old = stock->cached;
2265
2266 if (!old)
2267 return;
2268
2269 if (stock->nr_pages) {
2270 page_counter_uncharge(&old->memory, stock->nr_pages);
2271 if (do_memsw_account())
2272 page_counter_uncharge(&old->memsw, stock->nr_pages);
2273 stock->nr_pages = 0;
2274 }
2275
2276 css_put(&old->css);
2277 stock->cached = NULL;
2278 }
2279
drain_local_stock(struct work_struct * dummy)2280 static void drain_local_stock(struct work_struct *dummy)
2281 {
2282 struct memcg_stock_pcp *stock;
2283 struct obj_cgroup *old = NULL;
2284 unsigned long flags;
2285
2286 /*
2287 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2288 * drain_stock races is that we always operate on local CPU stock
2289 * here with IRQ disabled
2290 */
2291 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2292
2293 stock = this_cpu_ptr(&memcg_stock);
2294 old = drain_obj_stock(stock);
2295 drain_stock(stock);
2296 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2297
2298 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2299 if (old)
2300 obj_cgroup_put(old);
2301 }
2302
2303 /*
2304 * Cache charges(val) to local per_cpu area.
2305 * This will be consumed by consume_stock() function, later.
2306 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2307 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 {
2309 struct memcg_stock_pcp *stock;
2310
2311 stock = this_cpu_ptr(&memcg_stock);
2312 if (stock->cached != memcg) { /* reset if necessary */
2313 drain_stock(stock);
2314 css_get(&memcg->css);
2315 stock->cached = memcg;
2316 }
2317 stock->nr_pages += nr_pages;
2318
2319 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2320 drain_stock(stock);
2321 }
2322
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2323 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2324 {
2325 unsigned long flags;
2326
2327 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2328 __refill_stock(memcg, nr_pages);
2329 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2330 }
2331
2332 /*
2333 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2334 * of the hierarchy under it.
2335 */
drain_all_stock(struct mem_cgroup * root_memcg)2336 static void drain_all_stock(struct mem_cgroup *root_memcg)
2337 {
2338 int cpu, curcpu;
2339
2340 /* If someone's already draining, avoid adding running more workers. */
2341 if (!mutex_trylock(&percpu_charge_mutex))
2342 return;
2343 /*
2344 * Notify other cpus that system-wide "drain" is running
2345 * We do not care about races with the cpu hotplug because cpu down
2346 * as well as workers from this path always operate on the local
2347 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2348 */
2349 migrate_disable();
2350 curcpu = smp_processor_id();
2351 for_each_online_cpu(cpu) {
2352 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2353 struct mem_cgroup *memcg;
2354 bool flush = false;
2355
2356 rcu_read_lock();
2357 memcg = stock->cached;
2358 if (memcg && stock->nr_pages &&
2359 mem_cgroup_is_descendant(memcg, root_memcg))
2360 flush = true;
2361 else if (obj_stock_flush_required(stock, root_memcg))
2362 flush = true;
2363 rcu_read_unlock();
2364
2365 if (flush &&
2366 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2367 if (cpu == curcpu)
2368 drain_local_stock(&stock->work);
2369 else
2370 schedule_work_on(cpu, &stock->work);
2371 }
2372 }
2373 migrate_enable();
2374 mutex_unlock(&percpu_charge_mutex);
2375 }
2376
memcg_hotplug_cpu_dead(unsigned int cpu)2377 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2378 {
2379 struct memcg_stock_pcp *stock;
2380
2381 stock = &per_cpu(memcg_stock, cpu);
2382 drain_stock(stock);
2383
2384 return 0;
2385 }
2386
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2387 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2388 unsigned int nr_pages,
2389 gfp_t gfp_mask)
2390 {
2391 unsigned long nr_reclaimed = 0;
2392
2393 do {
2394 unsigned long pflags;
2395
2396 if (page_counter_read(&memcg->memory) <=
2397 READ_ONCE(memcg->memory.high))
2398 continue;
2399
2400 memcg_memory_event(memcg, MEMCG_HIGH);
2401
2402 psi_memstall_enter(&pflags);
2403 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2404 gfp_mask,
2405 MEMCG_RECLAIM_MAY_SWAP);
2406 psi_memstall_leave(&pflags);
2407 } while ((memcg = parent_mem_cgroup(memcg)) &&
2408 !mem_cgroup_is_root(memcg));
2409
2410 return nr_reclaimed;
2411 }
2412
high_work_func(struct work_struct * work)2413 static void high_work_func(struct work_struct *work)
2414 {
2415 struct mem_cgroup *memcg;
2416
2417 memcg = container_of(work, struct mem_cgroup, high_work);
2418 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2419 }
2420
2421 /*
2422 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2423 * enough to still cause a significant slowdown in most cases, while still
2424 * allowing diagnostics and tracing to proceed without becoming stuck.
2425 */
2426 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2427
2428 /*
2429 * When calculating the delay, we use these either side of the exponentiation to
2430 * maintain precision and scale to a reasonable number of jiffies (see the table
2431 * below.
2432 *
2433 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2434 * overage ratio to a delay.
2435 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2436 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2437 * to produce a reasonable delay curve.
2438 *
2439 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2440 * reasonable delay curve compared to precision-adjusted overage, not
2441 * penalising heavily at first, but still making sure that growth beyond the
2442 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2443 * example, with a high of 100 megabytes:
2444 *
2445 * +-------+------------------------+
2446 * | usage | time to allocate in ms |
2447 * +-------+------------------------+
2448 * | 100M | 0 |
2449 * | 101M | 6 |
2450 * | 102M | 25 |
2451 * | 103M | 57 |
2452 * | 104M | 102 |
2453 * | 105M | 159 |
2454 * | 106M | 230 |
2455 * | 107M | 313 |
2456 * | 108M | 409 |
2457 * | 109M | 518 |
2458 * | 110M | 639 |
2459 * | 111M | 774 |
2460 * | 112M | 921 |
2461 * | 113M | 1081 |
2462 * | 114M | 1254 |
2463 * | 115M | 1439 |
2464 * | 116M | 1638 |
2465 * | 117M | 1849 |
2466 * | 118M | 2000 |
2467 * | 119M | 2000 |
2468 * | 120M | 2000 |
2469 * +-------+------------------------+
2470 */
2471 #define MEMCG_DELAY_PRECISION_SHIFT 20
2472 #define MEMCG_DELAY_SCALING_SHIFT 14
2473
calculate_overage(unsigned long usage,unsigned long high)2474 static u64 calculate_overage(unsigned long usage, unsigned long high)
2475 {
2476 u64 overage;
2477
2478 if (usage <= high)
2479 return 0;
2480
2481 /*
2482 * Prevent division by 0 in overage calculation by acting as if
2483 * it was a threshold of 1 page
2484 */
2485 high = max(high, 1UL);
2486
2487 overage = usage - high;
2488 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2489 return div64_u64(overage, high);
2490 }
2491
mem_find_max_overage(struct mem_cgroup * memcg)2492 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2493 {
2494 u64 overage, max_overage = 0;
2495
2496 do {
2497 overage = calculate_overage(page_counter_read(&memcg->memory),
2498 READ_ONCE(memcg->memory.high));
2499 max_overage = max(overage, max_overage);
2500 } while ((memcg = parent_mem_cgroup(memcg)) &&
2501 !mem_cgroup_is_root(memcg));
2502
2503 return max_overage;
2504 }
2505
swap_find_max_overage(struct mem_cgroup * memcg)2506 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2507 {
2508 u64 overage, max_overage = 0;
2509
2510 do {
2511 overage = calculate_overage(page_counter_read(&memcg->swap),
2512 READ_ONCE(memcg->swap.high));
2513 if (overage)
2514 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2515 max_overage = max(overage, max_overage);
2516 } while ((memcg = parent_mem_cgroup(memcg)) &&
2517 !mem_cgroup_is_root(memcg));
2518
2519 return max_overage;
2520 }
2521
2522 /*
2523 * Get the number of jiffies that we should penalise a mischievous cgroup which
2524 * is exceeding its memory.high by checking both it and its ancestors.
2525 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2526 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2527 unsigned int nr_pages,
2528 u64 max_overage)
2529 {
2530 unsigned long penalty_jiffies;
2531
2532 if (!max_overage)
2533 return 0;
2534
2535 /*
2536 * We use overage compared to memory.high to calculate the number of
2537 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2538 * fairly lenient on small overages, and increasingly harsh when the
2539 * memcg in question makes it clear that it has no intention of stopping
2540 * its crazy behaviour, so we exponentially increase the delay based on
2541 * overage amount.
2542 */
2543 penalty_jiffies = max_overage * max_overage * HZ;
2544 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2545 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2546
2547 /*
2548 * Factor in the task's own contribution to the overage, such that four
2549 * N-sized allocations are throttled approximately the same as one
2550 * 4N-sized allocation.
2551 *
2552 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2553 * larger the current charge patch is than that.
2554 */
2555 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2556 }
2557
2558 /*
2559 * Scheduled by try_charge() to be executed from the userland return path
2560 * and reclaims memory over the high limit.
2561 */
mem_cgroup_handle_over_high(void)2562 void mem_cgroup_handle_over_high(void)
2563 {
2564 unsigned long penalty_jiffies;
2565 unsigned long pflags;
2566 unsigned long nr_reclaimed;
2567 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2568 int nr_retries = MAX_RECLAIM_RETRIES;
2569 struct mem_cgroup *memcg;
2570 bool in_retry = false;
2571
2572 if (likely(!nr_pages))
2573 return;
2574
2575 memcg = get_mem_cgroup_from_mm(current->mm);
2576 current->memcg_nr_pages_over_high = 0;
2577
2578 retry_reclaim:
2579 /*
2580 * The allocating task should reclaim at least the batch size, but for
2581 * subsequent retries we only want to do what's necessary to prevent oom
2582 * or breaching resource isolation.
2583 *
2584 * This is distinct from memory.max or page allocator behaviour because
2585 * memory.high is currently batched, whereas memory.max and the page
2586 * allocator run every time an allocation is made.
2587 */
2588 nr_reclaimed = reclaim_high(memcg,
2589 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2590 GFP_KERNEL);
2591
2592 /*
2593 * memory.high is breached and reclaim is unable to keep up. Throttle
2594 * allocators proactively to slow down excessive growth.
2595 */
2596 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2597 mem_find_max_overage(memcg));
2598
2599 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2600 swap_find_max_overage(memcg));
2601
2602 /*
2603 * Clamp the max delay per usermode return so as to still keep the
2604 * application moving forwards and also permit diagnostics, albeit
2605 * extremely slowly.
2606 */
2607 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2608
2609 /*
2610 * Don't sleep if the amount of jiffies this memcg owes us is so low
2611 * that it's not even worth doing, in an attempt to be nice to those who
2612 * go only a small amount over their memory.high value and maybe haven't
2613 * been aggressively reclaimed enough yet.
2614 */
2615 if (penalty_jiffies <= HZ / 100)
2616 goto out;
2617
2618 /*
2619 * If reclaim is making forward progress but we're still over
2620 * memory.high, we want to encourage that rather than doing allocator
2621 * throttling.
2622 */
2623 if (nr_reclaimed || nr_retries--) {
2624 in_retry = true;
2625 goto retry_reclaim;
2626 }
2627
2628 /*
2629 * If we exit early, we're guaranteed to die (since
2630 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2631 * need to account for any ill-begotten jiffies to pay them off later.
2632 */
2633 psi_memstall_enter(&pflags);
2634 schedule_timeout_killable(penalty_jiffies);
2635 psi_memstall_leave(&pflags);
2636
2637 out:
2638 css_put(&memcg->css);
2639 }
2640
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2641 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2642 unsigned int nr_pages)
2643 {
2644 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2645 int nr_retries = MAX_RECLAIM_RETRIES;
2646 struct mem_cgroup *mem_over_limit;
2647 struct page_counter *counter;
2648 unsigned long nr_reclaimed;
2649 bool passed_oom = false;
2650 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2651 bool drained = false;
2652 bool raised_max_event = false;
2653 unsigned long pflags;
2654
2655 retry:
2656 if (consume_stock(memcg, nr_pages))
2657 return 0;
2658
2659 if (!do_memsw_account() ||
2660 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2661 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2662 goto done_restock;
2663 if (do_memsw_account())
2664 page_counter_uncharge(&memcg->memsw, batch);
2665 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2666 } else {
2667 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2668 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2669 }
2670
2671 if (batch > nr_pages) {
2672 batch = nr_pages;
2673 goto retry;
2674 }
2675
2676 /*
2677 * Prevent unbounded recursion when reclaim operations need to
2678 * allocate memory. This might exceed the limits temporarily,
2679 * but we prefer facilitating memory reclaim and getting back
2680 * under the limit over triggering OOM kills in these cases.
2681 */
2682 if (unlikely(current->flags & PF_MEMALLOC))
2683 goto force;
2684
2685 if (unlikely(task_in_memcg_oom(current)))
2686 goto nomem;
2687
2688 if (!gfpflags_allow_blocking(gfp_mask))
2689 goto nomem;
2690
2691 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2692 raised_max_event = true;
2693
2694 psi_memstall_enter(&pflags);
2695 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2696 gfp_mask, reclaim_options);
2697 psi_memstall_leave(&pflags);
2698
2699 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2700 goto retry;
2701
2702 if (!drained) {
2703 drain_all_stock(mem_over_limit);
2704 drained = true;
2705 goto retry;
2706 }
2707
2708 if (gfp_mask & __GFP_NORETRY)
2709 goto nomem;
2710 /*
2711 * Even though the limit is exceeded at this point, reclaim
2712 * may have been able to free some pages. Retry the charge
2713 * before killing the task.
2714 *
2715 * Only for regular pages, though: huge pages are rather
2716 * unlikely to succeed so close to the limit, and we fall back
2717 * to regular pages anyway in case of failure.
2718 */
2719 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2720 goto retry;
2721 /*
2722 * At task move, charge accounts can be doubly counted. So, it's
2723 * better to wait until the end of task_move if something is going on.
2724 */
2725 if (mem_cgroup_wait_acct_move(mem_over_limit))
2726 goto retry;
2727
2728 if (nr_retries--)
2729 goto retry;
2730
2731 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2732 goto nomem;
2733
2734 /* Avoid endless loop for tasks bypassed by the oom killer */
2735 if (passed_oom && task_is_dying())
2736 goto nomem;
2737
2738 /*
2739 * keep retrying as long as the memcg oom killer is able to make
2740 * a forward progress or bypass the charge if the oom killer
2741 * couldn't make any progress.
2742 */
2743 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2744 get_order(nr_pages * PAGE_SIZE))) {
2745 passed_oom = true;
2746 nr_retries = MAX_RECLAIM_RETRIES;
2747 goto retry;
2748 }
2749 nomem:
2750 /*
2751 * Memcg doesn't have a dedicated reserve for atomic
2752 * allocations. But like the global atomic pool, we need to
2753 * put the burden of reclaim on regular allocation requests
2754 * and let these go through as privileged allocations.
2755 */
2756 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2757 return -ENOMEM;
2758 force:
2759 /*
2760 * If the allocation has to be enforced, don't forget to raise
2761 * a MEMCG_MAX event.
2762 */
2763 if (!raised_max_event)
2764 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2765
2766 /*
2767 * The allocation either can't fail or will lead to more memory
2768 * being freed very soon. Allow memory usage go over the limit
2769 * temporarily by force charging it.
2770 */
2771 page_counter_charge(&memcg->memory, nr_pages);
2772 if (do_memsw_account())
2773 page_counter_charge(&memcg->memsw, nr_pages);
2774
2775 return 0;
2776
2777 done_restock:
2778 if (batch > nr_pages)
2779 refill_stock(memcg, batch - nr_pages);
2780
2781 /*
2782 * If the hierarchy is above the normal consumption range, schedule
2783 * reclaim on returning to userland. We can perform reclaim here
2784 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2785 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2786 * not recorded as it most likely matches current's and won't
2787 * change in the meantime. As high limit is checked again before
2788 * reclaim, the cost of mismatch is negligible.
2789 */
2790 do {
2791 bool mem_high, swap_high;
2792
2793 mem_high = page_counter_read(&memcg->memory) >
2794 READ_ONCE(memcg->memory.high);
2795 swap_high = page_counter_read(&memcg->swap) >
2796 READ_ONCE(memcg->swap.high);
2797
2798 /* Don't bother a random interrupted task */
2799 if (!in_task()) {
2800 if (mem_high) {
2801 schedule_work(&memcg->high_work);
2802 break;
2803 }
2804 continue;
2805 }
2806
2807 if (mem_high || swap_high) {
2808 /*
2809 * The allocating tasks in this cgroup will need to do
2810 * reclaim or be throttled to prevent further growth
2811 * of the memory or swap footprints.
2812 *
2813 * Target some best-effort fairness between the tasks,
2814 * and distribute reclaim work and delay penalties
2815 * based on how much each task is actually allocating.
2816 */
2817 current->memcg_nr_pages_over_high += batch;
2818 set_notify_resume(current);
2819 break;
2820 }
2821 } while ((memcg = parent_mem_cgroup(memcg)));
2822
2823 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2824 !(current->flags & PF_MEMALLOC) &&
2825 gfpflags_allow_blocking(gfp_mask)) {
2826 mem_cgroup_handle_over_high();
2827 }
2828 return 0;
2829 }
2830
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2831 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2832 unsigned int nr_pages)
2833 {
2834 if (mem_cgroup_is_root(memcg))
2835 return 0;
2836
2837 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2838 }
2839
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2840 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2841 {
2842 if (mem_cgroup_is_root(memcg))
2843 return;
2844
2845 page_counter_uncharge(&memcg->memory, nr_pages);
2846 if (do_memsw_account())
2847 page_counter_uncharge(&memcg->memsw, nr_pages);
2848 }
2849
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2850 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2851 {
2852 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2853 /*
2854 * Any of the following ensures page's memcg stability:
2855 *
2856 * - the page lock
2857 * - LRU isolation
2858 * - lock_page_memcg()
2859 * - exclusive reference
2860 * - mem_cgroup_trylock_pages()
2861 */
2862 folio->memcg_data = (unsigned long)memcg;
2863 }
2864
2865 #ifdef CONFIG_MEMCG_KMEM
2866 /*
2867 * The allocated objcg pointers array is not accounted directly.
2868 * Moreover, it should not come from DMA buffer and is not readily
2869 * reclaimable. So those GFP bits should be masked off.
2870 */
2871 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2872
2873 /*
2874 * mod_objcg_mlstate() may be called with irq enabled, so
2875 * mod_memcg_lruvec_state() should be used.
2876 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2877 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2878 struct pglist_data *pgdat,
2879 enum node_stat_item idx, int nr)
2880 {
2881 struct mem_cgroup *memcg;
2882 struct lruvec *lruvec;
2883
2884 rcu_read_lock();
2885 memcg = obj_cgroup_memcg(objcg);
2886 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2887 mod_memcg_lruvec_state(lruvec, idx, nr);
2888 rcu_read_unlock();
2889 }
2890
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2891 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2892 gfp_t gfp, bool new_slab)
2893 {
2894 unsigned int objects = objs_per_slab(s, slab);
2895 unsigned long memcg_data;
2896 void *vec;
2897
2898 gfp &= ~OBJCGS_CLEAR_MASK;
2899 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2900 slab_nid(slab));
2901 if (!vec)
2902 return -ENOMEM;
2903
2904 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2905 if (new_slab) {
2906 /*
2907 * If the slab is brand new and nobody can yet access its
2908 * memcg_data, no synchronization is required and memcg_data can
2909 * be simply assigned.
2910 */
2911 slab->memcg_data = memcg_data;
2912 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2913 /*
2914 * If the slab is already in use, somebody can allocate and
2915 * assign obj_cgroups in parallel. In this case the existing
2916 * objcg vector should be reused.
2917 */
2918 kfree(vec);
2919 return 0;
2920 }
2921
2922 kmemleak_not_leak(vec);
2923 return 0;
2924 }
2925
2926 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2927 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2928 {
2929 /*
2930 * Slab objects are accounted individually, not per-page.
2931 * Memcg membership data for each individual object is saved in
2932 * slab->memcg_data.
2933 */
2934 if (folio_test_slab(folio)) {
2935 struct obj_cgroup **objcgs;
2936 struct slab *slab;
2937 unsigned int off;
2938
2939 slab = folio_slab(folio);
2940 objcgs = slab_objcgs(slab);
2941 if (!objcgs)
2942 return NULL;
2943
2944 off = obj_to_index(slab->slab_cache, slab, p);
2945 if (objcgs[off])
2946 return obj_cgroup_memcg(objcgs[off]);
2947
2948 return NULL;
2949 }
2950
2951 /*
2952 * folio_memcg_check() is used here, because in theory we can encounter
2953 * a folio where the slab flag has been cleared already, but
2954 * slab->memcg_data has not been freed yet
2955 * folio_memcg_check() will guarantee that a proper memory
2956 * cgroup pointer or NULL will be returned.
2957 */
2958 return folio_memcg_check(folio);
2959 }
2960
2961 /*
2962 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2963 *
2964 * A passed kernel object can be a slab object, vmalloc object or a generic
2965 * kernel page, so different mechanisms for getting the memory cgroup pointer
2966 * should be used.
2967 *
2968 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2969 * can not know for sure how the kernel object is implemented.
2970 * mem_cgroup_from_obj() can be safely used in such cases.
2971 *
2972 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2973 * cgroup_mutex, etc.
2974 */
mem_cgroup_from_obj(void * p)2975 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2976 {
2977 struct folio *folio;
2978
2979 if (mem_cgroup_disabled())
2980 return NULL;
2981
2982 if (unlikely(is_vmalloc_addr(p)))
2983 folio = page_folio(vmalloc_to_page(p));
2984 else
2985 folio = virt_to_folio(p);
2986
2987 return mem_cgroup_from_obj_folio(folio, p);
2988 }
2989
2990 /*
2991 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2993 * allocated using vmalloc().
2994 *
2995 * A passed kernel object must be a slab object or a generic kernel page.
2996 *
2997 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2998 * cgroup_mutex, etc.
2999 */
mem_cgroup_from_slab_obj(void * p)3000 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3001 {
3002 if (mem_cgroup_disabled())
3003 return NULL;
3004
3005 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3006 }
3007
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)3008 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3009 {
3010 struct obj_cgroup *objcg = NULL;
3011
3012 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3013 objcg = rcu_dereference(memcg->objcg);
3014 if (objcg && obj_cgroup_tryget(objcg))
3015 break;
3016 objcg = NULL;
3017 }
3018 return objcg;
3019 }
3020
get_obj_cgroup_from_current(void)3021 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3022 {
3023 struct obj_cgroup *objcg = NULL;
3024 struct mem_cgroup *memcg;
3025
3026 if (memcg_kmem_bypass())
3027 return NULL;
3028
3029 rcu_read_lock();
3030 if (unlikely(active_memcg()))
3031 memcg = active_memcg();
3032 else
3033 memcg = mem_cgroup_from_task(current);
3034 objcg = __get_obj_cgroup_from_memcg(memcg);
3035 rcu_read_unlock();
3036 return objcg;
3037 }
3038
get_obj_cgroup_from_page(struct page * page)3039 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3040 {
3041 struct obj_cgroup *objcg;
3042
3043 if (!memcg_kmem_online())
3044 return NULL;
3045
3046 if (PageMemcgKmem(page)) {
3047 objcg = __folio_objcg(page_folio(page));
3048 obj_cgroup_get(objcg);
3049 } else {
3050 struct mem_cgroup *memcg;
3051
3052 rcu_read_lock();
3053 memcg = __folio_memcg(page_folio(page));
3054 if (memcg)
3055 objcg = __get_obj_cgroup_from_memcg(memcg);
3056 else
3057 objcg = NULL;
3058 rcu_read_unlock();
3059 }
3060 return objcg;
3061 }
3062
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)3063 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3064 {
3065 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3067 if (nr_pages > 0)
3068 page_counter_charge(&memcg->kmem, nr_pages);
3069 else
3070 page_counter_uncharge(&memcg->kmem, -nr_pages);
3071 }
3072 }
3073
3074
3075 /*
3076 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3077 * @objcg: object cgroup to uncharge
3078 * @nr_pages: number of pages to uncharge
3079 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3080 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3081 unsigned int nr_pages)
3082 {
3083 struct mem_cgroup *memcg;
3084
3085 memcg = get_mem_cgroup_from_objcg(objcg);
3086
3087 memcg_account_kmem(memcg, -nr_pages);
3088 refill_stock(memcg, nr_pages);
3089
3090 css_put(&memcg->css);
3091 }
3092
3093 /*
3094 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3095 * @objcg: object cgroup to charge
3096 * @gfp: reclaim mode
3097 * @nr_pages: number of pages to charge
3098 *
3099 * Returns 0 on success, an error code on failure.
3100 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3101 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3102 unsigned int nr_pages)
3103 {
3104 struct mem_cgroup *memcg;
3105 int ret;
3106
3107 memcg = get_mem_cgroup_from_objcg(objcg);
3108
3109 ret = try_charge_memcg(memcg, gfp, nr_pages);
3110 if (ret)
3111 goto out;
3112
3113 memcg_account_kmem(memcg, nr_pages);
3114 out:
3115 css_put(&memcg->css);
3116
3117 return ret;
3118 }
3119
3120 /**
3121 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3122 * @page: page to charge
3123 * @gfp: reclaim mode
3124 * @order: allocation order
3125 *
3126 * Returns 0 on success, an error code on failure.
3127 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3128 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3129 {
3130 struct obj_cgroup *objcg;
3131 int ret = 0;
3132
3133 objcg = get_obj_cgroup_from_current();
3134 if (objcg) {
3135 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3136 if (!ret) {
3137 page->memcg_data = (unsigned long)objcg |
3138 MEMCG_DATA_KMEM;
3139 return 0;
3140 }
3141 obj_cgroup_put(objcg);
3142 }
3143 return ret;
3144 }
3145
3146 /**
3147 * __memcg_kmem_uncharge_page: uncharge a kmem page
3148 * @page: page to uncharge
3149 * @order: allocation order
3150 */
__memcg_kmem_uncharge_page(struct page * page,int order)3151 void __memcg_kmem_uncharge_page(struct page *page, int order)
3152 {
3153 struct folio *folio = page_folio(page);
3154 struct obj_cgroup *objcg;
3155 unsigned int nr_pages = 1 << order;
3156
3157 if (!folio_memcg_kmem(folio))
3158 return;
3159
3160 objcg = __folio_objcg(folio);
3161 obj_cgroup_uncharge_pages(objcg, nr_pages);
3162 folio->memcg_data = 0;
3163 obj_cgroup_put(objcg);
3164 }
3165
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3166 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3167 enum node_stat_item idx, int nr)
3168 {
3169 struct memcg_stock_pcp *stock;
3170 struct obj_cgroup *old = NULL;
3171 unsigned long flags;
3172 int *bytes;
3173
3174 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3175 stock = this_cpu_ptr(&memcg_stock);
3176
3177 /*
3178 * Save vmstat data in stock and skip vmstat array update unless
3179 * accumulating over a page of vmstat data or when pgdat or idx
3180 * changes.
3181 */
3182 if (stock->cached_objcg != objcg) {
3183 old = drain_obj_stock(stock);
3184 obj_cgroup_get(objcg);
3185 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3186 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3187 stock->cached_objcg = objcg;
3188 stock->cached_pgdat = pgdat;
3189 } else if (stock->cached_pgdat != pgdat) {
3190 /* Flush the existing cached vmstat data */
3191 struct pglist_data *oldpg = stock->cached_pgdat;
3192
3193 if (stock->nr_slab_reclaimable_b) {
3194 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3195 stock->nr_slab_reclaimable_b);
3196 stock->nr_slab_reclaimable_b = 0;
3197 }
3198 if (stock->nr_slab_unreclaimable_b) {
3199 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3200 stock->nr_slab_unreclaimable_b);
3201 stock->nr_slab_unreclaimable_b = 0;
3202 }
3203 stock->cached_pgdat = pgdat;
3204 }
3205
3206 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3207 : &stock->nr_slab_unreclaimable_b;
3208 /*
3209 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3210 * cached locally at least once before pushing it out.
3211 */
3212 if (!*bytes) {
3213 *bytes = nr;
3214 nr = 0;
3215 } else {
3216 *bytes += nr;
3217 if (abs(*bytes) > PAGE_SIZE) {
3218 nr = *bytes;
3219 *bytes = 0;
3220 } else {
3221 nr = 0;
3222 }
3223 }
3224 if (nr)
3225 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3226
3227 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3228 if (old)
3229 obj_cgroup_put(old);
3230 }
3231
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3232 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3233 {
3234 struct memcg_stock_pcp *stock;
3235 unsigned long flags;
3236 bool ret = false;
3237
3238 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3239
3240 stock = this_cpu_ptr(&memcg_stock);
3241 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3242 stock->nr_bytes -= nr_bytes;
3243 ret = true;
3244 }
3245
3246 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3247
3248 return ret;
3249 }
3250
drain_obj_stock(struct memcg_stock_pcp * stock)3251 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3252 {
3253 struct obj_cgroup *old = stock->cached_objcg;
3254
3255 if (!old)
3256 return NULL;
3257
3258 if (stock->nr_bytes) {
3259 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3260 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3261
3262 if (nr_pages) {
3263 struct mem_cgroup *memcg;
3264
3265 memcg = get_mem_cgroup_from_objcg(old);
3266
3267 memcg_account_kmem(memcg, -nr_pages);
3268 __refill_stock(memcg, nr_pages);
3269
3270 css_put(&memcg->css);
3271 }
3272
3273 /*
3274 * The leftover is flushed to the centralized per-memcg value.
3275 * On the next attempt to refill obj stock it will be moved
3276 * to a per-cpu stock (probably, on an other CPU), see
3277 * refill_obj_stock().
3278 *
3279 * How often it's flushed is a trade-off between the memory
3280 * limit enforcement accuracy and potential CPU contention,
3281 * so it might be changed in the future.
3282 */
3283 atomic_add(nr_bytes, &old->nr_charged_bytes);
3284 stock->nr_bytes = 0;
3285 }
3286
3287 /*
3288 * Flush the vmstat data in current stock
3289 */
3290 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3291 if (stock->nr_slab_reclaimable_b) {
3292 mod_objcg_mlstate(old, stock->cached_pgdat,
3293 NR_SLAB_RECLAIMABLE_B,
3294 stock->nr_slab_reclaimable_b);
3295 stock->nr_slab_reclaimable_b = 0;
3296 }
3297 if (stock->nr_slab_unreclaimable_b) {
3298 mod_objcg_mlstate(old, stock->cached_pgdat,
3299 NR_SLAB_UNRECLAIMABLE_B,
3300 stock->nr_slab_unreclaimable_b);
3301 stock->nr_slab_unreclaimable_b = 0;
3302 }
3303 stock->cached_pgdat = NULL;
3304 }
3305
3306 stock->cached_objcg = NULL;
3307 /*
3308 * The `old' objects needs to be released by the caller via
3309 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3310 */
3311 return old;
3312 }
3313
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3314 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3315 struct mem_cgroup *root_memcg)
3316 {
3317 struct mem_cgroup *memcg;
3318
3319 if (stock->cached_objcg) {
3320 memcg = obj_cgroup_memcg(stock->cached_objcg);
3321 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3322 return true;
3323 }
3324
3325 return false;
3326 }
3327
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3328 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3329 bool allow_uncharge)
3330 {
3331 struct memcg_stock_pcp *stock;
3332 struct obj_cgroup *old = NULL;
3333 unsigned long flags;
3334 unsigned int nr_pages = 0;
3335
3336 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3337
3338 stock = this_cpu_ptr(&memcg_stock);
3339 if (stock->cached_objcg != objcg) { /* reset if necessary */
3340 old = drain_obj_stock(stock);
3341 obj_cgroup_get(objcg);
3342 stock->cached_objcg = objcg;
3343 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3344 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3345 allow_uncharge = true; /* Allow uncharge when objcg changes */
3346 }
3347 stock->nr_bytes += nr_bytes;
3348
3349 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3350 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3351 stock->nr_bytes &= (PAGE_SIZE - 1);
3352 }
3353
3354 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3355 if (old)
3356 obj_cgroup_put(old);
3357
3358 if (nr_pages)
3359 obj_cgroup_uncharge_pages(objcg, nr_pages);
3360 }
3361
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3362 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3363 {
3364 unsigned int nr_pages, nr_bytes;
3365 int ret;
3366
3367 if (consume_obj_stock(objcg, size))
3368 return 0;
3369
3370 /*
3371 * In theory, objcg->nr_charged_bytes can have enough
3372 * pre-charged bytes to satisfy the allocation. However,
3373 * flushing objcg->nr_charged_bytes requires two atomic
3374 * operations, and objcg->nr_charged_bytes can't be big.
3375 * The shared objcg->nr_charged_bytes can also become a
3376 * performance bottleneck if all tasks of the same memcg are
3377 * trying to update it. So it's better to ignore it and try
3378 * grab some new pages. The stock's nr_bytes will be flushed to
3379 * objcg->nr_charged_bytes later on when objcg changes.
3380 *
3381 * The stock's nr_bytes may contain enough pre-charged bytes
3382 * to allow one less page from being charged, but we can't rely
3383 * on the pre-charged bytes not being changed outside of
3384 * consume_obj_stock() or refill_obj_stock(). So ignore those
3385 * pre-charged bytes as well when charging pages. To avoid a
3386 * page uncharge right after a page charge, we set the
3387 * allow_uncharge flag to false when calling refill_obj_stock()
3388 * to temporarily allow the pre-charged bytes to exceed the page
3389 * size limit. The maximum reachable value of the pre-charged
3390 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3391 * race.
3392 */
3393 nr_pages = size >> PAGE_SHIFT;
3394 nr_bytes = size & (PAGE_SIZE - 1);
3395
3396 if (nr_bytes)
3397 nr_pages += 1;
3398
3399 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3400 if (!ret && nr_bytes)
3401 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3402
3403 return ret;
3404 }
3405
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3406 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3407 {
3408 refill_obj_stock(objcg, size, true);
3409 }
3410
3411 #endif /* CONFIG_MEMCG_KMEM */
3412
3413 /*
3414 * Because page_memcg(head) is not set on tails, set it now.
3415 */
split_page_memcg(struct page * head,unsigned int nr)3416 void split_page_memcg(struct page *head, unsigned int nr)
3417 {
3418 struct folio *folio = page_folio(head);
3419 struct mem_cgroup *memcg = folio_memcg(folio);
3420 int i;
3421
3422 if (mem_cgroup_disabled() || !memcg)
3423 return;
3424
3425 for (i = 1; i < nr; i++)
3426 folio_page(folio, i)->memcg_data = folio->memcg_data;
3427
3428 if (folio_memcg_kmem(folio))
3429 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3430 else
3431 css_get_many(&memcg->css, nr - 1);
3432 }
3433
3434 #ifdef CONFIG_SWAP
3435 /**
3436 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3437 * @entry: swap entry to be moved
3438 * @from: mem_cgroup which the entry is moved from
3439 * @to: mem_cgroup which the entry is moved to
3440 *
3441 * It succeeds only when the swap_cgroup's record for this entry is the same
3442 * as the mem_cgroup's id of @from.
3443 *
3444 * Returns 0 on success, -EINVAL on failure.
3445 *
3446 * The caller must have charged to @to, IOW, called page_counter_charge() about
3447 * both res and memsw, and called css_get().
3448 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3449 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3450 struct mem_cgroup *from, struct mem_cgroup *to)
3451 {
3452 unsigned short old_id, new_id;
3453
3454 old_id = mem_cgroup_id(from);
3455 new_id = mem_cgroup_id(to);
3456
3457 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3458 mod_memcg_state(from, MEMCG_SWAP, -1);
3459 mod_memcg_state(to, MEMCG_SWAP, 1);
3460 return 0;
3461 }
3462 return -EINVAL;
3463 }
3464 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3465 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3466 struct mem_cgroup *from, struct mem_cgroup *to)
3467 {
3468 return -EINVAL;
3469 }
3470 #endif
3471
3472 static DEFINE_MUTEX(memcg_max_mutex);
3473
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3474 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3475 unsigned long max, bool memsw)
3476 {
3477 bool enlarge = false;
3478 bool drained = false;
3479 int ret;
3480 bool limits_invariant;
3481 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3482
3483 do {
3484 if (signal_pending(current)) {
3485 ret = -EINTR;
3486 break;
3487 }
3488
3489 mutex_lock(&memcg_max_mutex);
3490 /*
3491 * Make sure that the new limit (memsw or memory limit) doesn't
3492 * break our basic invariant rule memory.max <= memsw.max.
3493 */
3494 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3495 max <= memcg->memsw.max;
3496 if (!limits_invariant) {
3497 mutex_unlock(&memcg_max_mutex);
3498 ret = -EINVAL;
3499 break;
3500 }
3501 if (max > counter->max)
3502 enlarge = true;
3503 ret = page_counter_set_max(counter, max);
3504 mutex_unlock(&memcg_max_mutex);
3505
3506 if (!ret)
3507 break;
3508
3509 if (!drained) {
3510 drain_all_stock(memcg);
3511 drained = true;
3512 continue;
3513 }
3514
3515 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3516 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3517 ret = -EBUSY;
3518 break;
3519 }
3520 } while (true);
3521
3522 if (!ret && enlarge)
3523 memcg_oom_recover(memcg);
3524
3525 return ret;
3526 }
3527
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3528 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3529 gfp_t gfp_mask,
3530 unsigned long *total_scanned)
3531 {
3532 unsigned long nr_reclaimed = 0;
3533 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3534 unsigned long reclaimed;
3535 int loop = 0;
3536 struct mem_cgroup_tree_per_node *mctz;
3537 unsigned long excess;
3538
3539 if (lru_gen_enabled())
3540 return 0;
3541
3542 if (order > 0)
3543 return 0;
3544
3545 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3546
3547 /*
3548 * Do not even bother to check the largest node if the root
3549 * is empty. Do it lockless to prevent lock bouncing. Races
3550 * are acceptable as soft limit is best effort anyway.
3551 */
3552 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3553 return 0;
3554
3555 /*
3556 * This loop can run a while, specially if mem_cgroup's continuously
3557 * keep exceeding their soft limit and putting the system under
3558 * pressure
3559 */
3560 do {
3561 if (next_mz)
3562 mz = next_mz;
3563 else
3564 mz = mem_cgroup_largest_soft_limit_node(mctz);
3565 if (!mz)
3566 break;
3567
3568 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3569 gfp_mask, total_scanned);
3570 nr_reclaimed += reclaimed;
3571 spin_lock_irq(&mctz->lock);
3572
3573 /*
3574 * If we failed to reclaim anything from this memory cgroup
3575 * it is time to move on to the next cgroup
3576 */
3577 next_mz = NULL;
3578 if (!reclaimed)
3579 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3580
3581 excess = soft_limit_excess(mz->memcg);
3582 /*
3583 * One school of thought says that we should not add
3584 * back the node to the tree if reclaim returns 0.
3585 * But our reclaim could return 0, simply because due
3586 * to priority we are exposing a smaller subset of
3587 * memory to reclaim from. Consider this as a longer
3588 * term TODO.
3589 */
3590 /* If excess == 0, no tree ops */
3591 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3592 spin_unlock_irq(&mctz->lock);
3593 css_put(&mz->memcg->css);
3594 loop++;
3595 /*
3596 * Could not reclaim anything and there are no more
3597 * mem cgroups to try or we seem to be looping without
3598 * reclaiming anything.
3599 */
3600 if (!nr_reclaimed &&
3601 (next_mz == NULL ||
3602 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3603 break;
3604 } while (!nr_reclaimed);
3605 if (next_mz)
3606 css_put(&next_mz->memcg->css);
3607 return nr_reclaimed;
3608 }
3609
3610 /*
3611 * Reclaims as many pages from the given memcg as possible.
3612 *
3613 * Caller is responsible for holding css reference for memcg.
3614 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3615 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3616 {
3617 int nr_retries = MAX_RECLAIM_RETRIES;
3618
3619 /* we call try-to-free pages for make this cgroup empty */
3620 lru_add_drain_all();
3621
3622 drain_all_stock(memcg);
3623
3624 /* try to free all pages in this cgroup */
3625 while (nr_retries && page_counter_read(&memcg->memory)) {
3626 if (signal_pending(current))
3627 return -EINTR;
3628
3629 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3630 MEMCG_RECLAIM_MAY_SWAP))
3631 nr_retries--;
3632 }
3633
3634 return 0;
3635 }
3636
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3637 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3638 char *buf, size_t nbytes,
3639 loff_t off)
3640 {
3641 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3642
3643 if (mem_cgroup_is_root(memcg))
3644 return -EINVAL;
3645 return mem_cgroup_force_empty(memcg) ?: nbytes;
3646 }
3647
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3648 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3649 struct cftype *cft)
3650 {
3651 return 1;
3652 }
3653
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3654 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3655 struct cftype *cft, u64 val)
3656 {
3657 if (val == 1)
3658 return 0;
3659
3660 pr_warn_once("Non-hierarchical mode is deprecated. "
3661 "Please report your usecase to linux-mm@kvack.org if you "
3662 "depend on this functionality.\n");
3663
3664 return -EINVAL;
3665 }
3666
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3667 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3668 {
3669 unsigned long val;
3670
3671 if (mem_cgroup_is_root(memcg)) {
3672 mem_cgroup_flush_stats();
3673 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3674 memcg_page_state(memcg, NR_ANON_MAPPED);
3675 if (swap)
3676 val += memcg_page_state(memcg, MEMCG_SWAP);
3677 } else {
3678 if (!swap)
3679 val = page_counter_read(&memcg->memory);
3680 else
3681 val = page_counter_read(&memcg->memsw);
3682 }
3683 return val;
3684 }
3685
3686 enum {
3687 RES_USAGE,
3688 RES_LIMIT,
3689 RES_MAX_USAGE,
3690 RES_FAILCNT,
3691 RES_SOFT_LIMIT,
3692 };
3693
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3694 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3695 struct cftype *cft)
3696 {
3697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698 struct page_counter *counter;
3699
3700 switch (MEMFILE_TYPE(cft->private)) {
3701 case _MEM:
3702 counter = &memcg->memory;
3703 break;
3704 case _MEMSWAP:
3705 counter = &memcg->memsw;
3706 break;
3707 case _KMEM:
3708 counter = &memcg->kmem;
3709 break;
3710 case _TCP:
3711 counter = &memcg->tcpmem;
3712 break;
3713 default:
3714 BUG();
3715 }
3716
3717 switch (MEMFILE_ATTR(cft->private)) {
3718 case RES_USAGE:
3719 if (counter == &memcg->memory)
3720 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3721 if (counter == &memcg->memsw)
3722 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3723 return (u64)page_counter_read(counter) * PAGE_SIZE;
3724 case RES_LIMIT:
3725 return (u64)counter->max * PAGE_SIZE;
3726 case RES_MAX_USAGE:
3727 return (u64)counter->watermark * PAGE_SIZE;
3728 case RES_FAILCNT:
3729 return counter->failcnt;
3730 case RES_SOFT_LIMIT:
3731 return (u64)memcg->soft_limit * PAGE_SIZE;
3732 default:
3733 BUG();
3734 }
3735 }
3736
3737 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3738 static int memcg_online_kmem(struct mem_cgroup *memcg)
3739 {
3740 struct obj_cgroup *objcg;
3741
3742 if (mem_cgroup_kmem_disabled())
3743 return 0;
3744
3745 if (unlikely(mem_cgroup_is_root(memcg)))
3746 return 0;
3747
3748 objcg = obj_cgroup_alloc();
3749 if (!objcg)
3750 return -ENOMEM;
3751
3752 objcg->memcg = memcg;
3753 rcu_assign_pointer(memcg->objcg, objcg);
3754
3755 static_branch_enable(&memcg_kmem_online_key);
3756
3757 memcg->kmemcg_id = memcg->id.id;
3758
3759 return 0;
3760 }
3761
memcg_offline_kmem(struct mem_cgroup * memcg)3762 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3763 {
3764 struct mem_cgroup *parent;
3765
3766 if (mem_cgroup_kmem_disabled())
3767 return;
3768
3769 if (unlikely(mem_cgroup_is_root(memcg)))
3770 return;
3771
3772 parent = parent_mem_cgroup(memcg);
3773 if (!parent)
3774 parent = root_mem_cgroup;
3775
3776 memcg_reparent_objcgs(memcg, parent);
3777
3778 /*
3779 * After we have finished memcg_reparent_objcgs(), all list_lrus
3780 * corresponding to this cgroup are guaranteed to remain empty.
3781 * The ordering is imposed by list_lru_node->lock taken by
3782 * memcg_reparent_list_lrus().
3783 */
3784 memcg_reparent_list_lrus(memcg, parent);
3785 }
3786 #else
memcg_online_kmem(struct mem_cgroup * memcg)3787 static int memcg_online_kmem(struct mem_cgroup *memcg)
3788 {
3789 return 0;
3790 }
memcg_offline_kmem(struct mem_cgroup * memcg)3791 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3792 {
3793 }
3794 #endif /* CONFIG_MEMCG_KMEM */
3795
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3796 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3797 {
3798 int ret;
3799
3800 mutex_lock(&memcg_max_mutex);
3801
3802 ret = page_counter_set_max(&memcg->tcpmem, max);
3803 if (ret)
3804 goto out;
3805
3806 if (!memcg->tcpmem_active) {
3807 /*
3808 * The active flag needs to be written after the static_key
3809 * update. This is what guarantees that the socket activation
3810 * function is the last one to run. See mem_cgroup_sk_alloc()
3811 * for details, and note that we don't mark any socket as
3812 * belonging to this memcg until that flag is up.
3813 *
3814 * We need to do this, because static_keys will span multiple
3815 * sites, but we can't control their order. If we mark a socket
3816 * as accounted, but the accounting functions are not patched in
3817 * yet, we'll lose accounting.
3818 *
3819 * We never race with the readers in mem_cgroup_sk_alloc(),
3820 * because when this value change, the code to process it is not
3821 * patched in yet.
3822 */
3823 static_branch_inc(&memcg_sockets_enabled_key);
3824 memcg->tcpmem_active = true;
3825 }
3826 out:
3827 mutex_unlock(&memcg_max_mutex);
3828 return ret;
3829 }
3830
3831 /*
3832 * The user of this function is...
3833 * RES_LIMIT.
3834 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3835 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3836 char *buf, size_t nbytes, loff_t off)
3837 {
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3839 unsigned long nr_pages;
3840 int ret;
3841
3842 buf = strstrip(buf);
3843 ret = page_counter_memparse(buf, "-1", &nr_pages);
3844 if (ret)
3845 return ret;
3846
3847 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3848 case RES_LIMIT:
3849 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3850 ret = -EINVAL;
3851 break;
3852 }
3853 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3854 case _MEM:
3855 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3856 break;
3857 case _MEMSWAP:
3858 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3859 break;
3860 case _KMEM:
3861 /* kmem.limit_in_bytes is deprecated. */
3862 ret = -EOPNOTSUPP;
3863 break;
3864 case _TCP:
3865 ret = memcg_update_tcp_max(memcg, nr_pages);
3866 break;
3867 }
3868 break;
3869 case RES_SOFT_LIMIT:
3870 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3871 ret = -EOPNOTSUPP;
3872 } else {
3873 memcg->soft_limit = nr_pages;
3874 ret = 0;
3875 }
3876 break;
3877 }
3878 return ret ?: nbytes;
3879 }
3880
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3881 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3882 size_t nbytes, loff_t off)
3883 {
3884 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3885 struct page_counter *counter;
3886
3887 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3888 case _MEM:
3889 counter = &memcg->memory;
3890 break;
3891 case _MEMSWAP:
3892 counter = &memcg->memsw;
3893 break;
3894 case _KMEM:
3895 counter = &memcg->kmem;
3896 break;
3897 case _TCP:
3898 counter = &memcg->tcpmem;
3899 break;
3900 default:
3901 BUG();
3902 }
3903
3904 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3905 case RES_MAX_USAGE:
3906 page_counter_reset_watermark(counter);
3907 break;
3908 case RES_FAILCNT:
3909 counter->failcnt = 0;
3910 break;
3911 default:
3912 BUG();
3913 }
3914
3915 return nbytes;
3916 }
3917
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3918 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3919 struct cftype *cft)
3920 {
3921 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3922 }
3923
3924 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3925 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3926 struct cftype *cft, u64 val)
3927 {
3928 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3929
3930 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3931 "Please report your usecase to linux-mm@kvack.org if you "
3932 "depend on this functionality.\n");
3933
3934 if (val & ~MOVE_MASK)
3935 return -EINVAL;
3936
3937 /*
3938 * No kind of locking is needed in here, because ->can_attach() will
3939 * check this value once in the beginning of the process, and then carry
3940 * on with stale data. This means that changes to this value will only
3941 * affect task migrations starting after the change.
3942 */
3943 memcg->move_charge_at_immigrate = val;
3944 return 0;
3945 }
3946 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3947 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3948 struct cftype *cft, u64 val)
3949 {
3950 return -ENOSYS;
3951 }
3952 #endif
3953
3954 #ifdef CONFIG_NUMA
3955
3956 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3957 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3958 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3959
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3960 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3961 int nid, unsigned int lru_mask, bool tree)
3962 {
3963 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3964 unsigned long nr = 0;
3965 enum lru_list lru;
3966
3967 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3968
3969 for_each_lru(lru) {
3970 if (!(BIT(lru) & lru_mask))
3971 continue;
3972 if (tree)
3973 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3974 else
3975 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3976 }
3977 return nr;
3978 }
3979
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3980 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3981 unsigned int lru_mask,
3982 bool tree)
3983 {
3984 unsigned long nr = 0;
3985 enum lru_list lru;
3986
3987 for_each_lru(lru) {
3988 if (!(BIT(lru) & lru_mask))
3989 continue;
3990 if (tree)
3991 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3992 else
3993 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3994 }
3995 return nr;
3996 }
3997
memcg_numa_stat_show(struct seq_file * m,void * v)3998 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3999 {
4000 struct numa_stat {
4001 const char *name;
4002 unsigned int lru_mask;
4003 };
4004
4005 static const struct numa_stat stats[] = {
4006 { "total", LRU_ALL },
4007 { "file", LRU_ALL_FILE },
4008 { "anon", LRU_ALL_ANON },
4009 { "unevictable", BIT(LRU_UNEVICTABLE) },
4010 };
4011 const struct numa_stat *stat;
4012 int nid;
4013 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4014
4015 mem_cgroup_flush_stats();
4016
4017 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4018 seq_printf(m, "%s=%lu", stat->name,
4019 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4020 false));
4021 for_each_node_state(nid, N_MEMORY)
4022 seq_printf(m, " N%d=%lu", nid,
4023 mem_cgroup_node_nr_lru_pages(memcg, nid,
4024 stat->lru_mask, false));
4025 seq_putc(m, '\n');
4026 }
4027
4028 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4029
4030 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4031 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4032 true));
4033 for_each_node_state(nid, N_MEMORY)
4034 seq_printf(m, " N%d=%lu", nid,
4035 mem_cgroup_node_nr_lru_pages(memcg, nid,
4036 stat->lru_mask, true));
4037 seq_putc(m, '\n');
4038 }
4039
4040 return 0;
4041 }
4042 #endif /* CONFIG_NUMA */
4043
4044 static const unsigned int memcg1_stats[] = {
4045 NR_FILE_PAGES,
4046 NR_ANON_MAPPED,
4047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4048 NR_ANON_THPS,
4049 #endif
4050 NR_SHMEM,
4051 NR_FILE_MAPPED,
4052 NR_FILE_DIRTY,
4053 NR_WRITEBACK,
4054 WORKINGSET_REFAULT_ANON,
4055 WORKINGSET_REFAULT_FILE,
4056 MEMCG_SWAP,
4057 };
4058
4059 static const char *const memcg1_stat_names[] = {
4060 "cache",
4061 "rss",
4062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4063 "rss_huge",
4064 #endif
4065 "shmem",
4066 "mapped_file",
4067 "dirty",
4068 "writeback",
4069 "workingset_refault_anon",
4070 "workingset_refault_file",
4071 "swap",
4072 };
4073
4074 /* Universal VM events cgroup1 shows, original sort order */
4075 static const unsigned int memcg1_events[] = {
4076 PGPGIN,
4077 PGPGOUT,
4078 PGFAULT,
4079 PGMAJFAULT,
4080 };
4081
memcg_stat_show(struct seq_file * m,void * v)4082 static int memcg_stat_show(struct seq_file *m, void *v)
4083 {
4084 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4085 unsigned long memory, memsw;
4086 struct mem_cgroup *mi;
4087 unsigned int i;
4088
4089 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4090
4091 mem_cgroup_flush_stats();
4092
4093 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4094 unsigned long nr;
4095
4096 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4097 continue;
4098 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4099 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4100 nr * memcg_page_state_unit(memcg1_stats[i]));
4101 }
4102
4103 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4104 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4105 memcg_events_local(memcg, memcg1_events[i]));
4106
4107 for (i = 0; i < NR_LRU_LISTS; i++)
4108 seq_printf(m, "%s %lu\n", lru_list_name(i),
4109 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4110 PAGE_SIZE);
4111
4112 /* Hierarchical information */
4113 memory = memsw = PAGE_COUNTER_MAX;
4114 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4115 memory = min(memory, READ_ONCE(mi->memory.max));
4116 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4117 }
4118 seq_printf(m, "hierarchical_memory_limit %llu\n",
4119 (u64)memory * PAGE_SIZE);
4120 if (do_memsw_account())
4121 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4122 (u64)memsw * PAGE_SIZE);
4123
4124 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4125 unsigned long nr;
4126
4127 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4128 continue;
4129 nr = memcg_page_state(memcg, memcg1_stats[i]);
4130 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4131 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4132 }
4133
4134 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4135 seq_printf(m, "total_%s %llu\n",
4136 vm_event_name(memcg1_events[i]),
4137 (u64)memcg_events(memcg, memcg1_events[i]));
4138
4139 for (i = 0; i < NR_LRU_LISTS; i++)
4140 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4141 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4142 PAGE_SIZE);
4143
4144 #ifdef CONFIG_DEBUG_VM
4145 {
4146 pg_data_t *pgdat;
4147 struct mem_cgroup_per_node *mz;
4148 unsigned long anon_cost = 0;
4149 unsigned long file_cost = 0;
4150
4151 for_each_online_pgdat(pgdat) {
4152 mz = memcg->nodeinfo[pgdat->node_id];
4153
4154 anon_cost += mz->lruvec.anon_cost;
4155 file_cost += mz->lruvec.file_cost;
4156 }
4157 seq_printf(m, "anon_cost %lu\n", anon_cost);
4158 seq_printf(m, "file_cost %lu\n", file_cost);
4159 }
4160 #endif
4161
4162 return 0;
4163 }
4164
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4165 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4166 struct cftype *cft)
4167 {
4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4169
4170 return mem_cgroup_swappiness(memcg);
4171 }
4172
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4173 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4174 struct cftype *cft, u64 val)
4175 {
4176 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4177
4178 if (val > 200)
4179 return -EINVAL;
4180
4181 if (!mem_cgroup_is_root(memcg))
4182 memcg->swappiness = val;
4183 else
4184 vm_swappiness = val;
4185
4186 return 0;
4187 }
4188
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4189 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4190 {
4191 struct mem_cgroup_threshold_ary *t;
4192 unsigned long usage;
4193 int i;
4194
4195 rcu_read_lock();
4196 if (!swap)
4197 t = rcu_dereference(memcg->thresholds.primary);
4198 else
4199 t = rcu_dereference(memcg->memsw_thresholds.primary);
4200
4201 if (!t)
4202 goto unlock;
4203
4204 usage = mem_cgroup_usage(memcg, swap);
4205
4206 /*
4207 * current_threshold points to threshold just below or equal to usage.
4208 * If it's not true, a threshold was crossed after last
4209 * call of __mem_cgroup_threshold().
4210 */
4211 i = t->current_threshold;
4212
4213 /*
4214 * Iterate backward over array of thresholds starting from
4215 * current_threshold and check if a threshold is crossed.
4216 * If none of thresholds below usage is crossed, we read
4217 * only one element of the array here.
4218 */
4219 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4220 eventfd_signal(t->entries[i].eventfd, 1);
4221
4222 /* i = current_threshold + 1 */
4223 i++;
4224
4225 /*
4226 * Iterate forward over array of thresholds starting from
4227 * current_threshold+1 and check if a threshold is crossed.
4228 * If none of thresholds above usage is crossed, we read
4229 * only one element of the array here.
4230 */
4231 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4232 eventfd_signal(t->entries[i].eventfd, 1);
4233
4234 /* Update current_threshold */
4235 t->current_threshold = i - 1;
4236 unlock:
4237 rcu_read_unlock();
4238 }
4239
mem_cgroup_threshold(struct mem_cgroup * memcg)4240 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4241 {
4242 while (memcg) {
4243 __mem_cgroup_threshold(memcg, false);
4244 if (do_memsw_account())
4245 __mem_cgroup_threshold(memcg, true);
4246
4247 memcg = parent_mem_cgroup(memcg);
4248 }
4249 }
4250
compare_thresholds(const void * a,const void * b)4251 static int compare_thresholds(const void *a, const void *b)
4252 {
4253 const struct mem_cgroup_threshold *_a = a;
4254 const struct mem_cgroup_threshold *_b = b;
4255
4256 if (_a->threshold > _b->threshold)
4257 return 1;
4258
4259 if (_a->threshold < _b->threshold)
4260 return -1;
4261
4262 return 0;
4263 }
4264
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4265 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4266 {
4267 struct mem_cgroup_eventfd_list *ev;
4268
4269 spin_lock(&memcg_oom_lock);
4270
4271 list_for_each_entry(ev, &memcg->oom_notify, list)
4272 eventfd_signal(ev->eventfd, 1);
4273
4274 spin_unlock(&memcg_oom_lock);
4275 return 0;
4276 }
4277
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4278 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4279 {
4280 struct mem_cgroup *iter;
4281
4282 for_each_mem_cgroup_tree(iter, memcg)
4283 mem_cgroup_oom_notify_cb(iter);
4284 }
4285
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4286 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4287 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4288 {
4289 struct mem_cgroup_thresholds *thresholds;
4290 struct mem_cgroup_threshold_ary *new;
4291 unsigned long threshold;
4292 unsigned long usage;
4293 int i, size, ret;
4294
4295 ret = page_counter_memparse(args, "-1", &threshold);
4296 if (ret)
4297 return ret;
4298
4299 mutex_lock(&memcg->thresholds_lock);
4300
4301 if (type == _MEM) {
4302 thresholds = &memcg->thresholds;
4303 usage = mem_cgroup_usage(memcg, false);
4304 } else if (type == _MEMSWAP) {
4305 thresholds = &memcg->memsw_thresholds;
4306 usage = mem_cgroup_usage(memcg, true);
4307 } else
4308 BUG();
4309
4310 /* Check if a threshold crossed before adding a new one */
4311 if (thresholds->primary)
4312 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4313
4314 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4315
4316 /* Allocate memory for new array of thresholds */
4317 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4318 if (!new) {
4319 ret = -ENOMEM;
4320 goto unlock;
4321 }
4322 new->size = size;
4323
4324 /* Copy thresholds (if any) to new array */
4325 if (thresholds->primary)
4326 memcpy(new->entries, thresholds->primary->entries,
4327 flex_array_size(new, entries, size - 1));
4328
4329 /* Add new threshold */
4330 new->entries[size - 1].eventfd = eventfd;
4331 new->entries[size - 1].threshold = threshold;
4332
4333 /* Sort thresholds. Registering of new threshold isn't time-critical */
4334 sort(new->entries, size, sizeof(*new->entries),
4335 compare_thresholds, NULL);
4336
4337 /* Find current threshold */
4338 new->current_threshold = -1;
4339 for (i = 0; i < size; i++) {
4340 if (new->entries[i].threshold <= usage) {
4341 /*
4342 * new->current_threshold will not be used until
4343 * rcu_assign_pointer(), so it's safe to increment
4344 * it here.
4345 */
4346 ++new->current_threshold;
4347 } else
4348 break;
4349 }
4350
4351 /* Free old spare buffer and save old primary buffer as spare */
4352 kfree(thresholds->spare);
4353 thresholds->spare = thresholds->primary;
4354
4355 rcu_assign_pointer(thresholds->primary, new);
4356
4357 /* To be sure that nobody uses thresholds */
4358 synchronize_rcu();
4359
4360 unlock:
4361 mutex_unlock(&memcg->thresholds_lock);
4362
4363 return ret;
4364 }
4365
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4366 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4367 struct eventfd_ctx *eventfd, const char *args)
4368 {
4369 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4370 }
4371
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4372 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4373 struct eventfd_ctx *eventfd, const char *args)
4374 {
4375 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4376 }
4377
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4378 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4379 struct eventfd_ctx *eventfd, enum res_type type)
4380 {
4381 struct mem_cgroup_thresholds *thresholds;
4382 struct mem_cgroup_threshold_ary *new;
4383 unsigned long usage;
4384 int i, j, size, entries;
4385
4386 mutex_lock(&memcg->thresholds_lock);
4387
4388 if (type == _MEM) {
4389 thresholds = &memcg->thresholds;
4390 usage = mem_cgroup_usage(memcg, false);
4391 } else if (type == _MEMSWAP) {
4392 thresholds = &memcg->memsw_thresholds;
4393 usage = mem_cgroup_usage(memcg, true);
4394 } else
4395 BUG();
4396
4397 if (!thresholds->primary)
4398 goto unlock;
4399
4400 /* Check if a threshold crossed before removing */
4401 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4402
4403 /* Calculate new number of threshold */
4404 size = entries = 0;
4405 for (i = 0; i < thresholds->primary->size; i++) {
4406 if (thresholds->primary->entries[i].eventfd != eventfd)
4407 size++;
4408 else
4409 entries++;
4410 }
4411
4412 new = thresholds->spare;
4413
4414 /* If no items related to eventfd have been cleared, nothing to do */
4415 if (!entries)
4416 goto unlock;
4417
4418 /* Set thresholds array to NULL if we don't have thresholds */
4419 if (!size) {
4420 kfree(new);
4421 new = NULL;
4422 goto swap_buffers;
4423 }
4424
4425 new->size = size;
4426
4427 /* Copy thresholds and find current threshold */
4428 new->current_threshold = -1;
4429 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4430 if (thresholds->primary->entries[i].eventfd == eventfd)
4431 continue;
4432
4433 new->entries[j] = thresholds->primary->entries[i];
4434 if (new->entries[j].threshold <= usage) {
4435 /*
4436 * new->current_threshold will not be used
4437 * until rcu_assign_pointer(), so it's safe to increment
4438 * it here.
4439 */
4440 ++new->current_threshold;
4441 }
4442 j++;
4443 }
4444
4445 swap_buffers:
4446 /* Swap primary and spare array */
4447 thresholds->spare = thresholds->primary;
4448
4449 rcu_assign_pointer(thresholds->primary, new);
4450
4451 /* To be sure that nobody uses thresholds */
4452 synchronize_rcu();
4453
4454 /* If all events are unregistered, free the spare array */
4455 if (!new) {
4456 kfree(thresholds->spare);
4457 thresholds->spare = NULL;
4458 }
4459 unlock:
4460 mutex_unlock(&memcg->thresholds_lock);
4461 }
4462
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4463 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4464 struct eventfd_ctx *eventfd)
4465 {
4466 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4467 }
4468
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4469 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4470 struct eventfd_ctx *eventfd)
4471 {
4472 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4473 }
4474
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4475 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4476 struct eventfd_ctx *eventfd, const char *args)
4477 {
4478 struct mem_cgroup_eventfd_list *event;
4479
4480 event = kmalloc(sizeof(*event), GFP_KERNEL);
4481 if (!event)
4482 return -ENOMEM;
4483
4484 spin_lock(&memcg_oom_lock);
4485
4486 event->eventfd = eventfd;
4487 list_add(&event->list, &memcg->oom_notify);
4488
4489 /* already in OOM ? */
4490 if (memcg->under_oom)
4491 eventfd_signal(eventfd, 1);
4492 spin_unlock(&memcg_oom_lock);
4493
4494 return 0;
4495 }
4496
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4497 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4498 struct eventfd_ctx *eventfd)
4499 {
4500 struct mem_cgroup_eventfd_list *ev, *tmp;
4501
4502 spin_lock(&memcg_oom_lock);
4503
4504 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4505 if (ev->eventfd == eventfd) {
4506 list_del(&ev->list);
4507 kfree(ev);
4508 }
4509 }
4510
4511 spin_unlock(&memcg_oom_lock);
4512 }
4513
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4514 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4515 {
4516 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4517
4518 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4519 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4520 seq_printf(sf, "oom_kill %lu\n",
4521 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4522 return 0;
4523 }
4524
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4525 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4526 struct cftype *cft, u64 val)
4527 {
4528 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4529
4530 /* cannot set to root cgroup and only 0 and 1 are allowed */
4531 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4532 return -EINVAL;
4533
4534 memcg->oom_kill_disable = val;
4535 if (!val)
4536 memcg_oom_recover(memcg);
4537
4538 return 0;
4539 }
4540
4541 #ifdef CONFIG_CGROUP_WRITEBACK
4542
4543 #include <trace/events/writeback.h>
4544
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4545 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4546 {
4547 return wb_domain_init(&memcg->cgwb_domain, gfp);
4548 }
4549
memcg_wb_domain_exit(struct mem_cgroup * memcg)4550 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4551 {
4552 wb_domain_exit(&memcg->cgwb_domain);
4553 }
4554
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4555 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4556 {
4557 wb_domain_size_changed(&memcg->cgwb_domain);
4558 }
4559
mem_cgroup_wb_domain(struct bdi_writeback * wb)4560 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4561 {
4562 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4563
4564 if (!memcg->css.parent)
4565 return NULL;
4566
4567 return &memcg->cgwb_domain;
4568 }
4569
4570 /**
4571 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4572 * @wb: bdi_writeback in question
4573 * @pfilepages: out parameter for number of file pages
4574 * @pheadroom: out parameter for number of allocatable pages according to memcg
4575 * @pdirty: out parameter for number of dirty pages
4576 * @pwriteback: out parameter for number of pages under writeback
4577 *
4578 * Determine the numbers of file, headroom, dirty, and writeback pages in
4579 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4580 * is a bit more involved.
4581 *
4582 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4583 * headroom is calculated as the lowest headroom of itself and the
4584 * ancestors. Note that this doesn't consider the actual amount of
4585 * available memory in the system. The caller should further cap
4586 * *@pheadroom accordingly.
4587 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4588 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4589 unsigned long *pheadroom, unsigned long *pdirty,
4590 unsigned long *pwriteback)
4591 {
4592 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4593 struct mem_cgroup *parent;
4594
4595 mem_cgroup_flush_stats();
4596
4597 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4598 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4599 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4600 memcg_page_state(memcg, NR_ACTIVE_FILE);
4601
4602 *pheadroom = PAGE_COUNTER_MAX;
4603 while ((parent = parent_mem_cgroup(memcg))) {
4604 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4605 READ_ONCE(memcg->memory.high));
4606 unsigned long used = page_counter_read(&memcg->memory);
4607
4608 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4609 memcg = parent;
4610 }
4611 }
4612
4613 /*
4614 * Foreign dirty flushing
4615 *
4616 * There's an inherent mismatch between memcg and writeback. The former
4617 * tracks ownership per-page while the latter per-inode. This was a
4618 * deliberate design decision because honoring per-page ownership in the
4619 * writeback path is complicated, may lead to higher CPU and IO overheads
4620 * and deemed unnecessary given that write-sharing an inode across
4621 * different cgroups isn't a common use-case.
4622 *
4623 * Combined with inode majority-writer ownership switching, this works well
4624 * enough in most cases but there are some pathological cases. For
4625 * example, let's say there are two cgroups A and B which keep writing to
4626 * different but confined parts of the same inode. B owns the inode and
4627 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4628 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4629 * triggering background writeback. A will be slowed down without a way to
4630 * make writeback of the dirty pages happen.
4631 *
4632 * Conditions like the above can lead to a cgroup getting repeatedly and
4633 * severely throttled after making some progress after each
4634 * dirty_expire_interval while the underlying IO device is almost
4635 * completely idle.
4636 *
4637 * Solving this problem completely requires matching the ownership tracking
4638 * granularities between memcg and writeback in either direction. However,
4639 * the more egregious behaviors can be avoided by simply remembering the
4640 * most recent foreign dirtying events and initiating remote flushes on
4641 * them when local writeback isn't enough to keep the memory clean enough.
4642 *
4643 * The following two functions implement such mechanism. When a foreign
4644 * page - a page whose memcg and writeback ownerships don't match - is
4645 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4646 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4647 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4648 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4649 * foreign bdi_writebacks which haven't expired. Both the numbers of
4650 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4651 * limited to MEMCG_CGWB_FRN_CNT.
4652 *
4653 * The mechanism only remembers IDs and doesn't hold any object references.
4654 * As being wrong occasionally doesn't matter, updates and accesses to the
4655 * records are lockless and racy.
4656 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4657 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4658 struct bdi_writeback *wb)
4659 {
4660 struct mem_cgroup *memcg = folio_memcg(folio);
4661 struct memcg_cgwb_frn *frn;
4662 u64 now = get_jiffies_64();
4663 u64 oldest_at = now;
4664 int oldest = -1;
4665 int i;
4666
4667 trace_track_foreign_dirty(folio, wb);
4668
4669 /*
4670 * Pick the slot to use. If there is already a slot for @wb, keep
4671 * using it. If not replace the oldest one which isn't being
4672 * written out.
4673 */
4674 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4675 frn = &memcg->cgwb_frn[i];
4676 if (frn->bdi_id == wb->bdi->id &&
4677 frn->memcg_id == wb->memcg_css->id)
4678 break;
4679 if (time_before64(frn->at, oldest_at) &&
4680 atomic_read(&frn->done.cnt) == 1) {
4681 oldest = i;
4682 oldest_at = frn->at;
4683 }
4684 }
4685
4686 if (i < MEMCG_CGWB_FRN_CNT) {
4687 /*
4688 * Re-using an existing one. Update timestamp lazily to
4689 * avoid making the cacheline hot. We want them to be
4690 * reasonably up-to-date and significantly shorter than
4691 * dirty_expire_interval as that's what expires the record.
4692 * Use the shorter of 1s and dirty_expire_interval / 8.
4693 */
4694 unsigned long update_intv =
4695 min_t(unsigned long, HZ,
4696 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4697
4698 if (time_before64(frn->at, now - update_intv))
4699 frn->at = now;
4700 } else if (oldest >= 0) {
4701 /* replace the oldest free one */
4702 frn = &memcg->cgwb_frn[oldest];
4703 frn->bdi_id = wb->bdi->id;
4704 frn->memcg_id = wb->memcg_css->id;
4705 frn->at = now;
4706 }
4707 }
4708
4709 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4710 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4711 {
4712 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4713 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4714 u64 now = jiffies_64;
4715 int i;
4716
4717 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4718 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4719
4720 /*
4721 * If the record is older than dirty_expire_interval,
4722 * writeback on it has already started. No need to kick it
4723 * off again. Also, don't start a new one if there's
4724 * already one in flight.
4725 */
4726 if (time_after64(frn->at, now - intv) &&
4727 atomic_read(&frn->done.cnt) == 1) {
4728 frn->at = 0;
4729 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4730 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4731 WB_REASON_FOREIGN_FLUSH,
4732 &frn->done);
4733 }
4734 }
4735 }
4736
4737 #else /* CONFIG_CGROUP_WRITEBACK */
4738
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4740 {
4741 return 0;
4742 }
4743
memcg_wb_domain_exit(struct mem_cgroup * memcg)4744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4745 {
4746 }
4747
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4749 {
4750 }
4751
4752 #endif /* CONFIG_CGROUP_WRITEBACK */
4753
4754 /*
4755 * DO NOT USE IN NEW FILES.
4756 *
4757 * "cgroup.event_control" implementation.
4758 *
4759 * This is way over-engineered. It tries to support fully configurable
4760 * events for each user. Such level of flexibility is completely
4761 * unnecessary especially in the light of the planned unified hierarchy.
4762 *
4763 * Please deprecate this and replace with something simpler if at all
4764 * possible.
4765 */
4766
4767 /*
4768 * Unregister event and free resources.
4769 *
4770 * Gets called from workqueue.
4771 */
memcg_event_remove(struct work_struct * work)4772 static void memcg_event_remove(struct work_struct *work)
4773 {
4774 struct mem_cgroup_event *event =
4775 container_of(work, struct mem_cgroup_event, remove);
4776 struct mem_cgroup *memcg = event->memcg;
4777
4778 remove_wait_queue(event->wqh, &event->wait);
4779
4780 event->unregister_event(memcg, event->eventfd);
4781
4782 /* Notify userspace the event is going away. */
4783 eventfd_signal(event->eventfd, 1);
4784
4785 eventfd_ctx_put(event->eventfd);
4786 kfree(event);
4787 css_put(&memcg->css);
4788 }
4789
4790 /*
4791 * Gets called on EPOLLHUP on eventfd when user closes it.
4792 *
4793 * Called with wqh->lock held and interrupts disabled.
4794 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4795 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4796 int sync, void *key)
4797 {
4798 struct mem_cgroup_event *event =
4799 container_of(wait, struct mem_cgroup_event, wait);
4800 struct mem_cgroup *memcg = event->memcg;
4801 __poll_t flags = key_to_poll(key);
4802
4803 if (flags & EPOLLHUP) {
4804 /*
4805 * If the event has been detached at cgroup removal, we
4806 * can simply return knowing the other side will cleanup
4807 * for us.
4808 *
4809 * We can't race against event freeing since the other
4810 * side will require wqh->lock via remove_wait_queue(),
4811 * which we hold.
4812 */
4813 spin_lock(&memcg->event_list_lock);
4814 if (!list_empty(&event->list)) {
4815 list_del_init(&event->list);
4816 /*
4817 * We are in atomic context, but cgroup_event_remove()
4818 * may sleep, so we have to call it in workqueue.
4819 */
4820 schedule_work(&event->remove);
4821 }
4822 spin_unlock(&memcg->event_list_lock);
4823 }
4824
4825 return 0;
4826 }
4827
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4828 static void memcg_event_ptable_queue_proc(struct file *file,
4829 wait_queue_head_t *wqh, poll_table *pt)
4830 {
4831 struct mem_cgroup_event *event =
4832 container_of(pt, struct mem_cgroup_event, pt);
4833
4834 event->wqh = wqh;
4835 add_wait_queue(wqh, &event->wait);
4836 }
4837
4838 /*
4839 * DO NOT USE IN NEW FILES.
4840 *
4841 * Parse input and register new cgroup event handler.
4842 *
4843 * Input must be in format '<event_fd> <control_fd> <args>'.
4844 * Interpretation of args is defined by control file implementation.
4845 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4847 char *buf, size_t nbytes, loff_t off)
4848 {
4849 struct cgroup_subsys_state *css = of_css(of);
4850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4851 struct mem_cgroup_event *event;
4852 struct cgroup_subsys_state *cfile_css;
4853 unsigned int efd, cfd;
4854 struct fd efile;
4855 struct fd cfile;
4856 struct dentry *cdentry;
4857 const char *name;
4858 char *endp;
4859 int ret;
4860
4861 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4862 return -EOPNOTSUPP;
4863
4864 buf = strstrip(buf);
4865
4866 efd = simple_strtoul(buf, &endp, 10);
4867 if (*endp != ' ')
4868 return -EINVAL;
4869 buf = endp + 1;
4870
4871 cfd = simple_strtoul(buf, &endp, 10);
4872 if ((*endp != ' ') && (*endp != '\0'))
4873 return -EINVAL;
4874 buf = endp + 1;
4875
4876 event = kzalloc(sizeof(*event), GFP_KERNEL);
4877 if (!event)
4878 return -ENOMEM;
4879
4880 event->memcg = memcg;
4881 INIT_LIST_HEAD(&event->list);
4882 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4883 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4884 INIT_WORK(&event->remove, memcg_event_remove);
4885
4886 efile = fdget(efd);
4887 if (!efile.file) {
4888 ret = -EBADF;
4889 goto out_kfree;
4890 }
4891
4892 event->eventfd = eventfd_ctx_fileget(efile.file);
4893 if (IS_ERR(event->eventfd)) {
4894 ret = PTR_ERR(event->eventfd);
4895 goto out_put_efile;
4896 }
4897
4898 cfile = fdget(cfd);
4899 if (!cfile.file) {
4900 ret = -EBADF;
4901 goto out_put_eventfd;
4902 }
4903
4904 /* the process need read permission on control file */
4905 /* AV: shouldn't we check that it's been opened for read instead? */
4906 ret = file_permission(cfile.file, MAY_READ);
4907 if (ret < 0)
4908 goto out_put_cfile;
4909
4910 /*
4911 * The control file must be a regular cgroup1 file. As a regular cgroup
4912 * file can't be renamed, it's safe to access its name afterwards.
4913 */
4914 cdentry = cfile.file->f_path.dentry;
4915 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4916 ret = -EINVAL;
4917 goto out_put_cfile;
4918 }
4919
4920 /*
4921 * Determine the event callbacks and set them in @event. This used
4922 * to be done via struct cftype but cgroup core no longer knows
4923 * about these events. The following is crude but the whole thing
4924 * is for compatibility anyway.
4925 *
4926 * DO NOT ADD NEW FILES.
4927 */
4928 name = cdentry->d_name.name;
4929
4930 if (!strcmp(name, "memory.usage_in_bytes")) {
4931 event->register_event = mem_cgroup_usage_register_event;
4932 event->unregister_event = mem_cgroup_usage_unregister_event;
4933 } else if (!strcmp(name, "memory.oom_control")) {
4934 event->register_event = mem_cgroup_oom_register_event;
4935 event->unregister_event = mem_cgroup_oom_unregister_event;
4936 } else if (!strcmp(name, "memory.pressure_level")) {
4937 event->register_event = vmpressure_register_event;
4938 event->unregister_event = vmpressure_unregister_event;
4939 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4940 event->register_event = memsw_cgroup_usage_register_event;
4941 event->unregister_event = memsw_cgroup_usage_unregister_event;
4942 } else {
4943 ret = -EINVAL;
4944 goto out_put_cfile;
4945 }
4946
4947 /*
4948 * Verify @cfile should belong to @css. Also, remaining events are
4949 * automatically removed on cgroup destruction but the removal is
4950 * asynchronous, so take an extra ref on @css.
4951 */
4952 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4953 &memory_cgrp_subsys);
4954 ret = -EINVAL;
4955 if (IS_ERR(cfile_css))
4956 goto out_put_cfile;
4957 if (cfile_css != css) {
4958 css_put(cfile_css);
4959 goto out_put_cfile;
4960 }
4961
4962 ret = event->register_event(memcg, event->eventfd, buf);
4963 if (ret)
4964 goto out_put_css;
4965
4966 vfs_poll(efile.file, &event->pt);
4967
4968 spin_lock_irq(&memcg->event_list_lock);
4969 list_add(&event->list, &memcg->event_list);
4970 spin_unlock_irq(&memcg->event_list_lock);
4971
4972 fdput(cfile);
4973 fdput(efile);
4974
4975 return nbytes;
4976
4977 out_put_css:
4978 css_put(css);
4979 out_put_cfile:
4980 fdput(cfile);
4981 out_put_eventfd:
4982 eventfd_ctx_put(event->eventfd);
4983 out_put_efile:
4984 fdput(efile);
4985 out_kfree:
4986 kfree(event);
4987
4988 return ret;
4989 }
4990
4991 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)4992 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4993 {
4994 /*
4995 * Deprecated.
4996 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4997 */
4998 return 0;
4999 }
5000 #endif
5001
5002 static struct cftype mem_cgroup_legacy_files[] = {
5003 {
5004 .name = "usage_in_bytes",
5005 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "max_usage_in_bytes",
5010 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014 {
5015 .name = "limit_in_bytes",
5016 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5017 .write = mem_cgroup_write,
5018 .read_u64 = mem_cgroup_read_u64,
5019 },
5020 {
5021 .name = "soft_limit_in_bytes",
5022 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5023 .write = mem_cgroup_write,
5024 .read_u64 = mem_cgroup_read_u64,
5025 },
5026 {
5027 .name = "failcnt",
5028 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5029 .write = mem_cgroup_reset,
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "stat",
5034 .seq_show = memcg_stat_show,
5035 },
5036 {
5037 .name = "force_empty",
5038 .write = mem_cgroup_force_empty_write,
5039 },
5040 {
5041 .name = "use_hierarchy",
5042 .write_u64 = mem_cgroup_hierarchy_write,
5043 .read_u64 = mem_cgroup_hierarchy_read,
5044 },
5045 {
5046 .name = "cgroup.event_control", /* XXX: for compat */
5047 .write = memcg_write_event_control,
5048 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5049 },
5050 {
5051 .name = "swappiness",
5052 .read_u64 = mem_cgroup_swappiness_read,
5053 .write_u64 = mem_cgroup_swappiness_write,
5054 },
5055 {
5056 .name = "move_charge_at_immigrate",
5057 .read_u64 = mem_cgroup_move_charge_read,
5058 .write_u64 = mem_cgroup_move_charge_write,
5059 },
5060 {
5061 .name = "oom_control",
5062 .seq_show = mem_cgroup_oom_control_read,
5063 .write_u64 = mem_cgroup_oom_control_write,
5064 },
5065 {
5066 .name = "pressure_level",
5067 },
5068 #ifdef CONFIG_NUMA
5069 {
5070 .name = "numa_stat",
5071 .seq_show = memcg_numa_stat_show,
5072 },
5073 #endif
5074 {
5075 .name = "kmem.limit_in_bytes",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5077 .write = mem_cgroup_write,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080 {
5081 .name = "kmem.usage_in_bytes",
5082 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5083 .read_u64 = mem_cgroup_read_u64,
5084 },
5085 {
5086 .name = "kmem.failcnt",
5087 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5088 .write = mem_cgroup_reset,
5089 .read_u64 = mem_cgroup_read_u64,
5090 },
5091 {
5092 .name = "kmem.max_usage_in_bytes",
5093 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5094 .write = mem_cgroup_reset,
5095 .read_u64 = mem_cgroup_read_u64,
5096 },
5097 #if defined(CONFIG_MEMCG_KMEM) && \
5098 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5099 {
5100 .name = "kmem.slabinfo",
5101 .seq_show = mem_cgroup_slab_show,
5102 },
5103 #endif
5104 {
5105 .name = "kmem.tcp.limit_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5107 .write = mem_cgroup_write,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 {
5111 .name = "kmem.tcp.usage_in_bytes",
5112 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5113 .read_u64 = mem_cgroup_read_u64,
5114 },
5115 {
5116 .name = "kmem.tcp.failcnt",
5117 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5118 .write = mem_cgroup_reset,
5119 .read_u64 = mem_cgroup_read_u64,
5120 },
5121 {
5122 .name = "kmem.tcp.max_usage_in_bytes",
5123 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5124 .write = mem_cgroup_reset,
5125 .read_u64 = mem_cgroup_read_u64,
5126 },
5127 { }, /* terminate */
5128 };
5129
5130 /*
5131 * Private memory cgroup IDR
5132 *
5133 * Swap-out records and page cache shadow entries need to store memcg
5134 * references in constrained space, so we maintain an ID space that is
5135 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5136 * memory-controlled cgroups to 64k.
5137 *
5138 * However, there usually are many references to the offline CSS after
5139 * the cgroup has been destroyed, such as page cache or reclaimable
5140 * slab objects, that don't need to hang on to the ID. We want to keep
5141 * those dead CSS from occupying IDs, or we might quickly exhaust the
5142 * relatively small ID space and prevent the creation of new cgroups
5143 * even when there are much fewer than 64k cgroups - possibly none.
5144 *
5145 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5146 * be freed and recycled when it's no longer needed, which is usually
5147 * when the CSS is offlined.
5148 *
5149 * The only exception to that are records of swapped out tmpfs/shmem
5150 * pages that need to be attributed to live ancestors on swapin. But
5151 * those references are manageable from userspace.
5152 */
5153
5154 static DEFINE_IDR(mem_cgroup_idr);
5155
mem_cgroup_id_remove(struct mem_cgroup * memcg)5156 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5157 {
5158 if (memcg->id.id > 0) {
5159 idr_remove(&mem_cgroup_idr, memcg->id.id);
5160 memcg->id.id = 0;
5161 }
5162 }
5163
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5164 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5165 unsigned int n)
5166 {
5167 refcount_add(n, &memcg->id.ref);
5168 }
5169
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5170 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5171 {
5172 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5173 mem_cgroup_id_remove(memcg);
5174
5175 /* Memcg ID pins CSS */
5176 css_put(&memcg->css);
5177 }
5178 }
5179
mem_cgroup_id_put(struct mem_cgroup * memcg)5180 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5181 {
5182 mem_cgroup_id_put_many(memcg, 1);
5183 }
5184
5185 /**
5186 * mem_cgroup_from_id - look up a memcg from a memcg id
5187 * @id: the memcg id to look up
5188 *
5189 * Caller must hold rcu_read_lock().
5190 */
mem_cgroup_from_id(unsigned short id)5191 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5192 {
5193 WARN_ON_ONCE(!rcu_read_lock_held());
5194 return idr_find(&mem_cgroup_idr, id);
5195 }
5196
5197 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5198 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5199 {
5200 struct cgroup *cgrp;
5201 struct cgroup_subsys_state *css;
5202 struct mem_cgroup *memcg;
5203
5204 cgrp = cgroup_get_from_id(ino);
5205 if (IS_ERR(cgrp))
5206 return ERR_CAST(cgrp);
5207
5208 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5209 if (css)
5210 memcg = container_of(css, struct mem_cgroup, css);
5211 else
5212 memcg = ERR_PTR(-ENOENT);
5213
5214 cgroup_put(cgrp);
5215
5216 return memcg;
5217 }
5218 #endif
5219
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5220 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5221 {
5222 struct mem_cgroup_per_node *pn;
5223
5224 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5225 if (!pn)
5226 return 1;
5227
5228 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5229 GFP_KERNEL_ACCOUNT);
5230 if (!pn->lruvec_stats_percpu) {
5231 kfree(pn);
5232 return 1;
5233 }
5234
5235 lruvec_init(&pn->lruvec);
5236 pn->memcg = memcg;
5237
5238 memcg->nodeinfo[node] = pn;
5239 return 0;
5240 }
5241
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5242 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5243 {
5244 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5245
5246 if (!pn)
5247 return;
5248
5249 free_percpu(pn->lruvec_stats_percpu);
5250 kfree(pn);
5251 }
5252
__mem_cgroup_free(struct mem_cgroup * memcg)5253 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5254 {
5255 int node;
5256
5257 for_each_node(node)
5258 free_mem_cgroup_per_node_info(memcg, node);
5259 kfree(memcg->vmstats);
5260 free_percpu(memcg->vmstats_percpu);
5261 kfree(memcg);
5262 }
5263
mem_cgroup_free(struct mem_cgroup * memcg)5264 static void mem_cgroup_free(struct mem_cgroup *memcg)
5265 {
5266 lru_gen_exit_memcg(memcg);
5267 memcg_wb_domain_exit(memcg);
5268 __mem_cgroup_free(memcg);
5269 }
5270
mem_cgroup_alloc(void)5271 static struct mem_cgroup *mem_cgroup_alloc(void)
5272 {
5273 struct mem_cgroup *memcg;
5274 int node;
5275 int __maybe_unused i;
5276 long error = -ENOMEM;
5277
5278 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5279 if (!memcg)
5280 return ERR_PTR(error);
5281
5282 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5283 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5284 if (memcg->id.id < 0) {
5285 error = memcg->id.id;
5286 goto fail;
5287 }
5288
5289 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5290 if (!memcg->vmstats)
5291 goto fail;
5292
5293 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5294 GFP_KERNEL_ACCOUNT);
5295 if (!memcg->vmstats_percpu)
5296 goto fail;
5297
5298 for_each_node(node)
5299 if (alloc_mem_cgroup_per_node_info(memcg, node))
5300 goto fail;
5301
5302 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5303 goto fail;
5304
5305 INIT_WORK(&memcg->high_work, high_work_func);
5306 INIT_LIST_HEAD(&memcg->oom_notify);
5307 mutex_init(&memcg->thresholds_lock);
5308 spin_lock_init(&memcg->move_lock);
5309 vmpressure_init(&memcg->vmpressure);
5310 INIT_LIST_HEAD(&memcg->event_list);
5311 spin_lock_init(&memcg->event_list_lock);
5312 memcg->socket_pressure = jiffies;
5313 #ifdef CONFIG_MEMCG_KMEM
5314 memcg->kmemcg_id = -1;
5315 INIT_LIST_HEAD(&memcg->objcg_list);
5316 #endif
5317 #ifdef CONFIG_CGROUP_WRITEBACK
5318 INIT_LIST_HEAD(&memcg->cgwb_list);
5319 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5320 memcg->cgwb_frn[i].done =
5321 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5322 #endif
5323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5324 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5325 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5326 memcg->deferred_split_queue.split_queue_len = 0;
5327 #endif
5328 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5329 lru_gen_init_memcg(memcg);
5330 return memcg;
5331 fail:
5332 mem_cgroup_id_remove(memcg);
5333 __mem_cgroup_free(memcg);
5334 return ERR_PTR(error);
5335 }
5336
5337 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5338 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5339 {
5340 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5341 struct mem_cgroup *memcg, *old_memcg;
5342
5343 old_memcg = set_active_memcg(parent);
5344 memcg = mem_cgroup_alloc();
5345 set_active_memcg(old_memcg);
5346 if (IS_ERR(memcg))
5347 return ERR_CAST(memcg);
5348
5349 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5350 memcg->soft_limit = PAGE_COUNTER_MAX;
5351 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5352 memcg->zswap_max = PAGE_COUNTER_MAX;
5353 #endif
5354 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5355 if (parent) {
5356 memcg->swappiness = mem_cgroup_swappiness(parent);
5357 memcg->oom_kill_disable = parent->oom_kill_disable;
5358
5359 page_counter_init(&memcg->memory, &parent->memory);
5360 page_counter_init(&memcg->swap, &parent->swap);
5361 page_counter_init(&memcg->kmem, &parent->kmem);
5362 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5363 } else {
5364 init_memcg_events();
5365 page_counter_init(&memcg->memory, NULL);
5366 page_counter_init(&memcg->swap, NULL);
5367 page_counter_init(&memcg->kmem, NULL);
5368 page_counter_init(&memcg->tcpmem, NULL);
5369
5370 root_mem_cgroup = memcg;
5371 return &memcg->css;
5372 }
5373
5374 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5375 static_branch_inc(&memcg_sockets_enabled_key);
5376
5377 #if defined(CONFIG_MEMCG_KMEM)
5378 if (!cgroup_memory_nobpf)
5379 static_branch_inc(&memcg_bpf_enabled_key);
5380 #endif
5381
5382 return &memcg->css;
5383 }
5384
mem_cgroup_css_online(struct cgroup_subsys_state * css)5385 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5386 {
5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388
5389 if (memcg_online_kmem(memcg))
5390 goto remove_id;
5391
5392 /*
5393 * A memcg must be visible for expand_shrinker_info()
5394 * by the time the maps are allocated. So, we allocate maps
5395 * here, when for_each_mem_cgroup() can't skip it.
5396 */
5397 if (alloc_shrinker_info(memcg))
5398 goto offline_kmem;
5399
5400 /* Online state pins memcg ID, memcg ID pins CSS */
5401 refcount_set(&memcg->id.ref, 1);
5402 css_get(css);
5403
5404 if (unlikely(mem_cgroup_is_root(memcg)))
5405 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5406 2UL*HZ);
5407 lru_gen_online_memcg(memcg);
5408 return 0;
5409 offline_kmem:
5410 memcg_offline_kmem(memcg);
5411 remove_id:
5412 mem_cgroup_id_remove(memcg);
5413 return -ENOMEM;
5414 }
5415
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5416 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5417 {
5418 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5419 struct mem_cgroup_event *event, *tmp;
5420
5421 /*
5422 * Unregister events and notify userspace.
5423 * Notify userspace about cgroup removing only after rmdir of cgroup
5424 * directory to avoid race between userspace and kernelspace.
5425 */
5426 spin_lock_irq(&memcg->event_list_lock);
5427 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5428 list_del_init(&event->list);
5429 schedule_work(&event->remove);
5430 }
5431 spin_unlock_irq(&memcg->event_list_lock);
5432
5433 page_counter_set_min(&memcg->memory, 0);
5434 page_counter_set_low(&memcg->memory, 0);
5435
5436 memcg_offline_kmem(memcg);
5437 reparent_shrinker_deferred(memcg);
5438 wb_memcg_offline(memcg);
5439 lru_gen_offline_memcg(memcg);
5440
5441 drain_all_stock(memcg);
5442
5443 mem_cgroup_id_put(memcg);
5444 }
5445
mem_cgroup_css_released(struct cgroup_subsys_state * css)5446 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5447 {
5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449
5450 invalidate_reclaim_iterators(memcg);
5451 lru_gen_release_memcg(memcg);
5452 }
5453
mem_cgroup_css_free(struct cgroup_subsys_state * css)5454 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5455 {
5456 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5457 int __maybe_unused i;
5458
5459 #ifdef CONFIG_CGROUP_WRITEBACK
5460 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5461 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5462 #endif
5463 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5464 static_branch_dec(&memcg_sockets_enabled_key);
5465
5466 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5467 static_branch_dec(&memcg_sockets_enabled_key);
5468
5469 #if defined(CONFIG_MEMCG_KMEM)
5470 if (!cgroup_memory_nobpf)
5471 static_branch_dec(&memcg_bpf_enabled_key);
5472 #endif
5473
5474 vmpressure_cleanup(&memcg->vmpressure);
5475 cancel_work_sync(&memcg->high_work);
5476 mem_cgroup_remove_from_trees(memcg);
5477 free_shrinker_info(memcg);
5478 mem_cgroup_free(memcg);
5479 }
5480
5481 /**
5482 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5483 * @css: the target css
5484 *
5485 * Reset the states of the mem_cgroup associated with @css. This is
5486 * invoked when the userland requests disabling on the default hierarchy
5487 * but the memcg is pinned through dependency. The memcg should stop
5488 * applying policies and should revert to the vanilla state as it may be
5489 * made visible again.
5490 *
5491 * The current implementation only resets the essential configurations.
5492 * This needs to be expanded to cover all the visible parts.
5493 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5494 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5495 {
5496 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5497
5498 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5499 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5500 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5501 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5502 page_counter_set_min(&memcg->memory, 0);
5503 page_counter_set_low(&memcg->memory, 0);
5504 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5505 memcg->soft_limit = PAGE_COUNTER_MAX;
5506 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5507 memcg_wb_domain_size_changed(memcg);
5508 }
5509
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5510 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5511 {
5512 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5513 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5514 struct memcg_vmstats_percpu *statc;
5515 long delta, v;
5516 int i, nid;
5517
5518 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5519
5520 for (i = 0; i < MEMCG_NR_STAT; i++) {
5521 /*
5522 * Collect the aggregated propagation counts of groups
5523 * below us. We're in a per-cpu loop here and this is
5524 * a global counter, so the first cycle will get them.
5525 */
5526 delta = memcg->vmstats->state_pending[i];
5527 if (delta)
5528 memcg->vmstats->state_pending[i] = 0;
5529
5530 /* Add CPU changes on this level since the last flush */
5531 v = READ_ONCE(statc->state[i]);
5532 if (v != statc->state_prev[i]) {
5533 delta += v - statc->state_prev[i];
5534 statc->state_prev[i] = v;
5535 }
5536
5537 if (!delta)
5538 continue;
5539
5540 /* Aggregate counts on this level and propagate upwards */
5541 memcg->vmstats->state[i] += delta;
5542 if (parent)
5543 parent->vmstats->state_pending[i] += delta;
5544 }
5545
5546 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5547 delta = memcg->vmstats->events_pending[i];
5548 if (delta)
5549 memcg->vmstats->events_pending[i] = 0;
5550
5551 v = READ_ONCE(statc->events[i]);
5552 if (v != statc->events_prev[i]) {
5553 delta += v - statc->events_prev[i];
5554 statc->events_prev[i] = v;
5555 }
5556
5557 if (!delta)
5558 continue;
5559
5560 memcg->vmstats->events[i] += delta;
5561 if (parent)
5562 parent->vmstats->events_pending[i] += delta;
5563 }
5564
5565 for_each_node_state(nid, N_MEMORY) {
5566 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5567 struct mem_cgroup_per_node *ppn = NULL;
5568 struct lruvec_stats_percpu *lstatc;
5569
5570 if (parent)
5571 ppn = parent->nodeinfo[nid];
5572
5573 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5574
5575 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5576 delta = pn->lruvec_stats.state_pending[i];
5577 if (delta)
5578 pn->lruvec_stats.state_pending[i] = 0;
5579
5580 v = READ_ONCE(lstatc->state[i]);
5581 if (v != lstatc->state_prev[i]) {
5582 delta += v - lstatc->state_prev[i];
5583 lstatc->state_prev[i] = v;
5584 }
5585
5586 if (!delta)
5587 continue;
5588
5589 pn->lruvec_stats.state[i] += delta;
5590 if (ppn)
5591 ppn->lruvec_stats.state_pending[i] += delta;
5592 }
5593 }
5594 }
5595
5596 #ifdef CONFIG_MMU
5597 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5598 static int mem_cgroup_do_precharge(unsigned long count)
5599 {
5600 int ret;
5601
5602 /* Try a single bulk charge without reclaim first, kswapd may wake */
5603 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5604 if (!ret) {
5605 mc.precharge += count;
5606 return ret;
5607 }
5608
5609 /* Try charges one by one with reclaim, but do not retry */
5610 while (count--) {
5611 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5612 if (ret)
5613 return ret;
5614 mc.precharge++;
5615 cond_resched();
5616 }
5617 return 0;
5618 }
5619
5620 union mc_target {
5621 struct page *page;
5622 swp_entry_t ent;
5623 };
5624
5625 enum mc_target_type {
5626 MC_TARGET_NONE = 0,
5627 MC_TARGET_PAGE,
5628 MC_TARGET_SWAP,
5629 MC_TARGET_DEVICE,
5630 };
5631
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5632 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5633 unsigned long addr, pte_t ptent)
5634 {
5635 struct page *page = vm_normal_page(vma, addr, ptent);
5636
5637 if (!page || !page_mapped(page))
5638 return NULL;
5639 if (PageAnon(page)) {
5640 if (!(mc.flags & MOVE_ANON))
5641 return NULL;
5642 } else {
5643 if (!(mc.flags & MOVE_FILE))
5644 return NULL;
5645 }
5646 if (!get_page_unless_zero(page))
5647 return NULL;
5648
5649 return page;
5650 }
5651
5652 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5653 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5654 pte_t ptent, swp_entry_t *entry)
5655 {
5656 struct page *page = NULL;
5657 swp_entry_t ent = pte_to_swp_entry(ptent);
5658
5659 if (!(mc.flags & MOVE_ANON))
5660 return NULL;
5661
5662 /*
5663 * Handle device private pages that are not accessible by the CPU, but
5664 * stored as special swap entries in the page table.
5665 */
5666 if (is_device_private_entry(ent)) {
5667 page = pfn_swap_entry_to_page(ent);
5668 if (!get_page_unless_zero(page))
5669 return NULL;
5670 return page;
5671 }
5672
5673 if (non_swap_entry(ent))
5674 return NULL;
5675
5676 /*
5677 * Because swap_cache_get_folio() updates some statistics counter,
5678 * we call find_get_page() with swapper_space directly.
5679 */
5680 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5681 entry->val = ent.val;
5682
5683 return page;
5684 }
5685 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5686 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5687 pte_t ptent, swp_entry_t *entry)
5688 {
5689 return NULL;
5690 }
5691 #endif
5692
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5693 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5694 unsigned long addr, pte_t ptent)
5695 {
5696 unsigned long index;
5697 struct folio *folio;
5698
5699 if (!vma->vm_file) /* anonymous vma */
5700 return NULL;
5701 if (!(mc.flags & MOVE_FILE))
5702 return NULL;
5703
5704 /* folio is moved even if it's not RSS of this task(page-faulted). */
5705 /* shmem/tmpfs may report page out on swap: account for that too. */
5706 index = linear_page_index(vma, addr);
5707 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5708 if (!folio)
5709 return NULL;
5710 return folio_file_page(folio, index);
5711 }
5712
5713 /**
5714 * mem_cgroup_move_account - move account of the page
5715 * @page: the page
5716 * @compound: charge the page as compound or small page
5717 * @from: mem_cgroup which the page is moved from.
5718 * @to: mem_cgroup which the page is moved to. @from != @to.
5719 *
5720 * The page must be locked and not on the LRU.
5721 *
5722 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5723 * from old cgroup.
5724 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5725 static int mem_cgroup_move_account(struct page *page,
5726 bool compound,
5727 struct mem_cgroup *from,
5728 struct mem_cgroup *to)
5729 {
5730 struct folio *folio = page_folio(page);
5731 struct lruvec *from_vec, *to_vec;
5732 struct pglist_data *pgdat;
5733 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5734 int nid, ret;
5735
5736 VM_BUG_ON(from == to);
5737 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5738 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5739 VM_BUG_ON(compound && !folio_test_large(folio));
5740
5741 ret = -EINVAL;
5742 if (folio_memcg(folio) != from)
5743 goto out;
5744
5745 pgdat = folio_pgdat(folio);
5746 from_vec = mem_cgroup_lruvec(from, pgdat);
5747 to_vec = mem_cgroup_lruvec(to, pgdat);
5748
5749 folio_memcg_lock(folio);
5750
5751 if (folio_test_anon(folio)) {
5752 if (folio_mapped(folio)) {
5753 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5754 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5755 if (folio_test_transhuge(folio)) {
5756 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5757 -nr_pages);
5758 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5759 nr_pages);
5760 }
5761 }
5762 } else {
5763 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5764 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5765
5766 if (folio_test_swapbacked(folio)) {
5767 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5768 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5769 }
5770
5771 if (folio_mapped(folio)) {
5772 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5774 }
5775
5776 if (folio_test_dirty(folio)) {
5777 struct address_space *mapping = folio_mapping(folio);
5778
5779 if (mapping_can_writeback(mapping)) {
5780 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5781 -nr_pages);
5782 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5783 nr_pages);
5784 }
5785 }
5786 }
5787
5788 #ifdef CONFIG_SWAP
5789 if (folio_test_swapcache(folio)) {
5790 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5791 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5792 }
5793 #endif
5794 if (folio_test_writeback(folio)) {
5795 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5796 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5797 }
5798
5799 /*
5800 * All state has been migrated, let's switch to the new memcg.
5801 *
5802 * It is safe to change page's memcg here because the page
5803 * is referenced, charged, isolated, and locked: we can't race
5804 * with (un)charging, migration, LRU putback, or anything else
5805 * that would rely on a stable page's memory cgroup.
5806 *
5807 * Note that lock_page_memcg is a memcg lock, not a page lock,
5808 * to save space. As soon as we switch page's memory cgroup to a
5809 * new memcg that isn't locked, the above state can change
5810 * concurrently again. Make sure we're truly done with it.
5811 */
5812 smp_mb();
5813
5814 css_get(&to->css);
5815 css_put(&from->css);
5816
5817 folio->memcg_data = (unsigned long)to;
5818
5819 __folio_memcg_unlock(from);
5820
5821 ret = 0;
5822 nid = folio_nid(folio);
5823
5824 local_irq_disable();
5825 mem_cgroup_charge_statistics(to, nr_pages);
5826 memcg_check_events(to, nid);
5827 mem_cgroup_charge_statistics(from, -nr_pages);
5828 memcg_check_events(from, nid);
5829 local_irq_enable();
5830 out:
5831 return ret;
5832 }
5833
5834 /**
5835 * get_mctgt_type - get target type of moving charge
5836 * @vma: the vma the pte to be checked belongs
5837 * @addr: the address corresponding to the pte to be checked
5838 * @ptent: the pte to be checked
5839 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5840 *
5841 * Returns
5842 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5843 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5844 * move charge. if @target is not NULL, the page is stored in target->page
5845 * with extra refcnt got(Callers should handle it).
5846 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5847 * target for charge migration. if @target is not NULL, the entry is stored
5848 * in target->ent.
5849 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5850 * thus not on the lru.
5851 * For now we such page is charge like a regular page would be as for all
5852 * intent and purposes it is just special memory taking the place of a
5853 * regular page.
5854 *
5855 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5856 *
5857 * Called with pte lock held.
5858 */
5859
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5860 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5861 unsigned long addr, pte_t ptent, union mc_target *target)
5862 {
5863 struct page *page = NULL;
5864 enum mc_target_type ret = MC_TARGET_NONE;
5865 swp_entry_t ent = { .val = 0 };
5866
5867 if (pte_present(ptent))
5868 page = mc_handle_present_pte(vma, addr, ptent);
5869 else if (pte_none_mostly(ptent))
5870 /*
5871 * PTE markers should be treated as a none pte here, separated
5872 * from other swap handling below.
5873 */
5874 page = mc_handle_file_pte(vma, addr, ptent);
5875 else if (is_swap_pte(ptent))
5876 page = mc_handle_swap_pte(vma, ptent, &ent);
5877
5878 if (target && page) {
5879 if (!trylock_page(page)) {
5880 put_page(page);
5881 return ret;
5882 }
5883 /*
5884 * page_mapped() must be stable during the move. This
5885 * pte is locked, so if it's present, the page cannot
5886 * become unmapped. If it isn't, we have only partial
5887 * control over the mapped state: the page lock will
5888 * prevent new faults against pagecache and swapcache,
5889 * so an unmapped page cannot become mapped. However,
5890 * if the page is already mapped elsewhere, it can
5891 * unmap, and there is nothing we can do about it.
5892 * Alas, skip moving the page in this case.
5893 */
5894 if (!pte_present(ptent) && page_mapped(page)) {
5895 unlock_page(page);
5896 put_page(page);
5897 return ret;
5898 }
5899 }
5900
5901 if (!page && !ent.val)
5902 return ret;
5903 if (page) {
5904 /*
5905 * Do only loose check w/o serialization.
5906 * mem_cgroup_move_account() checks the page is valid or
5907 * not under LRU exclusion.
5908 */
5909 if (page_memcg(page) == mc.from) {
5910 ret = MC_TARGET_PAGE;
5911 if (is_device_private_page(page) ||
5912 is_device_coherent_page(page))
5913 ret = MC_TARGET_DEVICE;
5914 if (target)
5915 target->page = page;
5916 }
5917 if (!ret || !target) {
5918 if (target)
5919 unlock_page(page);
5920 put_page(page);
5921 }
5922 }
5923 /*
5924 * There is a swap entry and a page doesn't exist or isn't charged.
5925 * But we cannot move a tail-page in a THP.
5926 */
5927 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5928 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5929 ret = MC_TARGET_SWAP;
5930 if (target)
5931 target->ent = ent;
5932 }
5933 return ret;
5934 }
5935
5936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5937 /*
5938 * We don't consider PMD mapped swapping or file mapped pages because THP does
5939 * not support them for now.
5940 * Caller should make sure that pmd_trans_huge(pmd) is true.
5941 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5942 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5943 unsigned long addr, pmd_t pmd, union mc_target *target)
5944 {
5945 struct page *page = NULL;
5946 enum mc_target_type ret = MC_TARGET_NONE;
5947
5948 if (unlikely(is_swap_pmd(pmd))) {
5949 VM_BUG_ON(thp_migration_supported() &&
5950 !is_pmd_migration_entry(pmd));
5951 return ret;
5952 }
5953 page = pmd_page(pmd);
5954 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5955 if (!(mc.flags & MOVE_ANON))
5956 return ret;
5957 if (page_memcg(page) == mc.from) {
5958 ret = MC_TARGET_PAGE;
5959 if (target) {
5960 get_page(page);
5961 if (!trylock_page(page)) {
5962 put_page(page);
5963 return MC_TARGET_NONE;
5964 }
5965 target->page = page;
5966 }
5967 }
5968 return ret;
5969 }
5970 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5971 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5972 unsigned long addr, pmd_t pmd, union mc_target *target)
5973 {
5974 return MC_TARGET_NONE;
5975 }
5976 #endif
5977
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5978 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5979 unsigned long addr, unsigned long end,
5980 struct mm_walk *walk)
5981 {
5982 struct vm_area_struct *vma = walk->vma;
5983 pte_t *pte;
5984 spinlock_t *ptl;
5985
5986 ptl = pmd_trans_huge_lock(pmd, vma);
5987 if (ptl) {
5988 /*
5989 * Note their can not be MC_TARGET_DEVICE for now as we do not
5990 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5991 * this might change.
5992 */
5993 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5994 mc.precharge += HPAGE_PMD_NR;
5995 spin_unlock(ptl);
5996 return 0;
5997 }
5998
5999 if (pmd_trans_unstable(pmd))
6000 return 0;
6001 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6002 for (; addr != end; pte++, addr += PAGE_SIZE)
6003 if (get_mctgt_type(vma, addr, *pte, NULL))
6004 mc.precharge++; /* increment precharge temporarily */
6005 pte_unmap_unlock(pte - 1, ptl);
6006 cond_resched();
6007
6008 return 0;
6009 }
6010
6011 static const struct mm_walk_ops precharge_walk_ops = {
6012 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6013 };
6014
mem_cgroup_count_precharge(struct mm_struct * mm)6015 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6016 {
6017 unsigned long precharge;
6018
6019 mmap_read_lock(mm);
6020 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6021 mmap_read_unlock(mm);
6022
6023 precharge = mc.precharge;
6024 mc.precharge = 0;
6025
6026 return precharge;
6027 }
6028
mem_cgroup_precharge_mc(struct mm_struct * mm)6029 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6030 {
6031 unsigned long precharge = mem_cgroup_count_precharge(mm);
6032
6033 VM_BUG_ON(mc.moving_task);
6034 mc.moving_task = current;
6035 return mem_cgroup_do_precharge(precharge);
6036 }
6037
6038 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6039 static void __mem_cgroup_clear_mc(void)
6040 {
6041 struct mem_cgroup *from = mc.from;
6042 struct mem_cgroup *to = mc.to;
6043
6044 /* we must uncharge all the leftover precharges from mc.to */
6045 if (mc.precharge) {
6046 cancel_charge(mc.to, mc.precharge);
6047 mc.precharge = 0;
6048 }
6049 /*
6050 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6051 * we must uncharge here.
6052 */
6053 if (mc.moved_charge) {
6054 cancel_charge(mc.from, mc.moved_charge);
6055 mc.moved_charge = 0;
6056 }
6057 /* we must fixup refcnts and charges */
6058 if (mc.moved_swap) {
6059 /* uncharge swap account from the old cgroup */
6060 if (!mem_cgroup_is_root(mc.from))
6061 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6062
6063 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6064
6065 /*
6066 * we charged both to->memory and to->memsw, so we
6067 * should uncharge to->memory.
6068 */
6069 if (!mem_cgroup_is_root(mc.to))
6070 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6071
6072 mc.moved_swap = 0;
6073 }
6074 memcg_oom_recover(from);
6075 memcg_oom_recover(to);
6076 wake_up_all(&mc.waitq);
6077 }
6078
mem_cgroup_clear_mc(void)6079 static void mem_cgroup_clear_mc(void)
6080 {
6081 struct mm_struct *mm = mc.mm;
6082
6083 /*
6084 * we must clear moving_task before waking up waiters at the end of
6085 * task migration.
6086 */
6087 mc.moving_task = NULL;
6088 __mem_cgroup_clear_mc();
6089 spin_lock(&mc.lock);
6090 mc.from = NULL;
6091 mc.to = NULL;
6092 mc.mm = NULL;
6093 spin_unlock(&mc.lock);
6094
6095 mmput(mm);
6096 }
6097
mem_cgroup_can_attach(struct cgroup_taskset * tset)6098 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6099 {
6100 struct cgroup_subsys_state *css;
6101 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6102 struct mem_cgroup *from;
6103 struct task_struct *leader, *p;
6104 struct mm_struct *mm;
6105 unsigned long move_flags;
6106 int ret = 0;
6107
6108 /* charge immigration isn't supported on the default hierarchy */
6109 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6110 return 0;
6111
6112 /*
6113 * Multi-process migrations only happen on the default hierarchy
6114 * where charge immigration is not used. Perform charge
6115 * immigration if @tset contains a leader and whine if there are
6116 * multiple.
6117 */
6118 p = NULL;
6119 cgroup_taskset_for_each_leader(leader, css, tset) {
6120 WARN_ON_ONCE(p);
6121 p = leader;
6122 memcg = mem_cgroup_from_css(css);
6123 }
6124 if (!p)
6125 return 0;
6126
6127 /*
6128 * We are now committed to this value whatever it is. Changes in this
6129 * tunable will only affect upcoming migrations, not the current one.
6130 * So we need to save it, and keep it going.
6131 */
6132 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6133 if (!move_flags)
6134 return 0;
6135
6136 from = mem_cgroup_from_task(p);
6137
6138 VM_BUG_ON(from == memcg);
6139
6140 mm = get_task_mm(p);
6141 if (!mm)
6142 return 0;
6143 /* We move charges only when we move a owner of the mm */
6144 if (mm->owner == p) {
6145 VM_BUG_ON(mc.from);
6146 VM_BUG_ON(mc.to);
6147 VM_BUG_ON(mc.precharge);
6148 VM_BUG_ON(mc.moved_charge);
6149 VM_BUG_ON(mc.moved_swap);
6150
6151 spin_lock(&mc.lock);
6152 mc.mm = mm;
6153 mc.from = from;
6154 mc.to = memcg;
6155 mc.flags = move_flags;
6156 spin_unlock(&mc.lock);
6157 /* We set mc.moving_task later */
6158
6159 ret = mem_cgroup_precharge_mc(mm);
6160 if (ret)
6161 mem_cgroup_clear_mc();
6162 } else {
6163 mmput(mm);
6164 }
6165 return ret;
6166 }
6167
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6168 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6169 {
6170 if (mc.to)
6171 mem_cgroup_clear_mc();
6172 }
6173
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6174 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6175 unsigned long addr, unsigned long end,
6176 struct mm_walk *walk)
6177 {
6178 int ret = 0;
6179 struct vm_area_struct *vma = walk->vma;
6180 pte_t *pte;
6181 spinlock_t *ptl;
6182 enum mc_target_type target_type;
6183 union mc_target target;
6184 struct page *page;
6185
6186 ptl = pmd_trans_huge_lock(pmd, vma);
6187 if (ptl) {
6188 if (mc.precharge < HPAGE_PMD_NR) {
6189 spin_unlock(ptl);
6190 return 0;
6191 }
6192 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6193 if (target_type == MC_TARGET_PAGE) {
6194 page = target.page;
6195 if (isolate_lru_page(page)) {
6196 if (!mem_cgroup_move_account(page, true,
6197 mc.from, mc.to)) {
6198 mc.precharge -= HPAGE_PMD_NR;
6199 mc.moved_charge += HPAGE_PMD_NR;
6200 }
6201 putback_lru_page(page);
6202 }
6203 unlock_page(page);
6204 put_page(page);
6205 } else if (target_type == MC_TARGET_DEVICE) {
6206 page = target.page;
6207 if (!mem_cgroup_move_account(page, true,
6208 mc.from, mc.to)) {
6209 mc.precharge -= HPAGE_PMD_NR;
6210 mc.moved_charge += HPAGE_PMD_NR;
6211 }
6212 unlock_page(page);
6213 put_page(page);
6214 }
6215 spin_unlock(ptl);
6216 return 0;
6217 }
6218
6219 if (pmd_trans_unstable(pmd))
6220 return 0;
6221 retry:
6222 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6223 for (; addr != end; addr += PAGE_SIZE) {
6224 pte_t ptent = *(pte++);
6225 bool device = false;
6226 swp_entry_t ent;
6227
6228 if (!mc.precharge)
6229 break;
6230
6231 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6232 case MC_TARGET_DEVICE:
6233 device = true;
6234 fallthrough;
6235 case MC_TARGET_PAGE:
6236 page = target.page;
6237 /*
6238 * We can have a part of the split pmd here. Moving it
6239 * can be done but it would be too convoluted so simply
6240 * ignore such a partial THP and keep it in original
6241 * memcg. There should be somebody mapping the head.
6242 */
6243 if (PageTransCompound(page))
6244 goto put;
6245 if (!device && !isolate_lru_page(page))
6246 goto put;
6247 if (!mem_cgroup_move_account(page, false,
6248 mc.from, mc.to)) {
6249 mc.precharge--;
6250 /* we uncharge from mc.from later. */
6251 mc.moved_charge++;
6252 }
6253 if (!device)
6254 putback_lru_page(page);
6255 put: /* get_mctgt_type() gets & locks the page */
6256 unlock_page(page);
6257 put_page(page);
6258 break;
6259 case MC_TARGET_SWAP:
6260 ent = target.ent;
6261 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6262 mc.precharge--;
6263 mem_cgroup_id_get_many(mc.to, 1);
6264 /* we fixup other refcnts and charges later. */
6265 mc.moved_swap++;
6266 }
6267 break;
6268 default:
6269 break;
6270 }
6271 }
6272 pte_unmap_unlock(pte - 1, ptl);
6273 cond_resched();
6274
6275 if (addr != end) {
6276 /*
6277 * We have consumed all precharges we got in can_attach().
6278 * We try charge one by one, but don't do any additional
6279 * charges to mc.to if we have failed in charge once in attach()
6280 * phase.
6281 */
6282 ret = mem_cgroup_do_precharge(1);
6283 if (!ret)
6284 goto retry;
6285 }
6286
6287 return ret;
6288 }
6289
6290 static const struct mm_walk_ops charge_walk_ops = {
6291 .pmd_entry = mem_cgroup_move_charge_pte_range,
6292 };
6293
mem_cgroup_move_charge(void)6294 static void mem_cgroup_move_charge(void)
6295 {
6296 lru_add_drain_all();
6297 /*
6298 * Signal lock_page_memcg() to take the memcg's move_lock
6299 * while we're moving its pages to another memcg. Then wait
6300 * for already started RCU-only updates to finish.
6301 */
6302 atomic_inc(&mc.from->moving_account);
6303 synchronize_rcu();
6304 retry:
6305 if (unlikely(!mmap_read_trylock(mc.mm))) {
6306 /*
6307 * Someone who are holding the mmap_lock might be waiting in
6308 * waitq. So we cancel all extra charges, wake up all waiters,
6309 * and retry. Because we cancel precharges, we might not be able
6310 * to move enough charges, but moving charge is a best-effort
6311 * feature anyway, so it wouldn't be a big problem.
6312 */
6313 __mem_cgroup_clear_mc();
6314 cond_resched();
6315 goto retry;
6316 }
6317 /*
6318 * When we have consumed all precharges and failed in doing
6319 * additional charge, the page walk just aborts.
6320 */
6321 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6322 mmap_read_unlock(mc.mm);
6323 atomic_dec(&mc.from->moving_account);
6324 }
6325
mem_cgroup_move_task(void)6326 static void mem_cgroup_move_task(void)
6327 {
6328 if (mc.to) {
6329 mem_cgroup_move_charge();
6330 mem_cgroup_clear_mc();
6331 }
6332 }
6333 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6334 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6335 {
6336 return 0;
6337 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6338 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6339 {
6340 }
mem_cgroup_move_task(void)6341 static void mem_cgroup_move_task(void)
6342 {
6343 }
6344 #endif
6345
6346 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6347 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6348 {
6349 struct task_struct *task;
6350 struct cgroup_subsys_state *css;
6351
6352 /* find the first leader if there is any */
6353 cgroup_taskset_for_each_leader(task, css, tset)
6354 break;
6355
6356 if (!task)
6357 return;
6358
6359 task_lock(task);
6360 if (task->mm && READ_ONCE(task->mm->owner) == task)
6361 lru_gen_migrate_mm(task->mm);
6362 task_unlock(task);
6363 }
6364 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6365 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6366 {
6367 }
6368 #endif /* CONFIG_LRU_GEN */
6369
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6370 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6371 {
6372 if (value == PAGE_COUNTER_MAX)
6373 seq_puts(m, "max\n");
6374 else
6375 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6376
6377 return 0;
6378 }
6379
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6380 static u64 memory_current_read(struct cgroup_subsys_state *css,
6381 struct cftype *cft)
6382 {
6383 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6384
6385 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6386 }
6387
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6388 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6389 struct cftype *cft)
6390 {
6391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6392
6393 return (u64)memcg->memory.watermark * PAGE_SIZE;
6394 }
6395
memory_min_show(struct seq_file * m,void * v)6396 static int memory_min_show(struct seq_file *m, void *v)
6397 {
6398 return seq_puts_memcg_tunable(m,
6399 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6400 }
6401
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6402 static ssize_t memory_min_write(struct kernfs_open_file *of,
6403 char *buf, size_t nbytes, loff_t off)
6404 {
6405 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6406 unsigned long min;
6407 int err;
6408
6409 buf = strstrip(buf);
6410 err = page_counter_memparse(buf, "max", &min);
6411 if (err)
6412 return err;
6413
6414 page_counter_set_min(&memcg->memory, min);
6415
6416 return nbytes;
6417 }
6418
memory_low_show(struct seq_file * m,void * v)6419 static int memory_low_show(struct seq_file *m, void *v)
6420 {
6421 return seq_puts_memcg_tunable(m,
6422 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6423 }
6424
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6425 static ssize_t memory_low_write(struct kernfs_open_file *of,
6426 char *buf, size_t nbytes, loff_t off)
6427 {
6428 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6429 unsigned long low;
6430 int err;
6431
6432 buf = strstrip(buf);
6433 err = page_counter_memparse(buf, "max", &low);
6434 if (err)
6435 return err;
6436
6437 page_counter_set_low(&memcg->memory, low);
6438
6439 return nbytes;
6440 }
6441
memory_high_show(struct seq_file * m,void * v)6442 static int memory_high_show(struct seq_file *m, void *v)
6443 {
6444 return seq_puts_memcg_tunable(m,
6445 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6446 }
6447
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6448 static ssize_t memory_high_write(struct kernfs_open_file *of,
6449 char *buf, size_t nbytes, loff_t off)
6450 {
6451 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6452 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6453 bool drained = false;
6454 unsigned long high;
6455 int err;
6456
6457 buf = strstrip(buf);
6458 err = page_counter_memparse(buf, "max", &high);
6459 if (err)
6460 return err;
6461
6462 page_counter_set_high(&memcg->memory, high);
6463
6464 for (;;) {
6465 unsigned long nr_pages = page_counter_read(&memcg->memory);
6466 unsigned long reclaimed;
6467
6468 if (nr_pages <= high)
6469 break;
6470
6471 if (signal_pending(current))
6472 break;
6473
6474 if (!drained) {
6475 drain_all_stock(memcg);
6476 drained = true;
6477 continue;
6478 }
6479
6480 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6481 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6482
6483 if (!reclaimed && !nr_retries--)
6484 break;
6485 }
6486
6487 memcg_wb_domain_size_changed(memcg);
6488 return nbytes;
6489 }
6490
memory_max_show(struct seq_file * m,void * v)6491 static int memory_max_show(struct seq_file *m, void *v)
6492 {
6493 return seq_puts_memcg_tunable(m,
6494 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6495 }
6496
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6497 static ssize_t memory_max_write(struct kernfs_open_file *of,
6498 char *buf, size_t nbytes, loff_t off)
6499 {
6500 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6501 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6502 bool drained = false;
6503 unsigned long max;
6504 int err;
6505
6506 buf = strstrip(buf);
6507 err = page_counter_memparse(buf, "max", &max);
6508 if (err)
6509 return err;
6510
6511 xchg(&memcg->memory.max, max);
6512
6513 for (;;) {
6514 unsigned long nr_pages = page_counter_read(&memcg->memory);
6515
6516 if (nr_pages <= max)
6517 break;
6518
6519 if (signal_pending(current))
6520 break;
6521
6522 if (!drained) {
6523 drain_all_stock(memcg);
6524 drained = true;
6525 continue;
6526 }
6527
6528 if (nr_reclaims) {
6529 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6530 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6531 nr_reclaims--;
6532 continue;
6533 }
6534
6535 memcg_memory_event(memcg, MEMCG_OOM);
6536 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6537 break;
6538 }
6539
6540 memcg_wb_domain_size_changed(memcg);
6541 return nbytes;
6542 }
6543
__memory_events_show(struct seq_file * m,atomic_long_t * events)6544 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6545 {
6546 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6547 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6548 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6549 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6550 seq_printf(m, "oom_kill %lu\n",
6551 atomic_long_read(&events[MEMCG_OOM_KILL]));
6552 seq_printf(m, "oom_group_kill %lu\n",
6553 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6554 }
6555
memory_events_show(struct seq_file * m,void * v)6556 static int memory_events_show(struct seq_file *m, void *v)
6557 {
6558 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6559
6560 __memory_events_show(m, memcg->memory_events);
6561 return 0;
6562 }
6563
memory_events_local_show(struct seq_file * m,void * v)6564 static int memory_events_local_show(struct seq_file *m, void *v)
6565 {
6566 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6567
6568 __memory_events_show(m, memcg->memory_events_local);
6569 return 0;
6570 }
6571
memory_stat_show(struct seq_file * m,void * v)6572 static int memory_stat_show(struct seq_file *m, void *v)
6573 {
6574 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6575 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6576
6577 if (!buf)
6578 return -ENOMEM;
6579 memory_stat_format(memcg, buf, PAGE_SIZE);
6580 seq_puts(m, buf);
6581 kfree(buf);
6582 return 0;
6583 }
6584
6585 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6586 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6587 int item)
6588 {
6589 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6590 }
6591
memory_numa_stat_show(struct seq_file * m,void * v)6592 static int memory_numa_stat_show(struct seq_file *m, void *v)
6593 {
6594 int i;
6595 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6596
6597 mem_cgroup_flush_stats();
6598
6599 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6600 int nid;
6601
6602 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6603 continue;
6604
6605 seq_printf(m, "%s", memory_stats[i].name);
6606 for_each_node_state(nid, N_MEMORY) {
6607 u64 size;
6608 struct lruvec *lruvec;
6609
6610 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6611 size = lruvec_page_state_output(lruvec,
6612 memory_stats[i].idx);
6613 seq_printf(m, " N%d=%llu", nid, size);
6614 }
6615 seq_putc(m, '\n');
6616 }
6617
6618 return 0;
6619 }
6620 #endif
6621
memory_oom_group_show(struct seq_file * m,void * v)6622 static int memory_oom_group_show(struct seq_file *m, void *v)
6623 {
6624 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6625
6626 seq_printf(m, "%d\n", memcg->oom_group);
6627
6628 return 0;
6629 }
6630
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6631 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6632 char *buf, size_t nbytes, loff_t off)
6633 {
6634 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6635 int ret, oom_group;
6636
6637 buf = strstrip(buf);
6638 if (!buf)
6639 return -EINVAL;
6640
6641 ret = kstrtoint(buf, 0, &oom_group);
6642 if (ret)
6643 return ret;
6644
6645 if (oom_group != 0 && oom_group != 1)
6646 return -EINVAL;
6647
6648 memcg->oom_group = oom_group;
6649
6650 return nbytes;
6651 }
6652
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6653 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6654 size_t nbytes, loff_t off)
6655 {
6656 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6657 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6658 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6659 unsigned int reclaim_options;
6660 int err;
6661
6662 buf = strstrip(buf);
6663 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6664 if (err)
6665 return err;
6666
6667 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6668 while (nr_reclaimed < nr_to_reclaim) {
6669 unsigned long reclaimed;
6670
6671 if (signal_pending(current))
6672 return -EINTR;
6673
6674 /*
6675 * This is the final attempt, drain percpu lru caches in the
6676 * hope of introducing more evictable pages for
6677 * try_to_free_mem_cgroup_pages().
6678 */
6679 if (!nr_retries)
6680 lru_add_drain_all();
6681
6682 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6683 nr_to_reclaim - nr_reclaimed,
6684 GFP_KERNEL, reclaim_options);
6685
6686 if (!reclaimed && !nr_retries--)
6687 return -EAGAIN;
6688
6689 nr_reclaimed += reclaimed;
6690 }
6691
6692 return nbytes;
6693 }
6694
6695 static struct cftype memory_files[] = {
6696 {
6697 .name = "current",
6698 .flags = CFTYPE_NOT_ON_ROOT,
6699 .read_u64 = memory_current_read,
6700 },
6701 {
6702 .name = "peak",
6703 .flags = CFTYPE_NOT_ON_ROOT,
6704 .read_u64 = memory_peak_read,
6705 },
6706 {
6707 .name = "min",
6708 .flags = CFTYPE_NOT_ON_ROOT,
6709 .seq_show = memory_min_show,
6710 .write = memory_min_write,
6711 },
6712 {
6713 .name = "low",
6714 .flags = CFTYPE_NOT_ON_ROOT,
6715 .seq_show = memory_low_show,
6716 .write = memory_low_write,
6717 },
6718 {
6719 .name = "high",
6720 .flags = CFTYPE_NOT_ON_ROOT,
6721 .seq_show = memory_high_show,
6722 .write = memory_high_write,
6723 },
6724 {
6725 .name = "max",
6726 .flags = CFTYPE_NOT_ON_ROOT,
6727 .seq_show = memory_max_show,
6728 .write = memory_max_write,
6729 },
6730 {
6731 .name = "events",
6732 .flags = CFTYPE_NOT_ON_ROOT,
6733 .file_offset = offsetof(struct mem_cgroup, events_file),
6734 .seq_show = memory_events_show,
6735 },
6736 {
6737 .name = "events.local",
6738 .flags = CFTYPE_NOT_ON_ROOT,
6739 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6740 .seq_show = memory_events_local_show,
6741 },
6742 {
6743 .name = "stat",
6744 .seq_show = memory_stat_show,
6745 },
6746 #ifdef CONFIG_NUMA
6747 {
6748 .name = "numa_stat",
6749 .seq_show = memory_numa_stat_show,
6750 },
6751 #endif
6752 {
6753 .name = "oom.group",
6754 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6755 .seq_show = memory_oom_group_show,
6756 .write = memory_oom_group_write,
6757 },
6758 {
6759 .name = "reclaim",
6760 .flags = CFTYPE_NS_DELEGATABLE,
6761 .write = memory_reclaim,
6762 },
6763 { } /* terminate */
6764 };
6765
6766 struct cgroup_subsys memory_cgrp_subsys = {
6767 .css_alloc = mem_cgroup_css_alloc,
6768 .css_online = mem_cgroup_css_online,
6769 .css_offline = mem_cgroup_css_offline,
6770 .css_released = mem_cgroup_css_released,
6771 .css_free = mem_cgroup_css_free,
6772 .css_reset = mem_cgroup_css_reset,
6773 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6774 .can_attach = mem_cgroup_can_attach,
6775 .attach = mem_cgroup_attach,
6776 .cancel_attach = mem_cgroup_cancel_attach,
6777 .post_attach = mem_cgroup_move_task,
6778 .dfl_cftypes = memory_files,
6779 .legacy_cftypes = mem_cgroup_legacy_files,
6780 .early_init = 0,
6781 };
6782
6783 /*
6784 * This function calculates an individual cgroup's effective
6785 * protection which is derived from its own memory.min/low, its
6786 * parent's and siblings' settings, as well as the actual memory
6787 * distribution in the tree.
6788 *
6789 * The following rules apply to the effective protection values:
6790 *
6791 * 1. At the first level of reclaim, effective protection is equal to
6792 * the declared protection in memory.min and memory.low.
6793 *
6794 * 2. To enable safe delegation of the protection configuration, at
6795 * subsequent levels the effective protection is capped to the
6796 * parent's effective protection.
6797 *
6798 * 3. To make complex and dynamic subtrees easier to configure, the
6799 * user is allowed to overcommit the declared protection at a given
6800 * level. If that is the case, the parent's effective protection is
6801 * distributed to the children in proportion to how much protection
6802 * they have declared and how much of it they are utilizing.
6803 *
6804 * This makes distribution proportional, but also work-conserving:
6805 * if one cgroup claims much more protection than it uses memory,
6806 * the unused remainder is available to its siblings.
6807 *
6808 * 4. Conversely, when the declared protection is undercommitted at a
6809 * given level, the distribution of the larger parental protection
6810 * budget is NOT proportional. A cgroup's protection from a sibling
6811 * is capped to its own memory.min/low setting.
6812 *
6813 * 5. However, to allow protecting recursive subtrees from each other
6814 * without having to declare each individual cgroup's fixed share
6815 * of the ancestor's claim to protection, any unutilized -
6816 * "floating" - protection from up the tree is distributed in
6817 * proportion to each cgroup's *usage*. This makes the protection
6818 * neutral wrt sibling cgroups and lets them compete freely over
6819 * the shared parental protection budget, but it protects the
6820 * subtree as a whole from neighboring subtrees.
6821 *
6822 * Note that 4. and 5. are not in conflict: 4. is about protecting
6823 * against immediate siblings whereas 5. is about protecting against
6824 * neighboring subtrees.
6825 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6826 static unsigned long effective_protection(unsigned long usage,
6827 unsigned long parent_usage,
6828 unsigned long setting,
6829 unsigned long parent_effective,
6830 unsigned long siblings_protected)
6831 {
6832 unsigned long protected;
6833 unsigned long ep;
6834
6835 protected = min(usage, setting);
6836 /*
6837 * If all cgroups at this level combined claim and use more
6838 * protection then what the parent affords them, distribute
6839 * shares in proportion to utilization.
6840 *
6841 * We are using actual utilization rather than the statically
6842 * claimed protection in order to be work-conserving: claimed
6843 * but unused protection is available to siblings that would
6844 * otherwise get a smaller chunk than what they claimed.
6845 */
6846 if (siblings_protected > parent_effective)
6847 return protected * parent_effective / siblings_protected;
6848
6849 /*
6850 * Ok, utilized protection of all children is within what the
6851 * parent affords them, so we know whatever this child claims
6852 * and utilizes is effectively protected.
6853 *
6854 * If there is unprotected usage beyond this value, reclaim
6855 * will apply pressure in proportion to that amount.
6856 *
6857 * If there is unutilized protection, the cgroup will be fully
6858 * shielded from reclaim, but we do return a smaller value for
6859 * protection than what the group could enjoy in theory. This
6860 * is okay. With the overcommit distribution above, effective
6861 * protection is always dependent on how memory is actually
6862 * consumed among the siblings anyway.
6863 */
6864 ep = protected;
6865
6866 /*
6867 * If the children aren't claiming (all of) the protection
6868 * afforded to them by the parent, distribute the remainder in
6869 * proportion to the (unprotected) memory of each cgroup. That
6870 * way, cgroups that aren't explicitly prioritized wrt each
6871 * other compete freely over the allowance, but they are
6872 * collectively protected from neighboring trees.
6873 *
6874 * We're using unprotected memory for the weight so that if
6875 * some cgroups DO claim explicit protection, we don't protect
6876 * the same bytes twice.
6877 *
6878 * Check both usage and parent_usage against the respective
6879 * protected values. One should imply the other, but they
6880 * aren't read atomically - make sure the division is sane.
6881 */
6882 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6883 return ep;
6884 if (parent_effective > siblings_protected &&
6885 parent_usage > siblings_protected &&
6886 usage > protected) {
6887 unsigned long unclaimed;
6888
6889 unclaimed = parent_effective - siblings_protected;
6890 unclaimed *= usage - protected;
6891 unclaimed /= parent_usage - siblings_protected;
6892
6893 ep += unclaimed;
6894 }
6895
6896 return ep;
6897 }
6898
6899 /**
6900 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6901 * @root: the top ancestor of the sub-tree being checked
6902 * @memcg: the memory cgroup to check
6903 *
6904 * WARNING: This function is not stateless! It can only be used as part
6905 * of a top-down tree iteration, not for isolated queries.
6906 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6907 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6908 struct mem_cgroup *memcg)
6909 {
6910 unsigned long usage, parent_usage;
6911 struct mem_cgroup *parent;
6912
6913 if (mem_cgroup_disabled())
6914 return;
6915
6916 if (!root)
6917 root = root_mem_cgroup;
6918
6919 /*
6920 * Effective values of the reclaim targets are ignored so they
6921 * can be stale. Have a look at mem_cgroup_protection for more
6922 * details.
6923 * TODO: calculation should be more robust so that we do not need
6924 * that special casing.
6925 */
6926 if (memcg == root)
6927 return;
6928
6929 usage = page_counter_read(&memcg->memory);
6930 if (!usage)
6931 return;
6932
6933 parent = parent_mem_cgroup(memcg);
6934
6935 if (parent == root) {
6936 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6937 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6938 return;
6939 }
6940
6941 parent_usage = page_counter_read(&parent->memory);
6942
6943 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6944 READ_ONCE(memcg->memory.min),
6945 READ_ONCE(parent->memory.emin),
6946 atomic_long_read(&parent->memory.children_min_usage)));
6947
6948 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6949 READ_ONCE(memcg->memory.low),
6950 READ_ONCE(parent->memory.elow),
6951 atomic_long_read(&parent->memory.children_low_usage)));
6952 }
6953
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)6954 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6955 gfp_t gfp)
6956 {
6957 long nr_pages = folio_nr_pages(folio);
6958 int ret;
6959
6960 ret = try_charge(memcg, gfp, nr_pages);
6961 if (ret)
6962 goto out;
6963
6964 css_get(&memcg->css);
6965 commit_charge(folio, memcg);
6966
6967 local_irq_disable();
6968 mem_cgroup_charge_statistics(memcg, nr_pages);
6969 memcg_check_events(memcg, folio_nid(folio));
6970 local_irq_enable();
6971 out:
6972 return ret;
6973 }
6974
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)6975 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6976 {
6977 struct mem_cgroup *memcg;
6978 int ret;
6979
6980 memcg = get_mem_cgroup_from_mm(mm);
6981 ret = charge_memcg(folio, memcg, gfp);
6982 css_put(&memcg->css);
6983
6984 return ret;
6985 }
6986
6987 /**
6988 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6989 * @folio: folio to charge.
6990 * @mm: mm context of the victim
6991 * @gfp: reclaim mode
6992 * @entry: swap entry for which the folio is allocated
6993 *
6994 * This function charges a folio allocated for swapin. Please call this before
6995 * adding the folio to the swapcache.
6996 *
6997 * Returns 0 on success. Otherwise, an error code is returned.
6998 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)6999 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7000 gfp_t gfp, swp_entry_t entry)
7001 {
7002 struct mem_cgroup *memcg;
7003 unsigned short id;
7004 int ret;
7005
7006 if (mem_cgroup_disabled())
7007 return 0;
7008
7009 id = lookup_swap_cgroup_id(entry);
7010 rcu_read_lock();
7011 memcg = mem_cgroup_from_id(id);
7012 if (!memcg || !css_tryget_online(&memcg->css))
7013 memcg = get_mem_cgroup_from_mm(mm);
7014 rcu_read_unlock();
7015
7016 ret = charge_memcg(folio, memcg, gfp);
7017
7018 css_put(&memcg->css);
7019 return ret;
7020 }
7021
7022 /*
7023 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7024 * @entry: swap entry for which the page is charged
7025 *
7026 * Call this function after successfully adding the charged page to swapcache.
7027 *
7028 * Note: This function assumes the page for which swap slot is being uncharged
7029 * is order 0 page.
7030 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)7031 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7032 {
7033 /*
7034 * Cgroup1's unified memory+swap counter has been charged with the
7035 * new swapcache page, finish the transfer by uncharging the swap
7036 * slot. The swap slot would also get uncharged when it dies, but
7037 * it can stick around indefinitely and we'd count the page twice
7038 * the entire time.
7039 *
7040 * Cgroup2 has separate resource counters for memory and swap,
7041 * so this is a non-issue here. Memory and swap charge lifetimes
7042 * correspond 1:1 to page and swap slot lifetimes: we charge the
7043 * page to memory here, and uncharge swap when the slot is freed.
7044 */
7045 if (!mem_cgroup_disabled() && do_memsw_account()) {
7046 /*
7047 * The swap entry might not get freed for a long time,
7048 * let's not wait for it. The page already received a
7049 * memory+swap charge, drop the swap entry duplicate.
7050 */
7051 mem_cgroup_uncharge_swap(entry, 1);
7052 }
7053 }
7054
7055 struct uncharge_gather {
7056 struct mem_cgroup *memcg;
7057 unsigned long nr_memory;
7058 unsigned long pgpgout;
7059 unsigned long nr_kmem;
7060 int nid;
7061 };
7062
uncharge_gather_clear(struct uncharge_gather * ug)7063 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7064 {
7065 memset(ug, 0, sizeof(*ug));
7066 }
7067
uncharge_batch(const struct uncharge_gather * ug)7068 static void uncharge_batch(const struct uncharge_gather *ug)
7069 {
7070 unsigned long flags;
7071
7072 if (ug->nr_memory) {
7073 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7074 if (do_memsw_account())
7075 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7076 if (ug->nr_kmem)
7077 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7078 memcg_oom_recover(ug->memcg);
7079 }
7080
7081 local_irq_save(flags);
7082 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7083 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7084 memcg_check_events(ug->memcg, ug->nid);
7085 local_irq_restore(flags);
7086
7087 /* drop reference from uncharge_folio */
7088 css_put(&ug->memcg->css);
7089 }
7090
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)7091 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7092 {
7093 long nr_pages;
7094 struct mem_cgroup *memcg;
7095 struct obj_cgroup *objcg;
7096
7097 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7098
7099 /*
7100 * Nobody should be changing or seriously looking at
7101 * folio memcg or objcg at this point, we have fully
7102 * exclusive access to the folio.
7103 */
7104 if (folio_memcg_kmem(folio)) {
7105 objcg = __folio_objcg(folio);
7106 /*
7107 * This get matches the put at the end of the function and
7108 * kmem pages do not hold memcg references anymore.
7109 */
7110 memcg = get_mem_cgroup_from_objcg(objcg);
7111 } else {
7112 memcg = __folio_memcg(folio);
7113 }
7114
7115 if (!memcg)
7116 return;
7117
7118 if (ug->memcg != memcg) {
7119 if (ug->memcg) {
7120 uncharge_batch(ug);
7121 uncharge_gather_clear(ug);
7122 }
7123 ug->memcg = memcg;
7124 ug->nid = folio_nid(folio);
7125
7126 /* pairs with css_put in uncharge_batch */
7127 css_get(&memcg->css);
7128 }
7129
7130 nr_pages = folio_nr_pages(folio);
7131
7132 if (folio_memcg_kmem(folio)) {
7133 ug->nr_memory += nr_pages;
7134 ug->nr_kmem += nr_pages;
7135
7136 folio->memcg_data = 0;
7137 obj_cgroup_put(objcg);
7138 } else {
7139 /* LRU pages aren't accounted at the root level */
7140 if (!mem_cgroup_is_root(memcg))
7141 ug->nr_memory += nr_pages;
7142 ug->pgpgout++;
7143
7144 folio->memcg_data = 0;
7145 }
7146
7147 css_put(&memcg->css);
7148 }
7149
__mem_cgroup_uncharge(struct folio * folio)7150 void __mem_cgroup_uncharge(struct folio *folio)
7151 {
7152 struct uncharge_gather ug;
7153
7154 /* Don't touch folio->lru of any random page, pre-check: */
7155 if (!folio_memcg(folio))
7156 return;
7157
7158 uncharge_gather_clear(&ug);
7159 uncharge_folio(folio, &ug);
7160 uncharge_batch(&ug);
7161 }
7162
7163 /**
7164 * __mem_cgroup_uncharge_list - uncharge a list of page
7165 * @page_list: list of pages to uncharge
7166 *
7167 * Uncharge a list of pages previously charged with
7168 * __mem_cgroup_charge().
7169 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7170 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7171 {
7172 struct uncharge_gather ug;
7173 struct folio *folio;
7174
7175 uncharge_gather_clear(&ug);
7176 list_for_each_entry(folio, page_list, lru)
7177 uncharge_folio(folio, &ug);
7178 if (ug.memcg)
7179 uncharge_batch(&ug);
7180 }
7181
7182 /**
7183 * mem_cgroup_migrate - Charge a folio's replacement.
7184 * @old: Currently circulating folio.
7185 * @new: Replacement folio.
7186 *
7187 * Charge @new as a replacement folio for @old. @old will
7188 * be uncharged upon free.
7189 *
7190 * Both folios must be locked, @new->mapping must be set up.
7191 */
mem_cgroup_migrate(struct folio * old,struct folio * new)7192 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7193 {
7194 struct mem_cgroup *memcg;
7195 long nr_pages = folio_nr_pages(new);
7196 unsigned long flags;
7197
7198 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7199 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7200 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7201 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7202
7203 if (mem_cgroup_disabled())
7204 return;
7205
7206 /* Page cache replacement: new folio already charged? */
7207 if (folio_memcg(new))
7208 return;
7209
7210 memcg = folio_memcg(old);
7211 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7212 if (!memcg)
7213 return;
7214
7215 /* Force-charge the new page. The old one will be freed soon */
7216 if (!mem_cgroup_is_root(memcg)) {
7217 page_counter_charge(&memcg->memory, nr_pages);
7218 if (do_memsw_account())
7219 page_counter_charge(&memcg->memsw, nr_pages);
7220 }
7221
7222 css_get(&memcg->css);
7223 commit_charge(new, memcg);
7224
7225 local_irq_save(flags);
7226 mem_cgroup_charge_statistics(memcg, nr_pages);
7227 memcg_check_events(memcg, folio_nid(new));
7228 local_irq_restore(flags);
7229 }
7230
7231 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7232 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7233
mem_cgroup_sk_alloc(struct sock * sk)7234 void mem_cgroup_sk_alloc(struct sock *sk)
7235 {
7236 struct mem_cgroup *memcg;
7237
7238 if (!mem_cgroup_sockets_enabled)
7239 return;
7240
7241 /* Do not associate the sock with unrelated interrupted task's memcg. */
7242 if (!in_task())
7243 return;
7244
7245 rcu_read_lock();
7246 memcg = mem_cgroup_from_task(current);
7247 if (mem_cgroup_is_root(memcg))
7248 goto out;
7249 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7250 goto out;
7251 if (css_tryget(&memcg->css))
7252 sk->sk_memcg = memcg;
7253 out:
7254 rcu_read_unlock();
7255 }
7256
mem_cgroup_sk_free(struct sock * sk)7257 void mem_cgroup_sk_free(struct sock *sk)
7258 {
7259 if (sk->sk_memcg)
7260 css_put(&sk->sk_memcg->css);
7261 }
7262
7263 /**
7264 * mem_cgroup_charge_skmem - charge socket memory
7265 * @memcg: memcg to charge
7266 * @nr_pages: number of pages to charge
7267 * @gfp_mask: reclaim mode
7268 *
7269 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7270 * @memcg's configured limit, %false if it doesn't.
7271 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7272 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7273 gfp_t gfp_mask)
7274 {
7275 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7276 struct page_counter *fail;
7277
7278 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7279 memcg->tcpmem_pressure = 0;
7280 return true;
7281 }
7282 memcg->tcpmem_pressure = 1;
7283 if (gfp_mask & __GFP_NOFAIL) {
7284 page_counter_charge(&memcg->tcpmem, nr_pages);
7285 return true;
7286 }
7287 return false;
7288 }
7289
7290 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7291 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7292 return true;
7293 }
7294
7295 return false;
7296 }
7297
7298 /**
7299 * mem_cgroup_uncharge_skmem - uncharge socket memory
7300 * @memcg: memcg to uncharge
7301 * @nr_pages: number of pages to uncharge
7302 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7303 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7304 {
7305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7306 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7307 return;
7308 }
7309
7310 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7311
7312 refill_stock(memcg, nr_pages);
7313 }
7314
cgroup_memory(char * s)7315 static int __init cgroup_memory(char *s)
7316 {
7317 char *token;
7318
7319 while ((token = strsep(&s, ",")) != NULL) {
7320 if (!*token)
7321 continue;
7322 if (!strcmp(token, "nosocket"))
7323 cgroup_memory_nosocket = true;
7324 if (!strcmp(token, "nokmem"))
7325 cgroup_memory_nokmem = true;
7326 if (!strcmp(token, "nobpf"))
7327 cgroup_memory_nobpf = true;
7328 }
7329 return 1;
7330 }
7331 __setup("cgroup.memory=", cgroup_memory);
7332
7333 /*
7334 * subsys_initcall() for memory controller.
7335 *
7336 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7337 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7338 * basically everything that doesn't depend on a specific mem_cgroup structure
7339 * should be initialized from here.
7340 */
mem_cgroup_init(void)7341 static int __init mem_cgroup_init(void)
7342 {
7343 int cpu, node;
7344
7345 /*
7346 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7347 * used for per-memcg-per-cpu caching of per-node statistics. In order
7348 * to work fine, we should make sure that the overfill threshold can't
7349 * exceed S32_MAX / PAGE_SIZE.
7350 */
7351 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7352
7353 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7354 memcg_hotplug_cpu_dead);
7355
7356 for_each_possible_cpu(cpu)
7357 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7358 drain_local_stock);
7359
7360 for_each_node(node) {
7361 struct mem_cgroup_tree_per_node *rtpn;
7362
7363 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7364 node_online(node) ? node : NUMA_NO_NODE);
7365
7366 rtpn->rb_root = RB_ROOT;
7367 rtpn->rb_rightmost = NULL;
7368 spin_lock_init(&rtpn->lock);
7369 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7370 }
7371
7372 return 0;
7373 }
7374 subsys_initcall(mem_cgroup_init);
7375
7376 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7377 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7378 {
7379 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7380 /*
7381 * The root cgroup cannot be destroyed, so it's refcount must
7382 * always be >= 1.
7383 */
7384 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7385 VM_BUG_ON(1);
7386 break;
7387 }
7388 memcg = parent_mem_cgroup(memcg);
7389 if (!memcg)
7390 memcg = root_mem_cgroup;
7391 }
7392 return memcg;
7393 }
7394
7395 /**
7396 * mem_cgroup_swapout - transfer a memsw charge to swap
7397 * @folio: folio whose memsw charge to transfer
7398 * @entry: swap entry to move the charge to
7399 *
7400 * Transfer the memsw charge of @folio to @entry.
7401 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7402 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7403 {
7404 struct mem_cgroup *memcg, *swap_memcg;
7405 unsigned int nr_entries;
7406 unsigned short oldid;
7407
7408 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7409 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7410
7411 if (mem_cgroup_disabled())
7412 return;
7413
7414 if (!do_memsw_account())
7415 return;
7416
7417 memcg = folio_memcg(folio);
7418
7419 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7420 if (!memcg)
7421 return;
7422
7423 /*
7424 * In case the memcg owning these pages has been offlined and doesn't
7425 * have an ID allocated to it anymore, charge the closest online
7426 * ancestor for the swap instead and transfer the memory+swap charge.
7427 */
7428 swap_memcg = mem_cgroup_id_get_online(memcg);
7429 nr_entries = folio_nr_pages(folio);
7430 /* Get references for the tail pages, too */
7431 if (nr_entries > 1)
7432 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7433 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7434 nr_entries);
7435 VM_BUG_ON_FOLIO(oldid, folio);
7436 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7437
7438 folio->memcg_data = 0;
7439
7440 if (!mem_cgroup_is_root(memcg))
7441 page_counter_uncharge(&memcg->memory, nr_entries);
7442
7443 if (memcg != swap_memcg) {
7444 if (!mem_cgroup_is_root(swap_memcg))
7445 page_counter_charge(&swap_memcg->memsw, nr_entries);
7446 page_counter_uncharge(&memcg->memsw, nr_entries);
7447 }
7448
7449 /*
7450 * Interrupts should be disabled here because the caller holds the
7451 * i_pages lock which is taken with interrupts-off. It is
7452 * important here to have the interrupts disabled because it is the
7453 * only synchronisation we have for updating the per-CPU variables.
7454 */
7455 memcg_stats_lock();
7456 mem_cgroup_charge_statistics(memcg, -nr_entries);
7457 memcg_stats_unlock();
7458 memcg_check_events(memcg, folio_nid(folio));
7459
7460 css_put(&memcg->css);
7461 }
7462
7463 /**
7464 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7465 * @folio: folio being added to swap
7466 * @entry: swap entry to charge
7467 *
7468 * Try to charge @folio's memcg for the swap space at @entry.
7469 *
7470 * Returns 0 on success, -ENOMEM on failure.
7471 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7472 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7473 {
7474 unsigned int nr_pages = folio_nr_pages(folio);
7475 struct page_counter *counter;
7476 struct mem_cgroup *memcg;
7477 unsigned short oldid;
7478
7479 if (do_memsw_account())
7480 return 0;
7481
7482 memcg = folio_memcg(folio);
7483
7484 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7485 if (!memcg)
7486 return 0;
7487
7488 if (!entry.val) {
7489 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7490 return 0;
7491 }
7492
7493 memcg = mem_cgroup_id_get_online(memcg);
7494
7495 if (!mem_cgroup_is_root(memcg) &&
7496 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7497 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7498 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7499 mem_cgroup_id_put(memcg);
7500 return -ENOMEM;
7501 }
7502
7503 /* Get references for the tail pages, too */
7504 if (nr_pages > 1)
7505 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7506 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7507 VM_BUG_ON_FOLIO(oldid, folio);
7508 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7509
7510 return 0;
7511 }
7512
7513 /**
7514 * __mem_cgroup_uncharge_swap - uncharge swap space
7515 * @entry: swap entry to uncharge
7516 * @nr_pages: the amount of swap space to uncharge
7517 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7518 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7519 {
7520 struct mem_cgroup *memcg;
7521 unsigned short id;
7522
7523 if (mem_cgroup_disabled())
7524 return;
7525
7526 id = swap_cgroup_record(entry, 0, nr_pages);
7527 rcu_read_lock();
7528 memcg = mem_cgroup_from_id(id);
7529 if (memcg) {
7530 if (!mem_cgroup_is_root(memcg)) {
7531 if (do_memsw_account())
7532 page_counter_uncharge(&memcg->memsw, nr_pages);
7533 else
7534 page_counter_uncharge(&memcg->swap, nr_pages);
7535 }
7536 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7537 mem_cgroup_id_put_many(memcg, nr_pages);
7538 }
7539 rcu_read_unlock();
7540 }
7541
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7542 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7543 {
7544 long nr_swap_pages = get_nr_swap_pages();
7545
7546 if (mem_cgroup_disabled() || do_memsw_account())
7547 return nr_swap_pages;
7548 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7549 nr_swap_pages = min_t(long, nr_swap_pages,
7550 READ_ONCE(memcg->swap.max) -
7551 page_counter_read(&memcg->swap));
7552 return nr_swap_pages;
7553 }
7554
mem_cgroup_swap_full(struct folio * folio)7555 bool mem_cgroup_swap_full(struct folio *folio)
7556 {
7557 struct mem_cgroup *memcg;
7558
7559 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7560
7561 if (vm_swap_full())
7562 return true;
7563 if (do_memsw_account())
7564 return false;
7565
7566 memcg = folio_memcg(folio);
7567 if (!memcg)
7568 return false;
7569
7570 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7571 unsigned long usage = page_counter_read(&memcg->swap);
7572
7573 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7574 usage * 2 >= READ_ONCE(memcg->swap.max))
7575 return true;
7576 }
7577
7578 return false;
7579 }
7580
setup_swap_account(char * s)7581 static int __init setup_swap_account(char *s)
7582 {
7583 pr_warn_once("The swapaccount= commandline option is deprecated. "
7584 "Please report your usecase to linux-mm@kvack.org if you "
7585 "depend on this functionality.\n");
7586 return 1;
7587 }
7588 __setup("swapaccount=", setup_swap_account);
7589
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7590 static u64 swap_current_read(struct cgroup_subsys_state *css,
7591 struct cftype *cft)
7592 {
7593 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7594
7595 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7596 }
7597
swap_high_show(struct seq_file * m,void * v)7598 static int swap_high_show(struct seq_file *m, void *v)
7599 {
7600 return seq_puts_memcg_tunable(m,
7601 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7602 }
7603
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7604 static ssize_t swap_high_write(struct kernfs_open_file *of,
7605 char *buf, size_t nbytes, loff_t off)
7606 {
7607 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7608 unsigned long high;
7609 int err;
7610
7611 buf = strstrip(buf);
7612 err = page_counter_memparse(buf, "max", &high);
7613 if (err)
7614 return err;
7615
7616 page_counter_set_high(&memcg->swap, high);
7617
7618 return nbytes;
7619 }
7620
swap_max_show(struct seq_file * m,void * v)7621 static int swap_max_show(struct seq_file *m, void *v)
7622 {
7623 return seq_puts_memcg_tunable(m,
7624 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7625 }
7626
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7627 static ssize_t swap_max_write(struct kernfs_open_file *of,
7628 char *buf, size_t nbytes, loff_t off)
7629 {
7630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7631 unsigned long max;
7632 int err;
7633
7634 buf = strstrip(buf);
7635 err = page_counter_memparse(buf, "max", &max);
7636 if (err)
7637 return err;
7638
7639 xchg(&memcg->swap.max, max);
7640
7641 return nbytes;
7642 }
7643
swap_events_show(struct seq_file * m,void * v)7644 static int swap_events_show(struct seq_file *m, void *v)
7645 {
7646 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7647
7648 seq_printf(m, "high %lu\n",
7649 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7650 seq_printf(m, "max %lu\n",
7651 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7652 seq_printf(m, "fail %lu\n",
7653 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7654
7655 return 0;
7656 }
7657
7658 static struct cftype swap_files[] = {
7659 {
7660 .name = "swap.current",
7661 .flags = CFTYPE_NOT_ON_ROOT,
7662 .read_u64 = swap_current_read,
7663 },
7664 {
7665 .name = "swap.high",
7666 .flags = CFTYPE_NOT_ON_ROOT,
7667 .seq_show = swap_high_show,
7668 .write = swap_high_write,
7669 },
7670 {
7671 .name = "swap.max",
7672 .flags = CFTYPE_NOT_ON_ROOT,
7673 .seq_show = swap_max_show,
7674 .write = swap_max_write,
7675 },
7676 {
7677 .name = "swap.events",
7678 .flags = CFTYPE_NOT_ON_ROOT,
7679 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7680 .seq_show = swap_events_show,
7681 },
7682 { } /* terminate */
7683 };
7684
7685 static struct cftype memsw_files[] = {
7686 {
7687 .name = "memsw.usage_in_bytes",
7688 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7689 .read_u64 = mem_cgroup_read_u64,
7690 },
7691 {
7692 .name = "memsw.max_usage_in_bytes",
7693 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7694 .write = mem_cgroup_reset,
7695 .read_u64 = mem_cgroup_read_u64,
7696 },
7697 {
7698 .name = "memsw.limit_in_bytes",
7699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7700 .write = mem_cgroup_write,
7701 .read_u64 = mem_cgroup_read_u64,
7702 },
7703 {
7704 .name = "memsw.failcnt",
7705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7706 .write = mem_cgroup_reset,
7707 .read_u64 = mem_cgroup_read_u64,
7708 },
7709 { }, /* terminate */
7710 };
7711
7712 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7713 /**
7714 * obj_cgroup_may_zswap - check if this cgroup can zswap
7715 * @objcg: the object cgroup
7716 *
7717 * Check if the hierarchical zswap limit has been reached.
7718 *
7719 * This doesn't check for specific headroom, and it is not atomic
7720 * either. But with zswap, the size of the allocation is only known
7721 * once compression has occured, and this optimistic pre-check avoids
7722 * spending cycles on compression when there is already no room left
7723 * or zswap is disabled altogether somewhere in the hierarchy.
7724 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7725 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7726 {
7727 struct mem_cgroup *memcg, *original_memcg;
7728 bool ret = true;
7729
7730 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7731 return true;
7732
7733 original_memcg = get_mem_cgroup_from_objcg(objcg);
7734 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7735 memcg = parent_mem_cgroup(memcg)) {
7736 unsigned long max = READ_ONCE(memcg->zswap_max);
7737 unsigned long pages;
7738
7739 if (max == PAGE_COUNTER_MAX)
7740 continue;
7741 if (max == 0) {
7742 ret = false;
7743 break;
7744 }
7745
7746 cgroup_rstat_flush(memcg->css.cgroup);
7747 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7748 if (pages < max)
7749 continue;
7750 ret = false;
7751 break;
7752 }
7753 mem_cgroup_put(original_memcg);
7754 return ret;
7755 }
7756
7757 /**
7758 * obj_cgroup_charge_zswap - charge compression backend memory
7759 * @objcg: the object cgroup
7760 * @size: size of compressed object
7761 *
7762 * This forces the charge after obj_cgroup_may_swap() allowed
7763 * compression and storage in zwap for this cgroup to go ahead.
7764 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7765 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7766 {
7767 struct mem_cgroup *memcg;
7768
7769 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7770 return;
7771
7772 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7773
7774 /* PF_MEMALLOC context, charging must succeed */
7775 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7776 VM_WARN_ON_ONCE(1);
7777
7778 rcu_read_lock();
7779 memcg = obj_cgroup_memcg(objcg);
7780 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7781 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7782 rcu_read_unlock();
7783 }
7784
7785 /**
7786 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7787 * @objcg: the object cgroup
7788 * @size: size of compressed object
7789 *
7790 * Uncharges zswap memory on page in.
7791 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7792 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7793 {
7794 struct mem_cgroup *memcg;
7795
7796 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7797 return;
7798
7799 obj_cgroup_uncharge(objcg, size);
7800
7801 rcu_read_lock();
7802 memcg = obj_cgroup_memcg(objcg);
7803 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7804 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7805 rcu_read_unlock();
7806 }
7807
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7808 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7809 struct cftype *cft)
7810 {
7811 cgroup_rstat_flush(css->cgroup);
7812 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7813 }
7814
zswap_max_show(struct seq_file * m,void * v)7815 static int zswap_max_show(struct seq_file *m, void *v)
7816 {
7817 return seq_puts_memcg_tunable(m,
7818 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7819 }
7820
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7821 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7822 char *buf, size_t nbytes, loff_t off)
7823 {
7824 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7825 unsigned long max;
7826 int err;
7827
7828 buf = strstrip(buf);
7829 err = page_counter_memparse(buf, "max", &max);
7830 if (err)
7831 return err;
7832
7833 xchg(&memcg->zswap_max, max);
7834
7835 return nbytes;
7836 }
7837
7838 static struct cftype zswap_files[] = {
7839 {
7840 .name = "zswap.current",
7841 .flags = CFTYPE_NOT_ON_ROOT,
7842 .read_u64 = zswap_current_read,
7843 },
7844 {
7845 .name = "zswap.max",
7846 .flags = CFTYPE_NOT_ON_ROOT,
7847 .seq_show = zswap_max_show,
7848 .write = zswap_max_write,
7849 },
7850 { } /* terminate */
7851 };
7852 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7853
mem_cgroup_swap_init(void)7854 static int __init mem_cgroup_swap_init(void)
7855 {
7856 if (mem_cgroup_disabled())
7857 return 0;
7858
7859 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7860 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7861 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7862 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7863 #endif
7864 return 0;
7865 }
7866 subsys_initcall(mem_cgroup_swap_init);
7867
7868 #endif /* CONFIG_SWAP */
7869