1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 /*
158 * The counter is incremented in a process context on the associated CPU
159 * w/ preemption disabled, and decremented or reset in the same context
160 * but w/ pool->lock held. The readers grab pool->lock and are
161 * guaranteed to see if the counter reached zero.
162 */
163 int nr_running;
164
165 struct list_head worklist; /* L: list of pending works */
166
167 int nr_workers; /* L: total number of workers */
168 int nr_idle; /* L: currently idle workers */
169
170 struct list_head idle_list; /* L: list of idle workers */
171 struct timer_list idle_timer; /* L: worker idle timeout */
172 struct work_struct idle_cull_work; /* L: worker idle cleanup */
173
174 struct timer_list mayday_timer; /* L: SOS timer for workers */
175
176 /* a workers is either on busy_hash or idle_list, or the manager */
177 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
178 /* L: hash of busy workers */
179
180 struct worker *manager; /* L: purely informational */
181 struct list_head workers; /* A: attached workers */
182 struct list_head dying_workers; /* A: workers about to die */
183 struct completion *detach_completion; /* all workers detached */
184
185 struct ida worker_ida; /* worker IDs for task name */
186
187 struct workqueue_attrs *attrs; /* I: worker attributes */
188 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
189 int refcnt; /* PL: refcnt for unbound pools */
190
191 /*
192 * Destruction of pool is RCU protected to allow dereferences
193 * from get_work_pool().
194 */
195 struct rcu_head rcu;
196 };
197
198 /*
199 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
200 * of work_struct->data are used for flags and the remaining high bits
201 * point to the pwq; thus, pwqs need to be aligned at two's power of the
202 * number of flag bits.
203 */
204 struct pool_workqueue {
205 struct worker_pool *pool; /* I: the associated pool */
206 struct workqueue_struct *wq; /* I: the owning workqueue */
207 int work_color; /* L: current color */
208 int flush_color; /* L: flushing color */
209 int refcnt; /* L: reference count */
210 int nr_in_flight[WORK_NR_COLORS];
211 /* L: nr of in_flight works */
212
213 /*
214 * nr_active management and WORK_STRUCT_INACTIVE:
215 *
216 * When pwq->nr_active >= max_active, new work item is queued to
217 * pwq->inactive_works instead of pool->worklist and marked with
218 * WORK_STRUCT_INACTIVE.
219 *
220 * All work items marked with WORK_STRUCT_INACTIVE do not participate
221 * in pwq->nr_active and all work items in pwq->inactive_works are
222 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
223 * work items are in pwq->inactive_works. Some of them are ready to
224 * run in pool->worklist or worker->scheduled. Those work itmes are
225 * only struct wq_barrier which is used for flush_work() and should
226 * not participate in pwq->nr_active. For non-barrier work item, it
227 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
228 */
229 int nr_active; /* L: nr of active works */
230 int max_active; /* L: max active works */
231 struct list_head inactive_works; /* L: inactive works */
232 struct list_head pwqs_node; /* WR: node on wq->pwqs */
233 struct list_head mayday_node; /* MD: node on wq->maydays */
234
235 /*
236 * Release of unbound pwq is punted to system_wq. See put_pwq()
237 * and pwq_unbound_release_workfn() for details. pool_workqueue
238 * itself is also RCU protected so that the first pwq can be
239 * determined without grabbing wq->mutex.
240 */
241 struct work_struct unbound_release_work;
242 struct rcu_head rcu;
243 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
244
245 /*
246 * Structure used to wait for workqueue flush.
247 */
248 struct wq_flusher {
249 struct list_head list; /* WQ: list of flushers */
250 int flush_color; /* WQ: flush color waiting for */
251 struct completion done; /* flush completion */
252 };
253
254 struct wq_device;
255
256 /*
257 * The externally visible workqueue. It relays the issued work items to
258 * the appropriate worker_pool through its pool_workqueues.
259 */
260 struct workqueue_struct {
261 struct list_head pwqs; /* WR: all pwqs of this wq */
262 struct list_head list; /* PR: list of all workqueues */
263
264 struct mutex mutex; /* protects this wq */
265 int work_color; /* WQ: current work color */
266 int flush_color; /* WQ: current flush color */
267 atomic_t nr_pwqs_to_flush; /* flush in progress */
268 struct wq_flusher *first_flusher; /* WQ: first flusher */
269 struct list_head flusher_queue; /* WQ: flush waiters */
270 struct list_head flusher_overflow; /* WQ: flush overflow list */
271
272 struct list_head maydays; /* MD: pwqs requesting rescue */
273 struct worker *rescuer; /* MD: rescue worker */
274
275 int nr_drainers; /* WQ: drain in progress */
276 int saved_max_active; /* WQ: saved pwq max_active */
277
278 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
279 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
280
281 #ifdef CONFIG_SYSFS
282 struct wq_device *wq_dev; /* I: for sysfs interface */
283 #endif
284 #ifdef CONFIG_LOCKDEP
285 char *lock_name;
286 struct lock_class_key key;
287 struct lockdep_map lockdep_map;
288 #endif
289 char name[WQ_NAME_LEN]; /* I: workqueue name */
290
291 /*
292 * Destruction of workqueue_struct is RCU protected to allow walking
293 * the workqueues list without grabbing wq_pool_mutex.
294 * This is used to dump all workqueues from sysrq.
295 */
296 struct rcu_head rcu;
297
298 /* hot fields used during command issue, aligned to cacheline */
299 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
300 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
301 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
302 };
303
304 static struct kmem_cache *pwq_cache;
305
306 static cpumask_var_t *wq_numa_possible_cpumask;
307 /* possible CPUs of each node */
308
309 static bool wq_disable_numa;
310 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
311
312 /* see the comment above the definition of WQ_POWER_EFFICIENT */
313 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
314 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
315
316 static bool wq_online; /* can kworkers be created yet? */
317
318 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
319
320 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
321 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
322
323 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
324 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
325 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
326 /* wait for manager to go away */
327 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
328
329 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
330 static bool workqueue_freezing; /* PL: have wqs started freezing? */
331
332 /* PL&A: allowable cpus for unbound wqs and work items */
333 static cpumask_var_t wq_unbound_cpumask;
334
335 /* CPU where unbound work was last round robin scheduled from this CPU */
336 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
337
338 /*
339 * Local execution of unbound work items is no longer guaranteed. The
340 * following always forces round-robin CPU selection on unbound work items
341 * to uncover usages which depend on it.
342 */
343 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
344 static bool wq_debug_force_rr_cpu = true;
345 #else
346 static bool wq_debug_force_rr_cpu = false;
347 #endif
348 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
349
350 /* the per-cpu worker pools */
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
352
353 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
354
355 /* PL: hash of all unbound pools keyed by pool->attrs */
356 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
357
358 /* I: attributes used when instantiating standard unbound pools on demand */
359 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
360
361 /* I: attributes used when instantiating ordered pools on demand */
362 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
363
364 struct workqueue_struct *system_wq __read_mostly;
365 EXPORT_SYMBOL(system_wq);
366 struct workqueue_struct *system_highpri_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_highpri_wq);
368 struct workqueue_struct *system_long_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_long_wq);
370 struct workqueue_struct *system_unbound_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_unbound_wq);
372 struct workqueue_struct *system_freezable_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_wq);
374 struct workqueue_struct *system_power_efficient_wq __read_mostly;
375 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
376 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
377 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
378
379 static int worker_thread(void *__worker);
380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
381 static void show_pwq(struct pool_workqueue *pwq);
382 static void show_one_worker_pool(struct worker_pool *pool);
383
384 #define CREATE_TRACE_POINTS
385 #include <trace/events/workqueue.h>
386
387 #define assert_rcu_or_pool_mutex() \
388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
389 !lockdep_is_held(&wq_pool_mutex), \
390 "RCU or wq_pool_mutex should be held")
391
392 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
393 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
394 !lockdep_is_held(&wq->mutex) && \
395 !lockdep_is_held(&wq_pool_mutex), \
396 "RCU, wq->mutex or wq_pool_mutex should be held")
397
398 #define for_each_cpu_worker_pool(pool, cpu) \
399 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
400 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
401 (pool)++)
402
403 /**
404 * for_each_pool - iterate through all worker_pools in the system
405 * @pool: iteration cursor
406 * @pi: integer used for iteration
407 *
408 * This must be called either with wq_pool_mutex held or RCU read
409 * locked. If the pool needs to be used beyond the locking in effect, the
410 * caller is responsible for guaranteeing that the pool stays online.
411 *
412 * The if/else clause exists only for the lockdep assertion and can be
413 * ignored.
414 */
415 #define for_each_pool(pool, pi) \
416 idr_for_each_entry(&worker_pool_idr, pool, pi) \
417 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
418 else
419
420 /**
421 * for_each_pool_worker - iterate through all workers of a worker_pool
422 * @worker: iteration cursor
423 * @pool: worker_pool to iterate workers of
424 *
425 * This must be called with wq_pool_attach_mutex.
426 *
427 * The if/else clause exists only for the lockdep assertion and can be
428 * ignored.
429 */
430 #define for_each_pool_worker(worker, pool) \
431 list_for_each_entry((worker), &(pool)->workers, node) \
432 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
433 else
434
435 /**
436 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
437 * @pwq: iteration cursor
438 * @wq: the target workqueue
439 *
440 * This must be called either with wq->mutex held or RCU read locked.
441 * If the pwq needs to be used beyond the locking in effect, the caller is
442 * responsible for guaranteeing that the pwq stays online.
443 *
444 * The if/else clause exists only for the lockdep assertion and can be
445 * ignored.
446 */
447 #define for_each_pwq(pwq, wq) \
448 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
449 lockdep_is_held(&(wq->mutex)))
450
451 #ifdef CONFIG_DEBUG_OBJECTS_WORK
452
453 static const struct debug_obj_descr work_debug_descr;
454
work_debug_hint(void * addr)455 static void *work_debug_hint(void *addr)
456 {
457 return ((struct work_struct *) addr)->func;
458 }
459
work_is_static_object(void * addr)460 static bool work_is_static_object(void *addr)
461 {
462 struct work_struct *work = addr;
463
464 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
465 }
466
467 /*
468 * fixup_init is called when:
469 * - an active object is initialized
470 */
work_fixup_init(void * addr,enum debug_obj_state state)471 static bool work_fixup_init(void *addr, enum debug_obj_state state)
472 {
473 struct work_struct *work = addr;
474
475 switch (state) {
476 case ODEBUG_STATE_ACTIVE:
477 cancel_work_sync(work);
478 debug_object_init(work, &work_debug_descr);
479 return true;
480 default:
481 return false;
482 }
483 }
484
485 /*
486 * fixup_free is called when:
487 * - an active object is freed
488 */
work_fixup_free(void * addr,enum debug_obj_state state)489 static bool work_fixup_free(void *addr, enum debug_obj_state state)
490 {
491 struct work_struct *work = addr;
492
493 switch (state) {
494 case ODEBUG_STATE_ACTIVE:
495 cancel_work_sync(work);
496 debug_object_free(work, &work_debug_descr);
497 return true;
498 default:
499 return false;
500 }
501 }
502
503 static const struct debug_obj_descr work_debug_descr = {
504 .name = "work_struct",
505 .debug_hint = work_debug_hint,
506 .is_static_object = work_is_static_object,
507 .fixup_init = work_fixup_init,
508 .fixup_free = work_fixup_free,
509 };
510
debug_work_activate(struct work_struct * work)511 static inline void debug_work_activate(struct work_struct *work)
512 {
513 debug_object_activate(work, &work_debug_descr);
514 }
515
debug_work_deactivate(struct work_struct * work)516 static inline void debug_work_deactivate(struct work_struct *work)
517 {
518 debug_object_deactivate(work, &work_debug_descr);
519 }
520
__init_work(struct work_struct * work,int onstack)521 void __init_work(struct work_struct *work, int onstack)
522 {
523 if (onstack)
524 debug_object_init_on_stack(work, &work_debug_descr);
525 else
526 debug_object_init(work, &work_debug_descr);
527 }
528 EXPORT_SYMBOL_GPL(__init_work);
529
destroy_work_on_stack(struct work_struct * work)530 void destroy_work_on_stack(struct work_struct *work)
531 {
532 debug_object_free(work, &work_debug_descr);
533 }
534 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
535
destroy_delayed_work_on_stack(struct delayed_work * work)536 void destroy_delayed_work_on_stack(struct delayed_work *work)
537 {
538 destroy_timer_on_stack(&work->timer);
539 debug_object_free(&work->work, &work_debug_descr);
540 }
541 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
542
543 #else
debug_work_activate(struct work_struct * work)544 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)545 static inline void debug_work_deactivate(struct work_struct *work) { }
546 #endif
547
548 /**
549 * worker_pool_assign_id - allocate ID and assign it to @pool
550 * @pool: the pool pointer of interest
551 *
552 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
553 * successfully, -errno on failure.
554 */
worker_pool_assign_id(struct worker_pool * pool)555 static int worker_pool_assign_id(struct worker_pool *pool)
556 {
557 int ret;
558
559 lockdep_assert_held(&wq_pool_mutex);
560
561 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
562 GFP_KERNEL);
563 if (ret >= 0) {
564 pool->id = ret;
565 return 0;
566 }
567 return ret;
568 }
569
570 /**
571 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
572 * @wq: the target workqueue
573 * @node: the node ID
574 *
575 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
576 * read locked.
577 * If the pwq needs to be used beyond the locking in effect, the caller is
578 * responsible for guaranteeing that the pwq stays online.
579 *
580 * Return: The unbound pool_workqueue for @node.
581 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)582 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
583 int node)
584 {
585 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
586
587 /*
588 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
589 * delayed item is pending. The plan is to keep CPU -> NODE
590 * mapping valid and stable across CPU on/offlines. Once that
591 * happens, this workaround can be removed.
592 */
593 if (unlikely(node == NUMA_NO_NODE))
594 return wq->dfl_pwq;
595
596 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
597 }
598
work_color_to_flags(int color)599 static unsigned int work_color_to_flags(int color)
600 {
601 return color << WORK_STRUCT_COLOR_SHIFT;
602 }
603
get_work_color(unsigned long work_data)604 static int get_work_color(unsigned long work_data)
605 {
606 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
607 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
608 }
609
work_next_color(int color)610 static int work_next_color(int color)
611 {
612 return (color + 1) % WORK_NR_COLORS;
613 }
614
615 /*
616 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
617 * contain the pointer to the queued pwq. Once execution starts, the flag
618 * is cleared and the high bits contain OFFQ flags and pool ID.
619 *
620 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
621 * and clear_work_data() can be used to set the pwq, pool or clear
622 * work->data. These functions should only be called while the work is
623 * owned - ie. while the PENDING bit is set.
624 *
625 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
626 * corresponding to a work. Pool is available once the work has been
627 * queued anywhere after initialization until it is sync canceled. pwq is
628 * available only while the work item is queued.
629 *
630 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
631 * canceled. While being canceled, a work item may have its PENDING set
632 * but stay off timer and worklist for arbitrarily long and nobody should
633 * try to steal the PENDING bit.
634 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)635 static inline void set_work_data(struct work_struct *work, unsigned long data,
636 unsigned long flags)
637 {
638 WARN_ON_ONCE(!work_pending(work));
639 atomic_long_set(&work->data, data | flags | work_static(work));
640 }
641
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)642 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
643 unsigned long extra_flags)
644 {
645 set_work_data(work, (unsigned long)pwq,
646 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
647 }
648
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)649 static void set_work_pool_and_keep_pending(struct work_struct *work,
650 int pool_id)
651 {
652 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
653 WORK_STRUCT_PENDING);
654 }
655
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)656 static void set_work_pool_and_clear_pending(struct work_struct *work,
657 int pool_id)
658 {
659 /*
660 * The following wmb is paired with the implied mb in
661 * test_and_set_bit(PENDING) and ensures all updates to @work made
662 * here are visible to and precede any updates by the next PENDING
663 * owner.
664 */
665 smp_wmb();
666 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
667 /*
668 * The following mb guarantees that previous clear of a PENDING bit
669 * will not be reordered with any speculative LOADS or STORES from
670 * work->current_func, which is executed afterwards. This possible
671 * reordering can lead to a missed execution on attempt to queue
672 * the same @work. E.g. consider this case:
673 *
674 * CPU#0 CPU#1
675 * ---------------------------- --------------------------------
676 *
677 * 1 STORE event_indicated
678 * 2 queue_work_on() {
679 * 3 test_and_set_bit(PENDING)
680 * 4 } set_..._and_clear_pending() {
681 * 5 set_work_data() # clear bit
682 * 6 smp_mb()
683 * 7 work->current_func() {
684 * 8 LOAD event_indicated
685 * }
686 *
687 * Without an explicit full barrier speculative LOAD on line 8 can
688 * be executed before CPU#0 does STORE on line 1. If that happens,
689 * CPU#0 observes the PENDING bit is still set and new execution of
690 * a @work is not queued in a hope, that CPU#1 will eventually
691 * finish the queued @work. Meanwhile CPU#1 does not see
692 * event_indicated is set, because speculative LOAD was executed
693 * before actual STORE.
694 */
695 smp_mb();
696 }
697
clear_work_data(struct work_struct * work)698 static void clear_work_data(struct work_struct *work)
699 {
700 smp_wmb(); /* see set_work_pool_and_clear_pending() */
701 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
702 }
703
get_work_pwq(struct work_struct * work)704 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
705 {
706 unsigned long data = atomic_long_read(&work->data);
707
708 if (data & WORK_STRUCT_PWQ)
709 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
710 else
711 return NULL;
712 }
713
714 /**
715 * get_work_pool - return the worker_pool a given work was associated with
716 * @work: the work item of interest
717 *
718 * Pools are created and destroyed under wq_pool_mutex, and allows read
719 * access under RCU read lock. As such, this function should be
720 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
721 *
722 * All fields of the returned pool are accessible as long as the above
723 * mentioned locking is in effect. If the returned pool needs to be used
724 * beyond the critical section, the caller is responsible for ensuring the
725 * returned pool is and stays online.
726 *
727 * Return: The worker_pool @work was last associated with. %NULL if none.
728 */
get_work_pool(struct work_struct * work)729 static struct worker_pool *get_work_pool(struct work_struct *work)
730 {
731 unsigned long data = atomic_long_read(&work->data);
732 int pool_id;
733
734 assert_rcu_or_pool_mutex();
735
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
739
740 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
741 if (pool_id == WORK_OFFQ_POOL_NONE)
742 return NULL;
743
744 return idr_find(&worker_pool_idr, pool_id);
745 }
746
747 /**
748 * get_work_pool_id - return the worker pool ID a given work is associated with
749 * @work: the work item of interest
750 *
751 * Return: The worker_pool ID @work was last associated with.
752 * %WORK_OFFQ_POOL_NONE if none.
753 */
get_work_pool_id(struct work_struct * work)754 static int get_work_pool_id(struct work_struct *work)
755 {
756 unsigned long data = atomic_long_read(&work->data);
757
758 if (data & WORK_STRUCT_PWQ)
759 return ((struct pool_workqueue *)
760 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
761
762 return data >> WORK_OFFQ_POOL_SHIFT;
763 }
764
mark_work_canceling(struct work_struct * work)765 static void mark_work_canceling(struct work_struct *work)
766 {
767 unsigned long pool_id = get_work_pool_id(work);
768
769 pool_id <<= WORK_OFFQ_POOL_SHIFT;
770 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
771 }
772
work_is_canceling(struct work_struct * work)773 static bool work_is_canceling(struct work_struct *work)
774 {
775 unsigned long data = atomic_long_read(&work->data);
776
777 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
778 }
779
780 /*
781 * Policy functions. These define the policies on how the global worker
782 * pools are managed. Unless noted otherwise, these functions assume that
783 * they're being called with pool->lock held.
784 */
785
__need_more_worker(struct worker_pool * pool)786 static bool __need_more_worker(struct worker_pool *pool)
787 {
788 return !pool->nr_running;
789 }
790
791 /*
792 * Need to wake up a worker? Called from anything but currently
793 * running workers.
794 *
795 * Note that, because unbound workers never contribute to nr_running, this
796 * function will always return %true for unbound pools as long as the
797 * worklist isn't empty.
798 */
need_more_worker(struct worker_pool * pool)799 static bool need_more_worker(struct worker_pool *pool)
800 {
801 return !list_empty(&pool->worklist) && __need_more_worker(pool);
802 }
803
804 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)805 static bool may_start_working(struct worker_pool *pool)
806 {
807 return pool->nr_idle;
808 }
809
810 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)811 static bool keep_working(struct worker_pool *pool)
812 {
813 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
814 }
815
816 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)817 static bool need_to_create_worker(struct worker_pool *pool)
818 {
819 return need_more_worker(pool) && !may_start_working(pool);
820 }
821
822 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)823 static bool too_many_workers(struct worker_pool *pool)
824 {
825 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
826 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
827 int nr_busy = pool->nr_workers - nr_idle;
828
829 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
830 }
831
832 /*
833 * Wake up functions.
834 */
835
836 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)837 static struct worker *first_idle_worker(struct worker_pool *pool)
838 {
839 if (unlikely(list_empty(&pool->idle_list)))
840 return NULL;
841
842 return list_first_entry(&pool->idle_list, struct worker, entry);
843 }
844
845 /**
846 * wake_up_worker - wake up an idle worker
847 * @pool: worker pool to wake worker from
848 *
849 * Wake up the first idle worker of @pool.
850 *
851 * CONTEXT:
852 * raw_spin_lock_irq(pool->lock).
853 */
wake_up_worker(struct worker_pool * pool)854 static void wake_up_worker(struct worker_pool *pool)
855 {
856 struct worker *worker = first_idle_worker(pool);
857
858 if (likely(worker))
859 wake_up_process(worker->task);
860 }
861
862 /**
863 * wq_worker_running - a worker is running again
864 * @task: task waking up
865 *
866 * This function is called when a worker returns from schedule()
867 */
wq_worker_running(struct task_struct * task)868 void wq_worker_running(struct task_struct *task)
869 {
870 struct worker *worker = kthread_data(task);
871
872 if (!worker->sleeping)
873 return;
874
875 /*
876 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
877 * and the nr_running increment below, we may ruin the nr_running reset
878 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
879 * pool. Protect against such race.
880 */
881 preempt_disable();
882 if (!(worker->flags & WORKER_NOT_RUNNING))
883 worker->pool->nr_running++;
884 preempt_enable();
885 worker->sleeping = 0;
886 }
887
888 /**
889 * wq_worker_sleeping - a worker is going to sleep
890 * @task: task going to sleep
891 *
892 * This function is called from schedule() when a busy worker is
893 * going to sleep.
894 */
wq_worker_sleeping(struct task_struct * task)895 void wq_worker_sleeping(struct task_struct *task)
896 {
897 struct worker *worker = kthread_data(task);
898 struct worker_pool *pool;
899
900 /*
901 * Rescuers, which may not have all the fields set up like normal
902 * workers, also reach here, let's not access anything before
903 * checking NOT_RUNNING.
904 */
905 if (worker->flags & WORKER_NOT_RUNNING)
906 return;
907
908 pool = worker->pool;
909
910 /* Return if preempted before wq_worker_running() was reached */
911 if (worker->sleeping)
912 return;
913
914 worker->sleeping = 1;
915 raw_spin_lock_irq(&pool->lock);
916
917 /*
918 * Recheck in case unbind_workers() preempted us. We don't
919 * want to decrement nr_running after the worker is unbound
920 * and nr_running has been reset.
921 */
922 if (worker->flags & WORKER_NOT_RUNNING) {
923 raw_spin_unlock_irq(&pool->lock);
924 return;
925 }
926
927 pool->nr_running--;
928 if (need_more_worker(pool))
929 wake_up_worker(pool);
930 raw_spin_unlock_irq(&pool->lock);
931 }
932
933 /**
934 * wq_worker_last_func - retrieve worker's last work function
935 * @task: Task to retrieve last work function of.
936 *
937 * Determine the last function a worker executed. This is called from
938 * the scheduler to get a worker's last known identity.
939 *
940 * CONTEXT:
941 * raw_spin_lock_irq(rq->lock)
942 *
943 * This function is called during schedule() when a kworker is going
944 * to sleep. It's used by psi to identify aggregation workers during
945 * dequeuing, to allow periodic aggregation to shut-off when that
946 * worker is the last task in the system or cgroup to go to sleep.
947 *
948 * As this function doesn't involve any workqueue-related locking, it
949 * only returns stable values when called from inside the scheduler's
950 * queuing and dequeuing paths, when @task, which must be a kworker,
951 * is guaranteed to not be processing any works.
952 *
953 * Return:
954 * The last work function %current executed as a worker, NULL if it
955 * hasn't executed any work yet.
956 */
wq_worker_last_func(struct task_struct * task)957 work_func_t wq_worker_last_func(struct task_struct *task)
958 {
959 struct worker *worker = kthread_data(task);
960
961 return worker->last_func;
962 }
963
964 /**
965 * worker_set_flags - set worker flags and adjust nr_running accordingly
966 * @worker: self
967 * @flags: flags to set
968 *
969 * Set @flags in @worker->flags and adjust nr_running accordingly.
970 *
971 * CONTEXT:
972 * raw_spin_lock_irq(pool->lock)
973 */
worker_set_flags(struct worker * worker,unsigned int flags)974 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
975 {
976 struct worker_pool *pool = worker->pool;
977
978 WARN_ON_ONCE(worker->task != current);
979
980 /* If transitioning into NOT_RUNNING, adjust nr_running. */
981 if ((flags & WORKER_NOT_RUNNING) &&
982 !(worker->flags & WORKER_NOT_RUNNING)) {
983 pool->nr_running--;
984 }
985
986 worker->flags |= flags;
987 }
988
989 /**
990 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
991 * @worker: self
992 * @flags: flags to clear
993 *
994 * Clear @flags in @worker->flags and adjust nr_running accordingly.
995 *
996 * CONTEXT:
997 * raw_spin_lock_irq(pool->lock)
998 */
worker_clr_flags(struct worker * worker,unsigned int flags)999 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1000 {
1001 struct worker_pool *pool = worker->pool;
1002 unsigned int oflags = worker->flags;
1003
1004 WARN_ON_ONCE(worker->task != current);
1005
1006 worker->flags &= ~flags;
1007
1008 /*
1009 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1010 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1011 * of multiple flags, not a single flag.
1012 */
1013 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1014 if (!(worker->flags & WORKER_NOT_RUNNING))
1015 pool->nr_running++;
1016 }
1017
1018 /**
1019 * find_worker_executing_work - find worker which is executing a work
1020 * @pool: pool of interest
1021 * @work: work to find worker for
1022 *
1023 * Find a worker which is executing @work on @pool by searching
1024 * @pool->busy_hash which is keyed by the address of @work. For a worker
1025 * to match, its current execution should match the address of @work and
1026 * its work function. This is to avoid unwanted dependency between
1027 * unrelated work executions through a work item being recycled while still
1028 * being executed.
1029 *
1030 * This is a bit tricky. A work item may be freed once its execution
1031 * starts and nothing prevents the freed area from being recycled for
1032 * another work item. If the same work item address ends up being reused
1033 * before the original execution finishes, workqueue will identify the
1034 * recycled work item as currently executing and make it wait until the
1035 * current execution finishes, introducing an unwanted dependency.
1036 *
1037 * This function checks the work item address and work function to avoid
1038 * false positives. Note that this isn't complete as one may construct a
1039 * work function which can introduce dependency onto itself through a
1040 * recycled work item. Well, if somebody wants to shoot oneself in the
1041 * foot that badly, there's only so much we can do, and if such deadlock
1042 * actually occurs, it should be easy to locate the culprit work function.
1043 *
1044 * CONTEXT:
1045 * raw_spin_lock_irq(pool->lock).
1046 *
1047 * Return:
1048 * Pointer to worker which is executing @work if found, %NULL
1049 * otherwise.
1050 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1051 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1052 struct work_struct *work)
1053 {
1054 struct worker *worker;
1055
1056 hash_for_each_possible(pool->busy_hash, worker, hentry,
1057 (unsigned long)work)
1058 if (worker->current_work == work &&
1059 worker->current_func == work->func)
1060 return worker;
1061
1062 return NULL;
1063 }
1064
1065 /**
1066 * move_linked_works - move linked works to a list
1067 * @work: start of series of works to be scheduled
1068 * @head: target list to append @work to
1069 * @nextp: out parameter for nested worklist walking
1070 *
1071 * Schedule linked works starting from @work to @head. Work series to
1072 * be scheduled starts at @work and includes any consecutive work with
1073 * WORK_STRUCT_LINKED set in its predecessor.
1074 *
1075 * If @nextp is not NULL, it's updated to point to the next work of
1076 * the last scheduled work. This allows move_linked_works() to be
1077 * nested inside outer list_for_each_entry_safe().
1078 *
1079 * CONTEXT:
1080 * raw_spin_lock_irq(pool->lock).
1081 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1082 static void move_linked_works(struct work_struct *work, struct list_head *head,
1083 struct work_struct **nextp)
1084 {
1085 struct work_struct *n;
1086
1087 /*
1088 * Linked worklist will always end before the end of the list,
1089 * use NULL for list head.
1090 */
1091 list_for_each_entry_safe_from(work, n, NULL, entry) {
1092 list_move_tail(&work->entry, head);
1093 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1094 break;
1095 }
1096
1097 /*
1098 * If we're already inside safe list traversal and have moved
1099 * multiple works to the scheduled queue, the next position
1100 * needs to be updated.
1101 */
1102 if (nextp)
1103 *nextp = n;
1104 }
1105
1106 /**
1107 * get_pwq - get an extra reference on the specified pool_workqueue
1108 * @pwq: pool_workqueue to get
1109 *
1110 * Obtain an extra reference on @pwq. The caller should guarantee that
1111 * @pwq has positive refcnt and be holding the matching pool->lock.
1112 */
get_pwq(struct pool_workqueue * pwq)1113 static void get_pwq(struct pool_workqueue *pwq)
1114 {
1115 lockdep_assert_held(&pwq->pool->lock);
1116 WARN_ON_ONCE(pwq->refcnt <= 0);
1117 pwq->refcnt++;
1118 }
1119
1120 /**
1121 * put_pwq - put a pool_workqueue reference
1122 * @pwq: pool_workqueue to put
1123 *
1124 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1125 * destruction. The caller should be holding the matching pool->lock.
1126 */
put_pwq(struct pool_workqueue * pwq)1127 static void put_pwq(struct pool_workqueue *pwq)
1128 {
1129 lockdep_assert_held(&pwq->pool->lock);
1130 if (likely(--pwq->refcnt))
1131 return;
1132 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1133 return;
1134 /*
1135 * @pwq can't be released under pool->lock, bounce to
1136 * pwq_unbound_release_workfn(). This never recurses on the same
1137 * pool->lock as this path is taken only for unbound workqueues and
1138 * the release work item is scheduled on a per-cpu workqueue. To
1139 * avoid lockdep warning, unbound pool->locks are given lockdep
1140 * subclass of 1 in get_unbound_pool().
1141 */
1142 schedule_work(&pwq->unbound_release_work);
1143 }
1144
1145 /**
1146 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1147 * @pwq: pool_workqueue to put (can be %NULL)
1148 *
1149 * put_pwq() with locking. This function also allows %NULL @pwq.
1150 */
put_pwq_unlocked(struct pool_workqueue * pwq)1151 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1152 {
1153 if (pwq) {
1154 /*
1155 * As both pwqs and pools are RCU protected, the
1156 * following lock operations are safe.
1157 */
1158 raw_spin_lock_irq(&pwq->pool->lock);
1159 put_pwq(pwq);
1160 raw_spin_unlock_irq(&pwq->pool->lock);
1161 }
1162 }
1163
pwq_activate_inactive_work(struct work_struct * work)1164 static void pwq_activate_inactive_work(struct work_struct *work)
1165 {
1166 struct pool_workqueue *pwq = get_work_pwq(work);
1167
1168 trace_workqueue_activate_work(work);
1169 if (list_empty(&pwq->pool->worklist))
1170 pwq->pool->watchdog_ts = jiffies;
1171 move_linked_works(work, &pwq->pool->worklist, NULL);
1172 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1173 pwq->nr_active++;
1174 }
1175
pwq_activate_first_inactive(struct pool_workqueue * pwq)1176 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1177 {
1178 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1179 struct work_struct, entry);
1180
1181 pwq_activate_inactive_work(work);
1182 }
1183
1184 /**
1185 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1186 * @pwq: pwq of interest
1187 * @work_data: work_data of work which left the queue
1188 *
1189 * A work either has completed or is removed from pending queue,
1190 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1191 *
1192 * CONTEXT:
1193 * raw_spin_lock_irq(pool->lock).
1194 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1195 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1196 {
1197 int color = get_work_color(work_data);
1198
1199 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1200 pwq->nr_active--;
1201 if (!list_empty(&pwq->inactive_works)) {
1202 /* one down, submit an inactive one */
1203 if (pwq->nr_active < pwq->max_active)
1204 pwq_activate_first_inactive(pwq);
1205 }
1206 }
1207
1208 pwq->nr_in_flight[color]--;
1209
1210 /* is flush in progress and are we at the flushing tip? */
1211 if (likely(pwq->flush_color != color))
1212 goto out_put;
1213
1214 /* are there still in-flight works? */
1215 if (pwq->nr_in_flight[color])
1216 goto out_put;
1217
1218 /* this pwq is done, clear flush_color */
1219 pwq->flush_color = -1;
1220
1221 /*
1222 * If this was the last pwq, wake up the first flusher. It
1223 * will handle the rest.
1224 */
1225 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1226 complete(&pwq->wq->first_flusher->done);
1227 out_put:
1228 put_pwq(pwq);
1229 }
1230
1231 /**
1232 * try_to_grab_pending - steal work item from worklist and disable irq
1233 * @work: work item to steal
1234 * @is_dwork: @work is a delayed_work
1235 * @flags: place to store irq state
1236 *
1237 * Try to grab PENDING bit of @work. This function can handle @work in any
1238 * stable state - idle, on timer or on worklist.
1239 *
1240 * Return:
1241 *
1242 * ======== ================================================================
1243 * 1 if @work was pending and we successfully stole PENDING
1244 * 0 if @work was idle and we claimed PENDING
1245 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1246 * -ENOENT if someone else is canceling @work, this state may persist
1247 * for arbitrarily long
1248 * ======== ================================================================
1249 *
1250 * Note:
1251 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1252 * interrupted while holding PENDING and @work off queue, irq must be
1253 * disabled on entry. This, combined with delayed_work->timer being
1254 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1255 *
1256 * On successful return, >= 0, irq is disabled and the caller is
1257 * responsible for releasing it using local_irq_restore(*@flags).
1258 *
1259 * This function is safe to call from any context including IRQ handler.
1260 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1261 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1262 unsigned long *flags)
1263 {
1264 struct worker_pool *pool;
1265 struct pool_workqueue *pwq;
1266
1267 local_irq_save(*flags);
1268
1269 /* try to steal the timer if it exists */
1270 if (is_dwork) {
1271 struct delayed_work *dwork = to_delayed_work(work);
1272
1273 /*
1274 * dwork->timer is irqsafe. If del_timer() fails, it's
1275 * guaranteed that the timer is not queued anywhere and not
1276 * running on the local CPU.
1277 */
1278 if (likely(del_timer(&dwork->timer)))
1279 return 1;
1280 }
1281
1282 /* try to claim PENDING the normal way */
1283 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1284 return 0;
1285
1286 rcu_read_lock();
1287 /*
1288 * The queueing is in progress, or it is already queued. Try to
1289 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1290 */
1291 pool = get_work_pool(work);
1292 if (!pool)
1293 goto fail;
1294
1295 raw_spin_lock(&pool->lock);
1296 /*
1297 * work->data is guaranteed to point to pwq only while the work
1298 * item is queued on pwq->wq, and both updating work->data to point
1299 * to pwq on queueing and to pool on dequeueing are done under
1300 * pwq->pool->lock. This in turn guarantees that, if work->data
1301 * points to pwq which is associated with a locked pool, the work
1302 * item is currently queued on that pool.
1303 */
1304 pwq = get_work_pwq(work);
1305 if (pwq && pwq->pool == pool) {
1306 debug_work_deactivate(work);
1307
1308 /*
1309 * A cancelable inactive work item must be in the
1310 * pwq->inactive_works since a queued barrier can't be
1311 * canceled (see the comments in insert_wq_barrier()).
1312 *
1313 * An inactive work item cannot be grabbed directly because
1314 * it might have linked barrier work items which, if left
1315 * on the inactive_works list, will confuse pwq->nr_active
1316 * management later on and cause stall. Make sure the work
1317 * item is activated before grabbing.
1318 */
1319 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1320 pwq_activate_inactive_work(work);
1321
1322 list_del_init(&work->entry);
1323 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1324
1325 /* work->data points to pwq iff queued, point to pool */
1326 set_work_pool_and_keep_pending(work, pool->id);
1327
1328 raw_spin_unlock(&pool->lock);
1329 rcu_read_unlock();
1330 return 1;
1331 }
1332 raw_spin_unlock(&pool->lock);
1333 fail:
1334 rcu_read_unlock();
1335 local_irq_restore(*flags);
1336 if (work_is_canceling(work))
1337 return -ENOENT;
1338 cpu_relax();
1339 return -EAGAIN;
1340 }
1341
1342 /**
1343 * insert_work - insert a work into a pool
1344 * @pwq: pwq @work belongs to
1345 * @work: work to insert
1346 * @head: insertion point
1347 * @extra_flags: extra WORK_STRUCT_* flags to set
1348 *
1349 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1350 * work_struct flags.
1351 *
1352 * CONTEXT:
1353 * raw_spin_lock_irq(pool->lock).
1354 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1355 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1356 struct list_head *head, unsigned int extra_flags)
1357 {
1358 struct worker_pool *pool = pwq->pool;
1359
1360 /* record the work call stack in order to print it in KASAN reports */
1361 kasan_record_aux_stack_noalloc(work);
1362
1363 /* we own @work, set data and link */
1364 set_work_pwq(work, pwq, extra_flags);
1365 list_add_tail(&work->entry, head);
1366 get_pwq(pwq);
1367
1368 if (__need_more_worker(pool))
1369 wake_up_worker(pool);
1370 }
1371
1372 /*
1373 * Test whether @work is being queued from another work executing on the
1374 * same workqueue.
1375 */
is_chained_work(struct workqueue_struct * wq)1376 static bool is_chained_work(struct workqueue_struct *wq)
1377 {
1378 struct worker *worker;
1379
1380 worker = current_wq_worker();
1381 /*
1382 * Return %true iff I'm a worker executing a work item on @wq. If
1383 * I'm @worker, it's safe to dereference it without locking.
1384 */
1385 return worker && worker->current_pwq->wq == wq;
1386 }
1387
1388 /*
1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1390 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1391 * avoid perturbing sensitive tasks.
1392 */
wq_select_unbound_cpu(int cpu)1393 static int wq_select_unbound_cpu(int cpu)
1394 {
1395 static bool printed_dbg_warning;
1396 int new_cpu;
1397
1398 if (likely(!wq_debug_force_rr_cpu)) {
1399 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1400 return cpu;
1401 } else if (!printed_dbg_warning) {
1402 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1403 printed_dbg_warning = true;
1404 }
1405
1406 if (cpumask_empty(wq_unbound_cpumask))
1407 return cpu;
1408
1409 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1410 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1411 if (unlikely(new_cpu >= nr_cpu_ids)) {
1412 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1413 if (unlikely(new_cpu >= nr_cpu_ids))
1414 return cpu;
1415 }
1416 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1417
1418 return new_cpu;
1419 }
1420
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1421 static void __queue_work(int cpu, struct workqueue_struct *wq,
1422 struct work_struct *work)
1423 {
1424 struct pool_workqueue *pwq;
1425 struct worker_pool *last_pool;
1426 struct list_head *worklist;
1427 unsigned int work_flags;
1428 unsigned int req_cpu = cpu;
1429
1430 /*
1431 * While a work item is PENDING && off queue, a task trying to
1432 * steal the PENDING will busy-loop waiting for it to either get
1433 * queued or lose PENDING. Grabbing PENDING and queueing should
1434 * happen with IRQ disabled.
1435 */
1436 lockdep_assert_irqs_disabled();
1437
1438
1439 /*
1440 * For a draining wq, only works from the same workqueue are
1441 * allowed. The __WQ_DESTROYING helps to spot the issue that
1442 * queues a new work item to a wq after destroy_workqueue(wq).
1443 */
1444 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1445 WARN_ON_ONCE(!is_chained_work(wq))))
1446 return;
1447 rcu_read_lock();
1448 retry:
1449 /* pwq which will be used unless @work is executing elsewhere */
1450 if (wq->flags & WQ_UNBOUND) {
1451 if (req_cpu == WORK_CPU_UNBOUND)
1452 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1453 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1454 } else {
1455 if (req_cpu == WORK_CPU_UNBOUND)
1456 cpu = raw_smp_processor_id();
1457 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1458 }
1459
1460 /*
1461 * If @work was previously on a different pool, it might still be
1462 * running there, in which case the work needs to be queued on that
1463 * pool to guarantee non-reentrancy.
1464 */
1465 last_pool = get_work_pool(work);
1466 if (last_pool && last_pool != pwq->pool) {
1467 struct worker *worker;
1468
1469 raw_spin_lock(&last_pool->lock);
1470
1471 worker = find_worker_executing_work(last_pool, work);
1472
1473 if (worker && worker->current_pwq->wq == wq) {
1474 pwq = worker->current_pwq;
1475 } else {
1476 /* meh... not running there, queue here */
1477 raw_spin_unlock(&last_pool->lock);
1478 raw_spin_lock(&pwq->pool->lock);
1479 }
1480 } else {
1481 raw_spin_lock(&pwq->pool->lock);
1482 }
1483
1484 /*
1485 * pwq is determined and locked. For unbound pools, we could have
1486 * raced with pwq release and it could already be dead. If its
1487 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1488 * without another pwq replacing it in the numa_pwq_tbl or while
1489 * work items are executing on it, so the retrying is guaranteed to
1490 * make forward-progress.
1491 */
1492 if (unlikely(!pwq->refcnt)) {
1493 if (wq->flags & WQ_UNBOUND) {
1494 raw_spin_unlock(&pwq->pool->lock);
1495 cpu_relax();
1496 goto retry;
1497 }
1498 /* oops */
1499 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1500 wq->name, cpu);
1501 }
1502
1503 /* pwq determined, queue */
1504 trace_workqueue_queue_work(req_cpu, pwq, work);
1505
1506 if (WARN_ON(!list_empty(&work->entry)))
1507 goto out;
1508
1509 pwq->nr_in_flight[pwq->work_color]++;
1510 work_flags = work_color_to_flags(pwq->work_color);
1511
1512 if (likely(pwq->nr_active < pwq->max_active)) {
1513 trace_workqueue_activate_work(work);
1514 pwq->nr_active++;
1515 worklist = &pwq->pool->worklist;
1516 if (list_empty(worklist))
1517 pwq->pool->watchdog_ts = jiffies;
1518 } else {
1519 work_flags |= WORK_STRUCT_INACTIVE;
1520 worklist = &pwq->inactive_works;
1521 }
1522
1523 debug_work_activate(work);
1524 insert_work(pwq, work, worklist, work_flags);
1525
1526 out:
1527 raw_spin_unlock(&pwq->pool->lock);
1528 rcu_read_unlock();
1529 }
1530
1531 /**
1532 * queue_work_on - queue work on specific cpu
1533 * @cpu: CPU number to execute work on
1534 * @wq: workqueue to use
1535 * @work: work to queue
1536 *
1537 * We queue the work to a specific CPU, the caller must ensure it
1538 * can't go away. Callers that fail to ensure that the specified
1539 * CPU cannot go away will execute on a randomly chosen CPU.
1540 *
1541 * Return: %false if @work was already on a queue, %true otherwise.
1542 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1543 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1544 struct work_struct *work)
1545 {
1546 bool ret = false;
1547 unsigned long flags;
1548
1549 local_irq_save(flags);
1550
1551 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1552 __queue_work(cpu, wq, work);
1553 ret = true;
1554 }
1555
1556 local_irq_restore(flags);
1557 return ret;
1558 }
1559 EXPORT_SYMBOL(queue_work_on);
1560
1561 /**
1562 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1563 * @node: NUMA node ID that we want to select a CPU from
1564 *
1565 * This function will attempt to find a "random" cpu available on a given
1566 * node. If there are no CPUs available on the given node it will return
1567 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1568 * available CPU if we need to schedule this work.
1569 */
workqueue_select_cpu_near(int node)1570 static int workqueue_select_cpu_near(int node)
1571 {
1572 int cpu;
1573
1574 /* No point in doing this if NUMA isn't enabled for workqueues */
1575 if (!wq_numa_enabled)
1576 return WORK_CPU_UNBOUND;
1577
1578 /* Delay binding to CPU if node is not valid or online */
1579 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1580 return WORK_CPU_UNBOUND;
1581
1582 /* Use local node/cpu if we are already there */
1583 cpu = raw_smp_processor_id();
1584 if (node == cpu_to_node(cpu))
1585 return cpu;
1586
1587 /* Use "random" otherwise know as "first" online CPU of node */
1588 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1589
1590 /* If CPU is valid return that, otherwise just defer */
1591 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1592 }
1593
1594 /**
1595 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1596 * @node: NUMA node that we are targeting the work for
1597 * @wq: workqueue to use
1598 * @work: work to queue
1599 *
1600 * We queue the work to a "random" CPU within a given NUMA node. The basic
1601 * idea here is to provide a way to somehow associate work with a given
1602 * NUMA node.
1603 *
1604 * This function will only make a best effort attempt at getting this onto
1605 * the right NUMA node. If no node is requested or the requested node is
1606 * offline then we just fall back to standard queue_work behavior.
1607 *
1608 * Currently the "random" CPU ends up being the first available CPU in the
1609 * intersection of cpu_online_mask and the cpumask of the node, unless we
1610 * are running on the node. In that case we just use the current CPU.
1611 *
1612 * Return: %false if @work was already on a queue, %true otherwise.
1613 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1614 bool queue_work_node(int node, struct workqueue_struct *wq,
1615 struct work_struct *work)
1616 {
1617 unsigned long flags;
1618 bool ret = false;
1619
1620 /*
1621 * This current implementation is specific to unbound workqueues.
1622 * Specifically we only return the first available CPU for a given
1623 * node instead of cycling through individual CPUs within the node.
1624 *
1625 * If this is used with a per-cpu workqueue then the logic in
1626 * workqueue_select_cpu_near would need to be updated to allow for
1627 * some round robin type logic.
1628 */
1629 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1630
1631 local_irq_save(flags);
1632
1633 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1634 int cpu = workqueue_select_cpu_near(node);
1635
1636 __queue_work(cpu, wq, work);
1637 ret = true;
1638 }
1639
1640 local_irq_restore(flags);
1641 return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(queue_work_node);
1644
delayed_work_timer_fn(struct timer_list * t)1645 void delayed_work_timer_fn(struct timer_list *t)
1646 {
1647 struct delayed_work *dwork = from_timer(dwork, t, timer);
1648
1649 /* should have been called from irqsafe timer with irq already off */
1650 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1651 }
1652 EXPORT_SYMBOL(delayed_work_timer_fn);
1653
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1654 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1655 struct delayed_work *dwork, unsigned long delay)
1656 {
1657 struct timer_list *timer = &dwork->timer;
1658 struct work_struct *work = &dwork->work;
1659
1660 WARN_ON_ONCE(!wq);
1661 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1662 WARN_ON_ONCE(timer_pending(timer));
1663 WARN_ON_ONCE(!list_empty(&work->entry));
1664
1665 /*
1666 * If @delay is 0, queue @dwork->work immediately. This is for
1667 * both optimization and correctness. The earliest @timer can
1668 * expire is on the closest next tick and delayed_work users depend
1669 * on that there's no such delay when @delay is 0.
1670 */
1671 if (!delay) {
1672 __queue_work(cpu, wq, &dwork->work);
1673 return;
1674 }
1675
1676 dwork->wq = wq;
1677 dwork->cpu = cpu;
1678 timer->expires = jiffies + delay;
1679
1680 if (unlikely(cpu != WORK_CPU_UNBOUND))
1681 add_timer_on(timer, cpu);
1682 else
1683 add_timer(timer);
1684 }
1685
1686 /**
1687 * queue_delayed_work_on - queue work on specific CPU after delay
1688 * @cpu: CPU number to execute work on
1689 * @wq: workqueue to use
1690 * @dwork: work to queue
1691 * @delay: number of jiffies to wait before queueing
1692 *
1693 * Return: %false if @work was already on a queue, %true otherwise. If
1694 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1695 * execution.
1696 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1697 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1698 struct delayed_work *dwork, unsigned long delay)
1699 {
1700 struct work_struct *work = &dwork->work;
1701 bool ret = false;
1702 unsigned long flags;
1703
1704 /* read the comment in __queue_work() */
1705 local_irq_save(flags);
1706
1707 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1708 __queue_delayed_work(cpu, wq, dwork, delay);
1709 ret = true;
1710 }
1711
1712 local_irq_restore(flags);
1713 return ret;
1714 }
1715 EXPORT_SYMBOL(queue_delayed_work_on);
1716
1717 /**
1718 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1719 * @cpu: CPU number to execute work on
1720 * @wq: workqueue to use
1721 * @dwork: work to queue
1722 * @delay: number of jiffies to wait before queueing
1723 *
1724 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1725 * modify @dwork's timer so that it expires after @delay. If @delay is
1726 * zero, @work is guaranteed to be scheduled immediately regardless of its
1727 * current state.
1728 *
1729 * Return: %false if @dwork was idle and queued, %true if @dwork was
1730 * pending and its timer was modified.
1731 *
1732 * This function is safe to call from any context including IRQ handler.
1733 * See try_to_grab_pending() for details.
1734 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1735 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1736 struct delayed_work *dwork, unsigned long delay)
1737 {
1738 unsigned long flags;
1739 int ret;
1740
1741 do {
1742 ret = try_to_grab_pending(&dwork->work, true, &flags);
1743 } while (unlikely(ret == -EAGAIN));
1744
1745 if (likely(ret >= 0)) {
1746 __queue_delayed_work(cpu, wq, dwork, delay);
1747 local_irq_restore(flags);
1748 }
1749
1750 /* -ENOENT from try_to_grab_pending() becomes %true */
1751 return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1754
rcu_work_rcufn(struct rcu_head * rcu)1755 static void rcu_work_rcufn(struct rcu_head *rcu)
1756 {
1757 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1758
1759 /* read the comment in __queue_work() */
1760 local_irq_disable();
1761 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1762 local_irq_enable();
1763 }
1764
1765 /**
1766 * queue_rcu_work - queue work after a RCU grace period
1767 * @wq: workqueue to use
1768 * @rwork: work to queue
1769 *
1770 * Return: %false if @rwork was already pending, %true otherwise. Note
1771 * that a full RCU grace period is guaranteed only after a %true return.
1772 * While @rwork is guaranteed to be executed after a %false return, the
1773 * execution may happen before a full RCU grace period has passed.
1774 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1775 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1776 {
1777 struct work_struct *work = &rwork->work;
1778
1779 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1780 rwork->wq = wq;
1781 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1782 return true;
1783 }
1784
1785 return false;
1786 }
1787 EXPORT_SYMBOL(queue_rcu_work);
1788
1789 /**
1790 * worker_enter_idle - enter idle state
1791 * @worker: worker which is entering idle state
1792 *
1793 * @worker is entering idle state. Update stats and idle timer if
1794 * necessary.
1795 *
1796 * LOCKING:
1797 * raw_spin_lock_irq(pool->lock).
1798 */
worker_enter_idle(struct worker * worker)1799 static void worker_enter_idle(struct worker *worker)
1800 {
1801 struct worker_pool *pool = worker->pool;
1802
1803 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1804 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1805 (worker->hentry.next || worker->hentry.pprev)))
1806 return;
1807
1808 /* can't use worker_set_flags(), also called from create_worker() */
1809 worker->flags |= WORKER_IDLE;
1810 pool->nr_idle++;
1811 worker->last_active = jiffies;
1812
1813 /* idle_list is LIFO */
1814 list_add(&worker->entry, &pool->idle_list);
1815
1816 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1817 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1818
1819 /* Sanity check nr_running. */
1820 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1821 }
1822
1823 /**
1824 * worker_leave_idle - leave idle state
1825 * @worker: worker which is leaving idle state
1826 *
1827 * @worker is leaving idle state. Update stats.
1828 *
1829 * LOCKING:
1830 * raw_spin_lock_irq(pool->lock).
1831 */
worker_leave_idle(struct worker * worker)1832 static void worker_leave_idle(struct worker *worker)
1833 {
1834 struct worker_pool *pool = worker->pool;
1835
1836 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1837 return;
1838 worker_clr_flags(worker, WORKER_IDLE);
1839 pool->nr_idle--;
1840 list_del_init(&worker->entry);
1841 }
1842
alloc_worker(int node)1843 static struct worker *alloc_worker(int node)
1844 {
1845 struct worker *worker;
1846
1847 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1848 if (worker) {
1849 INIT_LIST_HEAD(&worker->entry);
1850 INIT_LIST_HEAD(&worker->scheduled);
1851 INIT_LIST_HEAD(&worker->node);
1852 /* on creation a worker is in !idle && prep state */
1853 worker->flags = WORKER_PREP;
1854 }
1855 return worker;
1856 }
1857
1858 /**
1859 * worker_attach_to_pool() - attach a worker to a pool
1860 * @worker: worker to be attached
1861 * @pool: the target pool
1862 *
1863 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1864 * cpu-binding of @worker are kept coordinated with the pool across
1865 * cpu-[un]hotplugs.
1866 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1867 static void worker_attach_to_pool(struct worker *worker,
1868 struct worker_pool *pool)
1869 {
1870 mutex_lock(&wq_pool_attach_mutex);
1871
1872 /*
1873 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1874 * stable across this function. See the comments above the flag
1875 * definition for details.
1876 */
1877 if (pool->flags & POOL_DISASSOCIATED)
1878 worker->flags |= WORKER_UNBOUND;
1879 else
1880 kthread_set_per_cpu(worker->task, pool->cpu);
1881
1882 if (worker->rescue_wq)
1883 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1884
1885 list_add_tail(&worker->node, &pool->workers);
1886 worker->pool = pool;
1887
1888 mutex_unlock(&wq_pool_attach_mutex);
1889 }
1890
1891 /**
1892 * worker_detach_from_pool() - detach a worker from its pool
1893 * @worker: worker which is attached to its pool
1894 *
1895 * Undo the attaching which had been done in worker_attach_to_pool(). The
1896 * caller worker shouldn't access to the pool after detached except it has
1897 * other reference to the pool.
1898 */
worker_detach_from_pool(struct worker * worker)1899 static void worker_detach_from_pool(struct worker *worker)
1900 {
1901 struct worker_pool *pool = worker->pool;
1902 struct completion *detach_completion = NULL;
1903
1904 mutex_lock(&wq_pool_attach_mutex);
1905
1906 kthread_set_per_cpu(worker->task, -1);
1907 list_del(&worker->node);
1908 worker->pool = NULL;
1909
1910 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
1911 detach_completion = pool->detach_completion;
1912 mutex_unlock(&wq_pool_attach_mutex);
1913
1914 /* clear leftover flags without pool->lock after it is detached */
1915 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1916
1917 if (detach_completion)
1918 complete(detach_completion);
1919 }
1920
1921 /**
1922 * create_worker - create a new workqueue worker
1923 * @pool: pool the new worker will belong to
1924 *
1925 * Create and start a new worker which is attached to @pool.
1926 *
1927 * CONTEXT:
1928 * Might sleep. Does GFP_KERNEL allocations.
1929 *
1930 * Return:
1931 * Pointer to the newly created worker.
1932 */
create_worker(struct worker_pool * pool)1933 static struct worker *create_worker(struct worker_pool *pool)
1934 {
1935 struct worker *worker;
1936 int id;
1937 char id_buf[16];
1938
1939 /* ID is needed to determine kthread name */
1940 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1941 if (id < 0)
1942 return NULL;
1943
1944 worker = alloc_worker(pool->node);
1945 if (!worker)
1946 goto fail;
1947
1948 worker->id = id;
1949
1950 if (pool->cpu >= 0)
1951 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1952 pool->attrs->nice < 0 ? "H" : "");
1953 else
1954 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1955
1956 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1957 "kworker/%s", id_buf);
1958 if (IS_ERR(worker->task))
1959 goto fail;
1960
1961 set_user_nice(worker->task, pool->attrs->nice);
1962 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1963
1964 /* successful, attach the worker to the pool */
1965 worker_attach_to_pool(worker, pool);
1966
1967 /* start the newly created worker */
1968 raw_spin_lock_irq(&pool->lock);
1969 worker->pool->nr_workers++;
1970 worker_enter_idle(worker);
1971 wake_up_process(worker->task);
1972 raw_spin_unlock_irq(&pool->lock);
1973
1974 return worker;
1975
1976 fail:
1977 ida_free(&pool->worker_ida, id);
1978 kfree(worker);
1979 return NULL;
1980 }
1981
unbind_worker(struct worker * worker)1982 static void unbind_worker(struct worker *worker)
1983 {
1984 lockdep_assert_held(&wq_pool_attach_mutex);
1985
1986 kthread_set_per_cpu(worker->task, -1);
1987 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
1988 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
1989 else
1990 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
1991 }
1992
wake_dying_workers(struct list_head * cull_list)1993 static void wake_dying_workers(struct list_head *cull_list)
1994 {
1995 struct worker *worker, *tmp;
1996
1997 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
1998 list_del_init(&worker->entry);
1999 unbind_worker(worker);
2000 /*
2001 * If the worker was somehow already running, then it had to be
2002 * in pool->idle_list when set_worker_dying() happened or we
2003 * wouldn't have gotten here.
2004 *
2005 * Thus, the worker must either have observed the WORKER_DIE
2006 * flag, or have set its state to TASK_IDLE. Either way, the
2007 * below will be observed by the worker and is safe to do
2008 * outside of pool->lock.
2009 */
2010 wake_up_process(worker->task);
2011 }
2012 }
2013
2014 /**
2015 * set_worker_dying - Tag a worker for destruction
2016 * @worker: worker to be destroyed
2017 * @list: transfer worker away from its pool->idle_list and into list
2018 *
2019 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2020 * should be idle.
2021 *
2022 * CONTEXT:
2023 * raw_spin_lock_irq(pool->lock).
2024 */
set_worker_dying(struct worker * worker,struct list_head * list)2025 static void set_worker_dying(struct worker *worker, struct list_head *list)
2026 {
2027 struct worker_pool *pool = worker->pool;
2028
2029 lockdep_assert_held(&pool->lock);
2030 lockdep_assert_held(&wq_pool_attach_mutex);
2031
2032 /* sanity check frenzy */
2033 if (WARN_ON(worker->current_work) ||
2034 WARN_ON(!list_empty(&worker->scheduled)) ||
2035 WARN_ON(!(worker->flags & WORKER_IDLE)))
2036 return;
2037
2038 pool->nr_workers--;
2039 pool->nr_idle--;
2040
2041 worker->flags |= WORKER_DIE;
2042
2043 list_move(&worker->entry, list);
2044 list_move(&worker->node, &pool->dying_workers);
2045 }
2046
2047 /**
2048 * idle_worker_timeout - check if some idle workers can now be deleted.
2049 * @t: The pool's idle_timer that just expired
2050 *
2051 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2052 * worker_leave_idle(), as a worker flicking between idle and active while its
2053 * pool is at the too_many_workers() tipping point would cause too much timer
2054 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2055 * it expire and re-evaluate things from there.
2056 */
idle_worker_timeout(struct timer_list * t)2057 static void idle_worker_timeout(struct timer_list *t)
2058 {
2059 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2060 bool do_cull = false;
2061
2062 if (work_pending(&pool->idle_cull_work))
2063 return;
2064
2065 raw_spin_lock_irq(&pool->lock);
2066
2067 if (too_many_workers(pool)) {
2068 struct worker *worker;
2069 unsigned long expires;
2070
2071 /* idle_list is kept in LIFO order, check the last one */
2072 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2073 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2074 do_cull = !time_before(jiffies, expires);
2075
2076 if (!do_cull)
2077 mod_timer(&pool->idle_timer, expires);
2078 }
2079 raw_spin_unlock_irq(&pool->lock);
2080
2081 if (do_cull)
2082 queue_work(system_unbound_wq, &pool->idle_cull_work);
2083 }
2084
2085 /**
2086 * idle_cull_fn - cull workers that have been idle for too long.
2087 * @work: the pool's work for handling these idle workers
2088 *
2089 * This goes through a pool's idle workers and gets rid of those that have been
2090 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2091 *
2092 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2093 * culled, so this also resets worker affinity. This requires a sleepable
2094 * context, hence the split between timer callback and work item.
2095 */
idle_cull_fn(struct work_struct * work)2096 static void idle_cull_fn(struct work_struct *work)
2097 {
2098 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2099 struct list_head cull_list;
2100
2101 INIT_LIST_HEAD(&cull_list);
2102 /*
2103 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2104 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2105 * path. This is required as a previously-preempted worker could run after
2106 * set_worker_dying() has happened but before wake_dying_workers() did.
2107 */
2108 mutex_lock(&wq_pool_attach_mutex);
2109 raw_spin_lock_irq(&pool->lock);
2110
2111 while (too_many_workers(pool)) {
2112 struct worker *worker;
2113 unsigned long expires;
2114
2115 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2116 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2117
2118 if (time_before(jiffies, expires)) {
2119 mod_timer(&pool->idle_timer, expires);
2120 break;
2121 }
2122
2123 set_worker_dying(worker, &cull_list);
2124 }
2125
2126 raw_spin_unlock_irq(&pool->lock);
2127 wake_dying_workers(&cull_list);
2128 mutex_unlock(&wq_pool_attach_mutex);
2129 }
2130
send_mayday(struct work_struct * work)2131 static void send_mayday(struct work_struct *work)
2132 {
2133 struct pool_workqueue *pwq = get_work_pwq(work);
2134 struct workqueue_struct *wq = pwq->wq;
2135
2136 lockdep_assert_held(&wq_mayday_lock);
2137
2138 if (!wq->rescuer)
2139 return;
2140
2141 /* mayday mayday mayday */
2142 if (list_empty(&pwq->mayday_node)) {
2143 /*
2144 * If @pwq is for an unbound wq, its base ref may be put at
2145 * any time due to an attribute change. Pin @pwq until the
2146 * rescuer is done with it.
2147 */
2148 get_pwq(pwq);
2149 list_add_tail(&pwq->mayday_node, &wq->maydays);
2150 wake_up_process(wq->rescuer->task);
2151 }
2152 }
2153
pool_mayday_timeout(struct timer_list * t)2154 static void pool_mayday_timeout(struct timer_list *t)
2155 {
2156 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2157 struct work_struct *work;
2158
2159 raw_spin_lock_irq(&pool->lock);
2160 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2161
2162 if (need_to_create_worker(pool)) {
2163 /*
2164 * We've been trying to create a new worker but
2165 * haven't been successful. We might be hitting an
2166 * allocation deadlock. Send distress signals to
2167 * rescuers.
2168 */
2169 list_for_each_entry(work, &pool->worklist, entry)
2170 send_mayday(work);
2171 }
2172
2173 raw_spin_unlock(&wq_mayday_lock);
2174 raw_spin_unlock_irq(&pool->lock);
2175
2176 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2177 }
2178
2179 /**
2180 * maybe_create_worker - create a new worker if necessary
2181 * @pool: pool to create a new worker for
2182 *
2183 * Create a new worker for @pool if necessary. @pool is guaranteed to
2184 * have at least one idle worker on return from this function. If
2185 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2186 * sent to all rescuers with works scheduled on @pool to resolve
2187 * possible allocation deadlock.
2188 *
2189 * On return, need_to_create_worker() is guaranteed to be %false and
2190 * may_start_working() %true.
2191 *
2192 * LOCKING:
2193 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2194 * multiple times. Does GFP_KERNEL allocations. Called only from
2195 * manager.
2196 */
maybe_create_worker(struct worker_pool * pool)2197 static void maybe_create_worker(struct worker_pool *pool)
2198 __releases(&pool->lock)
2199 __acquires(&pool->lock)
2200 {
2201 restart:
2202 raw_spin_unlock_irq(&pool->lock);
2203
2204 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2205 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2206
2207 while (true) {
2208 if (create_worker(pool) || !need_to_create_worker(pool))
2209 break;
2210
2211 schedule_timeout_interruptible(CREATE_COOLDOWN);
2212
2213 if (!need_to_create_worker(pool))
2214 break;
2215 }
2216
2217 del_timer_sync(&pool->mayday_timer);
2218 raw_spin_lock_irq(&pool->lock);
2219 /*
2220 * This is necessary even after a new worker was just successfully
2221 * created as @pool->lock was dropped and the new worker might have
2222 * already become busy.
2223 */
2224 if (need_to_create_worker(pool))
2225 goto restart;
2226 }
2227
2228 /**
2229 * manage_workers - manage worker pool
2230 * @worker: self
2231 *
2232 * Assume the manager role and manage the worker pool @worker belongs
2233 * to. At any given time, there can be only zero or one manager per
2234 * pool. The exclusion is handled automatically by this function.
2235 *
2236 * The caller can safely start processing works on false return. On
2237 * true return, it's guaranteed that need_to_create_worker() is false
2238 * and may_start_working() is true.
2239 *
2240 * CONTEXT:
2241 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2242 * multiple times. Does GFP_KERNEL allocations.
2243 *
2244 * Return:
2245 * %false if the pool doesn't need management and the caller can safely
2246 * start processing works, %true if management function was performed and
2247 * the conditions that the caller verified before calling the function may
2248 * no longer be true.
2249 */
manage_workers(struct worker * worker)2250 static bool manage_workers(struct worker *worker)
2251 {
2252 struct worker_pool *pool = worker->pool;
2253
2254 if (pool->flags & POOL_MANAGER_ACTIVE)
2255 return false;
2256
2257 pool->flags |= POOL_MANAGER_ACTIVE;
2258 pool->manager = worker;
2259
2260 maybe_create_worker(pool);
2261
2262 pool->manager = NULL;
2263 pool->flags &= ~POOL_MANAGER_ACTIVE;
2264 rcuwait_wake_up(&manager_wait);
2265 return true;
2266 }
2267
2268 /**
2269 * process_one_work - process single work
2270 * @worker: self
2271 * @work: work to process
2272 *
2273 * Process @work. This function contains all the logics necessary to
2274 * process a single work including synchronization against and
2275 * interaction with other workers on the same cpu, queueing and
2276 * flushing. As long as context requirement is met, any worker can
2277 * call this function to process a work.
2278 *
2279 * CONTEXT:
2280 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2281 */
process_one_work(struct worker * worker,struct work_struct * work)2282 static void process_one_work(struct worker *worker, struct work_struct *work)
2283 __releases(&pool->lock)
2284 __acquires(&pool->lock)
2285 {
2286 struct pool_workqueue *pwq = get_work_pwq(work);
2287 struct worker_pool *pool = worker->pool;
2288 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2289 unsigned long work_data;
2290 struct worker *collision;
2291 #ifdef CONFIG_LOCKDEP
2292 /*
2293 * It is permissible to free the struct work_struct from
2294 * inside the function that is called from it, this we need to
2295 * take into account for lockdep too. To avoid bogus "held
2296 * lock freed" warnings as well as problems when looking into
2297 * work->lockdep_map, make a copy and use that here.
2298 */
2299 struct lockdep_map lockdep_map;
2300
2301 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2302 #endif
2303 /* ensure we're on the correct CPU */
2304 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2305 raw_smp_processor_id() != pool->cpu);
2306
2307 /*
2308 * A single work shouldn't be executed concurrently by
2309 * multiple workers on a single cpu. Check whether anyone is
2310 * already processing the work. If so, defer the work to the
2311 * currently executing one.
2312 */
2313 collision = find_worker_executing_work(pool, work);
2314 if (unlikely(collision)) {
2315 move_linked_works(work, &collision->scheduled, NULL);
2316 return;
2317 }
2318
2319 /* claim and dequeue */
2320 debug_work_deactivate(work);
2321 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2322 worker->current_work = work;
2323 worker->current_func = work->func;
2324 worker->current_pwq = pwq;
2325 work_data = *work_data_bits(work);
2326 worker->current_color = get_work_color(work_data);
2327
2328 /*
2329 * Record wq name for cmdline and debug reporting, may get
2330 * overridden through set_worker_desc().
2331 */
2332 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2333
2334 list_del_init(&work->entry);
2335
2336 /*
2337 * CPU intensive works don't participate in concurrency management.
2338 * They're the scheduler's responsibility. This takes @worker out
2339 * of concurrency management and the next code block will chain
2340 * execution of the pending work items.
2341 */
2342 if (unlikely(cpu_intensive))
2343 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2344
2345 /*
2346 * Wake up another worker if necessary. The condition is always
2347 * false for normal per-cpu workers since nr_running would always
2348 * be >= 1 at this point. This is used to chain execution of the
2349 * pending work items for WORKER_NOT_RUNNING workers such as the
2350 * UNBOUND and CPU_INTENSIVE ones.
2351 */
2352 if (need_more_worker(pool))
2353 wake_up_worker(pool);
2354
2355 /*
2356 * Record the last pool and clear PENDING which should be the last
2357 * update to @work. Also, do this inside @pool->lock so that
2358 * PENDING and queued state changes happen together while IRQ is
2359 * disabled.
2360 */
2361 set_work_pool_and_clear_pending(work, pool->id);
2362
2363 raw_spin_unlock_irq(&pool->lock);
2364
2365 lock_map_acquire(&pwq->wq->lockdep_map);
2366 lock_map_acquire(&lockdep_map);
2367 /*
2368 * Strictly speaking we should mark the invariant state without holding
2369 * any locks, that is, before these two lock_map_acquire()'s.
2370 *
2371 * However, that would result in:
2372 *
2373 * A(W1)
2374 * WFC(C)
2375 * A(W1)
2376 * C(C)
2377 *
2378 * Which would create W1->C->W1 dependencies, even though there is no
2379 * actual deadlock possible. There are two solutions, using a
2380 * read-recursive acquire on the work(queue) 'locks', but this will then
2381 * hit the lockdep limitation on recursive locks, or simply discard
2382 * these locks.
2383 *
2384 * AFAICT there is no possible deadlock scenario between the
2385 * flush_work() and complete() primitives (except for single-threaded
2386 * workqueues), so hiding them isn't a problem.
2387 */
2388 lockdep_invariant_state(true);
2389 trace_workqueue_execute_start(work);
2390 worker->current_func(work);
2391 /*
2392 * While we must be careful to not use "work" after this, the trace
2393 * point will only record its address.
2394 */
2395 trace_workqueue_execute_end(work, worker->current_func);
2396 lock_map_release(&lockdep_map);
2397 lock_map_release(&pwq->wq->lockdep_map);
2398
2399 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2400 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2401 " last function: %ps\n",
2402 current->comm, preempt_count(), task_pid_nr(current),
2403 worker->current_func);
2404 debug_show_held_locks(current);
2405 dump_stack();
2406 }
2407
2408 /*
2409 * The following prevents a kworker from hogging CPU on !PREEMPTION
2410 * kernels, where a requeueing work item waiting for something to
2411 * happen could deadlock with stop_machine as such work item could
2412 * indefinitely requeue itself while all other CPUs are trapped in
2413 * stop_machine. At the same time, report a quiescent RCU state so
2414 * the same condition doesn't freeze RCU.
2415 */
2416 cond_resched();
2417
2418 raw_spin_lock_irq(&pool->lock);
2419
2420 /* clear cpu intensive status */
2421 if (unlikely(cpu_intensive))
2422 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2423
2424 /* tag the worker for identification in schedule() */
2425 worker->last_func = worker->current_func;
2426
2427 /* we're done with it, release */
2428 hash_del(&worker->hentry);
2429 worker->current_work = NULL;
2430 worker->current_func = NULL;
2431 worker->current_pwq = NULL;
2432 worker->current_color = INT_MAX;
2433 pwq_dec_nr_in_flight(pwq, work_data);
2434 }
2435
2436 /**
2437 * process_scheduled_works - process scheduled works
2438 * @worker: self
2439 *
2440 * Process all scheduled works. Please note that the scheduled list
2441 * may change while processing a work, so this function repeatedly
2442 * fetches a work from the top and executes it.
2443 *
2444 * CONTEXT:
2445 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2446 * multiple times.
2447 */
process_scheduled_works(struct worker * worker)2448 static void process_scheduled_works(struct worker *worker)
2449 {
2450 while (!list_empty(&worker->scheduled)) {
2451 struct work_struct *work = list_first_entry(&worker->scheduled,
2452 struct work_struct, entry);
2453 process_one_work(worker, work);
2454 }
2455 }
2456
set_pf_worker(bool val)2457 static void set_pf_worker(bool val)
2458 {
2459 mutex_lock(&wq_pool_attach_mutex);
2460 if (val)
2461 current->flags |= PF_WQ_WORKER;
2462 else
2463 current->flags &= ~PF_WQ_WORKER;
2464 mutex_unlock(&wq_pool_attach_mutex);
2465 }
2466
2467 /**
2468 * worker_thread - the worker thread function
2469 * @__worker: self
2470 *
2471 * The worker thread function. All workers belong to a worker_pool -
2472 * either a per-cpu one or dynamic unbound one. These workers process all
2473 * work items regardless of their specific target workqueue. The only
2474 * exception is work items which belong to workqueues with a rescuer which
2475 * will be explained in rescuer_thread().
2476 *
2477 * Return: 0
2478 */
worker_thread(void * __worker)2479 static int worker_thread(void *__worker)
2480 {
2481 struct worker *worker = __worker;
2482 struct worker_pool *pool = worker->pool;
2483
2484 /* tell the scheduler that this is a workqueue worker */
2485 set_pf_worker(true);
2486 woke_up:
2487 raw_spin_lock_irq(&pool->lock);
2488
2489 /* am I supposed to die? */
2490 if (unlikely(worker->flags & WORKER_DIE)) {
2491 raw_spin_unlock_irq(&pool->lock);
2492 set_pf_worker(false);
2493
2494 set_task_comm(worker->task, "kworker/dying");
2495 ida_free(&pool->worker_ida, worker->id);
2496 worker_detach_from_pool(worker);
2497 WARN_ON_ONCE(!list_empty(&worker->entry));
2498 kfree(worker);
2499 return 0;
2500 }
2501
2502 worker_leave_idle(worker);
2503 recheck:
2504 /* no more worker necessary? */
2505 if (!need_more_worker(pool))
2506 goto sleep;
2507
2508 /* do we need to manage? */
2509 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2510 goto recheck;
2511
2512 /*
2513 * ->scheduled list can only be filled while a worker is
2514 * preparing to process a work or actually processing it.
2515 * Make sure nobody diddled with it while I was sleeping.
2516 */
2517 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2518
2519 /*
2520 * Finish PREP stage. We're guaranteed to have at least one idle
2521 * worker or that someone else has already assumed the manager
2522 * role. This is where @worker starts participating in concurrency
2523 * management if applicable and concurrency management is restored
2524 * after being rebound. See rebind_workers() for details.
2525 */
2526 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2527
2528 do {
2529 struct work_struct *work =
2530 list_first_entry(&pool->worklist,
2531 struct work_struct, entry);
2532
2533 pool->watchdog_ts = jiffies;
2534
2535 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2536 /* optimization path, not strictly necessary */
2537 process_one_work(worker, work);
2538 if (unlikely(!list_empty(&worker->scheduled)))
2539 process_scheduled_works(worker);
2540 } else {
2541 move_linked_works(work, &worker->scheduled, NULL);
2542 process_scheduled_works(worker);
2543 }
2544 } while (keep_working(pool));
2545
2546 worker_set_flags(worker, WORKER_PREP);
2547 sleep:
2548 /*
2549 * pool->lock is held and there's no work to process and no need to
2550 * manage, sleep. Workers are woken up only while holding
2551 * pool->lock or from local cpu, so setting the current state
2552 * before releasing pool->lock is enough to prevent losing any
2553 * event.
2554 */
2555 worker_enter_idle(worker);
2556 __set_current_state(TASK_IDLE);
2557 raw_spin_unlock_irq(&pool->lock);
2558 schedule();
2559 goto woke_up;
2560 }
2561
2562 /**
2563 * rescuer_thread - the rescuer thread function
2564 * @__rescuer: self
2565 *
2566 * Workqueue rescuer thread function. There's one rescuer for each
2567 * workqueue which has WQ_MEM_RECLAIM set.
2568 *
2569 * Regular work processing on a pool may block trying to create a new
2570 * worker which uses GFP_KERNEL allocation which has slight chance of
2571 * developing into deadlock if some works currently on the same queue
2572 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2573 * the problem rescuer solves.
2574 *
2575 * When such condition is possible, the pool summons rescuers of all
2576 * workqueues which have works queued on the pool and let them process
2577 * those works so that forward progress can be guaranteed.
2578 *
2579 * This should happen rarely.
2580 *
2581 * Return: 0
2582 */
rescuer_thread(void * __rescuer)2583 static int rescuer_thread(void *__rescuer)
2584 {
2585 struct worker *rescuer = __rescuer;
2586 struct workqueue_struct *wq = rescuer->rescue_wq;
2587 struct list_head *scheduled = &rescuer->scheduled;
2588 bool should_stop;
2589
2590 set_user_nice(current, RESCUER_NICE_LEVEL);
2591
2592 /*
2593 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2594 * doesn't participate in concurrency management.
2595 */
2596 set_pf_worker(true);
2597 repeat:
2598 set_current_state(TASK_IDLE);
2599
2600 /*
2601 * By the time the rescuer is requested to stop, the workqueue
2602 * shouldn't have any work pending, but @wq->maydays may still have
2603 * pwq(s) queued. This can happen by non-rescuer workers consuming
2604 * all the work items before the rescuer got to them. Go through
2605 * @wq->maydays processing before acting on should_stop so that the
2606 * list is always empty on exit.
2607 */
2608 should_stop = kthread_should_stop();
2609
2610 /* see whether any pwq is asking for help */
2611 raw_spin_lock_irq(&wq_mayday_lock);
2612
2613 while (!list_empty(&wq->maydays)) {
2614 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2615 struct pool_workqueue, mayday_node);
2616 struct worker_pool *pool = pwq->pool;
2617 struct work_struct *work, *n;
2618 bool first = true;
2619
2620 __set_current_state(TASK_RUNNING);
2621 list_del_init(&pwq->mayday_node);
2622
2623 raw_spin_unlock_irq(&wq_mayday_lock);
2624
2625 worker_attach_to_pool(rescuer, pool);
2626
2627 raw_spin_lock_irq(&pool->lock);
2628
2629 /*
2630 * Slurp in all works issued via this workqueue and
2631 * process'em.
2632 */
2633 WARN_ON_ONCE(!list_empty(scheduled));
2634 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2635 if (get_work_pwq(work) == pwq) {
2636 if (first)
2637 pool->watchdog_ts = jiffies;
2638 move_linked_works(work, scheduled, &n);
2639 }
2640 first = false;
2641 }
2642
2643 if (!list_empty(scheduled)) {
2644 process_scheduled_works(rescuer);
2645
2646 /*
2647 * The above execution of rescued work items could
2648 * have created more to rescue through
2649 * pwq_activate_first_inactive() or chained
2650 * queueing. Let's put @pwq back on mayday list so
2651 * that such back-to-back work items, which may be
2652 * being used to relieve memory pressure, don't
2653 * incur MAYDAY_INTERVAL delay inbetween.
2654 */
2655 if (pwq->nr_active && need_to_create_worker(pool)) {
2656 raw_spin_lock(&wq_mayday_lock);
2657 /*
2658 * Queue iff we aren't racing destruction
2659 * and somebody else hasn't queued it already.
2660 */
2661 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2662 get_pwq(pwq);
2663 list_add_tail(&pwq->mayday_node, &wq->maydays);
2664 }
2665 raw_spin_unlock(&wq_mayday_lock);
2666 }
2667 }
2668
2669 /*
2670 * Put the reference grabbed by send_mayday(). @pool won't
2671 * go away while we're still attached to it.
2672 */
2673 put_pwq(pwq);
2674
2675 /*
2676 * Leave this pool. If need_more_worker() is %true, notify a
2677 * regular worker; otherwise, we end up with 0 concurrency
2678 * and stalling the execution.
2679 */
2680 if (need_more_worker(pool))
2681 wake_up_worker(pool);
2682
2683 raw_spin_unlock_irq(&pool->lock);
2684
2685 worker_detach_from_pool(rescuer);
2686
2687 raw_spin_lock_irq(&wq_mayday_lock);
2688 }
2689
2690 raw_spin_unlock_irq(&wq_mayday_lock);
2691
2692 if (should_stop) {
2693 __set_current_state(TASK_RUNNING);
2694 set_pf_worker(false);
2695 return 0;
2696 }
2697
2698 /* rescuers should never participate in concurrency management */
2699 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2700 schedule();
2701 goto repeat;
2702 }
2703
2704 /**
2705 * check_flush_dependency - check for flush dependency sanity
2706 * @target_wq: workqueue being flushed
2707 * @target_work: work item being flushed (NULL for workqueue flushes)
2708 *
2709 * %current is trying to flush the whole @target_wq or @target_work on it.
2710 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2711 * reclaiming memory or running on a workqueue which doesn't have
2712 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2713 * a deadlock.
2714 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2715 static void check_flush_dependency(struct workqueue_struct *target_wq,
2716 struct work_struct *target_work)
2717 {
2718 work_func_t target_func = target_work ? target_work->func : NULL;
2719 struct worker *worker;
2720
2721 if (target_wq->flags & WQ_MEM_RECLAIM)
2722 return;
2723
2724 worker = current_wq_worker();
2725
2726 WARN_ONCE(current->flags & PF_MEMALLOC,
2727 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2728 current->pid, current->comm, target_wq->name, target_func);
2729 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2730 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2731 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2732 worker->current_pwq->wq->name, worker->current_func,
2733 target_wq->name, target_func);
2734 }
2735
2736 struct wq_barrier {
2737 struct work_struct work;
2738 struct completion done;
2739 struct task_struct *task; /* purely informational */
2740 };
2741
wq_barrier_func(struct work_struct * work)2742 static void wq_barrier_func(struct work_struct *work)
2743 {
2744 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2745 complete(&barr->done);
2746 }
2747
2748 /**
2749 * insert_wq_barrier - insert a barrier work
2750 * @pwq: pwq to insert barrier into
2751 * @barr: wq_barrier to insert
2752 * @target: target work to attach @barr to
2753 * @worker: worker currently executing @target, NULL if @target is not executing
2754 *
2755 * @barr is linked to @target such that @barr is completed only after
2756 * @target finishes execution. Please note that the ordering
2757 * guarantee is observed only with respect to @target and on the local
2758 * cpu.
2759 *
2760 * Currently, a queued barrier can't be canceled. This is because
2761 * try_to_grab_pending() can't determine whether the work to be
2762 * grabbed is at the head of the queue and thus can't clear LINKED
2763 * flag of the previous work while there must be a valid next work
2764 * after a work with LINKED flag set.
2765 *
2766 * Note that when @worker is non-NULL, @target may be modified
2767 * underneath us, so we can't reliably determine pwq from @target.
2768 *
2769 * CONTEXT:
2770 * raw_spin_lock_irq(pool->lock).
2771 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2772 static void insert_wq_barrier(struct pool_workqueue *pwq,
2773 struct wq_barrier *barr,
2774 struct work_struct *target, struct worker *worker)
2775 {
2776 unsigned int work_flags = 0;
2777 unsigned int work_color;
2778 struct list_head *head;
2779
2780 /*
2781 * debugobject calls are safe here even with pool->lock locked
2782 * as we know for sure that this will not trigger any of the
2783 * checks and call back into the fixup functions where we
2784 * might deadlock.
2785 */
2786 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2787 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2788
2789 init_completion_map(&barr->done, &target->lockdep_map);
2790
2791 barr->task = current;
2792
2793 /* The barrier work item does not participate in pwq->nr_active. */
2794 work_flags |= WORK_STRUCT_INACTIVE;
2795
2796 /*
2797 * If @target is currently being executed, schedule the
2798 * barrier to the worker; otherwise, put it after @target.
2799 */
2800 if (worker) {
2801 head = worker->scheduled.next;
2802 work_color = worker->current_color;
2803 } else {
2804 unsigned long *bits = work_data_bits(target);
2805
2806 head = target->entry.next;
2807 /* there can already be other linked works, inherit and set */
2808 work_flags |= *bits & WORK_STRUCT_LINKED;
2809 work_color = get_work_color(*bits);
2810 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2811 }
2812
2813 pwq->nr_in_flight[work_color]++;
2814 work_flags |= work_color_to_flags(work_color);
2815
2816 debug_work_activate(&barr->work);
2817 insert_work(pwq, &barr->work, head, work_flags);
2818 }
2819
2820 /**
2821 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2822 * @wq: workqueue being flushed
2823 * @flush_color: new flush color, < 0 for no-op
2824 * @work_color: new work color, < 0 for no-op
2825 *
2826 * Prepare pwqs for workqueue flushing.
2827 *
2828 * If @flush_color is non-negative, flush_color on all pwqs should be
2829 * -1. If no pwq has in-flight commands at the specified color, all
2830 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2831 * has in flight commands, its pwq->flush_color is set to
2832 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2833 * wakeup logic is armed and %true is returned.
2834 *
2835 * The caller should have initialized @wq->first_flusher prior to
2836 * calling this function with non-negative @flush_color. If
2837 * @flush_color is negative, no flush color update is done and %false
2838 * is returned.
2839 *
2840 * If @work_color is non-negative, all pwqs should have the same
2841 * work_color which is previous to @work_color and all will be
2842 * advanced to @work_color.
2843 *
2844 * CONTEXT:
2845 * mutex_lock(wq->mutex).
2846 *
2847 * Return:
2848 * %true if @flush_color >= 0 and there's something to flush. %false
2849 * otherwise.
2850 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2851 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2852 int flush_color, int work_color)
2853 {
2854 bool wait = false;
2855 struct pool_workqueue *pwq;
2856
2857 if (flush_color >= 0) {
2858 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2859 atomic_set(&wq->nr_pwqs_to_flush, 1);
2860 }
2861
2862 for_each_pwq(pwq, wq) {
2863 struct worker_pool *pool = pwq->pool;
2864
2865 raw_spin_lock_irq(&pool->lock);
2866
2867 if (flush_color >= 0) {
2868 WARN_ON_ONCE(pwq->flush_color != -1);
2869
2870 if (pwq->nr_in_flight[flush_color]) {
2871 pwq->flush_color = flush_color;
2872 atomic_inc(&wq->nr_pwqs_to_flush);
2873 wait = true;
2874 }
2875 }
2876
2877 if (work_color >= 0) {
2878 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2879 pwq->work_color = work_color;
2880 }
2881
2882 raw_spin_unlock_irq(&pool->lock);
2883 }
2884
2885 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2886 complete(&wq->first_flusher->done);
2887
2888 return wait;
2889 }
2890
2891 /**
2892 * __flush_workqueue - ensure that any scheduled work has run to completion.
2893 * @wq: workqueue to flush
2894 *
2895 * This function sleeps until all work items which were queued on entry
2896 * have finished execution, but it is not livelocked by new incoming ones.
2897 */
__flush_workqueue(struct workqueue_struct * wq)2898 void __flush_workqueue(struct workqueue_struct *wq)
2899 {
2900 struct wq_flusher this_flusher = {
2901 .list = LIST_HEAD_INIT(this_flusher.list),
2902 .flush_color = -1,
2903 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2904 };
2905 int next_color;
2906
2907 if (WARN_ON(!wq_online))
2908 return;
2909
2910 lock_map_acquire(&wq->lockdep_map);
2911 lock_map_release(&wq->lockdep_map);
2912
2913 mutex_lock(&wq->mutex);
2914
2915 /*
2916 * Start-to-wait phase
2917 */
2918 next_color = work_next_color(wq->work_color);
2919
2920 if (next_color != wq->flush_color) {
2921 /*
2922 * Color space is not full. The current work_color
2923 * becomes our flush_color and work_color is advanced
2924 * by one.
2925 */
2926 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2927 this_flusher.flush_color = wq->work_color;
2928 wq->work_color = next_color;
2929
2930 if (!wq->first_flusher) {
2931 /* no flush in progress, become the first flusher */
2932 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2933
2934 wq->first_flusher = &this_flusher;
2935
2936 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2937 wq->work_color)) {
2938 /* nothing to flush, done */
2939 wq->flush_color = next_color;
2940 wq->first_flusher = NULL;
2941 goto out_unlock;
2942 }
2943 } else {
2944 /* wait in queue */
2945 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2946 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2947 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2948 }
2949 } else {
2950 /*
2951 * Oops, color space is full, wait on overflow queue.
2952 * The next flush completion will assign us
2953 * flush_color and transfer to flusher_queue.
2954 */
2955 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2956 }
2957
2958 check_flush_dependency(wq, NULL);
2959
2960 mutex_unlock(&wq->mutex);
2961
2962 wait_for_completion(&this_flusher.done);
2963
2964 /*
2965 * Wake-up-and-cascade phase
2966 *
2967 * First flushers are responsible for cascading flushes and
2968 * handling overflow. Non-first flushers can simply return.
2969 */
2970 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2971 return;
2972
2973 mutex_lock(&wq->mutex);
2974
2975 /* we might have raced, check again with mutex held */
2976 if (wq->first_flusher != &this_flusher)
2977 goto out_unlock;
2978
2979 WRITE_ONCE(wq->first_flusher, NULL);
2980
2981 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2982 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2983
2984 while (true) {
2985 struct wq_flusher *next, *tmp;
2986
2987 /* complete all the flushers sharing the current flush color */
2988 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2989 if (next->flush_color != wq->flush_color)
2990 break;
2991 list_del_init(&next->list);
2992 complete(&next->done);
2993 }
2994
2995 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2996 wq->flush_color != work_next_color(wq->work_color));
2997
2998 /* this flush_color is finished, advance by one */
2999 wq->flush_color = work_next_color(wq->flush_color);
3000
3001 /* one color has been freed, handle overflow queue */
3002 if (!list_empty(&wq->flusher_overflow)) {
3003 /*
3004 * Assign the same color to all overflowed
3005 * flushers, advance work_color and append to
3006 * flusher_queue. This is the start-to-wait
3007 * phase for these overflowed flushers.
3008 */
3009 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3010 tmp->flush_color = wq->work_color;
3011
3012 wq->work_color = work_next_color(wq->work_color);
3013
3014 list_splice_tail_init(&wq->flusher_overflow,
3015 &wq->flusher_queue);
3016 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3017 }
3018
3019 if (list_empty(&wq->flusher_queue)) {
3020 WARN_ON_ONCE(wq->flush_color != wq->work_color);
3021 break;
3022 }
3023
3024 /*
3025 * Need to flush more colors. Make the next flusher
3026 * the new first flusher and arm pwqs.
3027 */
3028 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3029 WARN_ON_ONCE(wq->flush_color != next->flush_color);
3030
3031 list_del_init(&next->list);
3032 wq->first_flusher = next;
3033
3034 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3035 break;
3036
3037 /*
3038 * Meh... this color is already done, clear first
3039 * flusher and repeat cascading.
3040 */
3041 wq->first_flusher = NULL;
3042 }
3043
3044 out_unlock:
3045 mutex_unlock(&wq->mutex);
3046 }
3047 EXPORT_SYMBOL(__flush_workqueue);
3048
3049 /**
3050 * drain_workqueue - drain a workqueue
3051 * @wq: workqueue to drain
3052 *
3053 * Wait until the workqueue becomes empty. While draining is in progress,
3054 * only chain queueing is allowed. IOW, only currently pending or running
3055 * work items on @wq can queue further work items on it. @wq is flushed
3056 * repeatedly until it becomes empty. The number of flushing is determined
3057 * by the depth of chaining and should be relatively short. Whine if it
3058 * takes too long.
3059 */
drain_workqueue(struct workqueue_struct * wq)3060 void drain_workqueue(struct workqueue_struct *wq)
3061 {
3062 unsigned int flush_cnt = 0;
3063 struct pool_workqueue *pwq;
3064
3065 /*
3066 * __queue_work() needs to test whether there are drainers, is much
3067 * hotter than drain_workqueue() and already looks at @wq->flags.
3068 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3069 */
3070 mutex_lock(&wq->mutex);
3071 if (!wq->nr_drainers++)
3072 wq->flags |= __WQ_DRAINING;
3073 mutex_unlock(&wq->mutex);
3074 reflush:
3075 __flush_workqueue(wq);
3076
3077 mutex_lock(&wq->mutex);
3078
3079 for_each_pwq(pwq, wq) {
3080 bool drained;
3081
3082 raw_spin_lock_irq(&pwq->pool->lock);
3083 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3084 raw_spin_unlock_irq(&pwq->pool->lock);
3085
3086 if (drained)
3087 continue;
3088
3089 if (++flush_cnt == 10 ||
3090 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3091 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3092 wq->name, __func__, flush_cnt);
3093
3094 mutex_unlock(&wq->mutex);
3095 goto reflush;
3096 }
3097
3098 if (!--wq->nr_drainers)
3099 wq->flags &= ~__WQ_DRAINING;
3100 mutex_unlock(&wq->mutex);
3101 }
3102 EXPORT_SYMBOL_GPL(drain_workqueue);
3103
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3104 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3105 bool from_cancel)
3106 {
3107 struct worker *worker = NULL;
3108 struct worker_pool *pool;
3109 struct pool_workqueue *pwq;
3110
3111 might_sleep();
3112
3113 rcu_read_lock();
3114 pool = get_work_pool(work);
3115 if (!pool) {
3116 rcu_read_unlock();
3117 return false;
3118 }
3119
3120 raw_spin_lock_irq(&pool->lock);
3121 /* see the comment in try_to_grab_pending() with the same code */
3122 pwq = get_work_pwq(work);
3123 if (pwq) {
3124 if (unlikely(pwq->pool != pool))
3125 goto already_gone;
3126 } else {
3127 worker = find_worker_executing_work(pool, work);
3128 if (!worker)
3129 goto already_gone;
3130 pwq = worker->current_pwq;
3131 }
3132
3133 check_flush_dependency(pwq->wq, work);
3134
3135 insert_wq_barrier(pwq, barr, work, worker);
3136 raw_spin_unlock_irq(&pool->lock);
3137
3138 /*
3139 * Force a lock recursion deadlock when using flush_work() inside a
3140 * single-threaded or rescuer equipped workqueue.
3141 *
3142 * For single threaded workqueues the deadlock happens when the work
3143 * is after the work issuing the flush_work(). For rescuer equipped
3144 * workqueues the deadlock happens when the rescuer stalls, blocking
3145 * forward progress.
3146 */
3147 if (!from_cancel &&
3148 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3149 lock_map_acquire(&pwq->wq->lockdep_map);
3150 lock_map_release(&pwq->wq->lockdep_map);
3151 }
3152 rcu_read_unlock();
3153 return true;
3154 already_gone:
3155 raw_spin_unlock_irq(&pool->lock);
3156 rcu_read_unlock();
3157 return false;
3158 }
3159
__flush_work(struct work_struct * work,bool from_cancel)3160 static bool __flush_work(struct work_struct *work, bool from_cancel)
3161 {
3162 struct wq_barrier barr;
3163
3164 if (WARN_ON(!wq_online))
3165 return false;
3166
3167 if (WARN_ON(!work->func))
3168 return false;
3169
3170 lock_map_acquire(&work->lockdep_map);
3171 lock_map_release(&work->lockdep_map);
3172
3173 if (start_flush_work(work, &barr, from_cancel)) {
3174 wait_for_completion(&barr.done);
3175 destroy_work_on_stack(&barr.work);
3176 return true;
3177 } else {
3178 return false;
3179 }
3180 }
3181
3182 /**
3183 * flush_work - wait for a work to finish executing the last queueing instance
3184 * @work: the work to flush
3185 *
3186 * Wait until @work has finished execution. @work is guaranteed to be idle
3187 * on return if it hasn't been requeued since flush started.
3188 *
3189 * Return:
3190 * %true if flush_work() waited for the work to finish execution,
3191 * %false if it was already idle.
3192 */
flush_work(struct work_struct * work)3193 bool flush_work(struct work_struct *work)
3194 {
3195 return __flush_work(work, false);
3196 }
3197 EXPORT_SYMBOL_GPL(flush_work);
3198
3199 struct cwt_wait {
3200 wait_queue_entry_t wait;
3201 struct work_struct *work;
3202 };
3203
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3204 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3205 {
3206 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3207
3208 if (cwait->work != key)
3209 return 0;
3210 return autoremove_wake_function(wait, mode, sync, key);
3211 }
3212
__cancel_work_timer(struct work_struct * work,bool is_dwork)3213 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3214 {
3215 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3216 unsigned long flags;
3217 int ret;
3218
3219 do {
3220 ret = try_to_grab_pending(work, is_dwork, &flags);
3221 /*
3222 * If someone else is already canceling, wait for it to
3223 * finish. flush_work() doesn't work for PREEMPT_NONE
3224 * because we may get scheduled between @work's completion
3225 * and the other canceling task resuming and clearing
3226 * CANCELING - flush_work() will return false immediately
3227 * as @work is no longer busy, try_to_grab_pending() will
3228 * return -ENOENT as @work is still being canceled and the
3229 * other canceling task won't be able to clear CANCELING as
3230 * we're hogging the CPU.
3231 *
3232 * Let's wait for completion using a waitqueue. As this
3233 * may lead to the thundering herd problem, use a custom
3234 * wake function which matches @work along with exclusive
3235 * wait and wakeup.
3236 */
3237 if (unlikely(ret == -ENOENT)) {
3238 struct cwt_wait cwait;
3239
3240 init_wait(&cwait.wait);
3241 cwait.wait.func = cwt_wakefn;
3242 cwait.work = work;
3243
3244 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3245 TASK_UNINTERRUPTIBLE);
3246 if (work_is_canceling(work))
3247 schedule();
3248 finish_wait(&cancel_waitq, &cwait.wait);
3249 }
3250 } while (unlikely(ret < 0));
3251
3252 /* tell other tasks trying to grab @work to back off */
3253 mark_work_canceling(work);
3254 local_irq_restore(flags);
3255
3256 /*
3257 * This allows canceling during early boot. We know that @work
3258 * isn't executing.
3259 */
3260 if (wq_online)
3261 __flush_work(work, true);
3262
3263 clear_work_data(work);
3264
3265 /*
3266 * Paired with prepare_to_wait() above so that either
3267 * waitqueue_active() is visible here or !work_is_canceling() is
3268 * visible there.
3269 */
3270 smp_mb();
3271 if (waitqueue_active(&cancel_waitq))
3272 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3273
3274 return ret;
3275 }
3276
3277 /**
3278 * cancel_work_sync - cancel a work and wait for it to finish
3279 * @work: the work to cancel
3280 *
3281 * Cancel @work and wait for its execution to finish. This function
3282 * can be used even if the work re-queues itself or migrates to
3283 * another workqueue. On return from this function, @work is
3284 * guaranteed to be not pending or executing on any CPU.
3285 *
3286 * cancel_work_sync(&delayed_work->work) must not be used for
3287 * delayed_work's. Use cancel_delayed_work_sync() instead.
3288 *
3289 * The caller must ensure that the workqueue on which @work was last
3290 * queued can't be destroyed before this function returns.
3291 *
3292 * Return:
3293 * %true if @work was pending, %false otherwise.
3294 */
cancel_work_sync(struct work_struct * work)3295 bool cancel_work_sync(struct work_struct *work)
3296 {
3297 return __cancel_work_timer(work, false);
3298 }
3299 EXPORT_SYMBOL_GPL(cancel_work_sync);
3300
3301 /**
3302 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3303 * @dwork: the delayed work to flush
3304 *
3305 * Delayed timer is cancelled and the pending work is queued for
3306 * immediate execution. Like flush_work(), this function only
3307 * considers the last queueing instance of @dwork.
3308 *
3309 * Return:
3310 * %true if flush_work() waited for the work to finish execution,
3311 * %false if it was already idle.
3312 */
flush_delayed_work(struct delayed_work * dwork)3313 bool flush_delayed_work(struct delayed_work *dwork)
3314 {
3315 local_irq_disable();
3316 if (del_timer_sync(&dwork->timer))
3317 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3318 local_irq_enable();
3319 return flush_work(&dwork->work);
3320 }
3321 EXPORT_SYMBOL(flush_delayed_work);
3322
3323 /**
3324 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3325 * @rwork: the rcu work to flush
3326 *
3327 * Return:
3328 * %true if flush_rcu_work() waited for the work to finish execution,
3329 * %false if it was already idle.
3330 */
flush_rcu_work(struct rcu_work * rwork)3331 bool flush_rcu_work(struct rcu_work *rwork)
3332 {
3333 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3334 rcu_barrier();
3335 flush_work(&rwork->work);
3336 return true;
3337 } else {
3338 return flush_work(&rwork->work);
3339 }
3340 }
3341 EXPORT_SYMBOL(flush_rcu_work);
3342
__cancel_work(struct work_struct * work,bool is_dwork)3343 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3344 {
3345 unsigned long flags;
3346 int ret;
3347
3348 do {
3349 ret = try_to_grab_pending(work, is_dwork, &flags);
3350 } while (unlikely(ret == -EAGAIN));
3351
3352 if (unlikely(ret < 0))
3353 return false;
3354
3355 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3356 local_irq_restore(flags);
3357 return ret;
3358 }
3359
3360 /*
3361 * See cancel_delayed_work()
3362 */
cancel_work(struct work_struct * work)3363 bool cancel_work(struct work_struct *work)
3364 {
3365 return __cancel_work(work, false);
3366 }
3367 EXPORT_SYMBOL(cancel_work);
3368
3369 /**
3370 * cancel_delayed_work - cancel a delayed work
3371 * @dwork: delayed_work to cancel
3372 *
3373 * Kill off a pending delayed_work.
3374 *
3375 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3376 * pending.
3377 *
3378 * Note:
3379 * The work callback function may still be running on return, unless
3380 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3381 * use cancel_delayed_work_sync() to wait on it.
3382 *
3383 * This function is safe to call from any context including IRQ handler.
3384 */
cancel_delayed_work(struct delayed_work * dwork)3385 bool cancel_delayed_work(struct delayed_work *dwork)
3386 {
3387 return __cancel_work(&dwork->work, true);
3388 }
3389 EXPORT_SYMBOL(cancel_delayed_work);
3390
3391 /**
3392 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3393 * @dwork: the delayed work cancel
3394 *
3395 * This is cancel_work_sync() for delayed works.
3396 *
3397 * Return:
3398 * %true if @dwork was pending, %false otherwise.
3399 */
cancel_delayed_work_sync(struct delayed_work * dwork)3400 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3401 {
3402 return __cancel_work_timer(&dwork->work, true);
3403 }
3404 EXPORT_SYMBOL(cancel_delayed_work_sync);
3405
3406 /**
3407 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3408 * @func: the function to call
3409 *
3410 * schedule_on_each_cpu() executes @func on each online CPU using the
3411 * system workqueue and blocks until all CPUs have completed.
3412 * schedule_on_each_cpu() is very slow.
3413 *
3414 * Return:
3415 * 0 on success, -errno on failure.
3416 */
schedule_on_each_cpu(work_func_t func)3417 int schedule_on_each_cpu(work_func_t func)
3418 {
3419 int cpu;
3420 struct work_struct __percpu *works;
3421
3422 works = alloc_percpu(struct work_struct);
3423 if (!works)
3424 return -ENOMEM;
3425
3426 cpus_read_lock();
3427
3428 for_each_online_cpu(cpu) {
3429 struct work_struct *work = per_cpu_ptr(works, cpu);
3430
3431 INIT_WORK(work, func);
3432 schedule_work_on(cpu, work);
3433 }
3434
3435 for_each_online_cpu(cpu)
3436 flush_work(per_cpu_ptr(works, cpu));
3437
3438 cpus_read_unlock();
3439 free_percpu(works);
3440 return 0;
3441 }
3442
3443 /**
3444 * execute_in_process_context - reliably execute the routine with user context
3445 * @fn: the function to execute
3446 * @ew: guaranteed storage for the execute work structure (must
3447 * be available when the work executes)
3448 *
3449 * Executes the function immediately if process context is available,
3450 * otherwise schedules the function for delayed execution.
3451 *
3452 * Return: 0 - function was executed
3453 * 1 - function was scheduled for execution
3454 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3455 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3456 {
3457 if (!in_interrupt()) {
3458 fn(&ew->work);
3459 return 0;
3460 }
3461
3462 INIT_WORK(&ew->work, fn);
3463 schedule_work(&ew->work);
3464
3465 return 1;
3466 }
3467 EXPORT_SYMBOL_GPL(execute_in_process_context);
3468
3469 /**
3470 * free_workqueue_attrs - free a workqueue_attrs
3471 * @attrs: workqueue_attrs to free
3472 *
3473 * Undo alloc_workqueue_attrs().
3474 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3475 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3476 {
3477 if (attrs) {
3478 free_cpumask_var(attrs->cpumask);
3479 kfree(attrs);
3480 }
3481 }
3482
3483 /**
3484 * alloc_workqueue_attrs - allocate a workqueue_attrs
3485 *
3486 * Allocate a new workqueue_attrs, initialize with default settings and
3487 * return it.
3488 *
3489 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3490 */
alloc_workqueue_attrs(void)3491 struct workqueue_attrs *alloc_workqueue_attrs(void)
3492 {
3493 struct workqueue_attrs *attrs;
3494
3495 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3496 if (!attrs)
3497 goto fail;
3498 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3499 goto fail;
3500
3501 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3502 return attrs;
3503 fail:
3504 free_workqueue_attrs(attrs);
3505 return NULL;
3506 }
3507
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3508 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3509 const struct workqueue_attrs *from)
3510 {
3511 to->nice = from->nice;
3512 cpumask_copy(to->cpumask, from->cpumask);
3513 /*
3514 * Unlike hash and equality test, this function doesn't ignore
3515 * ->no_numa as it is used for both pool and wq attrs. Instead,
3516 * get_unbound_pool() explicitly clears ->no_numa after copying.
3517 */
3518 to->no_numa = from->no_numa;
3519 }
3520
3521 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3522 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3523 {
3524 u32 hash = 0;
3525
3526 hash = jhash_1word(attrs->nice, hash);
3527 hash = jhash(cpumask_bits(attrs->cpumask),
3528 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3529 return hash;
3530 }
3531
3532 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3533 static bool wqattrs_equal(const struct workqueue_attrs *a,
3534 const struct workqueue_attrs *b)
3535 {
3536 if (a->nice != b->nice)
3537 return false;
3538 if (!cpumask_equal(a->cpumask, b->cpumask))
3539 return false;
3540 return true;
3541 }
3542
3543 /**
3544 * init_worker_pool - initialize a newly zalloc'd worker_pool
3545 * @pool: worker_pool to initialize
3546 *
3547 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3548 *
3549 * Return: 0 on success, -errno on failure. Even on failure, all fields
3550 * inside @pool proper are initialized and put_unbound_pool() can be called
3551 * on @pool safely to release it.
3552 */
init_worker_pool(struct worker_pool * pool)3553 static int init_worker_pool(struct worker_pool *pool)
3554 {
3555 raw_spin_lock_init(&pool->lock);
3556 pool->id = -1;
3557 pool->cpu = -1;
3558 pool->node = NUMA_NO_NODE;
3559 pool->flags |= POOL_DISASSOCIATED;
3560 pool->watchdog_ts = jiffies;
3561 INIT_LIST_HEAD(&pool->worklist);
3562 INIT_LIST_HEAD(&pool->idle_list);
3563 hash_init(pool->busy_hash);
3564
3565 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3566 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3567
3568 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3569
3570 INIT_LIST_HEAD(&pool->workers);
3571 INIT_LIST_HEAD(&pool->dying_workers);
3572
3573 ida_init(&pool->worker_ida);
3574 INIT_HLIST_NODE(&pool->hash_node);
3575 pool->refcnt = 1;
3576
3577 /* shouldn't fail above this point */
3578 pool->attrs = alloc_workqueue_attrs();
3579 if (!pool->attrs)
3580 return -ENOMEM;
3581 return 0;
3582 }
3583
3584 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3585 static void wq_init_lockdep(struct workqueue_struct *wq)
3586 {
3587 char *lock_name;
3588
3589 lockdep_register_key(&wq->key);
3590 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3591 if (!lock_name)
3592 lock_name = wq->name;
3593
3594 wq->lock_name = lock_name;
3595 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3596 }
3597
wq_unregister_lockdep(struct workqueue_struct * wq)3598 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3599 {
3600 lockdep_unregister_key(&wq->key);
3601 }
3602
wq_free_lockdep(struct workqueue_struct * wq)3603 static void wq_free_lockdep(struct workqueue_struct *wq)
3604 {
3605 if (wq->lock_name != wq->name)
3606 kfree(wq->lock_name);
3607 }
3608 #else
wq_init_lockdep(struct workqueue_struct * wq)3609 static void wq_init_lockdep(struct workqueue_struct *wq)
3610 {
3611 }
3612
wq_unregister_lockdep(struct workqueue_struct * wq)3613 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3614 {
3615 }
3616
wq_free_lockdep(struct workqueue_struct * wq)3617 static void wq_free_lockdep(struct workqueue_struct *wq)
3618 {
3619 }
3620 #endif
3621
rcu_free_wq(struct rcu_head * rcu)3622 static void rcu_free_wq(struct rcu_head *rcu)
3623 {
3624 struct workqueue_struct *wq =
3625 container_of(rcu, struct workqueue_struct, rcu);
3626
3627 wq_free_lockdep(wq);
3628
3629 if (!(wq->flags & WQ_UNBOUND))
3630 free_percpu(wq->cpu_pwqs);
3631 else
3632 free_workqueue_attrs(wq->unbound_attrs);
3633
3634 kfree(wq);
3635 }
3636
rcu_free_pool(struct rcu_head * rcu)3637 static void rcu_free_pool(struct rcu_head *rcu)
3638 {
3639 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3640
3641 ida_destroy(&pool->worker_ida);
3642 free_workqueue_attrs(pool->attrs);
3643 kfree(pool);
3644 }
3645
3646 /**
3647 * put_unbound_pool - put a worker_pool
3648 * @pool: worker_pool to put
3649 *
3650 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3651 * safe manner. get_unbound_pool() calls this function on its failure path
3652 * and this function should be able to release pools which went through,
3653 * successfully or not, init_worker_pool().
3654 *
3655 * Should be called with wq_pool_mutex held.
3656 */
put_unbound_pool(struct worker_pool * pool)3657 static void put_unbound_pool(struct worker_pool *pool)
3658 {
3659 DECLARE_COMPLETION_ONSTACK(detach_completion);
3660 struct list_head cull_list;
3661 struct worker *worker;
3662
3663 INIT_LIST_HEAD(&cull_list);
3664
3665 lockdep_assert_held(&wq_pool_mutex);
3666
3667 if (--pool->refcnt)
3668 return;
3669
3670 /* sanity checks */
3671 if (WARN_ON(!(pool->cpu < 0)) ||
3672 WARN_ON(!list_empty(&pool->worklist)))
3673 return;
3674
3675 /* release id and unhash */
3676 if (pool->id >= 0)
3677 idr_remove(&worker_pool_idr, pool->id);
3678 hash_del(&pool->hash_node);
3679
3680 /*
3681 * Become the manager and destroy all workers. This prevents
3682 * @pool's workers from blocking on attach_mutex. We're the last
3683 * manager and @pool gets freed with the flag set.
3684 *
3685 * Having a concurrent manager is quite unlikely to happen as we can
3686 * only get here with
3687 * pwq->refcnt == pool->refcnt == 0
3688 * which implies no work queued to the pool, which implies no worker can
3689 * become the manager. However a worker could have taken the role of
3690 * manager before the refcnts dropped to 0, since maybe_create_worker()
3691 * drops pool->lock
3692 */
3693 while (true) {
3694 rcuwait_wait_event(&manager_wait,
3695 !(pool->flags & POOL_MANAGER_ACTIVE),
3696 TASK_UNINTERRUPTIBLE);
3697
3698 mutex_lock(&wq_pool_attach_mutex);
3699 raw_spin_lock_irq(&pool->lock);
3700 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3701 pool->flags |= POOL_MANAGER_ACTIVE;
3702 break;
3703 }
3704 raw_spin_unlock_irq(&pool->lock);
3705 mutex_unlock(&wq_pool_attach_mutex);
3706 }
3707
3708 while ((worker = first_idle_worker(pool)))
3709 set_worker_dying(worker, &cull_list);
3710 WARN_ON(pool->nr_workers || pool->nr_idle);
3711 raw_spin_unlock_irq(&pool->lock);
3712
3713 wake_dying_workers(&cull_list);
3714
3715 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
3716 pool->detach_completion = &detach_completion;
3717 mutex_unlock(&wq_pool_attach_mutex);
3718
3719 if (pool->detach_completion)
3720 wait_for_completion(pool->detach_completion);
3721
3722 /* shut down the timers */
3723 del_timer_sync(&pool->idle_timer);
3724 cancel_work_sync(&pool->idle_cull_work);
3725 del_timer_sync(&pool->mayday_timer);
3726
3727 /* RCU protected to allow dereferences from get_work_pool() */
3728 call_rcu(&pool->rcu, rcu_free_pool);
3729 }
3730
3731 /**
3732 * get_unbound_pool - get a worker_pool with the specified attributes
3733 * @attrs: the attributes of the worker_pool to get
3734 *
3735 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3736 * reference count and return it. If there already is a matching
3737 * worker_pool, it will be used; otherwise, this function attempts to
3738 * create a new one.
3739 *
3740 * Should be called with wq_pool_mutex held.
3741 *
3742 * Return: On success, a worker_pool with the same attributes as @attrs.
3743 * On failure, %NULL.
3744 */
get_unbound_pool(const struct workqueue_attrs * attrs)3745 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3746 {
3747 u32 hash = wqattrs_hash(attrs);
3748 struct worker_pool *pool;
3749 int node;
3750 int target_node = NUMA_NO_NODE;
3751
3752 lockdep_assert_held(&wq_pool_mutex);
3753
3754 /* do we already have a matching pool? */
3755 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3756 if (wqattrs_equal(pool->attrs, attrs)) {
3757 pool->refcnt++;
3758 return pool;
3759 }
3760 }
3761
3762 /* if cpumask is contained inside a NUMA node, we belong to that node */
3763 if (wq_numa_enabled) {
3764 for_each_node(node) {
3765 if (cpumask_subset(attrs->cpumask,
3766 wq_numa_possible_cpumask[node])) {
3767 target_node = node;
3768 break;
3769 }
3770 }
3771 }
3772
3773 /* nope, create a new one */
3774 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3775 if (!pool || init_worker_pool(pool) < 0)
3776 goto fail;
3777
3778 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3779 copy_workqueue_attrs(pool->attrs, attrs);
3780 pool->node = target_node;
3781
3782 /*
3783 * no_numa isn't a worker_pool attribute, always clear it. See
3784 * 'struct workqueue_attrs' comments for detail.
3785 */
3786 pool->attrs->no_numa = false;
3787
3788 if (worker_pool_assign_id(pool) < 0)
3789 goto fail;
3790
3791 /* create and start the initial worker */
3792 if (wq_online && !create_worker(pool))
3793 goto fail;
3794
3795 /* install */
3796 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3797
3798 return pool;
3799 fail:
3800 if (pool)
3801 put_unbound_pool(pool);
3802 return NULL;
3803 }
3804
rcu_free_pwq(struct rcu_head * rcu)3805 static void rcu_free_pwq(struct rcu_head *rcu)
3806 {
3807 kmem_cache_free(pwq_cache,
3808 container_of(rcu, struct pool_workqueue, rcu));
3809 }
3810
3811 /*
3812 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3813 * and needs to be destroyed.
3814 */
pwq_unbound_release_workfn(struct work_struct * work)3815 static void pwq_unbound_release_workfn(struct work_struct *work)
3816 {
3817 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3818 unbound_release_work);
3819 struct workqueue_struct *wq = pwq->wq;
3820 struct worker_pool *pool = pwq->pool;
3821 bool is_last = false;
3822
3823 /*
3824 * when @pwq is not linked, it doesn't hold any reference to the
3825 * @wq, and @wq is invalid to access.
3826 */
3827 if (!list_empty(&pwq->pwqs_node)) {
3828 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3829 return;
3830
3831 mutex_lock(&wq->mutex);
3832 list_del_rcu(&pwq->pwqs_node);
3833 is_last = list_empty(&wq->pwqs);
3834 mutex_unlock(&wq->mutex);
3835 }
3836
3837 mutex_lock(&wq_pool_mutex);
3838 put_unbound_pool(pool);
3839 mutex_unlock(&wq_pool_mutex);
3840
3841 call_rcu(&pwq->rcu, rcu_free_pwq);
3842
3843 /*
3844 * If we're the last pwq going away, @wq is already dead and no one
3845 * is gonna access it anymore. Schedule RCU free.
3846 */
3847 if (is_last) {
3848 wq_unregister_lockdep(wq);
3849 call_rcu(&wq->rcu, rcu_free_wq);
3850 }
3851 }
3852
3853 /**
3854 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3855 * @pwq: target pool_workqueue
3856 *
3857 * If @pwq isn't freezing, set @pwq->max_active to the associated
3858 * workqueue's saved_max_active and activate inactive work items
3859 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3860 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3861 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3862 {
3863 struct workqueue_struct *wq = pwq->wq;
3864 bool freezable = wq->flags & WQ_FREEZABLE;
3865 unsigned long flags;
3866
3867 /* for @wq->saved_max_active */
3868 lockdep_assert_held(&wq->mutex);
3869
3870 /* fast exit for non-freezable wqs */
3871 if (!freezable && pwq->max_active == wq->saved_max_active)
3872 return;
3873
3874 /* this function can be called during early boot w/ irq disabled */
3875 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3876
3877 /*
3878 * During [un]freezing, the caller is responsible for ensuring that
3879 * this function is called at least once after @workqueue_freezing
3880 * is updated and visible.
3881 */
3882 if (!freezable || !workqueue_freezing) {
3883 bool kick = false;
3884
3885 pwq->max_active = wq->saved_max_active;
3886
3887 while (!list_empty(&pwq->inactive_works) &&
3888 pwq->nr_active < pwq->max_active) {
3889 pwq_activate_first_inactive(pwq);
3890 kick = true;
3891 }
3892
3893 /*
3894 * Need to kick a worker after thawed or an unbound wq's
3895 * max_active is bumped. In realtime scenarios, always kicking a
3896 * worker will cause interference on the isolated cpu cores, so
3897 * let's kick iff work items were activated.
3898 */
3899 if (kick)
3900 wake_up_worker(pwq->pool);
3901 } else {
3902 pwq->max_active = 0;
3903 }
3904
3905 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3906 }
3907
3908 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3909 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3910 struct worker_pool *pool)
3911 {
3912 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3913
3914 memset(pwq, 0, sizeof(*pwq));
3915
3916 pwq->pool = pool;
3917 pwq->wq = wq;
3918 pwq->flush_color = -1;
3919 pwq->refcnt = 1;
3920 INIT_LIST_HEAD(&pwq->inactive_works);
3921 INIT_LIST_HEAD(&pwq->pwqs_node);
3922 INIT_LIST_HEAD(&pwq->mayday_node);
3923 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3924 }
3925
3926 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3927 static void link_pwq(struct pool_workqueue *pwq)
3928 {
3929 struct workqueue_struct *wq = pwq->wq;
3930
3931 lockdep_assert_held(&wq->mutex);
3932
3933 /* may be called multiple times, ignore if already linked */
3934 if (!list_empty(&pwq->pwqs_node))
3935 return;
3936
3937 /* set the matching work_color */
3938 pwq->work_color = wq->work_color;
3939
3940 /* sync max_active to the current setting */
3941 pwq_adjust_max_active(pwq);
3942
3943 /* link in @pwq */
3944 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3945 }
3946
3947 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3948 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3949 const struct workqueue_attrs *attrs)
3950 {
3951 struct worker_pool *pool;
3952 struct pool_workqueue *pwq;
3953
3954 lockdep_assert_held(&wq_pool_mutex);
3955
3956 pool = get_unbound_pool(attrs);
3957 if (!pool)
3958 return NULL;
3959
3960 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3961 if (!pwq) {
3962 put_unbound_pool(pool);
3963 return NULL;
3964 }
3965
3966 init_pwq(pwq, wq, pool);
3967 return pwq;
3968 }
3969
3970 /**
3971 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3972 * @attrs: the wq_attrs of the default pwq of the target workqueue
3973 * @node: the target NUMA node
3974 * @cpu_going_down: if >= 0, the CPU to consider as offline
3975 * @cpumask: outarg, the resulting cpumask
3976 *
3977 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3978 * @cpu_going_down is >= 0, that cpu is considered offline during
3979 * calculation. The result is stored in @cpumask.
3980 *
3981 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3982 * enabled and @node has online CPUs requested by @attrs, the returned
3983 * cpumask is the intersection of the possible CPUs of @node and
3984 * @attrs->cpumask.
3985 *
3986 * The caller is responsible for ensuring that the cpumask of @node stays
3987 * stable.
3988 *
3989 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3990 * %false if equal.
3991 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3992 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3993 int cpu_going_down, cpumask_t *cpumask)
3994 {
3995 if (!wq_numa_enabled || attrs->no_numa)
3996 goto use_dfl;
3997
3998 /* does @node have any online CPUs @attrs wants? */
3999 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4000 if (cpu_going_down >= 0)
4001 cpumask_clear_cpu(cpu_going_down, cpumask);
4002
4003 if (cpumask_empty(cpumask))
4004 goto use_dfl;
4005
4006 /* yeap, return possible CPUs in @node that @attrs wants */
4007 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
4008
4009 if (cpumask_empty(cpumask)) {
4010 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4011 "possible intersect\n");
4012 return false;
4013 }
4014
4015 return !cpumask_equal(cpumask, attrs->cpumask);
4016
4017 use_dfl:
4018 cpumask_copy(cpumask, attrs->cpumask);
4019 return false;
4020 }
4021
4022 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)4023 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4024 int node,
4025 struct pool_workqueue *pwq)
4026 {
4027 struct pool_workqueue *old_pwq;
4028
4029 lockdep_assert_held(&wq_pool_mutex);
4030 lockdep_assert_held(&wq->mutex);
4031
4032 /* link_pwq() can handle duplicate calls */
4033 link_pwq(pwq);
4034
4035 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4036 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4037 return old_pwq;
4038 }
4039
4040 /* context to store the prepared attrs & pwqs before applying */
4041 struct apply_wqattrs_ctx {
4042 struct workqueue_struct *wq; /* target workqueue */
4043 struct workqueue_attrs *attrs; /* attrs to apply */
4044 struct list_head list; /* queued for batching commit */
4045 struct pool_workqueue *dfl_pwq;
4046 struct pool_workqueue *pwq_tbl[];
4047 };
4048
4049 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)4050 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4051 {
4052 if (ctx) {
4053 int node;
4054
4055 for_each_node(node)
4056 put_pwq_unlocked(ctx->pwq_tbl[node]);
4057 put_pwq_unlocked(ctx->dfl_pwq);
4058
4059 free_workqueue_attrs(ctx->attrs);
4060
4061 kfree(ctx);
4062 }
4063 }
4064
4065 /* allocate the attrs and pwqs for later installation */
4066 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)4067 apply_wqattrs_prepare(struct workqueue_struct *wq,
4068 const struct workqueue_attrs *attrs,
4069 const cpumask_var_t unbound_cpumask)
4070 {
4071 struct apply_wqattrs_ctx *ctx;
4072 struct workqueue_attrs *new_attrs, *tmp_attrs;
4073 int node;
4074
4075 lockdep_assert_held(&wq_pool_mutex);
4076
4077 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4078
4079 new_attrs = alloc_workqueue_attrs();
4080 tmp_attrs = alloc_workqueue_attrs();
4081 if (!ctx || !new_attrs || !tmp_attrs)
4082 goto out_free;
4083
4084 /*
4085 * Calculate the attrs of the default pwq with unbound_cpumask
4086 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
4087 * If the user configured cpumask doesn't overlap with the
4088 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4089 */
4090 copy_workqueue_attrs(new_attrs, attrs);
4091 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
4092 if (unlikely(cpumask_empty(new_attrs->cpumask)))
4093 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
4094
4095 /*
4096 * We may create multiple pwqs with differing cpumasks. Make a
4097 * copy of @new_attrs which will be modified and used to obtain
4098 * pools.
4099 */
4100 copy_workqueue_attrs(tmp_attrs, new_attrs);
4101
4102 /*
4103 * If something goes wrong during CPU up/down, we'll fall back to
4104 * the default pwq covering whole @attrs->cpumask. Always create
4105 * it even if we don't use it immediately.
4106 */
4107 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4108 if (!ctx->dfl_pwq)
4109 goto out_free;
4110
4111 for_each_node(node) {
4112 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4113 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4114 if (!ctx->pwq_tbl[node])
4115 goto out_free;
4116 } else {
4117 ctx->dfl_pwq->refcnt++;
4118 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4119 }
4120 }
4121
4122 /* save the user configured attrs and sanitize it. */
4123 copy_workqueue_attrs(new_attrs, attrs);
4124 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4125 ctx->attrs = new_attrs;
4126
4127 ctx->wq = wq;
4128 free_workqueue_attrs(tmp_attrs);
4129 return ctx;
4130
4131 out_free:
4132 free_workqueue_attrs(tmp_attrs);
4133 free_workqueue_attrs(new_attrs);
4134 apply_wqattrs_cleanup(ctx);
4135 return NULL;
4136 }
4137
4138 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4139 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4140 {
4141 int node;
4142
4143 /* all pwqs have been created successfully, let's install'em */
4144 mutex_lock(&ctx->wq->mutex);
4145
4146 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4147
4148 /* save the previous pwq and install the new one */
4149 for_each_node(node)
4150 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4151 ctx->pwq_tbl[node]);
4152
4153 /* @dfl_pwq might not have been used, ensure it's linked */
4154 link_pwq(ctx->dfl_pwq);
4155 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4156
4157 mutex_unlock(&ctx->wq->mutex);
4158 }
4159
apply_wqattrs_lock(void)4160 static void apply_wqattrs_lock(void)
4161 {
4162 /* CPUs should stay stable across pwq creations and installations */
4163 cpus_read_lock();
4164 mutex_lock(&wq_pool_mutex);
4165 }
4166
apply_wqattrs_unlock(void)4167 static void apply_wqattrs_unlock(void)
4168 {
4169 mutex_unlock(&wq_pool_mutex);
4170 cpus_read_unlock();
4171 }
4172
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4173 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4174 const struct workqueue_attrs *attrs)
4175 {
4176 struct apply_wqattrs_ctx *ctx;
4177
4178 /* only unbound workqueues can change attributes */
4179 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4180 return -EINVAL;
4181
4182 /* creating multiple pwqs breaks ordering guarantee */
4183 if (!list_empty(&wq->pwqs)) {
4184 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4185 return -EINVAL;
4186
4187 wq->flags &= ~__WQ_ORDERED;
4188 }
4189
4190 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4191 if (!ctx)
4192 return -ENOMEM;
4193
4194 /* the ctx has been prepared successfully, let's commit it */
4195 apply_wqattrs_commit(ctx);
4196 apply_wqattrs_cleanup(ctx);
4197
4198 return 0;
4199 }
4200
4201 /**
4202 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4203 * @wq: the target workqueue
4204 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4205 *
4206 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4207 * machines, this function maps a separate pwq to each NUMA node with
4208 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4209 * NUMA node it was issued on. Older pwqs are released as in-flight work
4210 * items finish. Note that a work item which repeatedly requeues itself
4211 * back-to-back will stay on its current pwq.
4212 *
4213 * Performs GFP_KERNEL allocations.
4214 *
4215 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4216 *
4217 * Return: 0 on success and -errno on failure.
4218 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4219 int apply_workqueue_attrs(struct workqueue_struct *wq,
4220 const struct workqueue_attrs *attrs)
4221 {
4222 int ret;
4223
4224 lockdep_assert_cpus_held();
4225
4226 mutex_lock(&wq_pool_mutex);
4227 ret = apply_workqueue_attrs_locked(wq, attrs);
4228 mutex_unlock(&wq_pool_mutex);
4229
4230 return ret;
4231 }
4232
4233 /**
4234 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4235 * @wq: the target workqueue
4236 * @cpu: the CPU coming up or going down
4237 * @online: whether @cpu is coming up or going down
4238 *
4239 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4240 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4241 * @wq accordingly.
4242 *
4243 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4244 * falls back to @wq->dfl_pwq which may not be optimal but is always
4245 * correct.
4246 *
4247 * Note that when the last allowed CPU of a NUMA node goes offline for a
4248 * workqueue with a cpumask spanning multiple nodes, the workers which were
4249 * already executing the work items for the workqueue will lose their CPU
4250 * affinity and may execute on any CPU. This is similar to how per-cpu
4251 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4252 * affinity, it's the user's responsibility to flush the work item from
4253 * CPU_DOWN_PREPARE.
4254 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4255 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4256 bool online)
4257 {
4258 int node = cpu_to_node(cpu);
4259 int cpu_off = online ? -1 : cpu;
4260 struct pool_workqueue *old_pwq = NULL, *pwq;
4261 struct workqueue_attrs *target_attrs;
4262 cpumask_t *cpumask;
4263
4264 lockdep_assert_held(&wq_pool_mutex);
4265
4266 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4267 wq->unbound_attrs->no_numa)
4268 return;
4269
4270 /*
4271 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4272 * Let's use a preallocated one. The following buf is protected by
4273 * CPU hotplug exclusion.
4274 */
4275 target_attrs = wq_update_unbound_numa_attrs_buf;
4276 cpumask = target_attrs->cpumask;
4277
4278 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4279 pwq = unbound_pwq_by_node(wq, node);
4280
4281 /*
4282 * Let's determine what needs to be done. If the target cpumask is
4283 * different from the default pwq's, we need to compare it to @pwq's
4284 * and create a new one if they don't match. If the target cpumask
4285 * equals the default pwq's, the default pwq should be used.
4286 */
4287 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4288 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4289 return;
4290 } else {
4291 goto use_dfl_pwq;
4292 }
4293
4294 /* create a new pwq */
4295 pwq = alloc_unbound_pwq(wq, target_attrs);
4296 if (!pwq) {
4297 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4298 wq->name);
4299 goto use_dfl_pwq;
4300 }
4301
4302 /* Install the new pwq. */
4303 mutex_lock(&wq->mutex);
4304 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4305 goto out_unlock;
4306
4307 use_dfl_pwq:
4308 mutex_lock(&wq->mutex);
4309 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4310 get_pwq(wq->dfl_pwq);
4311 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4312 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4313 out_unlock:
4314 mutex_unlock(&wq->mutex);
4315 put_pwq_unlocked(old_pwq);
4316 }
4317
alloc_and_link_pwqs(struct workqueue_struct * wq)4318 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4319 {
4320 bool highpri = wq->flags & WQ_HIGHPRI;
4321 int cpu, ret;
4322
4323 if (!(wq->flags & WQ_UNBOUND)) {
4324 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4325 if (!wq->cpu_pwqs)
4326 return -ENOMEM;
4327
4328 for_each_possible_cpu(cpu) {
4329 struct pool_workqueue *pwq =
4330 per_cpu_ptr(wq->cpu_pwqs, cpu);
4331 struct worker_pool *cpu_pools =
4332 per_cpu(cpu_worker_pools, cpu);
4333
4334 init_pwq(pwq, wq, &cpu_pools[highpri]);
4335
4336 mutex_lock(&wq->mutex);
4337 link_pwq(pwq);
4338 mutex_unlock(&wq->mutex);
4339 }
4340 return 0;
4341 }
4342
4343 cpus_read_lock();
4344 if (wq->flags & __WQ_ORDERED) {
4345 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4346 /* there should only be single pwq for ordering guarantee */
4347 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4348 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4349 "ordering guarantee broken for workqueue %s\n", wq->name);
4350 } else {
4351 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4352 }
4353 cpus_read_unlock();
4354
4355 return ret;
4356 }
4357
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4358 static int wq_clamp_max_active(int max_active, unsigned int flags,
4359 const char *name)
4360 {
4361 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4362
4363 if (max_active < 1 || max_active > lim)
4364 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4365 max_active, name, 1, lim);
4366
4367 return clamp_val(max_active, 1, lim);
4368 }
4369
4370 /*
4371 * Workqueues which may be used during memory reclaim should have a rescuer
4372 * to guarantee forward progress.
4373 */
init_rescuer(struct workqueue_struct * wq)4374 static int init_rescuer(struct workqueue_struct *wq)
4375 {
4376 struct worker *rescuer;
4377 int ret;
4378
4379 if (!(wq->flags & WQ_MEM_RECLAIM))
4380 return 0;
4381
4382 rescuer = alloc_worker(NUMA_NO_NODE);
4383 if (!rescuer)
4384 return -ENOMEM;
4385
4386 rescuer->rescue_wq = wq;
4387 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4388 if (IS_ERR(rescuer->task)) {
4389 ret = PTR_ERR(rescuer->task);
4390 kfree(rescuer);
4391 return ret;
4392 }
4393
4394 wq->rescuer = rescuer;
4395 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4396 wake_up_process(rescuer->task);
4397
4398 return 0;
4399 }
4400
4401 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4402 struct workqueue_struct *alloc_workqueue(const char *fmt,
4403 unsigned int flags,
4404 int max_active, ...)
4405 {
4406 size_t tbl_size = 0;
4407 va_list args;
4408 struct workqueue_struct *wq;
4409 struct pool_workqueue *pwq;
4410
4411 /*
4412 * Unbound && max_active == 1 used to imply ordered, which is no
4413 * longer the case on NUMA machines due to per-node pools. While
4414 * alloc_ordered_workqueue() is the right way to create an ordered
4415 * workqueue, keep the previous behavior to avoid subtle breakages
4416 * on NUMA.
4417 */
4418 if ((flags & WQ_UNBOUND) && max_active == 1)
4419 flags |= __WQ_ORDERED;
4420
4421 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4422 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4423 flags |= WQ_UNBOUND;
4424
4425 /* allocate wq and format name */
4426 if (flags & WQ_UNBOUND)
4427 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4428
4429 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4430 if (!wq)
4431 return NULL;
4432
4433 if (flags & WQ_UNBOUND) {
4434 wq->unbound_attrs = alloc_workqueue_attrs();
4435 if (!wq->unbound_attrs)
4436 goto err_free_wq;
4437 }
4438
4439 va_start(args, max_active);
4440 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4441 va_end(args);
4442
4443 max_active = max_active ?: WQ_DFL_ACTIVE;
4444 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4445
4446 /* init wq */
4447 wq->flags = flags;
4448 wq->saved_max_active = max_active;
4449 mutex_init(&wq->mutex);
4450 atomic_set(&wq->nr_pwqs_to_flush, 0);
4451 INIT_LIST_HEAD(&wq->pwqs);
4452 INIT_LIST_HEAD(&wq->flusher_queue);
4453 INIT_LIST_HEAD(&wq->flusher_overflow);
4454 INIT_LIST_HEAD(&wq->maydays);
4455
4456 wq_init_lockdep(wq);
4457 INIT_LIST_HEAD(&wq->list);
4458
4459 if (alloc_and_link_pwqs(wq) < 0)
4460 goto err_unreg_lockdep;
4461
4462 if (wq_online && init_rescuer(wq) < 0)
4463 goto err_destroy;
4464
4465 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4466 goto err_destroy;
4467
4468 /*
4469 * wq_pool_mutex protects global freeze state and workqueues list.
4470 * Grab it, adjust max_active and add the new @wq to workqueues
4471 * list.
4472 */
4473 mutex_lock(&wq_pool_mutex);
4474
4475 mutex_lock(&wq->mutex);
4476 for_each_pwq(pwq, wq)
4477 pwq_adjust_max_active(pwq);
4478 mutex_unlock(&wq->mutex);
4479
4480 list_add_tail_rcu(&wq->list, &workqueues);
4481
4482 mutex_unlock(&wq_pool_mutex);
4483
4484 return wq;
4485
4486 err_unreg_lockdep:
4487 wq_unregister_lockdep(wq);
4488 wq_free_lockdep(wq);
4489 err_free_wq:
4490 free_workqueue_attrs(wq->unbound_attrs);
4491 kfree(wq);
4492 return NULL;
4493 err_destroy:
4494 destroy_workqueue(wq);
4495 return NULL;
4496 }
4497 EXPORT_SYMBOL_GPL(alloc_workqueue);
4498
pwq_busy(struct pool_workqueue * pwq)4499 static bool pwq_busy(struct pool_workqueue *pwq)
4500 {
4501 int i;
4502
4503 for (i = 0; i < WORK_NR_COLORS; i++)
4504 if (pwq->nr_in_flight[i])
4505 return true;
4506
4507 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4508 return true;
4509 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4510 return true;
4511
4512 return false;
4513 }
4514
4515 /**
4516 * destroy_workqueue - safely terminate a workqueue
4517 * @wq: target workqueue
4518 *
4519 * Safely destroy a workqueue. All work currently pending will be done first.
4520 */
destroy_workqueue(struct workqueue_struct * wq)4521 void destroy_workqueue(struct workqueue_struct *wq)
4522 {
4523 struct pool_workqueue *pwq;
4524 int node;
4525
4526 /*
4527 * Remove it from sysfs first so that sanity check failure doesn't
4528 * lead to sysfs name conflicts.
4529 */
4530 workqueue_sysfs_unregister(wq);
4531
4532 /* mark the workqueue destruction is in progress */
4533 mutex_lock(&wq->mutex);
4534 wq->flags |= __WQ_DESTROYING;
4535 mutex_unlock(&wq->mutex);
4536
4537 /* drain it before proceeding with destruction */
4538 drain_workqueue(wq);
4539
4540 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4541 if (wq->rescuer) {
4542 struct worker *rescuer = wq->rescuer;
4543
4544 /* this prevents new queueing */
4545 raw_spin_lock_irq(&wq_mayday_lock);
4546 wq->rescuer = NULL;
4547 raw_spin_unlock_irq(&wq_mayday_lock);
4548
4549 /* rescuer will empty maydays list before exiting */
4550 kthread_stop(rescuer->task);
4551 kfree(rescuer);
4552 }
4553
4554 /*
4555 * Sanity checks - grab all the locks so that we wait for all
4556 * in-flight operations which may do put_pwq().
4557 */
4558 mutex_lock(&wq_pool_mutex);
4559 mutex_lock(&wq->mutex);
4560 for_each_pwq(pwq, wq) {
4561 raw_spin_lock_irq(&pwq->pool->lock);
4562 if (WARN_ON(pwq_busy(pwq))) {
4563 pr_warn("%s: %s has the following busy pwq\n",
4564 __func__, wq->name);
4565 show_pwq(pwq);
4566 raw_spin_unlock_irq(&pwq->pool->lock);
4567 mutex_unlock(&wq->mutex);
4568 mutex_unlock(&wq_pool_mutex);
4569 show_one_workqueue(wq);
4570 return;
4571 }
4572 raw_spin_unlock_irq(&pwq->pool->lock);
4573 }
4574 mutex_unlock(&wq->mutex);
4575
4576 /*
4577 * wq list is used to freeze wq, remove from list after
4578 * flushing is complete in case freeze races us.
4579 */
4580 list_del_rcu(&wq->list);
4581 mutex_unlock(&wq_pool_mutex);
4582
4583 if (!(wq->flags & WQ_UNBOUND)) {
4584 wq_unregister_lockdep(wq);
4585 /*
4586 * The base ref is never dropped on per-cpu pwqs. Directly
4587 * schedule RCU free.
4588 */
4589 call_rcu(&wq->rcu, rcu_free_wq);
4590 } else {
4591 /*
4592 * We're the sole accessor of @wq at this point. Directly
4593 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4594 * @wq will be freed when the last pwq is released.
4595 */
4596 for_each_node(node) {
4597 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4598 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4599 put_pwq_unlocked(pwq);
4600 }
4601
4602 /*
4603 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4604 * put. Don't access it afterwards.
4605 */
4606 pwq = wq->dfl_pwq;
4607 wq->dfl_pwq = NULL;
4608 put_pwq_unlocked(pwq);
4609 }
4610 }
4611 EXPORT_SYMBOL_GPL(destroy_workqueue);
4612
4613 /**
4614 * workqueue_set_max_active - adjust max_active of a workqueue
4615 * @wq: target workqueue
4616 * @max_active: new max_active value.
4617 *
4618 * Set max_active of @wq to @max_active.
4619 *
4620 * CONTEXT:
4621 * Don't call from IRQ context.
4622 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4623 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4624 {
4625 struct pool_workqueue *pwq;
4626
4627 /* disallow meddling with max_active for ordered workqueues */
4628 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4629 return;
4630
4631 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4632
4633 mutex_lock(&wq->mutex);
4634
4635 wq->flags &= ~__WQ_ORDERED;
4636 wq->saved_max_active = max_active;
4637
4638 for_each_pwq(pwq, wq)
4639 pwq_adjust_max_active(pwq);
4640
4641 mutex_unlock(&wq->mutex);
4642 }
4643 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4644
4645 /**
4646 * current_work - retrieve %current task's work struct
4647 *
4648 * Determine if %current task is a workqueue worker and what it's working on.
4649 * Useful to find out the context that the %current task is running in.
4650 *
4651 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4652 */
current_work(void)4653 struct work_struct *current_work(void)
4654 {
4655 struct worker *worker = current_wq_worker();
4656
4657 return worker ? worker->current_work : NULL;
4658 }
4659 EXPORT_SYMBOL(current_work);
4660
4661 /**
4662 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4663 *
4664 * Determine whether %current is a workqueue rescuer. Can be used from
4665 * work functions to determine whether it's being run off the rescuer task.
4666 *
4667 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4668 */
current_is_workqueue_rescuer(void)4669 bool current_is_workqueue_rescuer(void)
4670 {
4671 struct worker *worker = current_wq_worker();
4672
4673 return worker && worker->rescue_wq;
4674 }
4675
4676 /**
4677 * workqueue_congested - test whether a workqueue is congested
4678 * @cpu: CPU in question
4679 * @wq: target workqueue
4680 *
4681 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4682 * no synchronization around this function and the test result is
4683 * unreliable and only useful as advisory hints or for debugging.
4684 *
4685 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4686 * Note that both per-cpu and unbound workqueues may be associated with
4687 * multiple pool_workqueues which have separate congested states. A
4688 * workqueue being congested on one CPU doesn't mean the workqueue is also
4689 * contested on other CPUs / NUMA nodes.
4690 *
4691 * Return:
4692 * %true if congested, %false otherwise.
4693 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4694 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4695 {
4696 struct pool_workqueue *pwq;
4697 bool ret;
4698
4699 rcu_read_lock();
4700 preempt_disable();
4701
4702 if (cpu == WORK_CPU_UNBOUND)
4703 cpu = smp_processor_id();
4704
4705 if (!(wq->flags & WQ_UNBOUND))
4706 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4707 else
4708 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4709
4710 ret = !list_empty(&pwq->inactive_works);
4711 preempt_enable();
4712 rcu_read_unlock();
4713
4714 return ret;
4715 }
4716 EXPORT_SYMBOL_GPL(workqueue_congested);
4717
4718 /**
4719 * work_busy - test whether a work is currently pending or running
4720 * @work: the work to be tested
4721 *
4722 * Test whether @work is currently pending or running. There is no
4723 * synchronization around this function and the test result is
4724 * unreliable and only useful as advisory hints or for debugging.
4725 *
4726 * Return:
4727 * OR'd bitmask of WORK_BUSY_* bits.
4728 */
work_busy(struct work_struct * work)4729 unsigned int work_busy(struct work_struct *work)
4730 {
4731 struct worker_pool *pool;
4732 unsigned long flags;
4733 unsigned int ret = 0;
4734
4735 if (work_pending(work))
4736 ret |= WORK_BUSY_PENDING;
4737
4738 rcu_read_lock();
4739 pool = get_work_pool(work);
4740 if (pool) {
4741 raw_spin_lock_irqsave(&pool->lock, flags);
4742 if (find_worker_executing_work(pool, work))
4743 ret |= WORK_BUSY_RUNNING;
4744 raw_spin_unlock_irqrestore(&pool->lock, flags);
4745 }
4746 rcu_read_unlock();
4747
4748 return ret;
4749 }
4750 EXPORT_SYMBOL_GPL(work_busy);
4751
4752 /**
4753 * set_worker_desc - set description for the current work item
4754 * @fmt: printf-style format string
4755 * @...: arguments for the format string
4756 *
4757 * This function can be called by a running work function to describe what
4758 * the work item is about. If the worker task gets dumped, this
4759 * information will be printed out together to help debugging. The
4760 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4761 */
set_worker_desc(const char * fmt,...)4762 void set_worker_desc(const char *fmt, ...)
4763 {
4764 struct worker *worker = current_wq_worker();
4765 va_list args;
4766
4767 if (worker) {
4768 va_start(args, fmt);
4769 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4770 va_end(args);
4771 }
4772 }
4773 EXPORT_SYMBOL_GPL(set_worker_desc);
4774
4775 /**
4776 * print_worker_info - print out worker information and description
4777 * @log_lvl: the log level to use when printing
4778 * @task: target task
4779 *
4780 * If @task is a worker and currently executing a work item, print out the
4781 * name of the workqueue being serviced and worker description set with
4782 * set_worker_desc() by the currently executing work item.
4783 *
4784 * This function can be safely called on any task as long as the
4785 * task_struct itself is accessible. While safe, this function isn't
4786 * synchronized and may print out mixups or garbages of limited length.
4787 */
print_worker_info(const char * log_lvl,struct task_struct * task)4788 void print_worker_info(const char *log_lvl, struct task_struct *task)
4789 {
4790 work_func_t *fn = NULL;
4791 char name[WQ_NAME_LEN] = { };
4792 char desc[WORKER_DESC_LEN] = { };
4793 struct pool_workqueue *pwq = NULL;
4794 struct workqueue_struct *wq = NULL;
4795 struct worker *worker;
4796
4797 if (!(task->flags & PF_WQ_WORKER))
4798 return;
4799
4800 /*
4801 * This function is called without any synchronization and @task
4802 * could be in any state. Be careful with dereferences.
4803 */
4804 worker = kthread_probe_data(task);
4805
4806 /*
4807 * Carefully copy the associated workqueue's workfn, name and desc.
4808 * Keep the original last '\0' in case the original is garbage.
4809 */
4810 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4811 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4812 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4813 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4814 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4815
4816 if (fn || name[0] || desc[0]) {
4817 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4818 if (strcmp(name, desc))
4819 pr_cont(" (%s)", desc);
4820 pr_cont("\n");
4821 }
4822 }
4823
pr_cont_pool_info(struct worker_pool * pool)4824 static void pr_cont_pool_info(struct worker_pool *pool)
4825 {
4826 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4827 if (pool->node != NUMA_NO_NODE)
4828 pr_cont(" node=%d", pool->node);
4829 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4830 }
4831
4832 struct pr_cont_work_struct {
4833 bool comma;
4834 work_func_t func;
4835 long ctr;
4836 };
4837
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)4838 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
4839 {
4840 if (!pcwsp->ctr)
4841 goto out_record;
4842 if (func == pcwsp->func) {
4843 pcwsp->ctr++;
4844 return;
4845 }
4846 if (pcwsp->ctr == 1)
4847 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
4848 else
4849 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
4850 pcwsp->ctr = 0;
4851 out_record:
4852 if ((long)func == -1L)
4853 return;
4854 pcwsp->comma = comma;
4855 pcwsp->func = func;
4856 pcwsp->ctr = 1;
4857 }
4858
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)4859 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
4860 {
4861 if (work->func == wq_barrier_func) {
4862 struct wq_barrier *barr;
4863
4864 barr = container_of(work, struct wq_barrier, work);
4865
4866 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4867 pr_cont("%s BAR(%d)", comma ? "," : "",
4868 task_pid_nr(barr->task));
4869 } else {
4870 if (!comma)
4871 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4872 pr_cont_work_flush(comma, work->func, pcwsp);
4873 }
4874 }
4875
show_pwq(struct pool_workqueue * pwq)4876 static void show_pwq(struct pool_workqueue *pwq)
4877 {
4878 struct pr_cont_work_struct pcws = { .ctr = 0, };
4879 struct worker_pool *pool = pwq->pool;
4880 struct work_struct *work;
4881 struct worker *worker;
4882 bool has_in_flight = false, has_pending = false;
4883 int bkt;
4884
4885 pr_info(" pwq %d:", pool->id);
4886 pr_cont_pool_info(pool);
4887
4888 pr_cont(" active=%d/%d refcnt=%d%s\n",
4889 pwq->nr_active, pwq->max_active, pwq->refcnt,
4890 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4891
4892 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4893 if (worker->current_pwq == pwq) {
4894 has_in_flight = true;
4895 break;
4896 }
4897 }
4898 if (has_in_flight) {
4899 bool comma = false;
4900
4901 pr_info(" in-flight:");
4902 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4903 if (worker->current_pwq != pwq)
4904 continue;
4905
4906 pr_cont("%s %d%s:%ps", comma ? "," : "",
4907 task_pid_nr(worker->task),
4908 worker->rescue_wq ? "(RESCUER)" : "",
4909 worker->current_func);
4910 list_for_each_entry(work, &worker->scheduled, entry)
4911 pr_cont_work(false, work, &pcws);
4912 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4913 comma = true;
4914 }
4915 pr_cont("\n");
4916 }
4917
4918 list_for_each_entry(work, &pool->worklist, entry) {
4919 if (get_work_pwq(work) == pwq) {
4920 has_pending = true;
4921 break;
4922 }
4923 }
4924 if (has_pending) {
4925 bool comma = false;
4926
4927 pr_info(" pending:");
4928 list_for_each_entry(work, &pool->worklist, entry) {
4929 if (get_work_pwq(work) != pwq)
4930 continue;
4931
4932 pr_cont_work(comma, work, &pcws);
4933 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4934 }
4935 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4936 pr_cont("\n");
4937 }
4938
4939 if (!list_empty(&pwq->inactive_works)) {
4940 bool comma = false;
4941
4942 pr_info(" inactive:");
4943 list_for_each_entry(work, &pwq->inactive_works, entry) {
4944 pr_cont_work(comma, work, &pcws);
4945 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4946 }
4947 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4948 pr_cont("\n");
4949 }
4950 }
4951
4952 /**
4953 * show_one_workqueue - dump state of specified workqueue
4954 * @wq: workqueue whose state will be printed
4955 */
show_one_workqueue(struct workqueue_struct * wq)4956 void show_one_workqueue(struct workqueue_struct *wq)
4957 {
4958 struct pool_workqueue *pwq;
4959 bool idle = true;
4960 unsigned long flags;
4961
4962 for_each_pwq(pwq, wq) {
4963 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4964 idle = false;
4965 break;
4966 }
4967 }
4968 if (idle) /* Nothing to print for idle workqueue */
4969 return;
4970
4971 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4972
4973 for_each_pwq(pwq, wq) {
4974 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4975 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4976 /*
4977 * Defer printing to avoid deadlocks in console
4978 * drivers that queue work while holding locks
4979 * also taken in their write paths.
4980 */
4981 printk_deferred_enter();
4982 show_pwq(pwq);
4983 printk_deferred_exit();
4984 }
4985 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4986 /*
4987 * We could be printing a lot from atomic context, e.g.
4988 * sysrq-t -> show_all_workqueues(). Avoid triggering
4989 * hard lockup.
4990 */
4991 touch_nmi_watchdog();
4992 }
4993
4994 }
4995
4996 /**
4997 * show_one_worker_pool - dump state of specified worker pool
4998 * @pool: worker pool whose state will be printed
4999 */
show_one_worker_pool(struct worker_pool * pool)5000 static void show_one_worker_pool(struct worker_pool *pool)
5001 {
5002 struct worker *worker;
5003 bool first = true;
5004 unsigned long flags;
5005
5006 raw_spin_lock_irqsave(&pool->lock, flags);
5007 if (pool->nr_workers == pool->nr_idle)
5008 goto next_pool;
5009 /*
5010 * Defer printing to avoid deadlocks in console drivers that
5011 * queue work while holding locks also taken in their write
5012 * paths.
5013 */
5014 printk_deferred_enter();
5015 pr_info("pool %d:", pool->id);
5016 pr_cont_pool_info(pool);
5017 pr_cont(" hung=%us workers=%d",
5018 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
5019 pool->nr_workers);
5020 if (pool->manager)
5021 pr_cont(" manager: %d",
5022 task_pid_nr(pool->manager->task));
5023 list_for_each_entry(worker, &pool->idle_list, entry) {
5024 pr_cont(" %s%d", first ? "idle: " : "",
5025 task_pid_nr(worker->task));
5026 first = false;
5027 }
5028 pr_cont("\n");
5029 printk_deferred_exit();
5030 next_pool:
5031 raw_spin_unlock_irqrestore(&pool->lock, flags);
5032 /*
5033 * We could be printing a lot from atomic context, e.g.
5034 * sysrq-t -> show_all_workqueues(). Avoid triggering
5035 * hard lockup.
5036 */
5037 touch_nmi_watchdog();
5038
5039 }
5040
5041 /**
5042 * show_all_workqueues - dump workqueue state
5043 *
5044 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
5045 * all busy workqueues and pools.
5046 */
show_all_workqueues(void)5047 void show_all_workqueues(void)
5048 {
5049 struct workqueue_struct *wq;
5050 struct worker_pool *pool;
5051 int pi;
5052
5053 rcu_read_lock();
5054
5055 pr_info("Showing busy workqueues and worker pools:\n");
5056
5057 list_for_each_entry_rcu(wq, &workqueues, list)
5058 show_one_workqueue(wq);
5059
5060 for_each_pool(pool, pi)
5061 show_one_worker_pool(pool);
5062
5063 rcu_read_unlock();
5064 }
5065
5066 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)5067 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5068 {
5069 int off;
5070
5071 /* always show the actual comm */
5072 off = strscpy(buf, task->comm, size);
5073 if (off < 0)
5074 return;
5075
5076 /* stabilize PF_WQ_WORKER and worker pool association */
5077 mutex_lock(&wq_pool_attach_mutex);
5078
5079 if (task->flags & PF_WQ_WORKER) {
5080 struct worker *worker = kthread_data(task);
5081 struct worker_pool *pool = worker->pool;
5082
5083 if (pool) {
5084 raw_spin_lock_irq(&pool->lock);
5085 /*
5086 * ->desc tracks information (wq name or
5087 * set_worker_desc()) for the latest execution. If
5088 * current, prepend '+', otherwise '-'.
5089 */
5090 if (worker->desc[0] != '\0') {
5091 if (worker->current_work)
5092 scnprintf(buf + off, size - off, "+%s",
5093 worker->desc);
5094 else
5095 scnprintf(buf + off, size - off, "-%s",
5096 worker->desc);
5097 }
5098 raw_spin_unlock_irq(&pool->lock);
5099 }
5100 }
5101
5102 mutex_unlock(&wq_pool_attach_mutex);
5103 }
5104
5105 #ifdef CONFIG_SMP
5106
5107 /*
5108 * CPU hotplug.
5109 *
5110 * There are two challenges in supporting CPU hotplug. Firstly, there
5111 * are a lot of assumptions on strong associations among work, pwq and
5112 * pool which make migrating pending and scheduled works very
5113 * difficult to implement without impacting hot paths. Secondly,
5114 * worker pools serve mix of short, long and very long running works making
5115 * blocked draining impractical.
5116 *
5117 * This is solved by allowing the pools to be disassociated from the CPU
5118 * running as an unbound one and allowing it to be reattached later if the
5119 * cpu comes back online.
5120 */
5121
unbind_workers(int cpu)5122 static void unbind_workers(int cpu)
5123 {
5124 struct worker_pool *pool;
5125 struct worker *worker;
5126
5127 for_each_cpu_worker_pool(pool, cpu) {
5128 mutex_lock(&wq_pool_attach_mutex);
5129 raw_spin_lock_irq(&pool->lock);
5130
5131 /*
5132 * We've blocked all attach/detach operations. Make all workers
5133 * unbound and set DISASSOCIATED. Before this, all workers
5134 * must be on the cpu. After this, they may become diasporas.
5135 * And the preemption disabled section in their sched callbacks
5136 * are guaranteed to see WORKER_UNBOUND since the code here
5137 * is on the same cpu.
5138 */
5139 for_each_pool_worker(worker, pool)
5140 worker->flags |= WORKER_UNBOUND;
5141
5142 pool->flags |= POOL_DISASSOCIATED;
5143
5144 /*
5145 * The handling of nr_running in sched callbacks are disabled
5146 * now. Zap nr_running. After this, nr_running stays zero and
5147 * need_more_worker() and keep_working() are always true as
5148 * long as the worklist is not empty. This pool now behaves as
5149 * an unbound (in terms of concurrency management) pool which
5150 * are served by workers tied to the pool.
5151 */
5152 pool->nr_running = 0;
5153
5154 /*
5155 * With concurrency management just turned off, a busy
5156 * worker blocking could lead to lengthy stalls. Kick off
5157 * unbound chain execution of currently pending work items.
5158 */
5159 wake_up_worker(pool);
5160
5161 raw_spin_unlock_irq(&pool->lock);
5162
5163 for_each_pool_worker(worker, pool)
5164 unbind_worker(worker);
5165
5166 mutex_unlock(&wq_pool_attach_mutex);
5167 }
5168 }
5169
5170 /**
5171 * rebind_workers - rebind all workers of a pool to the associated CPU
5172 * @pool: pool of interest
5173 *
5174 * @pool->cpu is coming online. Rebind all workers to the CPU.
5175 */
rebind_workers(struct worker_pool * pool)5176 static void rebind_workers(struct worker_pool *pool)
5177 {
5178 struct worker *worker;
5179
5180 lockdep_assert_held(&wq_pool_attach_mutex);
5181
5182 /*
5183 * Restore CPU affinity of all workers. As all idle workers should
5184 * be on the run-queue of the associated CPU before any local
5185 * wake-ups for concurrency management happen, restore CPU affinity
5186 * of all workers first and then clear UNBOUND. As we're called
5187 * from CPU_ONLINE, the following shouldn't fail.
5188 */
5189 for_each_pool_worker(worker, pool) {
5190 kthread_set_per_cpu(worker->task, pool->cpu);
5191 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5192 pool->attrs->cpumask) < 0);
5193 }
5194
5195 raw_spin_lock_irq(&pool->lock);
5196
5197 pool->flags &= ~POOL_DISASSOCIATED;
5198
5199 for_each_pool_worker(worker, pool) {
5200 unsigned int worker_flags = worker->flags;
5201
5202 /*
5203 * We want to clear UNBOUND but can't directly call
5204 * worker_clr_flags() or adjust nr_running. Atomically
5205 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5206 * @worker will clear REBOUND using worker_clr_flags() when
5207 * it initiates the next execution cycle thus restoring
5208 * concurrency management. Note that when or whether
5209 * @worker clears REBOUND doesn't affect correctness.
5210 *
5211 * WRITE_ONCE() is necessary because @worker->flags may be
5212 * tested without holding any lock in
5213 * wq_worker_running(). Without it, NOT_RUNNING test may
5214 * fail incorrectly leading to premature concurrency
5215 * management operations.
5216 */
5217 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5218 worker_flags |= WORKER_REBOUND;
5219 worker_flags &= ~WORKER_UNBOUND;
5220 WRITE_ONCE(worker->flags, worker_flags);
5221 }
5222
5223 raw_spin_unlock_irq(&pool->lock);
5224 }
5225
5226 /**
5227 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5228 * @pool: unbound pool of interest
5229 * @cpu: the CPU which is coming up
5230 *
5231 * An unbound pool may end up with a cpumask which doesn't have any online
5232 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5233 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5234 * online CPU before, cpus_allowed of all its workers should be restored.
5235 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5236 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5237 {
5238 static cpumask_t cpumask;
5239 struct worker *worker;
5240
5241 lockdep_assert_held(&wq_pool_attach_mutex);
5242
5243 /* is @cpu allowed for @pool? */
5244 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5245 return;
5246
5247 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5248
5249 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5250 for_each_pool_worker(worker, pool)
5251 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5252 }
5253
workqueue_prepare_cpu(unsigned int cpu)5254 int workqueue_prepare_cpu(unsigned int cpu)
5255 {
5256 struct worker_pool *pool;
5257
5258 for_each_cpu_worker_pool(pool, cpu) {
5259 if (pool->nr_workers)
5260 continue;
5261 if (!create_worker(pool))
5262 return -ENOMEM;
5263 }
5264 return 0;
5265 }
5266
workqueue_online_cpu(unsigned int cpu)5267 int workqueue_online_cpu(unsigned int cpu)
5268 {
5269 struct worker_pool *pool;
5270 struct workqueue_struct *wq;
5271 int pi;
5272
5273 mutex_lock(&wq_pool_mutex);
5274
5275 for_each_pool(pool, pi) {
5276 mutex_lock(&wq_pool_attach_mutex);
5277
5278 if (pool->cpu == cpu)
5279 rebind_workers(pool);
5280 else if (pool->cpu < 0)
5281 restore_unbound_workers_cpumask(pool, cpu);
5282
5283 mutex_unlock(&wq_pool_attach_mutex);
5284 }
5285
5286 /* update NUMA affinity of unbound workqueues */
5287 list_for_each_entry(wq, &workqueues, list)
5288 wq_update_unbound_numa(wq, cpu, true);
5289
5290 mutex_unlock(&wq_pool_mutex);
5291 return 0;
5292 }
5293
workqueue_offline_cpu(unsigned int cpu)5294 int workqueue_offline_cpu(unsigned int cpu)
5295 {
5296 struct workqueue_struct *wq;
5297
5298 /* unbinding per-cpu workers should happen on the local CPU */
5299 if (WARN_ON(cpu != smp_processor_id()))
5300 return -1;
5301
5302 unbind_workers(cpu);
5303
5304 /* update NUMA affinity of unbound workqueues */
5305 mutex_lock(&wq_pool_mutex);
5306 list_for_each_entry(wq, &workqueues, list)
5307 wq_update_unbound_numa(wq, cpu, false);
5308 mutex_unlock(&wq_pool_mutex);
5309
5310 return 0;
5311 }
5312
5313 struct work_for_cpu {
5314 struct work_struct work;
5315 long (*fn)(void *);
5316 void *arg;
5317 long ret;
5318 };
5319
work_for_cpu_fn(struct work_struct * work)5320 static void work_for_cpu_fn(struct work_struct *work)
5321 {
5322 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5323
5324 wfc->ret = wfc->fn(wfc->arg);
5325 }
5326
5327 /**
5328 * work_on_cpu - run a function in thread context on a particular cpu
5329 * @cpu: the cpu to run on
5330 * @fn: the function to run
5331 * @arg: the function arg
5332 *
5333 * It is up to the caller to ensure that the cpu doesn't go offline.
5334 * The caller must not hold any locks which would prevent @fn from completing.
5335 *
5336 * Return: The value @fn returns.
5337 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5338 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5339 {
5340 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5341
5342 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5343 schedule_work_on(cpu, &wfc.work);
5344 flush_work(&wfc.work);
5345 destroy_work_on_stack(&wfc.work);
5346 return wfc.ret;
5347 }
5348 EXPORT_SYMBOL_GPL(work_on_cpu);
5349
5350 /**
5351 * work_on_cpu_safe - run a function in thread context on a particular cpu
5352 * @cpu: the cpu to run on
5353 * @fn: the function to run
5354 * @arg: the function argument
5355 *
5356 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5357 * any locks which would prevent @fn from completing.
5358 *
5359 * Return: The value @fn returns.
5360 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5361 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5362 {
5363 long ret = -ENODEV;
5364
5365 cpus_read_lock();
5366 if (cpu_online(cpu))
5367 ret = work_on_cpu(cpu, fn, arg);
5368 cpus_read_unlock();
5369 return ret;
5370 }
5371 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5372 #endif /* CONFIG_SMP */
5373
5374 #ifdef CONFIG_FREEZER
5375
5376 /**
5377 * freeze_workqueues_begin - begin freezing workqueues
5378 *
5379 * Start freezing workqueues. After this function returns, all freezable
5380 * workqueues will queue new works to their inactive_works list instead of
5381 * pool->worklist.
5382 *
5383 * CONTEXT:
5384 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5385 */
freeze_workqueues_begin(void)5386 void freeze_workqueues_begin(void)
5387 {
5388 struct workqueue_struct *wq;
5389 struct pool_workqueue *pwq;
5390
5391 mutex_lock(&wq_pool_mutex);
5392
5393 WARN_ON_ONCE(workqueue_freezing);
5394 workqueue_freezing = true;
5395
5396 list_for_each_entry(wq, &workqueues, list) {
5397 mutex_lock(&wq->mutex);
5398 for_each_pwq(pwq, wq)
5399 pwq_adjust_max_active(pwq);
5400 mutex_unlock(&wq->mutex);
5401 }
5402
5403 mutex_unlock(&wq_pool_mutex);
5404 }
5405
5406 /**
5407 * freeze_workqueues_busy - are freezable workqueues still busy?
5408 *
5409 * Check whether freezing is complete. This function must be called
5410 * between freeze_workqueues_begin() and thaw_workqueues().
5411 *
5412 * CONTEXT:
5413 * Grabs and releases wq_pool_mutex.
5414 *
5415 * Return:
5416 * %true if some freezable workqueues are still busy. %false if freezing
5417 * is complete.
5418 */
freeze_workqueues_busy(void)5419 bool freeze_workqueues_busy(void)
5420 {
5421 bool busy = false;
5422 struct workqueue_struct *wq;
5423 struct pool_workqueue *pwq;
5424
5425 mutex_lock(&wq_pool_mutex);
5426
5427 WARN_ON_ONCE(!workqueue_freezing);
5428
5429 list_for_each_entry(wq, &workqueues, list) {
5430 if (!(wq->flags & WQ_FREEZABLE))
5431 continue;
5432 /*
5433 * nr_active is monotonically decreasing. It's safe
5434 * to peek without lock.
5435 */
5436 rcu_read_lock();
5437 for_each_pwq(pwq, wq) {
5438 WARN_ON_ONCE(pwq->nr_active < 0);
5439 if (pwq->nr_active) {
5440 busy = true;
5441 rcu_read_unlock();
5442 goto out_unlock;
5443 }
5444 }
5445 rcu_read_unlock();
5446 }
5447 out_unlock:
5448 mutex_unlock(&wq_pool_mutex);
5449 return busy;
5450 }
5451
5452 /**
5453 * thaw_workqueues - thaw workqueues
5454 *
5455 * Thaw workqueues. Normal queueing is restored and all collected
5456 * frozen works are transferred to their respective pool worklists.
5457 *
5458 * CONTEXT:
5459 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5460 */
thaw_workqueues(void)5461 void thaw_workqueues(void)
5462 {
5463 struct workqueue_struct *wq;
5464 struct pool_workqueue *pwq;
5465
5466 mutex_lock(&wq_pool_mutex);
5467
5468 if (!workqueue_freezing)
5469 goto out_unlock;
5470
5471 workqueue_freezing = false;
5472
5473 /* restore max_active and repopulate worklist */
5474 list_for_each_entry(wq, &workqueues, list) {
5475 mutex_lock(&wq->mutex);
5476 for_each_pwq(pwq, wq)
5477 pwq_adjust_max_active(pwq);
5478 mutex_unlock(&wq->mutex);
5479 }
5480
5481 out_unlock:
5482 mutex_unlock(&wq_pool_mutex);
5483 }
5484 #endif /* CONFIG_FREEZER */
5485
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)5486 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5487 {
5488 LIST_HEAD(ctxs);
5489 int ret = 0;
5490 struct workqueue_struct *wq;
5491 struct apply_wqattrs_ctx *ctx, *n;
5492
5493 lockdep_assert_held(&wq_pool_mutex);
5494
5495 list_for_each_entry(wq, &workqueues, list) {
5496 if (!(wq->flags & WQ_UNBOUND))
5497 continue;
5498 /* creating multiple pwqs breaks ordering guarantee */
5499 if (wq->flags & __WQ_ORDERED)
5500 continue;
5501
5502 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5503 if (!ctx) {
5504 ret = -ENOMEM;
5505 break;
5506 }
5507
5508 list_add_tail(&ctx->list, &ctxs);
5509 }
5510
5511 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5512 if (!ret)
5513 apply_wqattrs_commit(ctx);
5514 apply_wqattrs_cleanup(ctx);
5515 }
5516
5517 if (!ret) {
5518 mutex_lock(&wq_pool_attach_mutex);
5519 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5520 mutex_unlock(&wq_pool_attach_mutex);
5521 }
5522 return ret;
5523 }
5524
5525 /**
5526 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5527 * @cpumask: the cpumask to set
5528 *
5529 * The low-level workqueues cpumask is a global cpumask that limits
5530 * the affinity of all unbound workqueues. This function check the @cpumask
5531 * and apply it to all unbound workqueues and updates all pwqs of them.
5532 *
5533 * Return: 0 - Success
5534 * -EINVAL - Invalid @cpumask
5535 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5536 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5537 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5538 {
5539 int ret = -EINVAL;
5540
5541 /*
5542 * Not excluding isolated cpus on purpose.
5543 * If the user wishes to include them, we allow that.
5544 */
5545 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5546 if (!cpumask_empty(cpumask)) {
5547 apply_wqattrs_lock();
5548 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5549 ret = 0;
5550 goto out_unlock;
5551 }
5552
5553 ret = workqueue_apply_unbound_cpumask(cpumask);
5554
5555 out_unlock:
5556 apply_wqattrs_unlock();
5557 }
5558
5559 return ret;
5560 }
5561
5562 #ifdef CONFIG_SYSFS
5563 /*
5564 * Workqueues with WQ_SYSFS flag set is visible to userland via
5565 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5566 * following attributes.
5567 *
5568 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5569 * max_active RW int : maximum number of in-flight work items
5570 *
5571 * Unbound workqueues have the following extra attributes.
5572 *
5573 * pool_ids RO int : the associated pool IDs for each node
5574 * nice RW int : nice value of the workers
5575 * cpumask RW mask : bitmask of allowed CPUs for the workers
5576 * numa RW bool : whether enable NUMA affinity
5577 */
5578 struct wq_device {
5579 struct workqueue_struct *wq;
5580 struct device dev;
5581 };
5582
dev_to_wq(struct device * dev)5583 static struct workqueue_struct *dev_to_wq(struct device *dev)
5584 {
5585 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5586
5587 return wq_dev->wq;
5588 }
5589
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5590 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5591 char *buf)
5592 {
5593 struct workqueue_struct *wq = dev_to_wq(dev);
5594
5595 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5596 }
5597 static DEVICE_ATTR_RO(per_cpu);
5598
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5599 static ssize_t max_active_show(struct device *dev,
5600 struct device_attribute *attr, char *buf)
5601 {
5602 struct workqueue_struct *wq = dev_to_wq(dev);
5603
5604 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5605 }
5606
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5607 static ssize_t max_active_store(struct device *dev,
5608 struct device_attribute *attr, const char *buf,
5609 size_t count)
5610 {
5611 struct workqueue_struct *wq = dev_to_wq(dev);
5612 int val;
5613
5614 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5615 return -EINVAL;
5616
5617 workqueue_set_max_active(wq, val);
5618 return count;
5619 }
5620 static DEVICE_ATTR_RW(max_active);
5621
5622 static struct attribute *wq_sysfs_attrs[] = {
5623 &dev_attr_per_cpu.attr,
5624 &dev_attr_max_active.attr,
5625 NULL,
5626 };
5627 ATTRIBUTE_GROUPS(wq_sysfs);
5628
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5629 static ssize_t wq_pool_ids_show(struct device *dev,
5630 struct device_attribute *attr, char *buf)
5631 {
5632 struct workqueue_struct *wq = dev_to_wq(dev);
5633 const char *delim = "";
5634 int node, written = 0;
5635
5636 cpus_read_lock();
5637 rcu_read_lock();
5638 for_each_node(node) {
5639 written += scnprintf(buf + written, PAGE_SIZE - written,
5640 "%s%d:%d", delim, node,
5641 unbound_pwq_by_node(wq, node)->pool->id);
5642 delim = " ";
5643 }
5644 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5645 rcu_read_unlock();
5646 cpus_read_unlock();
5647
5648 return written;
5649 }
5650
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5651 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5652 char *buf)
5653 {
5654 struct workqueue_struct *wq = dev_to_wq(dev);
5655 int written;
5656
5657 mutex_lock(&wq->mutex);
5658 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5659 mutex_unlock(&wq->mutex);
5660
5661 return written;
5662 }
5663
5664 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5665 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5666 {
5667 struct workqueue_attrs *attrs;
5668
5669 lockdep_assert_held(&wq_pool_mutex);
5670
5671 attrs = alloc_workqueue_attrs();
5672 if (!attrs)
5673 return NULL;
5674
5675 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5676 return attrs;
5677 }
5678
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5679 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5680 const char *buf, size_t count)
5681 {
5682 struct workqueue_struct *wq = dev_to_wq(dev);
5683 struct workqueue_attrs *attrs;
5684 int ret = -ENOMEM;
5685
5686 apply_wqattrs_lock();
5687
5688 attrs = wq_sysfs_prep_attrs(wq);
5689 if (!attrs)
5690 goto out_unlock;
5691
5692 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5693 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5694 ret = apply_workqueue_attrs_locked(wq, attrs);
5695 else
5696 ret = -EINVAL;
5697
5698 out_unlock:
5699 apply_wqattrs_unlock();
5700 free_workqueue_attrs(attrs);
5701 return ret ?: count;
5702 }
5703
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5704 static ssize_t wq_cpumask_show(struct device *dev,
5705 struct device_attribute *attr, char *buf)
5706 {
5707 struct workqueue_struct *wq = dev_to_wq(dev);
5708 int written;
5709
5710 mutex_lock(&wq->mutex);
5711 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5712 cpumask_pr_args(wq->unbound_attrs->cpumask));
5713 mutex_unlock(&wq->mutex);
5714 return written;
5715 }
5716
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5717 static ssize_t wq_cpumask_store(struct device *dev,
5718 struct device_attribute *attr,
5719 const char *buf, size_t count)
5720 {
5721 struct workqueue_struct *wq = dev_to_wq(dev);
5722 struct workqueue_attrs *attrs;
5723 int ret = -ENOMEM;
5724
5725 apply_wqattrs_lock();
5726
5727 attrs = wq_sysfs_prep_attrs(wq);
5728 if (!attrs)
5729 goto out_unlock;
5730
5731 ret = cpumask_parse(buf, attrs->cpumask);
5732 if (!ret)
5733 ret = apply_workqueue_attrs_locked(wq, attrs);
5734
5735 out_unlock:
5736 apply_wqattrs_unlock();
5737 free_workqueue_attrs(attrs);
5738 return ret ?: count;
5739 }
5740
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5741 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5742 char *buf)
5743 {
5744 struct workqueue_struct *wq = dev_to_wq(dev);
5745 int written;
5746
5747 mutex_lock(&wq->mutex);
5748 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5749 !wq->unbound_attrs->no_numa);
5750 mutex_unlock(&wq->mutex);
5751
5752 return written;
5753 }
5754
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5755 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5756 const char *buf, size_t count)
5757 {
5758 struct workqueue_struct *wq = dev_to_wq(dev);
5759 struct workqueue_attrs *attrs;
5760 int v, ret = -ENOMEM;
5761
5762 apply_wqattrs_lock();
5763
5764 attrs = wq_sysfs_prep_attrs(wq);
5765 if (!attrs)
5766 goto out_unlock;
5767
5768 ret = -EINVAL;
5769 if (sscanf(buf, "%d", &v) == 1) {
5770 attrs->no_numa = !v;
5771 ret = apply_workqueue_attrs_locked(wq, attrs);
5772 }
5773
5774 out_unlock:
5775 apply_wqattrs_unlock();
5776 free_workqueue_attrs(attrs);
5777 return ret ?: count;
5778 }
5779
5780 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5781 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5782 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5783 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5784 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5785 __ATTR_NULL,
5786 };
5787
5788 static struct bus_type wq_subsys = {
5789 .name = "workqueue",
5790 .dev_groups = wq_sysfs_groups,
5791 };
5792
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5793 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5794 struct device_attribute *attr, char *buf)
5795 {
5796 int written;
5797
5798 mutex_lock(&wq_pool_mutex);
5799 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5800 cpumask_pr_args(wq_unbound_cpumask));
5801 mutex_unlock(&wq_pool_mutex);
5802
5803 return written;
5804 }
5805
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5806 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5807 struct device_attribute *attr, const char *buf, size_t count)
5808 {
5809 cpumask_var_t cpumask;
5810 int ret;
5811
5812 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5813 return -ENOMEM;
5814
5815 ret = cpumask_parse(buf, cpumask);
5816 if (!ret)
5817 ret = workqueue_set_unbound_cpumask(cpumask);
5818
5819 free_cpumask_var(cpumask);
5820 return ret ? ret : count;
5821 }
5822
5823 static struct device_attribute wq_sysfs_cpumask_attr =
5824 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5825 wq_unbound_cpumask_store);
5826
wq_sysfs_init(void)5827 static int __init wq_sysfs_init(void)
5828 {
5829 int err;
5830
5831 err = subsys_virtual_register(&wq_subsys, NULL);
5832 if (err)
5833 return err;
5834
5835 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5836 }
5837 core_initcall(wq_sysfs_init);
5838
wq_device_release(struct device * dev)5839 static void wq_device_release(struct device *dev)
5840 {
5841 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5842
5843 kfree(wq_dev);
5844 }
5845
5846 /**
5847 * workqueue_sysfs_register - make a workqueue visible in sysfs
5848 * @wq: the workqueue to register
5849 *
5850 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5851 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5852 * which is the preferred method.
5853 *
5854 * Workqueue user should use this function directly iff it wants to apply
5855 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5856 * apply_workqueue_attrs() may race against userland updating the
5857 * attributes.
5858 *
5859 * Return: 0 on success, -errno on failure.
5860 */
workqueue_sysfs_register(struct workqueue_struct * wq)5861 int workqueue_sysfs_register(struct workqueue_struct *wq)
5862 {
5863 struct wq_device *wq_dev;
5864 int ret;
5865
5866 /*
5867 * Adjusting max_active or creating new pwqs by applying
5868 * attributes breaks ordering guarantee. Disallow exposing ordered
5869 * workqueues.
5870 */
5871 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5872 return -EINVAL;
5873
5874 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5875 if (!wq_dev)
5876 return -ENOMEM;
5877
5878 wq_dev->wq = wq;
5879 wq_dev->dev.bus = &wq_subsys;
5880 wq_dev->dev.release = wq_device_release;
5881 dev_set_name(&wq_dev->dev, "%s", wq->name);
5882
5883 /*
5884 * unbound_attrs are created separately. Suppress uevent until
5885 * everything is ready.
5886 */
5887 dev_set_uevent_suppress(&wq_dev->dev, true);
5888
5889 ret = device_register(&wq_dev->dev);
5890 if (ret) {
5891 put_device(&wq_dev->dev);
5892 wq->wq_dev = NULL;
5893 return ret;
5894 }
5895
5896 if (wq->flags & WQ_UNBOUND) {
5897 struct device_attribute *attr;
5898
5899 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5900 ret = device_create_file(&wq_dev->dev, attr);
5901 if (ret) {
5902 device_unregister(&wq_dev->dev);
5903 wq->wq_dev = NULL;
5904 return ret;
5905 }
5906 }
5907 }
5908
5909 dev_set_uevent_suppress(&wq_dev->dev, false);
5910 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5911 return 0;
5912 }
5913
5914 /**
5915 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5916 * @wq: the workqueue to unregister
5917 *
5918 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5919 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5920 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5921 {
5922 struct wq_device *wq_dev = wq->wq_dev;
5923
5924 if (!wq->wq_dev)
5925 return;
5926
5927 wq->wq_dev = NULL;
5928 device_unregister(&wq_dev->dev);
5929 }
5930 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5931 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5932 #endif /* CONFIG_SYSFS */
5933
5934 /*
5935 * Workqueue watchdog.
5936 *
5937 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5938 * flush dependency, a concurrency managed work item which stays RUNNING
5939 * indefinitely. Workqueue stalls can be very difficult to debug as the
5940 * usual warning mechanisms don't trigger and internal workqueue state is
5941 * largely opaque.
5942 *
5943 * Workqueue watchdog monitors all worker pools periodically and dumps
5944 * state if some pools failed to make forward progress for a while where
5945 * forward progress is defined as the first item on ->worklist changing.
5946 *
5947 * This mechanism is controlled through the kernel parameter
5948 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5949 * corresponding sysfs parameter file.
5950 */
5951 #ifdef CONFIG_WQ_WATCHDOG
5952
5953 static unsigned long wq_watchdog_thresh = 30;
5954 static struct timer_list wq_watchdog_timer;
5955
5956 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5957 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5958
wq_watchdog_reset_touched(void)5959 static void wq_watchdog_reset_touched(void)
5960 {
5961 int cpu;
5962
5963 wq_watchdog_touched = jiffies;
5964 for_each_possible_cpu(cpu)
5965 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5966 }
5967
wq_watchdog_timer_fn(struct timer_list * unused)5968 static void wq_watchdog_timer_fn(struct timer_list *unused)
5969 {
5970 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5971 bool lockup_detected = false;
5972 unsigned long now = jiffies;
5973 struct worker_pool *pool;
5974 int pi;
5975
5976 if (!thresh)
5977 return;
5978
5979 rcu_read_lock();
5980
5981 for_each_pool(pool, pi) {
5982 unsigned long pool_ts, touched, ts;
5983
5984 if (list_empty(&pool->worklist))
5985 continue;
5986
5987 /*
5988 * If a virtual machine is stopped by the host it can look to
5989 * the watchdog like a stall.
5990 */
5991 kvm_check_and_clear_guest_paused();
5992
5993 /* get the latest of pool and touched timestamps */
5994 if (pool->cpu >= 0)
5995 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5996 else
5997 touched = READ_ONCE(wq_watchdog_touched);
5998 pool_ts = READ_ONCE(pool->watchdog_ts);
5999
6000 if (time_after(pool_ts, touched))
6001 ts = pool_ts;
6002 else
6003 ts = touched;
6004
6005 /* did we stall? */
6006 if (time_after(now, ts + thresh)) {
6007 lockup_detected = true;
6008 pr_emerg("BUG: workqueue lockup - pool");
6009 pr_cont_pool_info(pool);
6010 pr_cont(" stuck for %us!\n",
6011 jiffies_to_msecs(now - pool_ts) / 1000);
6012 }
6013 }
6014
6015 rcu_read_unlock();
6016
6017 if (lockup_detected)
6018 show_all_workqueues();
6019
6020 wq_watchdog_reset_touched();
6021 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6022 }
6023
wq_watchdog_touch(int cpu)6024 notrace void wq_watchdog_touch(int cpu)
6025 {
6026 if (cpu >= 0)
6027 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6028
6029 wq_watchdog_touched = jiffies;
6030 }
6031
wq_watchdog_set_thresh(unsigned long thresh)6032 static void wq_watchdog_set_thresh(unsigned long thresh)
6033 {
6034 wq_watchdog_thresh = 0;
6035 del_timer_sync(&wq_watchdog_timer);
6036
6037 if (thresh) {
6038 wq_watchdog_thresh = thresh;
6039 wq_watchdog_reset_touched();
6040 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6041 }
6042 }
6043
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)6044 static int wq_watchdog_param_set_thresh(const char *val,
6045 const struct kernel_param *kp)
6046 {
6047 unsigned long thresh;
6048 int ret;
6049
6050 ret = kstrtoul(val, 0, &thresh);
6051 if (ret)
6052 return ret;
6053
6054 if (system_wq)
6055 wq_watchdog_set_thresh(thresh);
6056 else
6057 wq_watchdog_thresh = thresh;
6058
6059 return 0;
6060 }
6061
6062 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6063 .set = wq_watchdog_param_set_thresh,
6064 .get = param_get_ulong,
6065 };
6066
6067 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6068 0644);
6069
wq_watchdog_init(void)6070 static void wq_watchdog_init(void)
6071 {
6072 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6073 wq_watchdog_set_thresh(wq_watchdog_thresh);
6074 }
6075
6076 #else /* CONFIG_WQ_WATCHDOG */
6077
wq_watchdog_init(void)6078 static inline void wq_watchdog_init(void) { }
6079
6080 #endif /* CONFIG_WQ_WATCHDOG */
6081
wq_numa_init(void)6082 static void __init wq_numa_init(void)
6083 {
6084 cpumask_var_t *tbl;
6085 int node, cpu;
6086
6087 if (num_possible_nodes() <= 1)
6088 return;
6089
6090 if (wq_disable_numa) {
6091 pr_info("workqueue: NUMA affinity support disabled\n");
6092 return;
6093 }
6094
6095 for_each_possible_cpu(cpu) {
6096 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6097 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6098 return;
6099 }
6100 }
6101
6102 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6103 BUG_ON(!wq_update_unbound_numa_attrs_buf);
6104
6105 /*
6106 * We want masks of possible CPUs of each node which isn't readily
6107 * available. Build one from cpu_to_node() which should have been
6108 * fully initialized by now.
6109 */
6110 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6111 BUG_ON(!tbl);
6112
6113 for_each_node(node)
6114 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6115 node_online(node) ? node : NUMA_NO_NODE));
6116
6117 for_each_possible_cpu(cpu) {
6118 node = cpu_to_node(cpu);
6119 cpumask_set_cpu(cpu, tbl[node]);
6120 }
6121
6122 wq_numa_possible_cpumask = tbl;
6123 wq_numa_enabled = true;
6124 }
6125
6126 /**
6127 * workqueue_init_early - early init for workqueue subsystem
6128 *
6129 * This is the first half of two-staged workqueue subsystem initialization
6130 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6131 * idr are up. It sets up all the data structures and system workqueues
6132 * and allows early boot code to create workqueues and queue/cancel work
6133 * items. Actual work item execution starts only after kthreads can be
6134 * created and scheduled right before early initcalls.
6135 */
workqueue_init_early(void)6136 void __init workqueue_init_early(void)
6137 {
6138 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6139 int i, cpu;
6140
6141 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6142
6143 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6144 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6145 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6146
6147 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6148
6149 /* initialize CPU pools */
6150 for_each_possible_cpu(cpu) {
6151 struct worker_pool *pool;
6152
6153 i = 0;
6154 for_each_cpu_worker_pool(pool, cpu) {
6155 BUG_ON(init_worker_pool(pool));
6156 pool->cpu = cpu;
6157 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6158 pool->attrs->nice = std_nice[i++];
6159 pool->node = cpu_to_node(cpu);
6160
6161 /* alloc pool ID */
6162 mutex_lock(&wq_pool_mutex);
6163 BUG_ON(worker_pool_assign_id(pool));
6164 mutex_unlock(&wq_pool_mutex);
6165 }
6166 }
6167
6168 /* create default unbound and ordered wq attrs */
6169 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6170 struct workqueue_attrs *attrs;
6171
6172 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6173 attrs->nice = std_nice[i];
6174 unbound_std_wq_attrs[i] = attrs;
6175
6176 /*
6177 * An ordered wq should have only one pwq as ordering is
6178 * guaranteed by max_active which is enforced by pwqs.
6179 * Turn off NUMA so that dfl_pwq is used for all nodes.
6180 */
6181 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6182 attrs->nice = std_nice[i];
6183 attrs->no_numa = true;
6184 ordered_wq_attrs[i] = attrs;
6185 }
6186
6187 system_wq = alloc_workqueue("events", 0, 0);
6188 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6189 system_long_wq = alloc_workqueue("events_long", 0, 0);
6190 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6191 WQ_UNBOUND_MAX_ACTIVE);
6192 system_freezable_wq = alloc_workqueue("events_freezable",
6193 WQ_FREEZABLE, 0);
6194 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6195 WQ_POWER_EFFICIENT, 0);
6196 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6197 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6198 0);
6199 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6200 !system_unbound_wq || !system_freezable_wq ||
6201 !system_power_efficient_wq ||
6202 !system_freezable_power_efficient_wq);
6203 }
6204
6205 /**
6206 * workqueue_init - bring workqueue subsystem fully online
6207 *
6208 * This is the latter half of two-staged workqueue subsystem initialization
6209 * and invoked as soon as kthreads can be created and scheduled.
6210 * Workqueues have been created and work items queued on them, but there
6211 * are no kworkers executing the work items yet. Populate the worker pools
6212 * with the initial workers and enable future kworker creations.
6213 */
workqueue_init(void)6214 void __init workqueue_init(void)
6215 {
6216 struct workqueue_struct *wq;
6217 struct worker_pool *pool;
6218 int cpu, bkt;
6219
6220 /*
6221 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6222 * CPU to node mapping may not be available that early on some
6223 * archs such as power and arm64. As per-cpu pools created
6224 * previously could be missing node hint and unbound pools NUMA
6225 * affinity, fix them up.
6226 *
6227 * Also, while iterating workqueues, create rescuers if requested.
6228 */
6229 wq_numa_init();
6230
6231 mutex_lock(&wq_pool_mutex);
6232
6233 for_each_possible_cpu(cpu) {
6234 for_each_cpu_worker_pool(pool, cpu) {
6235 pool->node = cpu_to_node(cpu);
6236 }
6237 }
6238
6239 list_for_each_entry(wq, &workqueues, list) {
6240 wq_update_unbound_numa(wq, smp_processor_id(), true);
6241 WARN(init_rescuer(wq),
6242 "workqueue: failed to create early rescuer for %s",
6243 wq->name);
6244 }
6245
6246 mutex_unlock(&wq_pool_mutex);
6247
6248 /* create the initial workers */
6249 for_each_online_cpu(cpu) {
6250 for_each_cpu_worker_pool(pool, cpu) {
6251 pool->flags &= ~POOL_DISASSOCIATED;
6252 BUG_ON(!create_worker(pool));
6253 }
6254 }
6255
6256 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6257 BUG_ON(!create_worker(pool));
6258
6259 wq_online = true;
6260 wq_watchdog_init();
6261 }
6262
6263 /*
6264 * Despite the naming, this is a no-op function which is here only for avoiding
6265 * link error. Since compile-time warning may fail to catch, we will need to
6266 * emit run-time warning from __flush_workqueue().
6267 */
__warn_flushing_systemwide_wq(void)6268 void __warn_flushing_systemwide_wq(void) { }
6269 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6270