1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67 struct delayed_work dwork;
68 u32 next_bucket;
69 u32 avg_timeout;
70 u32 count;
71 u32 start_time;
72 bool exiting;
73 bool early_drop;
74 };
75
76 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 /* serialize hash resizes and nf_ct_iterate_cleanup */
81 static DEFINE_MUTEX(nf_conntrack_mutex);
82
83 #define GC_SCAN_INTERVAL_MAX (60ul * HZ)
84 #define GC_SCAN_INTERVAL_MIN (1ul * HZ)
85
86 /* clamp timeouts to this value (TCP unacked) */
87 #define GC_SCAN_INTERVAL_CLAMP (300ul * HZ)
88
89 /* Initial bias pretending we have 100 entries at the upper bound so we don't
90 * wakeup often just because we have three entries with a 1s timeout while still
91 * allowing non-idle machines to wakeup more often when needed.
92 */
93 #define GC_SCAN_INITIAL_COUNT 100
94 #define GC_SCAN_INTERVAL_INIT GC_SCAN_INTERVAL_MAX
95
96 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
97 #define GC_SCAN_EXPIRED_MAX (64000u / HZ)
98
99 #define MIN_CHAINLEN 50u
100 #define MAX_CHAINLEN (80u - MIN_CHAINLEN)
101
102 static struct conntrack_gc_work conntrack_gc_work;
103
nf_conntrack_lock(spinlock_t * lock)104 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105 {
106 /* 1) Acquire the lock */
107 spin_lock(lock);
108
109 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111 */
112 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113 return;
114
115 /* fast path failed, unlock */
116 spin_unlock(lock);
117
118 /* Slow path 1) get global lock */
119 spin_lock(&nf_conntrack_locks_all_lock);
120
121 /* Slow path 2) get the lock we want */
122 spin_lock(lock);
123
124 /* Slow path 3) release the global lock */
125 spin_unlock(&nf_conntrack_locks_all_lock);
126 }
127 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)129 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130 {
131 h1 %= CONNTRACK_LOCKS;
132 h2 %= CONNTRACK_LOCKS;
133 spin_unlock(&nf_conntrack_locks[h1]);
134 if (h1 != h2)
135 spin_unlock(&nf_conntrack_locks[h2]);
136 }
137
138 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)139 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140 unsigned int h2, unsigned int sequence)
141 {
142 h1 %= CONNTRACK_LOCKS;
143 h2 %= CONNTRACK_LOCKS;
144 if (h1 <= h2) {
145 nf_conntrack_lock(&nf_conntrack_locks[h1]);
146 if (h1 != h2)
147 spin_lock_nested(&nf_conntrack_locks[h2],
148 SINGLE_DEPTH_NESTING);
149 } else {
150 nf_conntrack_lock(&nf_conntrack_locks[h2]);
151 spin_lock_nested(&nf_conntrack_locks[h1],
152 SINGLE_DEPTH_NESTING);
153 }
154 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155 nf_conntrack_double_unlock(h1, h2);
156 return true;
157 }
158 return false;
159 }
160
nf_conntrack_all_lock(void)161 static void nf_conntrack_all_lock(void)
162 __acquires(&nf_conntrack_locks_all_lock)
163 {
164 int i;
165
166 spin_lock(&nf_conntrack_locks_all_lock);
167
168 /* For nf_contrack_locks_all, only the latest time when another
169 * CPU will see an update is controlled, by the "release" of the
170 * spin_lock below.
171 * The earliest time is not controlled, an thus KCSAN could detect
172 * a race when nf_conntract_lock() reads the variable.
173 * WRITE_ONCE() is used to ensure the compiler will not
174 * optimize the write.
175 */
176 WRITE_ONCE(nf_conntrack_locks_all, true);
177
178 for (i = 0; i < CONNTRACK_LOCKS; i++) {
179 spin_lock(&nf_conntrack_locks[i]);
180
181 /* This spin_unlock provides the "release" to ensure that
182 * nf_conntrack_locks_all==true is visible to everyone that
183 * acquired spin_lock(&nf_conntrack_locks[]).
184 */
185 spin_unlock(&nf_conntrack_locks[i]);
186 }
187 }
188
nf_conntrack_all_unlock(void)189 static void nf_conntrack_all_unlock(void)
190 __releases(&nf_conntrack_locks_all_lock)
191 {
192 /* All prior stores must be complete before we clear
193 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194 * might observe the false value but not the entire
195 * critical section.
196 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197 */
198 smp_store_release(&nf_conntrack_locks_all, false);
199 spin_unlock(&nf_conntrack_locks_all_lock);
200 }
201
202 unsigned int nf_conntrack_htable_size __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204
205 unsigned int nf_conntrack_max __read_mostly;
206 EXPORT_SYMBOL_GPL(nf_conntrack_max);
207 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208 static siphash_aligned_key_t nf_conntrack_hash_rnd;
209
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)210 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211 unsigned int zoneid,
212 const struct net *net)
213 {
214 u64 a, b, c, d;
215
216 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217
218 /* The direction must be ignored, handle usable tuplehash members manually */
219 a = (u64)tuple->src.u3.all[0] << 32 | tuple->src.u3.all[3];
220 b = (u64)tuple->dst.u3.all[0] << 32 | tuple->dst.u3.all[3];
221
222 c = (__force u64)tuple->src.u.all << 32 | (__force u64)tuple->dst.u.all << 16;
223 c |= tuple->dst.protonum;
224
225 d = (u64)zoneid << 32 | net_hash_mix(net);
226
227 /* IPv4: u3.all[1,2,3] == 0 */
228 c ^= (u64)tuple->src.u3.all[1] << 32 | tuple->src.u3.all[2];
229 d += (u64)tuple->dst.u3.all[1] << 32 | tuple->dst.u3.all[2];
230
231 return (u32)siphash_4u64(a, b, c, d, &nf_conntrack_hash_rnd);
232 }
233
scale_hash(u32 hash)234 static u32 scale_hash(u32 hash)
235 {
236 return reciprocal_scale(hash, nf_conntrack_htable_size);
237 }
238
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)239 static u32 __hash_conntrack(const struct net *net,
240 const struct nf_conntrack_tuple *tuple,
241 unsigned int zoneid,
242 unsigned int size)
243 {
244 return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
245 }
246
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)247 static u32 hash_conntrack(const struct net *net,
248 const struct nf_conntrack_tuple *tuple,
249 unsigned int zoneid)
250 {
251 return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
252 }
253
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)254 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
255 unsigned int dataoff,
256 struct nf_conntrack_tuple *tuple)
257 { struct {
258 __be16 sport;
259 __be16 dport;
260 } _inet_hdr, *inet_hdr;
261
262 /* Actually only need first 4 bytes to get ports. */
263 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
264 if (!inet_hdr)
265 return false;
266
267 tuple->src.u.udp.port = inet_hdr->sport;
268 tuple->dst.u.udp.port = inet_hdr->dport;
269 return true;
270 }
271
272 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)273 nf_ct_get_tuple(const struct sk_buff *skb,
274 unsigned int nhoff,
275 unsigned int dataoff,
276 u_int16_t l3num,
277 u_int8_t protonum,
278 struct net *net,
279 struct nf_conntrack_tuple *tuple)
280 {
281 unsigned int size;
282 const __be32 *ap;
283 __be32 _addrs[8];
284
285 memset(tuple, 0, sizeof(*tuple));
286
287 tuple->src.l3num = l3num;
288 switch (l3num) {
289 case NFPROTO_IPV4:
290 nhoff += offsetof(struct iphdr, saddr);
291 size = 2 * sizeof(__be32);
292 break;
293 case NFPROTO_IPV6:
294 nhoff += offsetof(struct ipv6hdr, saddr);
295 size = sizeof(_addrs);
296 break;
297 default:
298 return true;
299 }
300
301 ap = skb_header_pointer(skb, nhoff, size, _addrs);
302 if (!ap)
303 return false;
304
305 switch (l3num) {
306 case NFPROTO_IPV4:
307 tuple->src.u3.ip = ap[0];
308 tuple->dst.u3.ip = ap[1];
309 break;
310 case NFPROTO_IPV6:
311 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
312 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
313 break;
314 }
315
316 tuple->dst.protonum = protonum;
317 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
318
319 switch (protonum) {
320 #if IS_ENABLED(CONFIG_IPV6)
321 case IPPROTO_ICMPV6:
322 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
323 #endif
324 case IPPROTO_ICMP:
325 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
326 #ifdef CONFIG_NF_CT_PROTO_GRE
327 case IPPROTO_GRE:
328 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
329 #endif
330 case IPPROTO_TCP:
331 case IPPROTO_UDP:
332 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
333 case IPPROTO_UDPLITE:
334 #endif
335 #ifdef CONFIG_NF_CT_PROTO_SCTP
336 case IPPROTO_SCTP:
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_DCCP
339 case IPPROTO_DCCP:
340 #endif
341 /* fallthrough */
342 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
343 default:
344 break;
345 }
346
347 return true;
348 }
349
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)350 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
351 u_int8_t *protonum)
352 {
353 int dataoff = -1;
354 const struct iphdr *iph;
355 struct iphdr _iph;
356
357 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
358 if (!iph)
359 return -1;
360
361 /* Conntrack defragments packets, we might still see fragments
362 * inside ICMP packets though.
363 */
364 if (iph->frag_off & htons(IP_OFFSET))
365 return -1;
366
367 dataoff = nhoff + (iph->ihl << 2);
368 *protonum = iph->protocol;
369
370 /* Check bogus IP headers */
371 if (dataoff > skb->len) {
372 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
373 nhoff, iph->ihl << 2, skb->len);
374 return -1;
375 }
376 return dataoff;
377 }
378
379 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)380 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
381 u8 *protonum)
382 {
383 int protoff = -1;
384 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
385 __be16 frag_off;
386 u8 nexthdr;
387
388 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
389 &nexthdr, sizeof(nexthdr)) != 0) {
390 pr_debug("can't get nexthdr\n");
391 return -1;
392 }
393 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
394 /*
395 * (protoff == skb->len) means the packet has not data, just
396 * IPv6 and possibly extensions headers, but it is tracked anyway
397 */
398 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
399 pr_debug("can't find proto in pkt\n");
400 return -1;
401 }
402
403 *protonum = nexthdr;
404 return protoff;
405 }
406 #endif
407
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)408 static int get_l4proto(const struct sk_buff *skb,
409 unsigned int nhoff, u8 pf, u8 *l4num)
410 {
411 switch (pf) {
412 case NFPROTO_IPV4:
413 return ipv4_get_l4proto(skb, nhoff, l4num);
414 #if IS_ENABLED(CONFIG_IPV6)
415 case NFPROTO_IPV6:
416 return ipv6_get_l4proto(skb, nhoff, l4num);
417 #endif
418 default:
419 *l4num = 0;
420 break;
421 }
422 return -1;
423 }
424
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)425 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
426 u_int16_t l3num,
427 struct net *net, struct nf_conntrack_tuple *tuple)
428 {
429 u8 protonum;
430 int protoff;
431
432 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
433 if (protoff <= 0)
434 return false;
435
436 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
437 }
438 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
439
440 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)441 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
442 const struct nf_conntrack_tuple *orig)
443 {
444 memset(inverse, 0, sizeof(*inverse));
445
446 inverse->src.l3num = orig->src.l3num;
447
448 switch (orig->src.l3num) {
449 case NFPROTO_IPV4:
450 inverse->src.u3.ip = orig->dst.u3.ip;
451 inverse->dst.u3.ip = orig->src.u3.ip;
452 break;
453 case NFPROTO_IPV6:
454 inverse->src.u3.in6 = orig->dst.u3.in6;
455 inverse->dst.u3.in6 = orig->src.u3.in6;
456 break;
457 default:
458 break;
459 }
460
461 inverse->dst.dir = !orig->dst.dir;
462
463 inverse->dst.protonum = orig->dst.protonum;
464
465 switch (orig->dst.protonum) {
466 case IPPROTO_ICMP:
467 return nf_conntrack_invert_icmp_tuple(inverse, orig);
468 #if IS_ENABLED(CONFIG_IPV6)
469 case IPPROTO_ICMPV6:
470 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
471 #endif
472 }
473
474 inverse->src.u.all = orig->dst.u.all;
475 inverse->dst.u.all = orig->src.u.all;
476 return true;
477 }
478 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
479
480 /* Generate a almost-unique pseudo-id for a given conntrack.
481 *
482 * intentionally doesn't re-use any of the seeds used for hash
483 * table location, we assume id gets exposed to userspace.
484 *
485 * Following nf_conn items do not change throughout lifetime
486 * of the nf_conn:
487 *
488 * 1. nf_conn address
489 * 2. nf_conn->master address (normally NULL)
490 * 3. the associated net namespace
491 * 4. the original direction tuple
492 */
nf_ct_get_id(const struct nf_conn * ct)493 u32 nf_ct_get_id(const struct nf_conn *ct)
494 {
495 static siphash_aligned_key_t ct_id_seed;
496 unsigned long a, b, c, d;
497
498 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
499
500 a = (unsigned long)ct;
501 b = (unsigned long)ct->master;
502 c = (unsigned long)nf_ct_net(ct);
503 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
504 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
505 &ct_id_seed);
506 #ifdef CONFIG_64BIT
507 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
508 #else
509 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
510 #endif
511 }
512 EXPORT_SYMBOL_GPL(nf_ct_get_id);
513
514 static void
clean_from_lists(struct nf_conn * ct)515 clean_from_lists(struct nf_conn *ct)
516 {
517 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
518 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
519
520 /* Destroy all pending expectations */
521 nf_ct_remove_expectations(ct);
522 }
523
524 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
525
526 /* Released via nf_ct_destroy() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)527 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
528 const struct nf_conntrack_zone *zone,
529 gfp_t flags)
530 {
531 struct nf_conn *tmpl, *p;
532
533 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
534 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
535 if (!tmpl)
536 return NULL;
537
538 p = tmpl;
539 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
540 if (tmpl != p) {
541 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
542 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
543 }
544 } else {
545 tmpl = kzalloc(sizeof(*tmpl), flags);
546 if (!tmpl)
547 return NULL;
548 }
549
550 tmpl->status = IPS_TEMPLATE;
551 write_pnet(&tmpl->ct_net, net);
552 nf_ct_zone_add(tmpl, zone);
553 refcount_set(&tmpl->ct_general.use, 1);
554
555 return tmpl;
556 }
557 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
558
nf_ct_tmpl_free(struct nf_conn * tmpl)559 void nf_ct_tmpl_free(struct nf_conn *tmpl)
560 {
561 kfree(tmpl->ext);
562
563 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
564 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
565 else
566 kfree(tmpl);
567 }
568 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
569
destroy_gre_conntrack(struct nf_conn * ct)570 static void destroy_gre_conntrack(struct nf_conn *ct)
571 {
572 #ifdef CONFIG_NF_CT_PROTO_GRE
573 struct nf_conn *master = ct->master;
574
575 if (master)
576 nf_ct_gre_keymap_destroy(master);
577 #endif
578 }
579
nf_ct_destroy(struct nf_conntrack * nfct)580 void nf_ct_destroy(struct nf_conntrack *nfct)
581 {
582 struct nf_conn *ct = (struct nf_conn *)nfct;
583
584 WARN_ON(refcount_read(&nfct->use) != 0);
585
586 if (unlikely(nf_ct_is_template(ct))) {
587 nf_ct_tmpl_free(ct);
588 return;
589 }
590
591 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
592 destroy_gre_conntrack(ct);
593
594 /* Expectations will have been removed in clean_from_lists,
595 * except TFTP can create an expectation on the first packet,
596 * before connection is in the list, so we need to clean here,
597 * too.
598 */
599 nf_ct_remove_expectations(ct);
600
601 if (ct->master)
602 nf_ct_put(ct->master);
603
604 nf_conntrack_free(ct);
605 }
606 EXPORT_SYMBOL(nf_ct_destroy);
607
__nf_ct_delete_from_lists(struct nf_conn * ct)608 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
609 {
610 struct net *net = nf_ct_net(ct);
611 unsigned int hash, reply_hash;
612 unsigned int sequence;
613
614 do {
615 sequence = read_seqcount_begin(&nf_conntrack_generation);
616 hash = hash_conntrack(net,
617 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
618 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
619 reply_hash = hash_conntrack(net,
620 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
621 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
622 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
623
624 clean_from_lists(ct);
625 nf_conntrack_double_unlock(hash, reply_hash);
626 }
627
nf_ct_delete_from_lists(struct nf_conn * ct)628 static void nf_ct_delete_from_lists(struct nf_conn *ct)
629 {
630 nf_ct_helper_destroy(ct);
631 local_bh_disable();
632
633 __nf_ct_delete_from_lists(ct);
634
635 local_bh_enable();
636 }
637
nf_ct_add_to_ecache_list(struct nf_conn * ct)638 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
639 {
640 #ifdef CONFIG_NF_CONNTRACK_EVENTS
641 struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
642
643 spin_lock(&cnet->ecache.dying_lock);
644 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
645 &cnet->ecache.dying_list);
646 spin_unlock(&cnet->ecache.dying_lock);
647 #endif
648 }
649
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)650 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
651 {
652 struct nf_conn_tstamp *tstamp;
653 struct net *net;
654
655 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
656 return false;
657
658 tstamp = nf_conn_tstamp_find(ct);
659 if (tstamp) {
660 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
661
662 tstamp->stop = ktime_get_real_ns();
663 if (timeout < 0)
664 tstamp->stop -= jiffies_to_nsecs(-timeout);
665 }
666
667 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 portid, report) < 0) {
669 /* destroy event was not delivered. nf_ct_put will
670 * be done by event cache worker on redelivery.
671 */
672 nf_ct_helper_destroy(ct);
673 local_bh_disable();
674 __nf_ct_delete_from_lists(ct);
675 nf_ct_add_to_ecache_list(ct);
676 local_bh_enable();
677
678 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
679 return false;
680 }
681
682 net = nf_ct_net(ct);
683 if (nf_conntrack_ecache_dwork_pending(net))
684 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
685 nf_ct_delete_from_lists(ct);
686 nf_ct_put(ct);
687 return true;
688 }
689 EXPORT_SYMBOL_GPL(nf_ct_delete);
690
691 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)692 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
693 const struct nf_conntrack_tuple *tuple,
694 const struct nf_conntrack_zone *zone,
695 const struct net *net)
696 {
697 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
698
699 /* A conntrack can be recreated with the equal tuple,
700 * so we need to check that the conntrack is confirmed
701 */
702 return nf_ct_tuple_equal(tuple, &h->tuple) &&
703 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
704 nf_ct_is_confirmed(ct) &&
705 net_eq(net, nf_ct_net(ct));
706 }
707
708 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)709 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
710 {
711 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
712 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
713 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
714 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
715 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
716 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
717 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
718 }
719
720 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)721 static void nf_ct_gc_expired(struct nf_conn *ct)
722 {
723 if (!refcount_inc_not_zero(&ct->ct_general.use))
724 return;
725
726 /* load ->status after refcount increase */
727 smp_acquire__after_ctrl_dep();
728
729 if (nf_ct_should_gc(ct))
730 nf_ct_kill(ct);
731
732 nf_ct_put(ct);
733 }
734
735 /*
736 * Warning :
737 * - Caller must take a reference on returned object
738 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
739 */
740 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)741 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
742 const struct nf_conntrack_tuple *tuple, u32 hash)
743 {
744 struct nf_conntrack_tuple_hash *h;
745 struct hlist_nulls_head *ct_hash;
746 struct hlist_nulls_node *n;
747 unsigned int bucket, hsize;
748
749 begin:
750 nf_conntrack_get_ht(&ct_hash, &hsize);
751 bucket = reciprocal_scale(hash, hsize);
752
753 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
754 struct nf_conn *ct;
755
756 ct = nf_ct_tuplehash_to_ctrack(h);
757 if (nf_ct_is_expired(ct)) {
758 nf_ct_gc_expired(ct);
759 continue;
760 }
761
762 if (nf_ct_key_equal(h, tuple, zone, net))
763 return h;
764 }
765 /*
766 * if the nulls value we got at the end of this lookup is
767 * not the expected one, we must restart lookup.
768 * We probably met an item that was moved to another chain.
769 */
770 if (get_nulls_value(n) != bucket) {
771 NF_CT_STAT_INC_ATOMIC(net, search_restart);
772 goto begin;
773 }
774
775 return NULL;
776 }
777
778 /* Find a connection corresponding to a tuple. */
779 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)780 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
781 const struct nf_conntrack_tuple *tuple, u32 hash)
782 {
783 struct nf_conntrack_tuple_hash *h;
784 struct nf_conn *ct;
785
786 h = ____nf_conntrack_find(net, zone, tuple, hash);
787 if (h) {
788 /* We have a candidate that matches the tuple we're interested
789 * in, try to obtain a reference and re-check tuple
790 */
791 ct = nf_ct_tuplehash_to_ctrack(h);
792 if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
793 /* re-check key after refcount */
794 smp_acquire__after_ctrl_dep();
795
796 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
797 return h;
798
799 /* TYPESAFE_BY_RCU recycled the candidate */
800 nf_ct_put(ct);
801 }
802
803 h = NULL;
804 }
805
806 return h;
807 }
808
809 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)810 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
811 const struct nf_conntrack_tuple *tuple)
812 {
813 unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
814 struct nf_conntrack_tuple_hash *thash;
815
816 rcu_read_lock();
817
818 thash = __nf_conntrack_find_get(net, zone, tuple,
819 hash_conntrack_raw(tuple, zone_id, net));
820
821 if (thash)
822 goto out_unlock;
823
824 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
825 if (rid != zone_id)
826 thash = __nf_conntrack_find_get(net, zone, tuple,
827 hash_conntrack_raw(tuple, rid, net));
828
829 out_unlock:
830 rcu_read_unlock();
831 return thash;
832 }
833 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
834
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)835 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
836 unsigned int hash,
837 unsigned int reply_hash)
838 {
839 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
840 &nf_conntrack_hash[hash]);
841 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
842 &nf_conntrack_hash[reply_hash]);
843 }
844
nf_ct_ext_valid_pre(const struct nf_ct_ext * ext)845 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
846 {
847 /* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
848 * may contain stale pointers to e.g. helper that has been removed.
849 *
850 * The helper can't clear this because the nf_conn object isn't in
851 * any hash and synchronize_rcu() isn't enough because associated skb
852 * might sit in a queue.
853 */
854 return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
855 }
856
nf_ct_ext_valid_post(struct nf_ct_ext * ext)857 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
858 {
859 if (!ext)
860 return true;
861
862 if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
863 return false;
864
865 /* inserted into conntrack table, nf_ct_iterate_cleanup()
866 * will find it. Disable nf_ct_ext_find() id check.
867 */
868 WRITE_ONCE(ext->gen_id, 0);
869 return true;
870 }
871
872 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)873 nf_conntrack_hash_check_insert(struct nf_conn *ct)
874 {
875 const struct nf_conntrack_zone *zone;
876 struct net *net = nf_ct_net(ct);
877 unsigned int hash, reply_hash;
878 struct nf_conntrack_tuple_hash *h;
879 struct hlist_nulls_node *n;
880 unsigned int max_chainlen;
881 unsigned int chainlen = 0;
882 unsigned int sequence;
883 int err = -EEXIST;
884
885 zone = nf_ct_zone(ct);
886
887 if (!nf_ct_ext_valid_pre(ct->ext))
888 return -EAGAIN;
889
890 local_bh_disable();
891 do {
892 sequence = read_seqcount_begin(&nf_conntrack_generation);
893 hash = hash_conntrack(net,
894 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
895 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
896 reply_hash = hash_conntrack(net,
897 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
898 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
899 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
900
901 max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
902
903 /* See if there's one in the list already, including reverse */
904 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
905 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
906 zone, net))
907 goto out;
908
909 if (chainlen++ > max_chainlen)
910 goto chaintoolong;
911 }
912
913 chainlen = 0;
914
915 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
916 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
917 zone, net))
918 goto out;
919 if (chainlen++ > max_chainlen)
920 goto chaintoolong;
921 }
922
923 /* If genid has changed, we can't insert anymore because ct
924 * extensions could have stale pointers and nf_ct_iterate_destroy
925 * might have completed its table scan already.
926 *
927 * Increment of the ext genid right after this check is fine:
928 * nf_ct_iterate_destroy blocks until locks are released.
929 */
930 if (!nf_ct_ext_valid_post(ct->ext)) {
931 err = -EAGAIN;
932 goto out;
933 }
934
935 ct->status |= IPS_CONFIRMED;
936 smp_wmb();
937 /* The caller holds a reference to this object */
938 refcount_set(&ct->ct_general.use, 2);
939 __nf_conntrack_hash_insert(ct, hash, reply_hash);
940 nf_conntrack_double_unlock(hash, reply_hash);
941 NF_CT_STAT_INC(net, insert);
942 local_bh_enable();
943
944 return 0;
945 chaintoolong:
946 NF_CT_STAT_INC(net, chaintoolong);
947 err = -ENOSPC;
948 out:
949 nf_conntrack_double_unlock(hash, reply_hash);
950 local_bh_enable();
951 return err;
952 }
953 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
954
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)955 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
956 unsigned int bytes)
957 {
958 struct nf_conn_acct *acct;
959
960 acct = nf_conn_acct_find(ct);
961 if (acct) {
962 struct nf_conn_counter *counter = acct->counter;
963
964 atomic64_add(packets, &counter[dir].packets);
965 atomic64_add(bytes, &counter[dir].bytes);
966 }
967 }
968 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
969
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)970 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
971 const struct nf_conn *loser_ct)
972 {
973 struct nf_conn_acct *acct;
974
975 acct = nf_conn_acct_find(loser_ct);
976 if (acct) {
977 struct nf_conn_counter *counter = acct->counter;
978 unsigned int bytes;
979
980 /* u32 should be fine since we must have seen one packet. */
981 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
982 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
983 }
984 }
985
__nf_conntrack_insert_prepare(struct nf_conn * ct)986 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
987 {
988 struct nf_conn_tstamp *tstamp;
989
990 refcount_inc(&ct->ct_general.use);
991
992 /* set conntrack timestamp, if enabled. */
993 tstamp = nf_conn_tstamp_find(ct);
994 if (tstamp)
995 tstamp->start = ktime_get_real_ns();
996 }
997
998 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)999 static int __nf_ct_resolve_clash(struct sk_buff *skb,
1000 struct nf_conntrack_tuple_hash *h)
1001 {
1002 /* This is the conntrack entry already in hashes that won race. */
1003 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1004 enum ip_conntrack_info ctinfo;
1005 struct nf_conn *loser_ct;
1006
1007 loser_ct = nf_ct_get(skb, &ctinfo);
1008
1009 if (nf_ct_is_dying(ct))
1010 return NF_DROP;
1011
1012 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1013 nf_ct_match(ct, loser_ct)) {
1014 struct net *net = nf_ct_net(ct);
1015
1016 nf_conntrack_get(&ct->ct_general);
1017
1018 nf_ct_acct_merge(ct, ctinfo, loser_ct);
1019 nf_ct_put(loser_ct);
1020 nf_ct_set(skb, ct, ctinfo);
1021
1022 NF_CT_STAT_INC(net, clash_resolve);
1023 return NF_ACCEPT;
1024 }
1025
1026 return NF_DROP;
1027 }
1028
1029 /**
1030 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1031 *
1032 * @skb: skb that causes the collision
1033 * @repl_idx: hash slot for reply direction
1034 *
1035 * Called when origin or reply direction had a clash.
1036 * The skb can be handled without packet drop provided the reply direction
1037 * is unique or there the existing entry has the identical tuple in both
1038 * directions.
1039 *
1040 * Caller must hold conntrack table locks to prevent concurrent updates.
1041 *
1042 * Returns NF_DROP if the clash could not be handled.
1043 */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1044 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1045 {
1046 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1047 const struct nf_conntrack_zone *zone;
1048 struct nf_conntrack_tuple_hash *h;
1049 struct hlist_nulls_node *n;
1050 struct net *net;
1051
1052 zone = nf_ct_zone(loser_ct);
1053 net = nf_ct_net(loser_ct);
1054
1055 /* Reply direction must never result in a clash, unless both origin
1056 * and reply tuples are identical.
1057 */
1058 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1059 if (nf_ct_key_equal(h,
1060 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1061 zone, net))
1062 return __nf_ct_resolve_clash(skb, h);
1063 }
1064
1065 /* We want the clashing entry to go away real soon: 1 second timeout. */
1066 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1067
1068 /* IPS_NAT_CLASH removes the entry automatically on the first
1069 * reply. Also prevents UDP tracker from moving the entry to
1070 * ASSURED state, i.e. the entry can always be evicted under
1071 * pressure.
1072 */
1073 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1074
1075 __nf_conntrack_insert_prepare(loser_ct);
1076
1077 /* fake add for ORIGINAL dir: we want lookups to only find the entry
1078 * already in the table. This also hides the clashing entry from
1079 * ctnetlink iteration, i.e. conntrack -L won't show them.
1080 */
1081 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1082
1083 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1084 &nf_conntrack_hash[repl_idx]);
1085
1086 NF_CT_STAT_INC(net, clash_resolve);
1087 return NF_ACCEPT;
1088 }
1089
1090 /**
1091 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1092 *
1093 * @skb: skb that causes the clash
1094 * @h: tuplehash of the clashing entry already in table
1095 * @reply_hash: hash slot for reply direction
1096 *
1097 * A conntrack entry can be inserted to the connection tracking table
1098 * if there is no existing entry with an identical tuple.
1099 *
1100 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1101 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1102 * will find the already-existing entry.
1103 *
1104 * The major problem with such packet drop is the extra delay added by
1105 * the packet loss -- it will take some time for a retransmit to occur
1106 * (or the sender to time out when waiting for a reply).
1107 *
1108 * This function attempts to handle the situation without packet drop.
1109 *
1110 * If @skb has no NAT transformation or if the colliding entries are
1111 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1112 * and @skb is associated with the conntrack entry already in the table.
1113 *
1114 * Failing that, the new, unconfirmed conntrack is still added to the table
1115 * provided that the collision only occurs in the ORIGINAL direction.
1116 * The new entry will be added only in the non-clashing REPLY direction,
1117 * so packets in the ORIGINAL direction will continue to match the existing
1118 * entry. The new entry will also have a fixed timeout so it expires --
1119 * due to the collision, it will only see reply traffic.
1120 *
1121 * Returns NF_DROP if the clash could not be resolved.
1122 */
1123 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1124 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1125 u32 reply_hash)
1126 {
1127 /* This is the conntrack entry already in hashes that won race. */
1128 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1129 const struct nf_conntrack_l4proto *l4proto;
1130 enum ip_conntrack_info ctinfo;
1131 struct nf_conn *loser_ct;
1132 struct net *net;
1133 int ret;
1134
1135 loser_ct = nf_ct_get(skb, &ctinfo);
1136 net = nf_ct_net(loser_ct);
1137
1138 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1139 if (!l4proto->allow_clash)
1140 goto drop;
1141
1142 ret = __nf_ct_resolve_clash(skb, h);
1143 if (ret == NF_ACCEPT)
1144 return ret;
1145
1146 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1147 if (ret == NF_ACCEPT)
1148 return ret;
1149
1150 drop:
1151 NF_CT_STAT_INC(net, drop);
1152 NF_CT_STAT_INC(net, insert_failed);
1153 return NF_DROP;
1154 }
1155
1156 /* Confirm a connection given skb; places it in hash table */
1157 int
__nf_conntrack_confirm(struct sk_buff * skb)1158 __nf_conntrack_confirm(struct sk_buff *skb)
1159 {
1160 unsigned int chainlen = 0, sequence, max_chainlen;
1161 const struct nf_conntrack_zone *zone;
1162 unsigned int hash, reply_hash;
1163 struct nf_conntrack_tuple_hash *h;
1164 struct nf_conn *ct;
1165 struct nf_conn_help *help;
1166 struct hlist_nulls_node *n;
1167 enum ip_conntrack_info ctinfo;
1168 struct net *net;
1169 int ret = NF_DROP;
1170
1171 ct = nf_ct_get(skb, &ctinfo);
1172 net = nf_ct_net(ct);
1173
1174 /* ipt_REJECT uses nf_conntrack_attach to attach related
1175 ICMP/TCP RST packets in other direction. Actual packet
1176 which created connection will be IP_CT_NEW or for an
1177 expected connection, IP_CT_RELATED. */
1178 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1179 return NF_ACCEPT;
1180
1181 zone = nf_ct_zone(ct);
1182 local_bh_disable();
1183
1184 do {
1185 sequence = read_seqcount_begin(&nf_conntrack_generation);
1186 /* reuse the hash saved before */
1187 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1188 hash = scale_hash(hash);
1189 reply_hash = hash_conntrack(net,
1190 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1191 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1192 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1193
1194 /* We're not in hash table, and we refuse to set up related
1195 * connections for unconfirmed conns. But packet copies and
1196 * REJECT will give spurious warnings here.
1197 */
1198
1199 /* Another skb with the same unconfirmed conntrack may
1200 * win the race. This may happen for bridge(br_flood)
1201 * or broadcast/multicast packets do skb_clone with
1202 * unconfirmed conntrack.
1203 */
1204 if (unlikely(nf_ct_is_confirmed(ct))) {
1205 WARN_ON_ONCE(1);
1206 nf_conntrack_double_unlock(hash, reply_hash);
1207 local_bh_enable();
1208 return NF_DROP;
1209 }
1210
1211 if (!nf_ct_ext_valid_pre(ct->ext)) {
1212 NF_CT_STAT_INC(net, insert_failed);
1213 goto dying;
1214 }
1215
1216 /* We have to check the DYING flag after unlink to prevent
1217 * a race against nf_ct_get_next_corpse() possibly called from
1218 * user context, else we insert an already 'dead' hash, blocking
1219 * further use of that particular connection -JM.
1220 */
1221 ct->status |= IPS_CONFIRMED;
1222
1223 if (unlikely(nf_ct_is_dying(ct))) {
1224 NF_CT_STAT_INC(net, insert_failed);
1225 goto dying;
1226 }
1227
1228 max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1229 /* See if there's one in the list already, including reverse:
1230 NAT could have grabbed it without realizing, since we're
1231 not in the hash. If there is, we lost race. */
1232 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1233 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1234 zone, net))
1235 goto out;
1236 if (chainlen++ > max_chainlen)
1237 goto chaintoolong;
1238 }
1239
1240 chainlen = 0;
1241 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1242 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1243 zone, net))
1244 goto out;
1245 if (chainlen++ > max_chainlen) {
1246 chaintoolong:
1247 NF_CT_STAT_INC(net, chaintoolong);
1248 NF_CT_STAT_INC(net, insert_failed);
1249 ret = NF_DROP;
1250 goto dying;
1251 }
1252 }
1253
1254 /* Timer relative to confirmation time, not original
1255 setting time, otherwise we'd get timer wrap in
1256 weird delay cases. */
1257 ct->timeout += nfct_time_stamp;
1258
1259 __nf_conntrack_insert_prepare(ct);
1260
1261 /* Since the lookup is lockless, hash insertion must be done after
1262 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1263 * guarantee that no other CPU can find the conntrack before the above
1264 * stores are visible.
1265 */
1266 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1267 nf_conntrack_double_unlock(hash, reply_hash);
1268 local_bh_enable();
1269
1270 /* ext area is still valid (rcu read lock is held,
1271 * but will go out of scope soon, we need to remove
1272 * this conntrack again.
1273 */
1274 if (!nf_ct_ext_valid_post(ct->ext)) {
1275 nf_ct_kill(ct);
1276 NF_CT_STAT_INC_ATOMIC(net, drop);
1277 return NF_DROP;
1278 }
1279
1280 help = nfct_help(ct);
1281 if (help && help->helper)
1282 nf_conntrack_event_cache(IPCT_HELPER, ct);
1283
1284 nf_conntrack_event_cache(master_ct(ct) ?
1285 IPCT_RELATED : IPCT_NEW, ct);
1286 return NF_ACCEPT;
1287
1288 out:
1289 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1290 dying:
1291 nf_conntrack_double_unlock(hash, reply_hash);
1292 local_bh_enable();
1293 return ret;
1294 }
1295 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1296
1297 /* Returns true if a connection correspondings to the tuple (required
1298 for NAT). */
1299 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1300 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1301 const struct nf_conn *ignored_conntrack)
1302 {
1303 struct net *net = nf_ct_net(ignored_conntrack);
1304 const struct nf_conntrack_zone *zone;
1305 struct nf_conntrack_tuple_hash *h;
1306 struct hlist_nulls_head *ct_hash;
1307 unsigned int hash, hsize;
1308 struct hlist_nulls_node *n;
1309 struct nf_conn *ct;
1310
1311 zone = nf_ct_zone(ignored_conntrack);
1312
1313 rcu_read_lock();
1314 begin:
1315 nf_conntrack_get_ht(&ct_hash, &hsize);
1316 hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1317
1318 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1319 ct = nf_ct_tuplehash_to_ctrack(h);
1320
1321 if (ct == ignored_conntrack)
1322 continue;
1323
1324 if (nf_ct_is_expired(ct)) {
1325 nf_ct_gc_expired(ct);
1326 continue;
1327 }
1328
1329 if (nf_ct_key_equal(h, tuple, zone, net)) {
1330 /* Tuple is taken already, so caller will need to find
1331 * a new source port to use.
1332 *
1333 * Only exception:
1334 * If the *original tuples* are identical, then both
1335 * conntracks refer to the same flow.
1336 * This is a rare situation, it can occur e.g. when
1337 * more than one UDP packet is sent from same socket
1338 * in different threads.
1339 *
1340 * Let nf_ct_resolve_clash() deal with this later.
1341 */
1342 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1343 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1344 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1345 continue;
1346
1347 NF_CT_STAT_INC_ATOMIC(net, found);
1348 rcu_read_unlock();
1349 return 1;
1350 }
1351 }
1352
1353 if (get_nulls_value(n) != hash) {
1354 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1355 goto begin;
1356 }
1357
1358 rcu_read_unlock();
1359
1360 return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1363
1364 #define NF_CT_EVICTION_RANGE 8
1365
1366 /* There's a small race here where we may free a just-assured
1367 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1368 static unsigned int early_drop_list(struct net *net,
1369 struct hlist_nulls_head *head)
1370 {
1371 struct nf_conntrack_tuple_hash *h;
1372 struct hlist_nulls_node *n;
1373 unsigned int drops = 0;
1374 struct nf_conn *tmp;
1375
1376 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1377 tmp = nf_ct_tuplehash_to_ctrack(h);
1378
1379 if (nf_ct_is_expired(tmp)) {
1380 nf_ct_gc_expired(tmp);
1381 continue;
1382 }
1383
1384 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1385 !net_eq(nf_ct_net(tmp), net) ||
1386 nf_ct_is_dying(tmp))
1387 continue;
1388
1389 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1390 continue;
1391
1392 /* load ->ct_net and ->status after refcount increase */
1393 smp_acquire__after_ctrl_dep();
1394
1395 /* kill only if still in same netns -- might have moved due to
1396 * SLAB_TYPESAFE_BY_RCU rules.
1397 *
1398 * We steal the timer reference. If that fails timer has
1399 * already fired or someone else deleted it. Just drop ref
1400 * and move to next entry.
1401 */
1402 if (net_eq(nf_ct_net(tmp), net) &&
1403 nf_ct_is_confirmed(tmp) &&
1404 nf_ct_delete(tmp, 0, 0))
1405 drops++;
1406
1407 nf_ct_put(tmp);
1408 }
1409
1410 return drops;
1411 }
1412
early_drop(struct net * net,unsigned int hash)1413 static noinline int early_drop(struct net *net, unsigned int hash)
1414 {
1415 unsigned int i, bucket;
1416
1417 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1418 struct hlist_nulls_head *ct_hash;
1419 unsigned int hsize, drops;
1420
1421 rcu_read_lock();
1422 nf_conntrack_get_ht(&ct_hash, &hsize);
1423 if (!i)
1424 bucket = reciprocal_scale(hash, hsize);
1425 else
1426 bucket = (bucket + 1) % hsize;
1427
1428 drops = early_drop_list(net, &ct_hash[bucket]);
1429 rcu_read_unlock();
1430
1431 if (drops) {
1432 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1433 return true;
1434 }
1435 }
1436
1437 return false;
1438 }
1439
gc_worker_skip_ct(const struct nf_conn * ct)1440 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1441 {
1442 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1443 }
1444
gc_worker_can_early_drop(const struct nf_conn * ct)1445 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1446 {
1447 const struct nf_conntrack_l4proto *l4proto;
1448 u8 protonum = nf_ct_protonum(ct);
1449
1450 if (test_bit(IPS_OFFLOAD_BIT, &ct->status) && protonum != IPPROTO_UDP)
1451 return false;
1452 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1453 return true;
1454
1455 l4proto = nf_ct_l4proto_find(protonum);
1456 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1457 return true;
1458
1459 return false;
1460 }
1461
gc_worker(struct work_struct * work)1462 static void gc_worker(struct work_struct *work)
1463 {
1464 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1465 u32 end_time, start_time = nfct_time_stamp;
1466 struct conntrack_gc_work *gc_work;
1467 unsigned int expired_count = 0;
1468 unsigned long next_run;
1469 s32 delta_time;
1470 long count;
1471
1472 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1473
1474 i = gc_work->next_bucket;
1475 if (gc_work->early_drop)
1476 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1477
1478 if (i == 0) {
1479 gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1480 gc_work->count = GC_SCAN_INITIAL_COUNT;
1481 gc_work->start_time = start_time;
1482 }
1483
1484 next_run = gc_work->avg_timeout;
1485 count = gc_work->count;
1486
1487 end_time = start_time + GC_SCAN_MAX_DURATION;
1488
1489 do {
1490 struct nf_conntrack_tuple_hash *h;
1491 struct hlist_nulls_head *ct_hash;
1492 struct hlist_nulls_node *n;
1493 struct nf_conn *tmp;
1494
1495 rcu_read_lock();
1496
1497 nf_conntrack_get_ht(&ct_hash, &hashsz);
1498 if (i >= hashsz) {
1499 rcu_read_unlock();
1500 break;
1501 }
1502
1503 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1504 struct nf_conntrack_net *cnet;
1505 struct net *net;
1506 long expires;
1507
1508 tmp = nf_ct_tuplehash_to_ctrack(h);
1509
1510 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1511 nf_ct_offload_timeout(tmp);
1512 if (!nf_conntrack_max95)
1513 continue;
1514 }
1515
1516 if (expired_count > GC_SCAN_EXPIRED_MAX) {
1517 rcu_read_unlock();
1518
1519 gc_work->next_bucket = i;
1520 gc_work->avg_timeout = next_run;
1521 gc_work->count = count;
1522
1523 delta_time = nfct_time_stamp - gc_work->start_time;
1524
1525 /* re-sched immediately if total cycle time is exceeded */
1526 next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1527 goto early_exit;
1528 }
1529
1530 if (nf_ct_is_expired(tmp)) {
1531 nf_ct_gc_expired(tmp);
1532 expired_count++;
1533 continue;
1534 }
1535
1536 expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1537 expires = (expires - (long)next_run) / ++count;
1538 next_run += expires;
1539
1540 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1541 continue;
1542
1543 net = nf_ct_net(tmp);
1544 cnet = nf_ct_pernet(net);
1545 if (atomic_read(&cnet->count) < nf_conntrack_max95)
1546 continue;
1547
1548 /* need to take reference to avoid possible races */
1549 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1550 continue;
1551
1552 /* load ->status after refcount increase */
1553 smp_acquire__after_ctrl_dep();
1554
1555 if (gc_worker_skip_ct(tmp)) {
1556 nf_ct_put(tmp);
1557 continue;
1558 }
1559
1560 if (gc_worker_can_early_drop(tmp)) {
1561 nf_ct_kill(tmp);
1562 expired_count++;
1563 }
1564
1565 nf_ct_put(tmp);
1566 }
1567
1568 /* could check get_nulls_value() here and restart if ct
1569 * was moved to another chain. But given gc is best-effort
1570 * we will just continue with next hash slot.
1571 */
1572 rcu_read_unlock();
1573 cond_resched();
1574 i++;
1575
1576 delta_time = nfct_time_stamp - end_time;
1577 if (delta_time > 0 && i < hashsz) {
1578 gc_work->avg_timeout = next_run;
1579 gc_work->count = count;
1580 gc_work->next_bucket = i;
1581 next_run = 0;
1582 goto early_exit;
1583 }
1584 } while (i < hashsz);
1585
1586 gc_work->next_bucket = 0;
1587
1588 next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1589
1590 delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1591 if (next_run > (unsigned long)delta_time)
1592 next_run -= delta_time;
1593 else
1594 next_run = 1;
1595
1596 early_exit:
1597 if (gc_work->exiting)
1598 return;
1599
1600 if (next_run)
1601 gc_work->early_drop = false;
1602
1603 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1604 }
1605
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1606 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1607 {
1608 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1609 gc_work->exiting = false;
1610 }
1611
1612 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1613 __nf_conntrack_alloc(struct net *net,
1614 const struct nf_conntrack_zone *zone,
1615 const struct nf_conntrack_tuple *orig,
1616 const struct nf_conntrack_tuple *repl,
1617 gfp_t gfp, u32 hash)
1618 {
1619 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1620 unsigned int ct_count;
1621 struct nf_conn *ct;
1622
1623 /* We don't want any race condition at early drop stage */
1624 ct_count = atomic_inc_return(&cnet->count);
1625
1626 if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1627 if (!early_drop(net, hash)) {
1628 if (!conntrack_gc_work.early_drop)
1629 conntrack_gc_work.early_drop = true;
1630 atomic_dec(&cnet->count);
1631 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1632 return ERR_PTR(-ENOMEM);
1633 }
1634 }
1635
1636 /*
1637 * Do not use kmem_cache_zalloc(), as this cache uses
1638 * SLAB_TYPESAFE_BY_RCU.
1639 */
1640 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1641 if (ct == NULL)
1642 goto out;
1643
1644 spin_lock_init(&ct->lock);
1645 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1646 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1647 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1648 /* save hash for reusing when confirming */
1649 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1650 ct->status = 0;
1651 WRITE_ONCE(ct->timeout, 0);
1652 write_pnet(&ct->ct_net, net);
1653 memset_after(ct, 0, __nfct_init_offset);
1654
1655 nf_ct_zone_add(ct, zone);
1656
1657 /* Because we use RCU lookups, we set ct_general.use to zero before
1658 * this is inserted in any list.
1659 */
1660 refcount_set(&ct->ct_general.use, 0);
1661 return ct;
1662 out:
1663 atomic_dec(&cnet->count);
1664 return ERR_PTR(-ENOMEM);
1665 }
1666
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1667 struct nf_conn *nf_conntrack_alloc(struct net *net,
1668 const struct nf_conntrack_zone *zone,
1669 const struct nf_conntrack_tuple *orig,
1670 const struct nf_conntrack_tuple *repl,
1671 gfp_t gfp)
1672 {
1673 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1674 }
1675 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1676
nf_conntrack_free(struct nf_conn * ct)1677 void nf_conntrack_free(struct nf_conn *ct)
1678 {
1679 struct net *net = nf_ct_net(ct);
1680 struct nf_conntrack_net *cnet;
1681
1682 /* A freed object has refcnt == 0, that's
1683 * the golden rule for SLAB_TYPESAFE_BY_RCU
1684 */
1685 WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1686
1687 if (ct->status & IPS_SRC_NAT_DONE) {
1688 const struct nf_nat_hook *nat_hook;
1689
1690 rcu_read_lock();
1691 nat_hook = rcu_dereference(nf_nat_hook);
1692 if (nat_hook)
1693 nat_hook->remove_nat_bysrc(ct);
1694 rcu_read_unlock();
1695 }
1696
1697 kfree(ct->ext);
1698 kmem_cache_free(nf_conntrack_cachep, ct);
1699 cnet = nf_ct_pernet(net);
1700
1701 smp_mb__before_atomic();
1702 atomic_dec(&cnet->count);
1703 }
1704 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1705
1706
1707 /* Allocate a new conntrack: we return -ENOMEM if classification
1708 failed due to stress. Otherwise it really is unclassifiable. */
1709 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1710 init_conntrack(struct net *net, struct nf_conn *tmpl,
1711 const struct nf_conntrack_tuple *tuple,
1712 struct sk_buff *skb,
1713 unsigned int dataoff, u32 hash)
1714 {
1715 struct nf_conn *ct;
1716 struct nf_conn_help *help;
1717 struct nf_conntrack_tuple repl_tuple;
1718 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1719 struct nf_conntrack_ecache *ecache;
1720 #endif
1721 struct nf_conntrack_expect *exp = NULL;
1722 const struct nf_conntrack_zone *zone;
1723 struct nf_conn_timeout *timeout_ext;
1724 struct nf_conntrack_zone tmp;
1725 struct nf_conntrack_net *cnet;
1726
1727 if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1728 return NULL;
1729
1730 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1731 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1732 hash);
1733 if (IS_ERR(ct))
1734 return (struct nf_conntrack_tuple_hash *)ct;
1735
1736 if (!nf_ct_add_synproxy(ct, tmpl)) {
1737 nf_conntrack_free(ct);
1738 return ERR_PTR(-ENOMEM);
1739 }
1740
1741 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1742
1743 if (timeout_ext)
1744 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1745 GFP_ATOMIC);
1746
1747 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1748 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1749 nf_ct_labels_ext_add(ct);
1750
1751 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1752 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1753
1754 if ((ecache || net->ct.sysctl_events) &&
1755 !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1756 ecache ? ecache->expmask : 0,
1757 GFP_ATOMIC)) {
1758 nf_conntrack_free(ct);
1759 return ERR_PTR(-ENOMEM);
1760 }
1761 #endif
1762
1763 cnet = nf_ct_pernet(net);
1764 if (cnet->expect_count) {
1765 spin_lock_bh(&nf_conntrack_expect_lock);
1766 exp = nf_ct_find_expectation(net, zone, tuple);
1767 if (exp) {
1768 /* Welcome, Mr. Bond. We've been expecting you... */
1769 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1770 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1771 ct->master = exp->master;
1772 if (exp->helper) {
1773 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1774 if (help)
1775 rcu_assign_pointer(help->helper, exp->helper);
1776 }
1777
1778 #ifdef CONFIG_NF_CONNTRACK_MARK
1779 ct->mark = READ_ONCE(exp->master->mark);
1780 #endif
1781 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1782 ct->secmark = exp->master->secmark;
1783 #endif
1784 NF_CT_STAT_INC(net, expect_new);
1785 }
1786 spin_unlock_bh(&nf_conntrack_expect_lock);
1787 }
1788 if (!exp && tmpl)
1789 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1790
1791 /* Other CPU might have obtained a pointer to this object before it was
1792 * released. Because refcount is 0, refcount_inc_not_zero() will fail.
1793 *
1794 * After refcount_set(1) it will succeed; ensure that zeroing of
1795 * ct->status and the correct ct->net pointer are visible; else other
1796 * core might observe CONFIRMED bit which means the entry is valid and
1797 * in the hash table, but its not (anymore).
1798 */
1799 smp_wmb();
1800
1801 /* Now it is going to be associated with an sk_buff, set refcount to 1. */
1802 refcount_set(&ct->ct_general.use, 1);
1803
1804 if (exp) {
1805 if (exp->expectfn)
1806 exp->expectfn(ct, exp);
1807 nf_ct_expect_put(exp);
1808 }
1809
1810 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1811 }
1812
1813 /* On success, returns 0, sets skb->_nfct | ctinfo */
1814 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1815 resolve_normal_ct(struct nf_conn *tmpl,
1816 struct sk_buff *skb,
1817 unsigned int dataoff,
1818 u_int8_t protonum,
1819 const struct nf_hook_state *state)
1820 {
1821 const struct nf_conntrack_zone *zone;
1822 struct nf_conntrack_tuple tuple;
1823 struct nf_conntrack_tuple_hash *h;
1824 enum ip_conntrack_info ctinfo;
1825 struct nf_conntrack_zone tmp;
1826 u32 hash, zone_id, rid;
1827 struct nf_conn *ct;
1828
1829 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1830 dataoff, state->pf, protonum, state->net,
1831 &tuple))
1832 return 0;
1833
1834 /* look for tuple match */
1835 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1836
1837 zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1838 hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1839 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1840
1841 if (!h) {
1842 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1843 if (zone_id != rid) {
1844 u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1845
1846 h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1847 }
1848 }
1849
1850 if (!h) {
1851 h = init_conntrack(state->net, tmpl, &tuple,
1852 skb, dataoff, hash);
1853 if (!h)
1854 return 0;
1855 if (IS_ERR(h))
1856 return PTR_ERR(h);
1857 }
1858 ct = nf_ct_tuplehash_to_ctrack(h);
1859
1860 /* It exists; we have (non-exclusive) reference. */
1861 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1862 ctinfo = IP_CT_ESTABLISHED_REPLY;
1863 } else {
1864 unsigned long status = READ_ONCE(ct->status);
1865
1866 /* Once we've had two way comms, always ESTABLISHED. */
1867 if (likely(status & IPS_SEEN_REPLY))
1868 ctinfo = IP_CT_ESTABLISHED;
1869 else if (status & IPS_EXPECTED)
1870 ctinfo = IP_CT_RELATED;
1871 else
1872 ctinfo = IP_CT_NEW;
1873 }
1874 nf_ct_set(skb, ct, ctinfo);
1875 return 0;
1876 }
1877
1878 /*
1879 * icmp packets need special treatment to handle error messages that are
1880 * related to a connection.
1881 *
1882 * Callers need to check if skb has a conntrack assigned when this
1883 * helper returns; in such case skb belongs to an already known connection.
1884 */
1885 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1886 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1887 struct sk_buff *skb,
1888 unsigned int dataoff,
1889 u8 protonum,
1890 const struct nf_hook_state *state)
1891 {
1892 int ret;
1893
1894 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1895 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1896 #if IS_ENABLED(CONFIG_IPV6)
1897 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1898 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1899 #endif
1900 else
1901 return NF_ACCEPT;
1902
1903 if (ret <= 0)
1904 NF_CT_STAT_INC_ATOMIC(state->net, error);
1905
1906 return ret;
1907 }
1908
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1909 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1910 enum ip_conntrack_info ctinfo)
1911 {
1912 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1913
1914 if (!timeout)
1915 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1916
1917 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1918 return NF_ACCEPT;
1919 }
1920
1921 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1922 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1923 struct sk_buff *skb,
1924 unsigned int dataoff,
1925 enum ip_conntrack_info ctinfo,
1926 const struct nf_hook_state *state)
1927 {
1928 switch (nf_ct_protonum(ct)) {
1929 case IPPROTO_TCP:
1930 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1931 ctinfo, state);
1932 case IPPROTO_UDP:
1933 return nf_conntrack_udp_packet(ct, skb, dataoff,
1934 ctinfo, state);
1935 case IPPROTO_ICMP:
1936 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1937 #if IS_ENABLED(CONFIG_IPV6)
1938 case IPPROTO_ICMPV6:
1939 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1940 #endif
1941 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1942 case IPPROTO_UDPLITE:
1943 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1944 ctinfo, state);
1945 #endif
1946 #ifdef CONFIG_NF_CT_PROTO_SCTP
1947 case IPPROTO_SCTP:
1948 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1949 ctinfo, state);
1950 #endif
1951 #ifdef CONFIG_NF_CT_PROTO_DCCP
1952 case IPPROTO_DCCP:
1953 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1954 ctinfo, state);
1955 #endif
1956 #ifdef CONFIG_NF_CT_PROTO_GRE
1957 case IPPROTO_GRE:
1958 return nf_conntrack_gre_packet(ct, skb, dataoff,
1959 ctinfo, state);
1960 #endif
1961 }
1962
1963 return generic_packet(ct, skb, ctinfo);
1964 }
1965
1966 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1967 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1968 {
1969 enum ip_conntrack_info ctinfo;
1970 struct nf_conn *ct, *tmpl;
1971 u_int8_t protonum;
1972 int dataoff, ret;
1973
1974 tmpl = nf_ct_get(skb, &ctinfo);
1975 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1976 /* Previously seen (loopback or untracked)? Ignore. */
1977 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1978 ctinfo == IP_CT_UNTRACKED)
1979 return NF_ACCEPT;
1980 skb->_nfct = 0;
1981 }
1982
1983 /* rcu_read_lock()ed by nf_hook_thresh */
1984 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1985 if (dataoff <= 0) {
1986 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1987 ret = NF_ACCEPT;
1988 goto out;
1989 }
1990
1991 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1992 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1993 protonum, state);
1994 if (ret <= 0) {
1995 ret = -ret;
1996 goto out;
1997 }
1998 /* ICMP[v6] protocol trackers may assign one conntrack. */
1999 if (skb->_nfct)
2000 goto out;
2001 }
2002 repeat:
2003 ret = resolve_normal_ct(tmpl, skb, dataoff,
2004 protonum, state);
2005 if (ret < 0) {
2006 /* Too stressed to deal. */
2007 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2008 ret = NF_DROP;
2009 goto out;
2010 }
2011
2012 ct = nf_ct_get(skb, &ctinfo);
2013 if (!ct) {
2014 /* Not valid part of a connection */
2015 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2016 ret = NF_ACCEPT;
2017 goto out;
2018 }
2019
2020 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2021 if (ret <= 0) {
2022 /* Invalid: inverse of the return code tells
2023 * the netfilter core what to do */
2024 nf_ct_put(ct);
2025 skb->_nfct = 0;
2026 /* Special case: TCP tracker reports an attempt to reopen a
2027 * closed/aborted connection. We have to go back and create a
2028 * fresh conntrack.
2029 */
2030 if (ret == -NF_REPEAT)
2031 goto repeat;
2032
2033 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2034 if (ret == -NF_DROP)
2035 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2036
2037 ret = -ret;
2038 goto out;
2039 }
2040
2041 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2042 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2043 nf_conntrack_event_cache(IPCT_REPLY, ct);
2044 out:
2045 if (tmpl)
2046 nf_ct_put(tmpl);
2047
2048 return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2051
2052 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
2053 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)2054 void nf_conntrack_alter_reply(struct nf_conn *ct,
2055 const struct nf_conntrack_tuple *newreply)
2056 {
2057 struct nf_conn_help *help = nfct_help(ct);
2058
2059 /* Should be unconfirmed, so not in hash table yet */
2060 WARN_ON(nf_ct_is_confirmed(ct));
2061
2062 nf_ct_dump_tuple(newreply);
2063
2064 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2065 if (ct->master || (help && !hlist_empty(&help->expectations)))
2066 return;
2067 }
2068 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2069
2070 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)2071 void __nf_ct_refresh_acct(struct nf_conn *ct,
2072 enum ip_conntrack_info ctinfo,
2073 const struct sk_buff *skb,
2074 u32 extra_jiffies,
2075 bool do_acct)
2076 {
2077 /* Only update if this is not a fixed timeout */
2078 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2079 goto acct;
2080
2081 /* If not in hash table, timer will not be active yet */
2082 if (nf_ct_is_confirmed(ct))
2083 extra_jiffies += nfct_time_stamp;
2084
2085 if (READ_ONCE(ct->timeout) != extra_jiffies)
2086 WRITE_ONCE(ct->timeout, extra_jiffies);
2087 acct:
2088 if (do_acct)
2089 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2090 }
2091 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2092
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)2093 bool nf_ct_kill_acct(struct nf_conn *ct,
2094 enum ip_conntrack_info ctinfo,
2095 const struct sk_buff *skb)
2096 {
2097 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2098
2099 return nf_ct_delete(ct, 0, 0);
2100 }
2101 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2102
2103 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2104
2105 #include <linux/netfilter/nfnetlink.h>
2106 #include <linux/netfilter/nfnetlink_conntrack.h>
2107 #include <linux/mutex.h>
2108
2109 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2110 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2111 const struct nf_conntrack_tuple *tuple)
2112 {
2113 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2114 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2115 goto nla_put_failure;
2116 return 0;
2117
2118 nla_put_failure:
2119 return -1;
2120 }
2121 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2122
2123 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2124 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
2125 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
2126 };
2127 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2128
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2129 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2130 struct nf_conntrack_tuple *t,
2131 u_int32_t flags)
2132 {
2133 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2134 if (!tb[CTA_PROTO_SRC_PORT])
2135 return -EINVAL;
2136
2137 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2138 }
2139
2140 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2141 if (!tb[CTA_PROTO_DST_PORT])
2142 return -EINVAL;
2143
2144 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2145 }
2146
2147 return 0;
2148 }
2149 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2150
nf_ct_port_nlattr_tuple_size(void)2151 unsigned int nf_ct_port_nlattr_tuple_size(void)
2152 {
2153 static unsigned int size __read_mostly;
2154
2155 if (!size)
2156 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2157
2158 return size;
2159 }
2160 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2161 #endif
2162
2163 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2164 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2165 {
2166 struct nf_conn *ct;
2167 enum ip_conntrack_info ctinfo;
2168
2169 /* This ICMP is in reverse direction to the packet which caused it */
2170 ct = nf_ct_get(skb, &ctinfo);
2171 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2172 ctinfo = IP_CT_RELATED_REPLY;
2173 else
2174 ctinfo = IP_CT_RELATED;
2175
2176 /* Attach to new skbuff, and increment count */
2177 nf_ct_set(nskb, ct, ctinfo);
2178 nf_conntrack_get(skb_nfct(nskb));
2179 }
2180
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2181 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2182 struct nf_conn *ct,
2183 enum ip_conntrack_info ctinfo)
2184 {
2185 const struct nf_nat_hook *nat_hook;
2186 struct nf_conntrack_tuple_hash *h;
2187 struct nf_conntrack_tuple tuple;
2188 unsigned int status;
2189 int dataoff;
2190 u16 l3num;
2191 u8 l4num;
2192
2193 l3num = nf_ct_l3num(ct);
2194
2195 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2196 if (dataoff <= 0)
2197 return -1;
2198
2199 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2200 l4num, net, &tuple))
2201 return -1;
2202
2203 if (ct->status & IPS_SRC_NAT) {
2204 memcpy(tuple.src.u3.all,
2205 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2206 sizeof(tuple.src.u3.all));
2207 tuple.src.u.all =
2208 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2209 }
2210
2211 if (ct->status & IPS_DST_NAT) {
2212 memcpy(tuple.dst.u3.all,
2213 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2214 sizeof(tuple.dst.u3.all));
2215 tuple.dst.u.all =
2216 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2217 }
2218
2219 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2220 if (!h)
2221 return 0;
2222
2223 /* Store status bits of the conntrack that is clashing to re-do NAT
2224 * mangling according to what it has been done already to this packet.
2225 */
2226 status = ct->status;
2227
2228 nf_ct_put(ct);
2229 ct = nf_ct_tuplehash_to_ctrack(h);
2230 nf_ct_set(skb, ct, ctinfo);
2231
2232 nat_hook = rcu_dereference(nf_nat_hook);
2233 if (!nat_hook)
2234 return 0;
2235
2236 if (status & IPS_SRC_NAT &&
2237 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2238 IP_CT_DIR_ORIGINAL) == NF_DROP)
2239 return -1;
2240
2241 if (status & IPS_DST_NAT &&
2242 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2243 IP_CT_DIR_ORIGINAL) == NF_DROP)
2244 return -1;
2245
2246 return 0;
2247 }
2248
2249 /* This packet is coming from userspace via nf_queue, complete the packet
2250 * processing after the helper invocation in nf_confirm().
2251 */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2252 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2253 enum ip_conntrack_info ctinfo)
2254 {
2255 const struct nf_conntrack_helper *helper;
2256 const struct nf_conn_help *help;
2257 int protoff;
2258
2259 help = nfct_help(ct);
2260 if (!help)
2261 return 0;
2262
2263 helper = rcu_dereference(help->helper);
2264 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2265 return 0;
2266
2267 switch (nf_ct_l3num(ct)) {
2268 case NFPROTO_IPV4:
2269 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2270 break;
2271 #if IS_ENABLED(CONFIG_IPV6)
2272 case NFPROTO_IPV6: {
2273 __be16 frag_off;
2274 u8 pnum;
2275
2276 pnum = ipv6_hdr(skb)->nexthdr;
2277 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2278 &frag_off);
2279 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2280 return 0;
2281 break;
2282 }
2283 #endif
2284 default:
2285 return 0;
2286 }
2287
2288 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2289 !nf_is_loopback_packet(skb)) {
2290 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2291 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2292 return -1;
2293 }
2294 }
2295
2296 /* We've seen it coming out the other side: confirm it */
2297 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2298 }
2299
nf_conntrack_update(struct net * net,struct sk_buff * skb)2300 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2301 {
2302 enum ip_conntrack_info ctinfo;
2303 struct nf_conn *ct;
2304 int err;
2305
2306 ct = nf_ct_get(skb, &ctinfo);
2307 if (!ct)
2308 return 0;
2309
2310 if (!nf_ct_is_confirmed(ct)) {
2311 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2312 if (err < 0)
2313 return err;
2314
2315 ct = nf_ct_get(skb, &ctinfo);
2316 }
2317
2318 return nf_confirm_cthelper(skb, ct, ctinfo);
2319 }
2320
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2321 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2322 const struct sk_buff *skb)
2323 {
2324 const struct nf_conntrack_tuple *src_tuple;
2325 const struct nf_conntrack_tuple_hash *hash;
2326 struct nf_conntrack_tuple srctuple;
2327 enum ip_conntrack_info ctinfo;
2328 struct nf_conn *ct;
2329
2330 ct = nf_ct_get(skb, &ctinfo);
2331 if (ct) {
2332 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2333 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2334 return true;
2335 }
2336
2337 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2338 NFPROTO_IPV4, dev_net(skb->dev),
2339 &srctuple))
2340 return false;
2341
2342 hash = nf_conntrack_find_get(dev_net(skb->dev),
2343 &nf_ct_zone_dflt,
2344 &srctuple);
2345 if (!hash)
2346 return false;
2347
2348 ct = nf_ct_tuplehash_to_ctrack(hash);
2349 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2350 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2351 nf_ct_put(ct);
2352
2353 return true;
2354 }
2355
2356 /* Bring out ya dead! */
2357 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data,unsigned int * bucket)2358 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2359 const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2360 {
2361 struct nf_conntrack_tuple_hash *h;
2362 struct nf_conn *ct;
2363 struct hlist_nulls_node *n;
2364 spinlock_t *lockp;
2365
2366 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2367 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2368
2369 if (hlist_nulls_empty(hslot))
2370 continue;
2371
2372 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2373 local_bh_disable();
2374 nf_conntrack_lock(lockp);
2375 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2376 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2377 continue;
2378 /* All nf_conn objects are added to hash table twice, one
2379 * for original direction tuple, once for the reply tuple.
2380 *
2381 * Exception: In the IPS_NAT_CLASH case, only the reply
2382 * tuple is added (the original tuple already existed for
2383 * a different object).
2384 *
2385 * We only need to call the iterator once for each
2386 * conntrack, so we just use the 'reply' direction
2387 * tuple while iterating.
2388 */
2389 ct = nf_ct_tuplehash_to_ctrack(h);
2390
2391 if (iter_data->net &&
2392 !net_eq(iter_data->net, nf_ct_net(ct)))
2393 continue;
2394
2395 if (iter(ct, iter_data->data))
2396 goto found;
2397 }
2398 spin_unlock(lockp);
2399 local_bh_enable();
2400 cond_resched();
2401 }
2402
2403 return NULL;
2404 found:
2405 refcount_inc(&ct->ct_general.use);
2406 spin_unlock(lockp);
2407 local_bh_enable();
2408 return ct;
2409 }
2410
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2411 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2412 const struct nf_ct_iter_data *iter_data)
2413 {
2414 unsigned int bucket = 0;
2415 struct nf_conn *ct;
2416
2417 might_sleep();
2418
2419 mutex_lock(&nf_conntrack_mutex);
2420 while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2421 /* Time to push up daises... */
2422
2423 nf_ct_delete(ct, iter_data->portid, iter_data->report);
2424 nf_ct_put(ct);
2425 cond_resched();
2426 }
2427 mutex_unlock(&nf_conntrack_mutex);
2428 }
2429
nf_ct_iterate_cleanup_net(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2430 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2431 const struct nf_ct_iter_data *iter_data)
2432 {
2433 struct net *net = iter_data->net;
2434 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2435
2436 might_sleep();
2437
2438 if (atomic_read(&cnet->count) == 0)
2439 return;
2440
2441 nf_ct_iterate_cleanup(iter, iter_data);
2442 }
2443 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2444
2445 /**
2446 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2447 * @iter: callback to invoke for each conntrack
2448 * @data: data to pass to @iter
2449 *
2450 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2451 * unconfirmed list as dying (so they will not be inserted into
2452 * main table).
2453 *
2454 * Can only be called in module exit path.
2455 */
2456 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2457 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2458 {
2459 struct nf_ct_iter_data iter_data = {};
2460 struct net *net;
2461
2462 down_read(&net_rwsem);
2463 for_each_net(net) {
2464 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2465
2466 if (atomic_read(&cnet->count) == 0)
2467 continue;
2468 nf_queue_nf_hook_drop(net);
2469 }
2470 up_read(&net_rwsem);
2471
2472 /* Need to wait for netns cleanup worker to finish, if its
2473 * running -- it might have deleted a net namespace from
2474 * the global list, so hook drop above might not have
2475 * affected all namespaces.
2476 */
2477 net_ns_barrier();
2478
2479 /* a skb w. unconfirmed conntrack could have been reinjected just
2480 * before we called nf_queue_nf_hook_drop().
2481 *
2482 * This makes sure its inserted into conntrack table.
2483 */
2484 synchronize_net();
2485
2486 nf_ct_ext_bump_genid();
2487 iter_data.data = data;
2488 nf_ct_iterate_cleanup(iter, &iter_data);
2489
2490 /* Another cpu might be in a rcu read section with
2491 * rcu protected pointer cleared in iter callback
2492 * or hidden via nf_ct_ext_bump_genid() above.
2493 *
2494 * Wait until those are done.
2495 */
2496 synchronize_rcu();
2497 }
2498 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2499
kill_all(struct nf_conn * i,void * data)2500 static int kill_all(struct nf_conn *i, void *data)
2501 {
2502 return 1;
2503 }
2504
nf_conntrack_cleanup_start(void)2505 void nf_conntrack_cleanup_start(void)
2506 {
2507 cleanup_nf_conntrack_bpf();
2508 conntrack_gc_work.exiting = true;
2509 }
2510
nf_conntrack_cleanup_end(void)2511 void nf_conntrack_cleanup_end(void)
2512 {
2513 RCU_INIT_POINTER(nf_ct_hook, NULL);
2514 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2515 kvfree(nf_conntrack_hash);
2516
2517 nf_conntrack_proto_fini();
2518 nf_conntrack_helper_fini();
2519 nf_conntrack_expect_fini();
2520
2521 kmem_cache_destroy(nf_conntrack_cachep);
2522 }
2523
2524 /*
2525 * Mishearing the voices in his head, our hero wonders how he's
2526 * supposed to kill the mall.
2527 */
nf_conntrack_cleanup_net(struct net * net)2528 void nf_conntrack_cleanup_net(struct net *net)
2529 {
2530 LIST_HEAD(single);
2531
2532 list_add(&net->exit_list, &single);
2533 nf_conntrack_cleanup_net_list(&single);
2534 }
2535
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2536 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2537 {
2538 struct nf_ct_iter_data iter_data = {};
2539 struct net *net;
2540 int busy;
2541
2542 /*
2543 * This makes sure all current packets have passed through
2544 * netfilter framework. Roll on, two-stage module
2545 * delete...
2546 */
2547 synchronize_net();
2548 i_see_dead_people:
2549 busy = 0;
2550 list_for_each_entry(net, net_exit_list, exit_list) {
2551 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2552
2553 iter_data.net = net;
2554 nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2555 if (atomic_read(&cnet->count) != 0)
2556 busy = 1;
2557 }
2558 if (busy) {
2559 schedule();
2560 goto i_see_dead_people;
2561 }
2562
2563 list_for_each_entry(net, net_exit_list, exit_list) {
2564 nf_conntrack_ecache_pernet_fini(net);
2565 nf_conntrack_expect_pernet_fini(net);
2566 free_percpu(net->ct.stat);
2567 }
2568 }
2569
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2570 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2571 {
2572 struct hlist_nulls_head *hash;
2573 unsigned int nr_slots, i;
2574
2575 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2576 return NULL;
2577
2578 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2579 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2580
2581 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2582
2583 if (hash && nulls)
2584 for (i = 0; i < nr_slots; i++)
2585 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2586
2587 return hash;
2588 }
2589 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2590
nf_conntrack_hash_resize(unsigned int hashsize)2591 int nf_conntrack_hash_resize(unsigned int hashsize)
2592 {
2593 int i, bucket;
2594 unsigned int old_size;
2595 struct hlist_nulls_head *hash, *old_hash;
2596 struct nf_conntrack_tuple_hash *h;
2597 struct nf_conn *ct;
2598
2599 if (!hashsize)
2600 return -EINVAL;
2601
2602 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2603 if (!hash)
2604 return -ENOMEM;
2605
2606 mutex_lock(&nf_conntrack_mutex);
2607 old_size = nf_conntrack_htable_size;
2608 if (old_size == hashsize) {
2609 mutex_unlock(&nf_conntrack_mutex);
2610 kvfree(hash);
2611 return 0;
2612 }
2613
2614 local_bh_disable();
2615 nf_conntrack_all_lock();
2616 write_seqcount_begin(&nf_conntrack_generation);
2617
2618 /* Lookups in the old hash might happen in parallel, which means we
2619 * might get false negatives during connection lookup. New connections
2620 * created because of a false negative won't make it into the hash
2621 * though since that required taking the locks.
2622 */
2623
2624 for (i = 0; i < nf_conntrack_htable_size; i++) {
2625 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2626 unsigned int zone_id;
2627
2628 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2629 struct nf_conntrack_tuple_hash, hnnode);
2630 ct = nf_ct_tuplehash_to_ctrack(h);
2631 hlist_nulls_del_rcu(&h->hnnode);
2632
2633 zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2634 bucket = __hash_conntrack(nf_ct_net(ct),
2635 &h->tuple, zone_id, hashsize);
2636 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2637 }
2638 }
2639 old_hash = nf_conntrack_hash;
2640
2641 nf_conntrack_hash = hash;
2642 nf_conntrack_htable_size = hashsize;
2643
2644 write_seqcount_end(&nf_conntrack_generation);
2645 nf_conntrack_all_unlock();
2646 local_bh_enable();
2647
2648 mutex_unlock(&nf_conntrack_mutex);
2649
2650 synchronize_net();
2651 kvfree(old_hash);
2652 return 0;
2653 }
2654
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2655 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2656 {
2657 unsigned int hashsize;
2658 int rc;
2659
2660 if (current->nsproxy->net_ns != &init_net)
2661 return -EOPNOTSUPP;
2662
2663 /* On boot, we can set this without any fancy locking. */
2664 if (!nf_conntrack_hash)
2665 return param_set_uint(val, kp);
2666
2667 rc = kstrtouint(val, 0, &hashsize);
2668 if (rc)
2669 return rc;
2670
2671 return nf_conntrack_hash_resize(hashsize);
2672 }
2673
nf_conntrack_init_start(void)2674 int nf_conntrack_init_start(void)
2675 {
2676 unsigned long nr_pages = totalram_pages();
2677 int max_factor = 8;
2678 int ret = -ENOMEM;
2679 int i;
2680
2681 seqcount_spinlock_init(&nf_conntrack_generation,
2682 &nf_conntrack_locks_all_lock);
2683
2684 for (i = 0; i < CONNTRACK_LOCKS; i++)
2685 spin_lock_init(&nf_conntrack_locks[i]);
2686
2687 if (!nf_conntrack_htable_size) {
2688 nf_conntrack_htable_size
2689 = (((nr_pages << PAGE_SHIFT) / 16384)
2690 / sizeof(struct hlist_head));
2691 if (BITS_PER_LONG >= 64 &&
2692 nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2693 nf_conntrack_htable_size = 262144;
2694 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2695 nf_conntrack_htable_size = 65536;
2696
2697 if (nf_conntrack_htable_size < 1024)
2698 nf_conntrack_htable_size = 1024;
2699 /* Use a max. factor of one by default to keep the average
2700 * hash chain length at 2 entries. Each entry has to be added
2701 * twice (once for original direction, once for reply).
2702 * When a table size is given we use the old value of 8 to
2703 * avoid implicit reduction of the max entries setting.
2704 */
2705 max_factor = 1;
2706 }
2707
2708 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2709 if (!nf_conntrack_hash)
2710 return -ENOMEM;
2711
2712 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2713
2714 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2715 sizeof(struct nf_conn),
2716 NFCT_INFOMASK + 1,
2717 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2718 if (!nf_conntrack_cachep)
2719 goto err_cachep;
2720
2721 ret = nf_conntrack_expect_init();
2722 if (ret < 0)
2723 goto err_expect;
2724
2725 ret = nf_conntrack_helper_init();
2726 if (ret < 0)
2727 goto err_helper;
2728
2729 ret = nf_conntrack_proto_init();
2730 if (ret < 0)
2731 goto err_proto;
2732
2733 conntrack_gc_work_init(&conntrack_gc_work);
2734 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2735
2736 ret = register_nf_conntrack_bpf();
2737 if (ret < 0)
2738 goto err_kfunc;
2739
2740 return 0;
2741
2742 err_kfunc:
2743 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2744 nf_conntrack_proto_fini();
2745 err_proto:
2746 nf_conntrack_helper_fini();
2747 err_helper:
2748 nf_conntrack_expect_fini();
2749 err_expect:
2750 kmem_cache_destroy(nf_conntrack_cachep);
2751 err_cachep:
2752 kvfree(nf_conntrack_hash);
2753 return ret;
2754 }
2755
nf_conntrack_set_closing(struct nf_conntrack * nfct)2756 static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2757 {
2758 struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2759
2760 switch (nf_ct_protonum(ct)) {
2761 case IPPROTO_TCP:
2762 nf_conntrack_tcp_set_closing(ct);
2763 break;
2764 }
2765 }
2766
2767 static const struct nf_ct_hook nf_conntrack_hook = {
2768 .update = nf_conntrack_update,
2769 .destroy = nf_ct_destroy,
2770 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2771 .attach = nf_conntrack_attach,
2772 .set_closing = nf_conntrack_set_closing,
2773 };
2774
nf_conntrack_init_end(void)2775 void nf_conntrack_init_end(void)
2776 {
2777 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2778 }
2779
2780 /*
2781 * We need to use special "null" values, not used in hash table
2782 */
2783 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2784
nf_conntrack_init_net(struct net * net)2785 int nf_conntrack_init_net(struct net *net)
2786 {
2787 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2788 int ret = -ENOMEM;
2789
2790 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2791 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2792 atomic_set(&cnet->count, 0);
2793
2794 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2795 if (!net->ct.stat)
2796 return ret;
2797
2798 ret = nf_conntrack_expect_pernet_init(net);
2799 if (ret < 0)
2800 goto err_expect;
2801
2802 nf_conntrack_acct_pernet_init(net);
2803 nf_conntrack_tstamp_pernet_init(net);
2804 nf_conntrack_ecache_pernet_init(net);
2805 nf_conntrack_proto_pernet_init(net);
2806
2807 return 0;
2808
2809 err_expect:
2810 free_percpu(net->ct.stat);
2811 return ret;
2812 }
2813
2814 /* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2815
__nf_ct_change_timeout(struct nf_conn * ct,u64 timeout)2816 int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2817 {
2818 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2819 return -EPERM;
2820
2821 __nf_ct_set_timeout(ct, timeout);
2822
2823 if (test_bit(IPS_DYING_BIT, &ct->status))
2824 return -ETIME;
2825
2826 return 0;
2827 }
2828 EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2829
__nf_ct_change_status(struct nf_conn * ct,unsigned long on,unsigned long off)2830 void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2831 {
2832 unsigned int bit;
2833
2834 /* Ignore these unchangable bits */
2835 on &= ~IPS_UNCHANGEABLE_MASK;
2836 off &= ~IPS_UNCHANGEABLE_MASK;
2837
2838 for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2839 if (on & (1 << bit))
2840 set_bit(bit, &ct->status);
2841 else if (off & (1 << bit))
2842 clear_bit(bit, &ct->status);
2843 }
2844 }
2845 EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2846
nf_ct_change_status_common(struct nf_conn * ct,unsigned int status)2847 int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2848 {
2849 unsigned long d;
2850
2851 d = ct->status ^ status;
2852
2853 if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2854 /* unchangeable */
2855 return -EBUSY;
2856
2857 if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2858 /* SEEN_REPLY bit can only be set */
2859 return -EBUSY;
2860
2861 if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2862 /* ASSURED bit can only be set */
2863 return -EBUSY;
2864
2865 __nf_ct_change_status(ct, status, 0);
2866 return 0;
2867 }
2868 EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2869