1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101 };
102
103 struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107 };
108
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162
ata_dev_print_info(struct ata_device * dev)163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 return (sstatus & 0xf) == 0x3;
173 }
174
175 /**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189 {
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234
235 /**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249 {
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288
289 /**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
ata_dev_phys_link(struct ata_device * dev)303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312 }
313
314 #ifdef CONFIG_ATA_FORCE
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
ata_force_cbl(struct ata_port * ap)328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
ata_force_link_limits(struct ata_link * link)363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403 }
404
405 /**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457 }
458
459 /**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500 }
501 #else
ata_force_link_limits(struct ata_link * link)502 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)503 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506
507 /**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
atapi_cmd_type(u8 opcode)519 int atapi_cmd_type(u8 opcode)
520 {
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546 static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 0,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574 };
575
576 /**
577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578 * @dev: target device for the taskfile
579 * @tf: taskfile to examine and configure
580 *
581 * Examine the device configuration and tf->flags to determine
582 * the proper read/write command and protocol to use for @tf.
583 *
584 * LOCKING:
585 * caller.
586 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 struct ata_taskfile *tf)
589 {
590 u8 cmd;
591
592 int index, fua, lba48, write;
593
594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597
598 if (dev->flags & ATA_DFLAG_PIO) {
599 tf->protocol = ATA_PROT_PIO;
600 index = dev->multi_count ? 0 : 8;
601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 /* Unable to use DMA due to host limitation */
603 tf->protocol = ATA_PROT_PIO;
604 index = dev->multi_count ? 0 : 8;
605 } else {
606 tf->protocol = ATA_PROT_DMA;
607 index = 16;
608 }
609
610 cmd = ata_rw_cmds[index + fua + lba48 + write];
611 if (!cmd)
612 return false;
613
614 tf->command = cmd;
615
616 return true;
617 }
618
619 /**
620 * ata_tf_read_block - Read block address from ATA taskfile
621 * @tf: ATA taskfile of interest
622 * @dev: ATA device @tf belongs to
623 *
624 * LOCKING:
625 * None.
626 *
627 * Read block address from @tf. This function can handle all
628 * three address formats - LBA, LBA48 and CHS. tf->protocol and
629 * flags select the address format to use.
630 *
631 * RETURNS:
632 * Block address read from @tf.
633 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 u64 block = 0;
637
638 if (tf->flags & ATA_TFLAG_LBA) {
639 if (tf->flags & ATA_TFLAG_LBA48) {
640 block |= (u64)tf->hob_lbah << 40;
641 block |= (u64)tf->hob_lbam << 32;
642 block |= (u64)tf->hob_lbal << 24;
643 } else
644 block |= (tf->device & 0xf) << 24;
645
646 block |= tf->lbah << 16;
647 block |= tf->lbam << 8;
648 block |= tf->lbal;
649 } else {
650 u32 cyl, head, sect;
651
652 cyl = tf->lbam | (tf->lbah << 8);
653 head = tf->device & 0xf;
654 sect = tf->lbal;
655
656 if (!sect) {
657 ata_dev_warn(dev,
658 "device reported invalid CHS sector 0\n");
659 return U64_MAX;
660 }
661
662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 }
664
665 return block;
666 }
667
668 /**
669 * ata_build_rw_tf - Build ATA taskfile for given read/write request
670 * @qc: Metadata associated with the taskfile to build
671 * @block: Block address
672 * @n_block: Number of blocks
673 * @tf_flags: RW/FUA etc...
674 * @class: IO priority class
675 *
676 * LOCKING:
677 * None.
678 *
679 * Build ATA taskfile for the command @qc for read/write request described
680 * by @block, @n_block, @tf_flags and @class.
681 *
682 * RETURNS:
683 *
684 * 0 on success, -ERANGE if the request is too large for @dev,
685 * -EINVAL if the request is invalid.
686 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int class)687 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
688 unsigned int tf_flags, int class)
689 {
690 struct ata_taskfile *tf = &qc->tf;
691 struct ata_device *dev = qc->dev;
692
693 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
694 tf->flags |= tf_flags;
695
696 if (ata_ncq_enabled(dev)) {
697 /* yay, NCQ */
698 if (!lba_48_ok(block, n_block))
699 return -ERANGE;
700
701 tf->protocol = ATA_PROT_NCQ;
702 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
703
704 if (tf->flags & ATA_TFLAG_WRITE)
705 tf->command = ATA_CMD_FPDMA_WRITE;
706 else
707 tf->command = ATA_CMD_FPDMA_READ;
708
709 tf->nsect = qc->hw_tag << 3;
710 tf->hob_feature = (n_block >> 8) & 0xff;
711 tf->feature = n_block & 0xff;
712
713 tf->hob_lbah = (block >> 40) & 0xff;
714 tf->hob_lbam = (block >> 32) & 0xff;
715 tf->hob_lbal = (block >> 24) & 0xff;
716 tf->lbah = (block >> 16) & 0xff;
717 tf->lbam = (block >> 8) & 0xff;
718 tf->lbal = block & 0xff;
719
720 tf->device = ATA_LBA;
721 if (tf->flags & ATA_TFLAG_FUA)
722 tf->device |= 1 << 7;
723
724 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
725 class == IOPRIO_CLASS_RT)
726 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
727 } else if (dev->flags & ATA_DFLAG_LBA) {
728 tf->flags |= ATA_TFLAG_LBA;
729
730 /* We need LBA48 for FUA writes */
731 if (!(tf->flags & ATA_TFLAG_FUA) && lba_28_ok(block, n_block)) {
732 /* use LBA28 */
733 tf->device |= (block >> 24) & 0xf;
734 } else if (lba_48_ok(block, n_block)) {
735 if (!(dev->flags & ATA_DFLAG_LBA48))
736 return -ERANGE;
737
738 /* use LBA48 */
739 tf->flags |= ATA_TFLAG_LBA48;
740
741 tf->hob_nsect = (n_block >> 8) & 0xff;
742
743 tf->hob_lbah = (block >> 40) & 0xff;
744 tf->hob_lbam = (block >> 32) & 0xff;
745 tf->hob_lbal = (block >> 24) & 0xff;
746 } else {
747 /* request too large even for LBA48 */
748 return -ERANGE;
749 }
750
751 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
752 return -EINVAL;
753
754 tf->nsect = n_block & 0xff;
755
756 tf->lbah = (block >> 16) & 0xff;
757 tf->lbam = (block >> 8) & 0xff;
758 tf->lbal = block & 0xff;
759
760 tf->device |= ATA_LBA;
761 } else {
762 /* CHS */
763 u32 sect, head, cyl, track;
764
765 /* The request -may- be too large for CHS addressing. */
766 if (!lba_28_ok(block, n_block))
767 return -ERANGE;
768
769 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
770 return -EINVAL;
771
772 /* Convert LBA to CHS */
773 track = (u32)block / dev->sectors;
774 cyl = track / dev->heads;
775 head = track % dev->heads;
776 sect = (u32)block % dev->sectors + 1;
777
778 /* Check whether the converted CHS can fit.
779 Cylinder: 0-65535
780 Head: 0-15
781 Sector: 1-255*/
782 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
783 return -ERANGE;
784
785 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
786 tf->lbal = sect;
787 tf->lbam = cyl;
788 tf->lbah = cyl >> 8;
789 tf->device |= head;
790 }
791
792 return 0;
793 }
794
795 /**
796 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
797 * @pio_mask: pio_mask
798 * @mwdma_mask: mwdma_mask
799 * @udma_mask: udma_mask
800 *
801 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
802 * unsigned int xfer_mask.
803 *
804 * LOCKING:
805 * None.
806 *
807 * RETURNS:
808 * Packed xfer_mask.
809 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)810 unsigned int ata_pack_xfermask(unsigned int pio_mask,
811 unsigned int mwdma_mask,
812 unsigned int udma_mask)
813 {
814 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
815 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
816 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
817 }
818 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
819
820 /**
821 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
822 * @xfer_mask: xfer_mask to unpack
823 * @pio_mask: resulting pio_mask
824 * @mwdma_mask: resulting mwdma_mask
825 * @udma_mask: resulting udma_mask
826 *
827 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
828 * Any NULL destination masks will be ignored.
829 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)830 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
831 unsigned int *mwdma_mask, unsigned int *udma_mask)
832 {
833 if (pio_mask)
834 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
835 if (mwdma_mask)
836 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
837 if (udma_mask)
838 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
839 }
840
841 static const struct ata_xfer_ent {
842 int shift, bits;
843 u8 base;
844 } ata_xfer_tbl[] = {
845 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
846 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
847 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
848 { -1, },
849 };
850
851 /**
852 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
853 * @xfer_mask: xfer_mask of interest
854 *
855 * Return matching XFER_* value for @xfer_mask. Only the highest
856 * bit of @xfer_mask is considered.
857 *
858 * LOCKING:
859 * None.
860 *
861 * RETURNS:
862 * Matching XFER_* value, 0xff if no match found.
863 */
ata_xfer_mask2mode(unsigned int xfer_mask)864 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
865 {
866 int highbit = fls(xfer_mask) - 1;
867 const struct ata_xfer_ent *ent;
868
869 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
870 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
871 return ent->base + highbit - ent->shift;
872 return 0xff;
873 }
874 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
875
876 /**
877 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
878 * @xfer_mode: XFER_* of interest
879 *
880 * Return matching xfer_mask for @xfer_mode.
881 *
882 * LOCKING:
883 * None.
884 *
885 * RETURNS:
886 * Matching xfer_mask, 0 if no match found.
887 */
ata_xfer_mode2mask(u8 xfer_mode)888 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
889 {
890 const struct ata_xfer_ent *ent;
891
892 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
893 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
894 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
895 & ~((1 << ent->shift) - 1);
896 return 0;
897 }
898 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
899
900 /**
901 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
902 * @xfer_mode: XFER_* of interest
903 *
904 * Return matching xfer_shift for @xfer_mode.
905 *
906 * LOCKING:
907 * None.
908 *
909 * RETURNS:
910 * Matching xfer_shift, -1 if no match found.
911 */
ata_xfer_mode2shift(u8 xfer_mode)912 int ata_xfer_mode2shift(u8 xfer_mode)
913 {
914 const struct ata_xfer_ent *ent;
915
916 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
917 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
918 return ent->shift;
919 return -1;
920 }
921 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
922
923 /**
924 * ata_mode_string - convert xfer_mask to string
925 * @xfer_mask: mask of bits supported; only highest bit counts.
926 *
927 * Determine string which represents the highest speed
928 * (highest bit in @modemask).
929 *
930 * LOCKING:
931 * None.
932 *
933 * RETURNS:
934 * Constant C string representing highest speed listed in
935 * @mode_mask, or the constant C string "<n/a>".
936 */
ata_mode_string(unsigned int xfer_mask)937 const char *ata_mode_string(unsigned int xfer_mask)
938 {
939 static const char * const xfer_mode_str[] = {
940 "PIO0",
941 "PIO1",
942 "PIO2",
943 "PIO3",
944 "PIO4",
945 "PIO5",
946 "PIO6",
947 "MWDMA0",
948 "MWDMA1",
949 "MWDMA2",
950 "MWDMA3",
951 "MWDMA4",
952 "UDMA/16",
953 "UDMA/25",
954 "UDMA/33",
955 "UDMA/44",
956 "UDMA/66",
957 "UDMA/100",
958 "UDMA/133",
959 "UDMA7",
960 };
961 int highbit;
962
963 highbit = fls(xfer_mask) - 1;
964 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
965 return xfer_mode_str[highbit];
966 return "<n/a>";
967 }
968 EXPORT_SYMBOL_GPL(ata_mode_string);
969
sata_spd_string(unsigned int spd)970 const char *sata_spd_string(unsigned int spd)
971 {
972 static const char * const spd_str[] = {
973 "1.5 Gbps",
974 "3.0 Gbps",
975 "6.0 Gbps",
976 };
977
978 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
979 return "<unknown>";
980 return spd_str[spd - 1];
981 }
982
983 /**
984 * ata_dev_classify - determine device type based on ATA-spec signature
985 * @tf: ATA taskfile register set for device to be identified
986 *
987 * Determine from taskfile register contents whether a device is
988 * ATA or ATAPI, as per "Signature and persistence" section
989 * of ATA/PI spec (volume 1, sect 5.14).
990 *
991 * LOCKING:
992 * None.
993 *
994 * RETURNS:
995 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
996 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
997 */
ata_dev_classify(const struct ata_taskfile * tf)998 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
999 {
1000 /* Apple's open source Darwin code hints that some devices only
1001 * put a proper signature into the LBA mid/high registers,
1002 * So, we only check those. It's sufficient for uniqueness.
1003 *
1004 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1005 * signatures for ATA and ATAPI devices attached on SerialATA,
1006 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1007 * spec has never mentioned about using different signatures
1008 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1009 * Multiplier specification began to use 0x69/0x96 to identify
1010 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1011 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1012 * 0x69/0x96 shortly and described them as reserved for
1013 * SerialATA.
1014 *
1015 * We follow the current spec and consider that 0x69/0x96
1016 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1017 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1018 * SEMB signature. This is worked around in
1019 * ata_dev_read_id().
1020 */
1021 if (tf->lbam == 0 && tf->lbah == 0)
1022 return ATA_DEV_ATA;
1023
1024 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1025 return ATA_DEV_ATAPI;
1026
1027 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1028 return ATA_DEV_PMP;
1029
1030 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1031 return ATA_DEV_SEMB;
1032
1033 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1034 return ATA_DEV_ZAC;
1035
1036 return ATA_DEV_UNKNOWN;
1037 }
1038 EXPORT_SYMBOL_GPL(ata_dev_classify);
1039
1040 /**
1041 * ata_id_string - Convert IDENTIFY DEVICE page into string
1042 * @id: IDENTIFY DEVICE results we will examine
1043 * @s: string into which data is output
1044 * @ofs: offset into identify device page
1045 * @len: length of string to return. must be an even number.
1046 *
1047 * The strings in the IDENTIFY DEVICE page are broken up into
1048 * 16-bit chunks. Run through the string, and output each
1049 * 8-bit chunk linearly, regardless of platform.
1050 *
1051 * LOCKING:
1052 * caller.
1053 */
1054
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1055 void ata_id_string(const u16 *id, unsigned char *s,
1056 unsigned int ofs, unsigned int len)
1057 {
1058 unsigned int c;
1059
1060 BUG_ON(len & 1);
1061
1062 while (len > 0) {
1063 c = id[ofs] >> 8;
1064 *s = c;
1065 s++;
1066
1067 c = id[ofs] & 0xff;
1068 *s = c;
1069 s++;
1070
1071 ofs++;
1072 len -= 2;
1073 }
1074 }
1075 EXPORT_SYMBOL_GPL(ata_id_string);
1076
1077 /**
1078 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1079 * @id: IDENTIFY DEVICE results we will examine
1080 * @s: string into which data is output
1081 * @ofs: offset into identify device page
1082 * @len: length of string to return. must be an odd number.
1083 *
1084 * This function is identical to ata_id_string except that it
1085 * trims trailing spaces and terminates the resulting string with
1086 * null. @len must be actual maximum length (even number) + 1.
1087 *
1088 * LOCKING:
1089 * caller.
1090 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1091 void ata_id_c_string(const u16 *id, unsigned char *s,
1092 unsigned int ofs, unsigned int len)
1093 {
1094 unsigned char *p;
1095
1096 ata_id_string(id, s, ofs, len - 1);
1097
1098 p = s + strnlen(s, len - 1);
1099 while (p > s && p[-1] == ' ')
1100 p--;
1101 *p = '\0';
1102 }
1103 EXPORT_SYMBOL_GPL(ata_id_c_string);
1104
ata_id_n_sectors(const u16 * id)1105 static u64 ata_id_n_sectors(const u16 *id)
1106 {
1107 if (ata_id_has_lba(id)) {
1108 if (ata_id_has_lba48(id))
1109 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1110
1111 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1112 }
1113
1114 if (ata_id_current_chs_valid(id))
1115 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1116 (u32)id[ATA_ID_CUR_SECTORS];
1117
1118 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1119 (u32)id[ATA_ID_SECTORS];
1120 }
1121
ata_tf_to_lba48(const struct ata_taskfile * tf)1122 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1123 {
1124 u64 sectors = 0;
1125
1126 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1127 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1128 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1129 sectors |= (tf->lbah & 0xff) << 16;
1130 sectors |= (tf->lbam & 0xff) << 8;
1131 sectors |= (tf->lbal & 0xff);
1132
1133 return sectors;
1134 }
1135
ata_tf_to_lba(const struct ata_taskfile * tf)1136 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1137 {
1138 u64 sectors = 0;
1139
1140 sectors |= (tf->device & 0x0f) << 24;
1141 sectors |= (tf->lbah & 0xff) << 16;
1142 sectors |= (tf->lbam & 0xff) << 8;
1143 sectors |= (tf->lbal & 0xff);
1144
1145 return sectors;
1146 }
1147
1148 /**
1149 * ata_read_native_max_address - Read native max address
1150 * @dev: target device
1151 * @max_sectors: out parameter for the result native max address
1152 *
1153 * Perform an LBA48 or LBA28 native size query upon the device in
1154 * question.
1155 *
1156 * RETURNS:
1157 * 0 on success, -EACCES if command is aborted by the drive.
1158 * -EIO on other errors.
1159 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1160 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1161 {
1162 unsigned int err_mask;
1163 struct ata_taskfile tf;
1164 int lba48 = ata_id_has_lba48(dev->id);
1165
1166 ata_tf_init(dev, &tf);
1167
1168 /* always clear all address registers */
1169 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1170
1171 if (lba48) {
1172 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1173 tf.flags |= ATA_TFLAG_LBA48;
1174 } else
1175 tf.command = ATA_CMD_READ_NATIVE_MAX;
1176
1177 tf.protocol = ATA_PROT_NODATA;
1178 tf.device |= ATA_LBA;
1179
1180 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1181 if (err_mask) {
1182 ata_dev_warn(dev,
1183 "failed to read native max address (err_mask=0x%x)\n",
1184 err_mask);
1185 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1186 return -EACCES;
1187 return -EIO;
1188 }
1189
1190 if (lba48)
1191 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1192 else
1193 *max_sectors = ata_tf_to_lba(&tf) + 1;
1194 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1195 (*max_sectors)--;
1196 return 0;
1197 }
1198
1199 /**
1200 * ata_set_max_sectors - Set max sectors
1201 * @dev: target device
1202 * @new_sectors: new max sectors value to set for the device
1203 *
1204 * Set max sectors of @dev to @new_sectors.
1205 *
1206 * RETURNS:
1207 * 0 on success, -EACCES if command is aborted or denied (due to
1208 * previous non-volatile SET_MAX) by the drive. -EIO on other
1209 * errors.
1210 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1211 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1212 {
1213 unsigned int err_mask;
1214 struct ata_taskfile tf;
1215 int lba48 = ata_id_has_lba48(dev->id);
1216
1217 new_sectors--;
1218
1219 ata_tf_init(dev, &tf);
1220
1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1222
1223 if (lba48) {
1224 tf.command = ATA_CMD_SET_MAX_EXT;
1225 tf.flags |= ATA_TFLAG_LBA48;
1226
1227 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1228 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1229 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1230 } else {
1231 tf.command = ATA_CMD_SET_MAX;
1232
1233 tf.device |= (new_sectors >> 24) & 0xf;
1234 }
1235
1236 tf.protocol = ATA_PROT_NODATA;
1237 tf.device |= ATA_LBA;
1238
1239 tf.lbal = (new_sectors >> 0) & 0xff;
1240 tf.lbam = (new_sectors >> 8) & 0xff;
1241 tf.lbah = (new_sectors >> 16) & 0xff;
1242
1243 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1244 if (err_mask) {
1245 ata_dev_warn(dev,
1246 "failed to set max address (err_mask=0x%x)\n",
1247 err_mask);
1248 if (err_mask == AC_ERR_DEV &&
1249 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1250 return -EACCES;
1251 return -EIO;
1252 }
1253
1254 return 0;
1255 }
1256
1257 /**
1258 * ata_hpa_resize - Resize a device with an HPA set
1259 * @dev: Device to resize
1260 *
1261 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1262 * it if required to the full size of the media. The caller must check
1263 * the drive has the HPA feature set enabled.
1264 *
1265 * RETURNS:
1266 * 0 on success, -errno on failure.
1267 */
ata_hpa_resize(struct ata_device * dev)1268 static int ata_hpa_resize(struct ata_device *dev)
1269 {
1270 bool print_info = ata_dev_print_info(dev);
1271 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272 u64 sectors = ata_id_n_sectors(dev->id);
1273 u64 native_sectors;
1274 int rc;
1275
1276 /* do we need to do it? */
1277 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280 return 0;
1281
1282 /* read native max address */
1283 rc = ata_read_native_max_address(dev, &native_sectors);
1284 if (rc) {
1285 /* If device aborted the command or HPA isn't going to
1286 * be unlocked, skip HPA resizing.
1287 */
1288 if (rc == -EACCES || !unlock_hpa) {
1289 ata_dev_warn(dev,
1290 "HPA support seems broken, skipping HPA handling\n");
1291 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292
1293 /* we can continue if device aborted the command */
1294 if (rc == -EACCES)
1295 rc = 0;
1296 }
1297
1298 return rc;
1299 }
1300 dev->n_native_sectors = native_sectors;
1301
1302 /* nothing to do? */
1303 if (native_sectors <= sectors || !unlock_hpa) {
1304 if (!print_info || native_sectors == sectors)
1305 return 0;
1306
1307 if (native_sectors > sectors)
1308 ata_dev_info(dev,
1309 "HPA detected: current %llu, native %llu\n",
1310 (unsigned long long)sectors,
1311 (unsigned long long)native_sectors);
1312 else if (native_sectors < sectors)
1313 ata_dev_warn(dev,
1314 "native sectors (%llu) is smaller than sectors (%llu)\n",
1315 (unsigned long long)native_sectors,
1316 (unsigned long long)sectors);
1317 return 0;
1318 }
1319
1320 /* let's unlock HPA */
1321 rc = ata_set_max_sectors(dev, native_sectors);
1322 if (rc == -EACCES) {
1323 /* if device aborted the command, skip HPA resizing */
1324 ata_dev_warn(dev,
1325 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326 (unsigned long long)sectors,
1327 (unsigned long long)native_sectors);
1328 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329 return 0;
1330 } else if (rc)
1331 return rc;
1332
1333 /* re-read IDENTIFY data */
1334 rc = ata_dev_reread_id(dev, 0);
1335 if (rc) {
1336 ata_dev_err(dev,
1337 "failed to re-read IDENTIFY data after HPA resizing\n");
1338 return rc;
1339 }
1340
1341 if (print_info) {
1342 u64 new_sectors = ata_id_n_sectors(dev->id);
1343 ata_dev_info(dev,
1344 "HPA unlocked: %llu -> %llu, native %llu\n",
1345 (unsigned long long)sectors,
1346 (unsigned long long)new_sectors,
1347 (unsigned long long)native_sectors);
1348 }
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * ata_dump_id - IDENTIFY DEVICE info debugging output
1355 * @dev: device from which the information is fetched
1356 * @id: IDENTIFY DEVICE page to dump
1357 *
1358 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1359 * page.
1360 *
1361 * LOCKING:
1362 * caller.
1363 */
1364
ata_dump_id(struct ata_device * dev,const u16 * id)1365 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1366 {
1367 ata_dev_dbg(dev,
1368 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1369 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1370 "88==0x%04x 93==0x%04x\n",
1371 id[49], id[53], id[63], id[64], id[75], id[80],
1372 id[81], id[82], id[83], id[84], id[88], id[93]);
1373 }
1374
1375 /**
1376 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1377 * @id: IDENTIFY data to compute xfer mask from
1378 *
1379 * Compute the xfermask for this device. This is not as trivial
1380 * as it seems if we must consider early devices correctly.
1381 *
1382 * FIXME: pre IDE drive timing (do we care ?).
1383 *
1384 * LOCKING:
1385 * None.
1386 *
1387 * RETURNS:
1388 * Computed xfermask
1389 */
ata_id_xfermask(const u16 * id)1390 unsigned int ata_id_xfermask(const u16 *id)
1391 {
1392 unsigned int pio_mask, mwdma_mask, udma_mask;
1393
1394 /* Usual case. Word 53 indicates word 64 is valid */
1395 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1396 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1397 pio_mask <<= 3;
1398 pio_mask |= 0x7;
1399 } else {
1400 /* If word 64 isn't valid then Word 51 high byte holds
1401 * the PIO timing number for the maximum. Turn it into
1402 * a mask.
1403 */
1404 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1405 if (mode < 5) /* Valid PIO range */
1406 pio_mask = (2 << mode) - 1;
1407 else
1408 pio_mask = 1;
1409
1410 /* But wait.. there's more. Design your standards by
1411 * committee and you too can get a free iordy field to
1412 * process. However it is the speeds not the modes that
1413 * are supported... Note drivers using the timing API
1414 * will get this right anyway
1415 */
1416 }
1417
1418 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1419
1420 if (ata_id_is_cfa(id)) {
1421 /*
1422 * Process compact flash extended modes
1423 */
1424 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1425 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1426
1427 if (pio)
1428 pio_mask |= (1 << 5);
1429 if (pio > 1)
1430 pio_mask |= (1 << 6);
1431 if (dma)
1432 mwdma_mask |= (1 << 3);
1433 if (dma > 1)
1434 mwdma_mask |= (1 << 4);
1435 }
1436
1437 udma_mask = 0;
1438 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1439 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1440
1441 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1442 }
1443 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1444
ata_qc_complete_internal(struct ata_queued_cmd * qc)1445 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1446 {
1447 struct completion *waiting = qc->private_data;
1448
1449 complete(waiting);
1450 }
1451
1452 /**
1453 * ata_exec_internal_sg - execute libata internal command
1454 * @dev: Device to which the command is sent
1455 * @tf: Taskfile registers for the command and the result
1456 * @cdb: CDB for packet command
1457 * @dma_dir: Data transfer direction of the command
1458 * @sgl: sg list for the data buffer of the command
1459 * @n_elem: Number of sg entries
1460 * @timeout: Timeout in msecs (0 for default)
1461 *
1462 * Executes libata internal command with timeout. @tf contains
1463 * command on entry and result on return. Timeout and error
1464 * conditions are reported via return value. No recovery action
1465 * is taken after a command times out. It's caller's duty to
1466 * clean up after timeout.
1467 *
1468 * LOCKING:
1469 * None. Should be called with kernel context, might sleep.
1470 *
1471 * RETURNS:
1472 * Zero on success, AC_ERR_* mask on failure
1473 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned int timeout)1474 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1475 struct ata_taskfile *tf, const u8 *cdb,
1476 int dma_dir, struct scatterlist *sgl,
1477 unsigned int n_elem, unsigned int timeout)
1478 {
1479 struct ata_link *link = dev->link;
1480 struct ata_port *ap = link->ap;
1481 u8 command = tf->command;
1482 int auto_timeout = 0;
1483 struct ata_queued_cmd *qc;
1484 unsigned int preempted_tag;
1485 u32 preempted_sactive;
1486 u64 preempted_qc_active;
1487 int preempted_nr_active_links;
1488 DECLARE_COMPLETION_ONSTACK(wait);
1489 unsigned long flags;
1490 unsigned int err_mask;
1491 int rc;
1492
1493 spin_lock_irqsave(ap->lock, flags);
1494
1495 /* no internal command while frozen */
1496 if (ata_port_is_frozen(ap)) {
1497 spin_unlock_irqrestore(ap->lock, flags);
1498 return AC_ERR_SYSTEM;
1499 }
1500
1501 /* initialize internal qc */
1502 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1503
1504 qc->tag = ATA_TAG_INTERNAL;
1505 qc->hw_tag = 0;
1506 qc->scsicmd = NULL;
1507 qc->ap = ap;
1508 qc->dev = dev;
1509 ata_qc_reinit(qc);
1510
1511 preempted_tag = link->active_tag;
1512 preempted_sactive = link->sactive;
1513 preempted_qc_active = ap->qc_active;
1514 preempted_nr_active_links = ap->nr_active_links;
1515 link->active_tag = ATA_TAG_POISON;
1516 link->sactive = 0;
1517 ap->qc_active = 0;
1518 ap->nr_active_links = 0;
1519
1520 /* prepare & issue qc */
1521 qc->tf = *tf;
1522 if (cdb)
1523 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1524
1525 /* some SATA bridges need us to indicate data xfer direction */
1526 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1527 dma_dir == DMA_FROM_DEVICE)
1528 qc->tf.feature |= ATAPI_DMADIR;
1529
1530 qc->flags |= ATA_QCFLAG_RESULT_TF;
1531 qc->dma_dir = dma_dir;
1532 if (dma_dir != DMA_NONE) {
1533 unsigned int i, buflen = 0;
1534 struct scatterlist *sg;
1535
1536 for_each_sg(sgl, sg, n_elem, i)
1537 buflen += sg->length;
1538
1539 ata_sg_init(qc, sgl, n_elem);
1540 qc->nbytes = buflen;
1541 }
1542
1543 qc->private_data = &wait;
1544 qc->complete_fn = ata_qc_complete_internal;
1545
1546 ata_qc_issue(qc);
1547
1548 spin_unlock_irqrestore(ap->lock, flags);
1549
1550 if (!timeout) {
1551 if (ata_probe_timeout)
1552 timeout = ata_probe_timeout * 1000;
1553 else {
1554 timeout = ata_internal_cmd_timeout(dev, command);
1555 auto_timeout = 1;
1556 }
1557 }
1558
1559 if (ap->ops->error_handler)
1560 ata_eh_release(ap);
1561
1562 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1563
1564 if (ap->ops->error_handler)
1565 ata_eh_acquire(ap);
1566
1567 ata_sff_flush_pio_task(ap);
1568
1569 if (!rc) {
1570 spin_lock_irqsave(ap->lock, flags);
1571
1572 /* We're racing with irq here. If we lose, the
1573 * following test prevents us from completing the qc
1574 * twice. If we win, the port is frozen and will be
1575 * cleaned up by ->post_internal_cmd().
1576 */
1577 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1578 qc->err_mask |= AC_ERR_TIMEOUT;
1579
1580 if (ap->ops->error_handler)
1581 ata_port_freeze(ap);
1582 else
1583 ata_qc_complete(qc);
1584
1585 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1586 timeout, command);
1587 }
1588
1589 spin_unlock_irqrestore(ap->lock, flags);
1590 }
1591
1592 /* do post_internal_cmd */
1593 if (ap->ops->post_internal_cmd)
1594 ap->ops->post_internal_cmd(qc);
1595
1596 /* perform minimal error analysis */
1597 if (qc->flags & ATA_QCFLAG_EH) {
1598 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1599 qc->err_mask |= AC_ERR_DEV;
1600
1601 if (!qc->err_mask)
1602 qc->err_mask |= AC_ERR_OTHER;
1603
1604 if (qc->err_mask & ~AC_ERR_OTHER)
1605 qc->err_mask &= ~AC_ERR_OTHER;
1606 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1607 qc->result_tf.status |= ATA_SENSE;
1608 }
1609
1610 /* finish up */
1611 spin_lock_irqsave(ap->lock, flags);
1612
1613 *tf = qc->result_tf;
1614 err_mask = qc->err_mask;
1615
1616 ata_qc_free(qc);
1617 link->active_tag = preempted_tag;
1618 link->sactive = preempted_sactive;
1619 ap->qc_active = preempted_qc_active;
1620 ap->nr_active_links = preempted_nr_active_links;
1621
1622 spin_unlock_irqrestore(ap->lock, flags);
1623
1624 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1625 ata_internal_cmd_timed_out(dev, command);
1626
1627 return err_mask;
1628 }
1629
1630 /**
1631 * ata_exec_internal - execute libata internal command
1632 * @dev: Device to which the command is sent
1633 * @tf: Taskfile registers for the command and the result
1634 * @cdb: CDB for packet command
1635 * @dma_dir: Data transfer direction of the command
1636 * @buf: Data buffer of the command
1637 * @buflen: Length of data buffer
1638 * @timeout: Timeout in msecs (0 for default)
1639 *
1640 * Wrapper around ata_exec_internal_sg() which takes simple
1641 * buffer instead of sg list.
1642 *
1643 * LOCKING:
1644 * None. Should be called with kernel context, might sleep.
1645 *
1646 * RETURNS:
1647 * Zero on success, AC_ERR_* mask on failure
1648 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1649 unsigned ata_exec_internal(struct ata_device *dev,
1650 struct ata_taskfile *tf, const u8 *cdb,
1651 int dma_dir, void *buf, unsigned int buflen,
1652 unsigned int timeout)
1653 {
1654 struct scatterlist *psg = NULL, sg;
1655 unsigned int n_elem = 0;
1656
1657 if (dma_dir != DMA_NONE) {
1658 WARN_ON(!buf);
1659 sg_init_one(&sg, buf, buflen);
1660 psg = &sg;
1661 n_elem++;
1662 }
1663
1664 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1665 timeout);
1666 }
1667
1668 /**
1669 * ata_pio_need_iordy - check if iordy needed
1670 * @adev: ATA device
1671 *
1672 * Check if the current speed of the device requires IORDY. Used
1673 * by various controllers for chip configuration.
1674 */
ata_pio_need_iordy(const struct ata_device * adev)1675 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1676 {
1677 /* Don't set IORDY if we're preparing for reset. IORDY may
1678 * lead to controller lock up on certain controllers if the
1679 * port is not occupied. See bko#11703 for details.
1680 */
1681 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1682 return 0;
1683 /* Controller doesn't support IORDY. Probably a pointless
1684 * check as the caller should know this.
1685 */
1686 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1687 return 0;
1688 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1689 if (ata_id_is_cfa(adev->id)
1690 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1691 return 0;
1692 /* PIO3 and higher it is mandatory */
1693 if (adev->pio_mode > XFER_PIO_2)
1694 return 1;
1695 /* We turn it on when possible */
1696 if (ata_id_has_iordy(adev->id))
1697 return 1;
1698 return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1701
1702 /**
1703 * ata_pio_mask_no_iordy - Return the non IORDY mask
1704 * @adev: ATA device
1705 *
1706 * Compute the highest mode possible if we are not using iordy. Return
1707 * -1 if no iordy mode is available.
1708 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1709 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1710 {
1711 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1712 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1713 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1714 /* Is the speed faster than the drive allows non IORDY ? */
1715 if (pio) {
1716 /* This is cycle times not frequency - watch the logic! */
1717 if (pio > 240) /* PIO2 is 240nS per cycle */
1718 return 3 << ATA_SHIFT_PIO;
1719 return 7 << ATA_SHIFT_PIO;
1720 }
1721 }
1722 return 3 << ATA_SHIFT_PIO;
1723 }
1724
1725 /**
1726 * ata_do_dev_read_id - default ID read method
1727 * @dev: device
1728 * @tf: proposed taskfile
1729 * @id: data buffer
1730 *
1731 * Issue the identify taskfile and hand back the buffer containing
1732 * identify data. For some RAID controllers and for pre ATA devices
1733 * this function is wrapped or replaced by the driver
1734 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1735 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1736 struct ata_taskfile *tf, __le16 *id)
1737 {
1738 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1739 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1740 }
1741 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1742
1743 /**
1744 * ata_dev_read_id - Read ID data from the specified device
1745 * @dev: target device
1746 * @p_class: pointer to class of the target device (may be changed)
1747 * @flags: ATA_READID_* flags
1748 * @id: buffer to read IDENTIFY data into
1749 *
1750 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1751 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1752 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1753 * for pre-ATA4 drives.
1754 *
1755 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1756 * now we abort if we hit that case.
1757 *
1758 * LOCKING:
1759 * Kernel thread context (may sleep)
1760 *
1761 * RETURNS:
1762 * 0 on success, -errno otherwise.
1763 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1764 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1765 unsigned int flags, u16 *id)
1766 {
1767 struct ata_port *ap = dev->link->ap;
1768 unsigned int class = *p_class;
1769 struct ata_taskfile tf;
1770 unsigned int err_mask = 0;
1771 const char *reason;
1772 bool is_semb = class == ATA_DEV_SEMB;
1773 int may_fallback = 1, tried_spinup = 0;
1774 int rc;
1775
1776 retry:
1777 ata_tf_init(dev, &tf);
1778
1779 switch (class) {
1780 case ATA_DEV_SEMB:
1781 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1782 fallthrough;
1783 case ATA_DEV_ATA:
1784 case ATA_DEV_ZAC:
1785 tf.command = ATA_CMD_ID_ATA;
1786 break;
1787 case ATA_DEV_ATAPI:
1788 tf.command = ATA_CMD_ID_ATAPI;
1789 break;
1790 default:
1791 rc = -ENODEV;
1792 reason = "unsupported class";
1793 goto err_out;
1794 }
1795
1796 tf.protocol = ATA_PROT_PIO;
1797
1798 /* Some devices choke if TF registers contain garbage. Make
1799 * sure those are properly initialized.
1800 */
1801 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1802
1803 /* Device presence detection is unreliable on some
1804 * controllers. Always poll IDENTIFY if available.
1805 */
1806 tf.flags |= ATA_TFLAG_POLLING;
1807
1808 if (ap->ops->read_id)
1809 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1810 else
1811 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1812
1813 if (err_mask) {
1814 if (err_mask & AC_ERR_NODEV_HINT) {
1815 ata_dev_dbg(dev, "NODEV after polling detection\n");
1816 return -ENOENT;
1817 }
1818
1819 if (is_semb) {
1820 ata_dev_info(dev,
1821 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1822 /* SEMB is not supported yet */
1823 *p_class = ATA_DEV_SEMB_UNSUP;
1824 return 0;
1825 }
1826
1827 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1828 /* Device or controller might have reported
1829 * the wrong device class. Give a shot at the
1830 * other IDENTIFY if the current one is
1831 * aborted by the device.
1832 */
1833 if (may_fallback) {
1834 may_fallback = 0;
1835
1836 if (class == ATA_DEV_ATA)
1837 class = ATA_DEV_ATAPI;
1838 else
1839 class = ATA_DEV_ATA;
1840 goto retry;
1841 }
1842
1843 /* Control reaches here iff the device aborted
1844 * both flavors of IDENTIFYs which happens
1845 * sometimes with phantom devices.
1846 */
1847 ata_dev_dbg(dev,
1848 "both IDENTIFYs aborted, assuming NODEV\n");
1849 return -ENOENT;
1850 }
1851
1852 rc = -EIO;
1853 reason = "I/O error";
1854 goto err_out;
1855 }
1856
1857 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1858 ata_dev_info(dev, "dumping IDENTIFY data, "
1859 "class=%d may_fallback=%d tried_spinup=%d\n",
1860 class, may_fallback, tried_spinup);
1861 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1862 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1863 }
1864
1865 /* Falling back doesn't make sense if ID data was read
1866 * successfully at least once.
1867 */
1868 may_fallback = 0;
1869
1870 swap_buf_le16(id, ATA_ID_WORDS);
1871
1872 /* sanity check */
1873 rc = -EINVAL;
1874 reason = "device reports invalid type";
1875
1876 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1877 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1878 goto err_out;
1879 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1880 ata_id_is_ata(id)) {
1881 ata_dev_dbg(dev,
1882 "host indicates ignore ATA devices, ignored\n");
1883 return -ENOENT;
1884 }
1885 } else {
1886 if (ata_id_is_ata(id))
1887 goto err_out;
1888 }
1889
1890 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1891 tried_spinup = 1;
1892 /*
1893 * Drive powered-up in standby mode, and requires a specific
1894 * SET_FEATURES spin-up subcommand before it will accept
1895 * anything other than the original IDENTIFY command.
1896 */
1897 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1898 if (err_mask && id[2] != 0x738c) {
1899 rc = -EIO;
1900 reason = "SPINUP failed";
1901 goto err_out;
1902 }
1903 /*
1904 * If the drive initially returned incomplete IDENTIFY info,
1905 * we now must reissue the IDENTIFY command.
1906 */
1907 if (id[2] == 0x37c8)
1908 goto retry;
1909 }
1910
1911 if ((flags & ATA_READID_POSTRESET) &&
1912 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1913 /*
1914 * The exact sequence expected by certain pre-ATA4 drives is:
1915 * SRST RESET
1916 * IDENTIFY (optional in early ATA)
1917 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1918 * anything else..
1919 * Some drives were very specific about that exact sequence.
1920 *
1921 * Note that ATA4 says lba is mandatory so the second check
1922 * should never trigger.
1923 */
1924 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1925 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1926 if (err_mask) {
1927 rc = -EIO;
1928 reason = "INIT_DEV_PARAMS failed";
1929 goto err_out;
1930 }
1931
1932 /* current CHS translation info (id[53-58]) might be
1933 * changed. reread the identify device info.
1934 */
1935 flags &= ~ATA_READID_POSTRESET;
1936 goto retry;
1937 }
1938 }
1939
1940 *p_class = class;
1941
1942 return 0;
1943
1944 err_out:
1945 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1946 reason, err_mask);
1947 return rc;
1948 }
1949
1950 /**
1951 * ata_read_log_page - read a specific log page
1952 * @dev: target device
1953 * @log: log to read
1954 * @page: page to read
1955 * @buf: buffer to store read page
1956 * @sectors: number of sectors to read
1957 *
1958 * Read log page using READ_LOG_EXT command.
1959 *
1960 * LOCKING:
1961 * Kernel thread context (may sleep).
1962 *
1963 * RETURNS:
1964 * 0 on success, AC_ERR_* mask otherwise.
1965 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)1966 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1967 u8 page, void *buf, unsigned int sectors)
1968 {
1969 unsigned long ap_flags = dev->link->ap->flags;
1970 struct ata_taskfile tf;
1971 unsigned int err_mask;
1972 bool dma = false;
1973
1974 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1975
1976 /*
1977 * Return error without actually issuing the command on controllers
1978 * which e.g. lockup on a read log page.
1979 */
1980 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1981 return AC_ERR_DEV;
1982
1983 retry:
1984 ata_tf_init(dev, &tf);
1985 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1986 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1987 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1988 tf.protocol = ATA_PROT_DMA;
1989 dma = true;
1990 } else {
1991 tf.command = ATA_CMD_READ_LOG_EXT;
1992 tf.protocol = ATA_PROT_PIO;
1993 dma = false;
1994 }
1995 tf.lbal = log;
1996 tf.lbam = page;
1997 tf.nsect = sectors;
1998 tf.hob_nsect = sectors >> 8;
1999 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2000
2001 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2002 buf, sectors * ATA_SECT_SIZE, 0);
2003
2004 if (err_mask) {
2005 if (dma) {
2006 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2007 if (!ata_port_is_frozen(dev->link->ap))
2008 goto retry;
2009 }
2010 ata_dev_err(dev,
2011 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2012 (unsigned int)log, (unsigned int)page, err_mask);
2013 }
2014
2015 return err_mask;
2016 }
2017
ata_log_supported(struct ata_device * dev,u8 log)2018 static int ata_log_supported(struct ata_device *dev, u8 log)
2019 {
2020 struct ata_port *ap = dev->link->ap;
2021
2022 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2023 return 0;
2024
2025 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2026 return 0;
2027 return get_unaligned_le16(&ap->sector_buf[log * 2]);
2028 }
2029
ata_identify_page_supported(struct ata_device * dev,u8 page)2030 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2031 {
2032 struct ata_port *ap = dev->link->ap;
2033 unsigned int err, i;
2034
2035 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2036 return false;
2037
2038 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2039 /*
2040 * IDENTIFY DEVICE data log is defined as mandatory starting
2041 * with ACS-3 (ATA version 10). Warn about the missing log
2042 * for drives which implement this ATA level or above.
2043 */
2044 if (ata_id_major_version(dev->id) >= 10)
2045 ata_dev_warn(dev,
2046 "ATA Identify Device Log not supported\n");
2047 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2048 return false;
2049 }
2050
2051 /*
2052 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2053 * supported.
2054 */
2055 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2056 1);
2057 if (err)
2058 return false;
2059
2060 for (i = 0; i < ap->sector_buf[8]; i++) {
2061 if (ap->sector_buf[9 + i] == page)
2062 return true;
2063 }
2064
2065 return false;
2066 }
2067
ata_do_link_spd_horkage(struct ata_device * dev)2068 static int ata_do_link_spd_horkage(struct ata_device *dev)
2069 {
2070 struct ata_link *plink = ata_dev_phys_link(dev);
2071 u32 target, target_limit;
2072
2073 if (!sata_scr_valid(plink))
2074 return 0;
2075
2076 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2077 target = 1;
2078 else
2079 return 0;
2080
2081 target_limit = (1 << target) - 1;
2082
2083 /* if already on stricter limit, no need to push further */
2084 if (plink->sata_spd_limit <= target_limit)
2085 return 0;
2086
2087 plink->sata_spd_limit = target_limit;
2088
2089 /* Request another EH round by returning -EAGAIN if link is
2090 * going faster than the target speed. Forward progress is
2091 * guaranteed by setting sata_spd_limit to target_limit above.
2092 */
2093 if (plink->sata_spd > target) {
2094 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2095 sata_spd_string(target));
2096 return -EAGAIN;
2097 }
2098 return 0;
2099 }
2100
ata_dev_knobble(struct ata_device * dev)2101 static inline u8 ata_dev_knobble(struct ata_device *dev)
2102 {
2103 struct ata_port *ap = dev->link->ap;
2104
2105 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2106 return 0;
2107
2108 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2109 }
2110
ata_dev_config_ncq_send_recv(struct ata_device * dev)2111 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2112 {
2113 struct ata_port *ap = dev->link->ap;
2114 unsigned int err_mask;
2115
2116 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2117 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2118 return;
2119 }
2120 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2121 0, ap->sector_buf, 1);
2122 if (!err_mask) {
2123 u8 *cmds = dev->ncq_send_recv_cmds;
2124
2125 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2126 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2127
2128 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2129 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2130 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2131 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2132 }
2133 }
2134 }
2135
ata_dev_config_ncq_non_data(struct ata_device * dev)2136 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2137 {
2138 struct ata_port *ap = dev->link->ap;
2139 unsigned int err_mask;
2140
2141 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2142 ata_dev_warn(dev,
2143 "NCQ Send/Recv Log not supported\n");
2144 return;
2145 }
2146 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2147 0, ap->sector_buf, 1);
2148 if (!err_mask) {
2149 u8 *cmds = dev->ncq_non_data_cmds;
2150
2151 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2152 }
2153 }
2154
ata_dev_config_ncq_prio(struct ata_device * dev)2155 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2156 {
2157 struct ata_port *ap = dev->link->ap;
2158 unsigned int err_mask;
2159
2160 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2161 return;
2162
2163 err_mask = ata_read_log_page(dev,
2164 ATA_LOG_IDENTIFY_DEVICE,
2165 ATA_LOG_SATA_SETTINGS,
2166 ap->sector_buf,
2167 1);
2168 if (err_mask)
2169 goto not_supported;
2170
2171 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2172 goto not_supported;
2173
2174 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2175
2176 return;
2177
2178 not_supported:
2179 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2180 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2181 }
2182
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2183 static bool ata_dev_check_adapter(struct ata_device *dev,
2184 unsigned short vendor_id)
2185 {
2186 struct pci_dev *pcidev = NULL;
2187 struct device *parent_dev = NULL;
2188
2189 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2190 parent_dev = parent_dev->parent) {
2191 if (dev_is_pci(parent_dev)) {
2192 pcidev = to_pci_dev(parent_dev);
2193 if (pcidev->vendor == vendor_id)
2194 return true;
2195 break;
2196 }
2197 }
2198
2199 return false;
2200 }
2201
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2202 static int ata_dev_config_ncq(struct ata_device *dev,
2203 char *desc, size_t desc_sz)
2204 {
2205 struct ata_port *ap = dev->link->ap;
2206 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2207 unsigned int err_mask;
2208 char *aa_desc = "";
2209
2210 if (!ata_id_has_ncq(dev->id)) {
2211 desc[0] = '\0';
2212 return 0;
2213 }
2214 if (!IS_ENABLED(CONFIG_SATA_HOST))
2215 return 0;
2216 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2217 snprintf(desc, desc_sz, "NCQ (not used)");
2218 return 0;
2219 }
2220
2221 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2222 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2223 snprintf(desc, desc_sz, "NCQ (not used)");
2224 return 0;
2225 }
2226
2227 if (ap->flags & ATA_FLAG_NCQ) {
2228 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2229 dev->flags |= ATA_DFLAG_NCQ;
2230 }
2231
2232 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2233 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2234 ata_id_has_fpdma_aa(dev->id)) {
2235 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2236 SATA_FPDMA_AA);
2237 if (err_mask) {
2238 ata_dev_err(dev,
2239 "failed to enable AA (error_mask=0x%x)\n",
2240 err_mask);
2241 if (err_mask != AC_ERR_DEV) {
2242 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2243 return -EIO;
2244 }
2245 } else
2246 aa_desc = ", AA";
2247 }
2248
2249 if (hdepth >= ddepth)
2250 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2251 else
2252 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2253 ddepth, aa_desc);
2254
2255 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2256 if (ata_id_has_ncq_send_and_recv(dev->id))
2257 ata_dev_config_ncq_send_recv(dev);
2258 if (ata_id_has_ncq_non_data(dev->id))
2259 ata_dev_config_ncq_non_data(dev);
2260 if (ata_id_has_ncq_prio(dev->id))
2261 ata_dev_config_ncq_prio(dev);
2262 }
2263
2264 return 0;
2265 }
2266
ata_dev_config_sense_reporting(struct ata_device * dev)2267 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2268 {
2269 unsigned int err_mask;
2270
2271 if (!ata_id_has_sense_reporting(dev->id))
2272 return;
2273
2274 if (ata_id_sense_reporting_enabled(dev->id))
2275 return;
2276
2277 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2278 if (err_mask) {
2279 ata_dev_dbg(dev,
2280 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2281 err_mask);
2282 }
2283 }
2284
ata_dev_config_zac(struct ata_device * dev)2285 static void ata_dev_config_zac(struct ata_device *dev)
2286 {
2287 struct ata_port *ap = dev->link->ap;
2288 unsigned int err_mask;
2289 u8 *identify_buf = ap->sector_buf;
2290
2291 dev->zac_zones_optimal_open = U32_MAX;
2292 dev->zac_zones_optimal_nonseq = U32_MAX;
2293 dev->zac_zones_max_open = U32_MAX;
2294
2295 /*
2296 * Always set the 'ZAC' flag for Host-managed devices.
2297 */
2298 if (dev->class == ATA_DEV_ZAC)
2299 dev->flags |= ATA_DFLAG_ZAC;
2300 else if (ata_id_zoned_cap(dev->id) == 0x01)
2301 /*
2302 * Check for host-aware devices.
2303 */
2304 dev->flags |= ATA_DFLAG_ZAC;
2305
2306 if (!(dev->flags & ATA_DFLAG_ZAC))
2307 return;
2308
2309 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2310 ata_dev_warn(dev,
2311 "ATA Zoned Information Log not supported\n");
2312 return;
2313 }
2314
2315 /*
2316 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2317 */
2318 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2319 ATA_LOG_ZONED_INFORMATION,
2320 identify_buf, 1);
2321 if (!err_mask) {
2322 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2323
2324 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2325 if ((zoned_cap >> 63))
2326 dev->zac_zoned_cap = (zoned_cap & 1);
2327 opt_open = get_unaligned_le64(&identify_buf[24]);
2328 if ((opt_open >> 63))
2329 dev->zac_zones_optimal_open = (u32)opt_open;
2330 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2331 if ((opt_nonseq >> 63))
2332 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2333 max_open = get_unaligned_le64(&identify_buf[40]);
2334 if ((max_open >> 63))
2335 dev->zac_zones_max_open = (u32)max_open;
2336 }
2337 }
2338
ata_dev_config_trusted(struct ata_device * dev)2339 static void ata_dev_config_trusted(struct ata_device *dev)
2340 {
2341 struct ata_port *ap = dev->link->ap;
2342 u64 trusted_cap;
2343 unsigned int err;
2344
2345 if (!ata_id_has_trusted(dev->id))
2346 return;
2347
2348 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2349 ata_dev_warn(dev,
2350 "Security Log not supported\n");
2351 return;
2352 }
2353
2354 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2355 ap->sector_buf, 1);
2356 if (err)
2357 return;
2358
2359 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2360 if (!(trusted_cap & (1ULL << 63))) {
2361 ata_dev_dbg(dev,
2362 "Trusted Computing capability qword not valid!\n");
2363 return;
2364 }
2365
2366 if (trusted_cap & (1 << 0))
2367 dev->flags |= ATA_DFLAG_TRUSTED;
2368 }
2369
ata_dev_config_lba(struct ata_device * dev)2370 static int ata_dev_config_lba(struct ata_device *dev)
2371 {
2372 const u16 *id = dev->id;
2373 const char *lba_desc;
2374 char ncq_desc[24];
2375 int ret;
2376
2377 dev->flags |= ATA_DFLAG_LBA;
2378
2379 if (ata_id_has_lba48(id)) {
2380 lba_desc = "LBA48";
2381 dev->flags |= ATA_DFLAG_LBA48;
2382 if (dev->n_sectors >= (1UL << 28) &&
2383 ata_id_has_flush_ext(id))
2384 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2385 } else {
2386 lba_desc = "LBA";
2387 }
2388
2389 /* config NCQ */
2390 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2391
2392 /* print device info to dmesg */
2393 if (ata_dev_print_info(dev))
2394 ata_dev_info(dev,
2395 "%llu sectors, multi %u: %s %s\n",
2396 (unsigned long long)dev->n_sectors,
2397 dev->multi_count, lba_desc, ncq_desc);
2398
2399 return ret;
2400 }
2401
ata_dev_config_chs(struct ata_device * dev)2402 static void ata_dev_config_chs(struct ata_device *dev)
2403 {
2404 const u16 *id = dev->id;
2405
2406 if (ata_id_current_chs_valid(id)) {
2407 /* Current CHS translation is valid. */
2408 dev->cylinders = id[54];
2409 dev->heads = id[55];
2410 dev->sectors = id[56];
2411 } else {
2412 /* Default translation */
2413 dev->cylinders = id[1];
2414 dev->heads = id[3];
2415 dev->sectors = id[6];
2416 }
2417
2418 /* print device info to dmesg */
2419 if (ata_dev_print_info(dev))
2420 ata_dev_info(dev,
2421 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2422 (unsigned long long)dev->n_sectors,
2423 dev->multi_count, dev->cylinders,
2424 dev->heads, dev->sectors);
2425 }
2426
ata_dev_config_fua(struct ata_device * dev)2427 static void ata_dev_config_fua(struct ata_device *dev)
2428 {
2429 /* Ignore FUA support if its use is disabled globally */
2430 if (!libata_fua)
2431 goto nofua;
2432
2433 /* Ignore devices without support for WRITE DMA FUA EXT */
2434 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2435 goto nofua;
2436
2437 /* Ignore known bad devices and devices that lack NCQ support */
2438 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2439 goto nofua;
2440
2441 dev->flags |= ATA_DFLAG_FUA;
2442
2443 return;
2444
2445 nofua:
2446 dev->flags &= ~ATA_DFLAG_FUA;
2447 }
2448
ata_dev_config_devslp(struct ata_device * dev)2449 static void ata_dev_config_devslp(struct ata_device *dev)
2450 {
2451 u8 *sata_setting = dev->link->ap->sector_buf;
2452 unsigned int err_mask;
2453 int i, j;
2454
2455 /*
2456 * Check device sleep capability. Get DevSlp timing variables
2457 * from SATA Settings page of Identify Device Data Log.
2458 */
2459 if (!ata_id_has_devslp(dev->id) ||
2460 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2461 return;
2462
2463 err_mask = ata_read_log_page(dev,
2464 ATA_LOG_IDENTIFY_DEVICE,
2465 ATA_LOG_SATA_SETTINGS,
2466 sata_setting, 1);
2467 if (err_mask)
2468 return;
2469
2470 dev->flags |= ATA_DFLAG_DEVSLP;
2471 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2472 j = ATA_LOG_DEVSLP_OFFSET + i;
2473 dev->devslp_timing[i] = sata_setting[j];
2474 }
2475 }
2476
ata_dev_config_cpr(struct ata_device * dev)2477 static void ata_dev_config_cpr(struct ata_device *dev)
2478 {
2479 unsigned int err_mask;
2480 size_t buf_len;
2481 int i, nr_cpr = 0;
2482 struct ata_cpr_log *cpr_log = NULL;
2483 u8 *desc, *buf = NULL;
2484
2485 if (ata_id_major_version(dev->id) < 11)
2486 goto out;
2487
2488 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2489 if (buf_len == 0)
2490 goto out;
2491
2492 /*
2493 * Read the concurrent positioning ranges log (0x47). We can have at
2494 * most 255 32B range descriptors plus a 64B header. This log varies in
2495 * size, so use the size reported in the GPL directory. Reading beyond
2496 * the supported length will result in an error.
2497 */
2498 buf_len <<= 9;
2499 buf = kzalloc(buf_len, GFP_KERNEL);
2500 if (!buf)
2501 goto out;
2502
2503 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2504 0, buf, buf_len >> 9);
2505 if (err_mask)
2506 goto out;
2507
2508 nr_cpr = buf[0];
2509 if (!nr_cpr)
2510 goto out;
2511
2512 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2513 if (!cpr_log)
2514 goto out;
2515
2516 cpr_log->nr_cpr = nr_cpr;
2517 desc = &buf[64];
2518 for (i = 0; i < nr_cpr; i++, desc += 32) {
2519 cpr_log->cpr[i].num = desc[0];
2520 cpr_log->cpr[i].num_storage_elements = desc[1];
2521 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2522 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2523 }
2524
2525 out:
2526 swap(dev->cpr_log, cpr_log);
2527 kfree(cpr_log);
2528 kfree(buf);
2529 }
2530
ata_dev_print_features(struct ata_device * dev)2531 static void ata_dev_print_features(struct ata_device *dev)
2532 {
2533 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2534 return;
2535
2536 ata_dev_info(dev,
2537 "Features:%s%s%s%s%s%s%s\n",
2538 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2539 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2540 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2541 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2542 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2543 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2544 dev->cpr_log ? " CPR" : "");
2545 }
2546
2547 /**
2548 * ata_dev_configure - Configure the specified ATA/ATAPI device
2549 * @dev: Target device to configure
2550 *
2551 * Configure @dev according to @dev->id. Generic and low-level
2552 * driver specific fixups are also applied.
2553 *
2554 * LOCKING:
2555 * Kernel thread context (may sleep)
2556 *
2557 * RETURNS:
2558 * 0 on success, -errno otherwise
2559 */
ata_dev_configure(struct ata_device * dev)2560 int ata_dev_configure(struct ata_device *dev)
2561 {
2562 struct ata_port *ap = dev->link->ap;
2563 bool print_info = ata_dev_print_info(dev);
2564 const u16 *id = dev->id;
2565 unsigned int xfer_mask;
2566 unsigned int err_mask;
2567 char revbuf[7]; /* XYZ-99\0 */
2568 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2569 char modelbuf[ATA_ID_PROD_LEN+1];
2570 int rc;
2571
2572 if (!ata_dev_enabled(dev)) {
2573 ata_dev_dbg(dev, "no device\n");
2574 return 0;
2575 }
2576
2577 /* set horkage */
2578 dev->horkage |= ata_dev_blacklisted(dev);
2579 ata_force_horkage(dev);
2580
2581 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2582 ata_dev_info(dev, "unsupported device, disabling\n");
2583 ata_dev_disable(dev);
2584 return 0;
2585 }
2586
2587 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2588 dev->class == ATA_DEV_ATAPI) {
2589 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2590 atapi_enabled ? "not supported with this driver"
2591 : "disabled");
2592 ata_dev_disable(dev);
2593 return 0;
2594 }
2595
2596 rc = ata_do_link_spd_horkage(dev);
2597 if (rc)
2598 return rc;
2599
2600 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2601 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2602 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2603 dev->horkage |= ATA_HORKAGE_NOLPM;
2604
2605 if (ap->flags & ATA_FLAG_NO_LPM)
2606 dev->horkage |= ATA_HORKAGE_NOLPM;
2607
2608 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2609 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2610 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2611 }
2612
2613 /* let ACPI work its magic */
2614 rc = ata_acpi_on_devcfg(dev);
2615 if (rc)
2616 return rc;
2617
2618 /* massage HPA, do it early as it might change IDENTIFY data */
2619 rc = ata_hpa_resize(dev);
2620 if (rc)
2621 return rc;
2622
2623 /* print device capabilities */
2624 ata_dev_dbg(dev,
2625 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2626 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2627 __func__,
2628 id[49], id[82], id[83], id[84],
2629 id[85], id[86], id[87], id[88]);
2630
2631 /* initialize to-be-configured parameters */
2632 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2633 dev->max_sectors = 0;
2634 dev->cdb_len = 0;
2635 dev->n_sectors = 0;
2636 dev->cylinders = 0;
2637 dev->heads = 0;
2638 dev->sectors = 0;
2639 dev->multi_count = 0;
2640
2641 /*
2642 * common ATA, ATAPI feature tests
2643 */
2644
2645 /* find max transfer mode; for printk only */
2646 xfer_mask = ata_id_xfermask(id);
2647
2648 ata_dump_id(dev, id);
2649
2650 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2651 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2652 sizeof(fwrevbuf));
2653
2654 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2655 sizeof(modelbuf));
2656
2657 /* ATA-specific feature tests */
2658 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2659 if (ata_id_is_cfa(id)) {
2660 /* CPRM may make this media unusable */
2661 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2662 ata_dev_warn(dev,
2663 "supports DRM functions and may not be fully accessible\n");
2664 snprintf(revbuf, 7, "CFA");
2665 } else {
2666 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2667 /* Warn the user if the device has TPM extensions */
2668 if (ata_id_has_tpm(id))
2669 ata_dev_warn(dev,
2670 "supports DRM functions and may not be fully accessible\n");
2671 }
2672
2673 dev->n_sectors = ata_id_n_sectors(id);
2674
2675 /* get current R/W Multiple count setting */
2676 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2677 unsigned int max = dev->id[47] & 0xff;
2678 unsigned int cnt = dev->id[59] & 0xff;
2679 /* only recognize/allow powers of two here */
2680 if (is_power_of_2(max) && is_power_of_2(cnt))
2681 if (cnt <= max)
2682 dev->multi_count = cnt;
2683 }
2684
2685 /* print device info to dmesg */
2686 if (print_info)
2687 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2688 revbuf, modelbuf, fwrevbuf,
2689 ata_mode_string(xfer_mask));
2690
2691 if (ata_id_has_lba(id)) {
2692 rc = ata_dev_config_lba(dev);
2693 if (rc)
2694 return rc;
2695 } else {
2696 ata_dev_config_chs(dev);
2697 }
2698
2699 ata_dev_config_fua(dev);
2700 ata_dev_config_devslp(dev);
2701 ata_dev_config_sense_reporting(dev);
2702 ata_dev_config_zac(dev);
2703 ata_dev_config_trusted(dev);
2704 ata_dev_config_cpr(dev);
2705 dev->cdb_len = 32;
2706
2707 if (print_info)
2708 ata_dev_print_features(dev);
2709 }
2710
2711 /* ATAPI-specific feature tests */
2712 else if (dev->class == ATA_DEV_ATAPI) {
2713 const char *cdb_intr_string = "";
2714 const char *atapi_an_string = "";
2715 const char *dma_dir_string = "";
2716 u32 sntf;
2717
2718 rc = atapi_cdb_len(id);
2719 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2720 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2721 rc = -EINVAL;
2722 goto err_out_nosup;
2723 }
2724 dev->cdb_len = (unsigned int) rc;
2725
2726 /* Enable ATAPI AN if both the host and device have
2727 * the support. If PMP is attached, SNTF is required
2728 * to enable ATAPI AN to discern between PHY status
2729 * changed notifications and ATAPI ANs.
2730 */
2731 if (atapi_an &&
2732 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2733 (!sata_pmp_attached(ap) ||
2734 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2735 /* issue SET feature command to turn this on */
2736 err_mask = ata_dev_set_feature(dev,
2737 SETFEATURES_SATA_ENABLE, SATA_AN);
2738 if (err_mask)
2739 ata_dev_err(dev,
2740 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2741 err_mask);
2742 else {
2743 dev->flags |= ATA_DFLAG_AN;
2744 atapi_an_string = ", ATAPI AN";
2745 }
2746 }
2747
2748 if (ata_id_cdb_intr(dev->id)) {
2749 dev->flags |= ATA_DFLAG_CDB_INTR;
2750 cdb_intr_string = ", CDB intr";
2751 }
2752
2753 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2754 dev->flags |= ATA_DFLAG_DMADIR;
2755 dma_dir_string = ", DMADIR";
2756 }
2757
2758 if (ata_id_has_da(dev->id)) {
2759 dev->flags |= ATA_DFLAG_DA;
2760 zpodd_init(dev);
2761 }
2762
2763 /* print device info to dmesg */
2764 if (print_info)
2765 ata_dev_info(dev,
2766 "ATAPI: %s, %s, max %s%s%s%s\n",
2767 modelbuf, fwrevbuf,
2768 ata_mode_string(xfer_mask),
2769 cdb_intr_string, atapi_an_string,
2770 dma_dir_string);
2771 }
2772
2773 /* determine max_sectors */
2774 dev->max_sectors = ATA_MAX_SECTORS;
2775 if (dev->flags & ATA_DFLAG_LBA48)
2776 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2777
2778 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2779 200 sectors */
2780 if (ata_dev_knobble(dev)) {
2781 if (print_info)
2782 ata_dev_info(dev, "applying bridge limits\n");
2783 dev->udma_mask &= ATA_UDMA5;
2784 dev->max_sectors = ATA_MAX_SECTORS;
2785 }
2786
2787 if ((dev->class == ATA_DEV_ATAPI) &&
2788 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2789 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2790 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2791 }
2792
2793 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2794 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2795 dev->max_sectors);
2796
2797 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2798 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2799 dev->max_sectors);
2800
2801 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2802 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2803
2804 if (ap->ops->dev_config)
2805 ap->ops->dev_config(dev);
2806
2807 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2808 /* Let the user know. We don't want to disallow opens for
2809 rescue purposes, or in case the vendor is just a blithering
2810 idiot. Do this after the dev_config call as some controllers
2811 with buggy firmware may want to avoid reporting false device
2812 bugs */
2813
2814 if (print_info) {
2815 ata_dev_warn(dev,
2816 "Drive reports diagnostics failure. This may indicate a drive\n");
2817 ata_dev_warn(dev,
2818 "fault or invalid emulation. Contact drive vendor for information.\n");
2819 }
2820 }
2821
2822 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2823 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2824 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2825 }
2826
2827 return 0;
2828
2829 err_out_nosup:
2830 return rc;
2831 }
2832
2833 /**
2834 * ata_cable_40wire - return 40 wire cable type
2835 * @ap: port
2836 *
2837 * Helper method for drivers which want to hardwire 40 wire cable
2838 * detection.
2839 */
2840
ata_cable_40wire(struct ata_port * ap)2841 int ata_cable_40wire(struct ata_port *ap)
2842 {
2843 return ATA_CBL_PATA40;
2844 }
2845 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2846
2847 /**
2848 * ata_cable_80wire - return 80 wire cable type
2849 * @ap: port
2850 *
2851 * Helper method for drivers which want to hardwire 80 wire cable
2852 * detection.
2853 */
2854
ata_cable_80wire(struct ata_port * ap)2855 int ata_cable_80wire(struct ata_port *ap)
2856 {
2857 return ATA_CBL_PATA80;
2858 }
2859 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2860
2861 /**
2862 * ata_cable_unknown - return unknown PATA cable.
2863 * @ap: port
2864 *
2865 * Helper method for drivers which have no PATA cable detection.
2866 */
2867
ata_cable_unknown(struct ata_port * ap)2868 int ata_cable_unknown(struct ata_port *ap)
2869 {
2870 return ATA_CBL_PATA_UNK;
2871 }
2872 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2873
2874 /**
2875 * ata_cable_ignore - return ignored PATA cable.
2876 * @ap: port
2877 *
2878 * Helper method for drivers which don't use cable type to limit
2879 * transfer mode.
2880 */
ata_cable_ignore(struct ata_port * ap)2881 int ata_cable_ignore(struct ata_port *ap)
2882 {
2883 return ATA_CBL_PATA_IGN;
2884 }
2885 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2886
2887 /**
2888 * ata_cable_sata - return SATA cable type
2889 * @ap: port
2890 *
2891 * Helper method for drivers which have SATA cables
2892 */
2893
ata_cable_sata(struct ata_port * ap)2894 int ata_cable_sata(struct ata_port *ap)
2895 {
2896 return ATA_CBL_SATA;
2897 }
2898 EXPORT_SYMBOL_GPL(ata_cable_sata);
2899
2900 /**
2901 * ata_bus_probe - Reset and probe ATA bus
2902 * @ap: Bus to probe
2903 *
2904 * Master ATA bus probing function. Initiates a hardware-dependent
2905 * bus reset, then attempts to identify any devices found on
2906 * the bus.
2907 *
2908 * LOCKING:
2909 * PCI/etc. bus probe sem.
2910 *
2911 * RETURNS:
2912 * Zero on success, negative errno otherwise.
2913 */
2914
ata_bus_probe(struct ata_port * ap)2915 int ata_bus_probe(struct ata_port *ap)
2916 {
2917 unsigned int classes[ATA_MAX_DEVICES];
2918 int tries[ATA_MAX_DEVICES];
2919 int rc;
2920 struct ata_device *dev;
2921
2922 ata_for_each_dev(dev, &ap->link, ALL)
2923 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2924
2925 retry:
2926 ata_for_each_dev(dev, &ap->link, ALL) {
2927 /* If we issue an SRST then an ATA drive (not ATAPI)
2928 * may change configuration and be in PIO0 timing. If
2929 * we do a hard reset (or are coming from power on)
2930 * this is true for ATA or ATAPI. Until we've set a
2931 * suitable controller mode we should not touch the
2932 * bus as we may be talking too fast.
2933 */
2934 dev->pio_mode = XFER_PIO_0;
2935 dev->dma_mode = 0xff;
2936
2937 /* If the controller has a pio mode setup function
2938 * then use it to set the chipset to rights. Don't
2939 * touch the DMA setup as that will be dealt with when
2940 * configuring devices.
2941 */
2942 if (ap->ops->set_piomode)
2943 ap->ops->set_piomode(ap, dev);
2944 }
2945
2946 /* reset and determine device classes */
2947 ap->ops->phy_reset(ap);
2948
2949 ata_for_each_dev(dev, &ap->link, ALL) {
2950 if (dev->class != ATA_DEV_UNKNOWN)
2951 classes[dev->devno] = dev->class;
2952 else
2953 classes[dev->devno] = ATA_DEV_NONE;
2954
2955 dev->class = ATA_DEV_UNKNOWN;
2956 }
2957
2958 /* read IDENTIFY page and configure devices. We have to do the identify
2959 specific sequence bass-ackwards so that PDIAG- is released by
2960 the slave device */
2961
2962 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2963 if (tries[dev->devno])
2964 dev->class = classes[dev->devno];
2965
2966 if (!ata_dev_enabled(dev))
2967 continue;
2968
2969 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2970 dev->id);
2971 if (rc)
2972 goto fail;
2973 }
2974
2975 /* Now ask for the cable type as PDIAG- should have been released */
2976 if (ap->ops->cable_detect)
2977 ap->cbl = ap->ops->cable_detect(ap);
2978
2979 /* We may have SATA bridge glue hiding here irrespective of
2980 * the reported cable types and sensed types. When SATA
2981 * drives indicate we have a bridge, we don't know which end
2982 * of the link the bridge is which is a problem.
2983 */
2984 ata_for_each_dev(dev, &ap->link, ENABLED)
2985 if (ata_id_is_sata(dev->id))
2986 ap->cbl = ATA_CBL_SATA;
2987
2988 /* After the identify sequence we can now set up the devices. We do
2989 this in the normal order so that the user doesn't get confused */
2990
2991 ata_for_each_dev(dev, &ap->link, ENABLED) {
2992 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2993 rc = ata_dev_configure(dev);
2994 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2995 if (rc)
2996 goto fail;
2997 }
2998
2999 /* configure transfer mode */
3000 rc = ata_set_mode(&ap->link, &dev);
3001 if (rc)
3002 goto fail;
3003
3004 ata_for_each_dev(dev, &ap->link, ENABLED)
3005 return 0;
3006
3007 return -ENODEV;
3008
3009 fail:
3010 tries[dev->devno]--;
3011
3012 switch (rc) {
3013 case -EINVAL:
3014 /* eeek, something went very wrong, give up */
3015 tries[dev->devno] = 0;
3016 break;
3017
3018 case -ENODEV:
3019 /* give it just one more chance */
3020 tries[dev->devno] = min(tries[dev->devno], 1);
3021 fallthrough;
3022 case -EIO:
3023 if (tries[dev->devno] == 1) {
3024 /* This is the last chance, better to slow
3025 * down than lose it.
3026 */
3027 sata_down_spd_limit(&ap->link, 0);
3028 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3029 }
3030 }
3031
3032 if (!tries[dev->devno])
3033 ata_dev_disable(dev);
3034
3035 goto retry;
3036 }
3037
3038 /**
3039 * sata_print_link_status - Print SATA link status
3040 * @link: SATA link to printk link status about
3041 *
3042 * This function prints link speed and status of a SATA link.
3043 *
3044 * LOCKING:
3045 * None.
3046 */
sata_print_link_status(struct ata_link * link)3047 static void sata_print_link_status(struct ata_link *link)
3048 {
3049 u32 sstatus, scontrol, tmp;
3050
3051 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3052 return;
3053 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3054 return;
3055
3056 if (ata_phys_link_online(link)) {
3057 tmp = (sstatus >> 4) & 0xf;
3058 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3059 sata_spd_string(tmp), sstatus, scontrol);
3060 } else {
3061 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3062 sstatus, scontrol);
3063 }
3064 }
3065
3066 /**
3067 * ata_dev_pair - return other device on cable
3068 * @adev: device
3069 *
3070 * Obtain the other device on the same cable, or if none is
3071 * present NULL is returned
3072 */
3073
ata_dev_pair(struct ata_device * adev)3074 struct ata_device *ata_dev_pair(struct ata_device *adev)
3075 {
3076 struct ata_link *link = adev->link;
3077 struct ata_device *pair = &link->device[1 - adev->devno];
3078 if (!ata_dev_enabled(pair))
3079 return NULL;
3080 return pair;
3081 }
3082 EXPORT_SYMBOL_GPL(ata_dev_pair);
3083
3084 /**
3085 * sata_down_spd_limit - adjust SATA spd limit downward
3086 * @link: Link to adjust SATA spd limit for
3087 * @spd_limit: Additional limit
3088 *
3089 * Adjust SATA spd limit of @link downward. Note that this
3090 * function only adjusts the limit. The change must be applied
3091 * using sata_set_spd().
3092 *
3093 * If @spd_limit is non-zero, the speed is limited to equal to or
3094 * lower than @spd_limit if such speed is supported. If
3095 * @spd_limit is slower than any supported speed, only the lowest
3096 * supported speed is allowed.
3097 *
3098 * LOCKING:
3099 * Inherited from caller.
3100 *
3101 * RETURNS:
3102 * 0 on success, negative errno on failure
3103 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3104 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3105 {
3106 u32 sstatus, spd, mask;
3107 int rc, bit;
3108
3109 if (!sata_scr_valid(link))
3110 return -EOPNOTSUPP;
3111
3112 /* If SCR can be read, use it to determine the current SPD.
3113 * If not, use cached value in link->sata_spd.
3114 */
3115 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3116 if (rc == 0 && ata_sstatus_online(sstatus))
3117 spd = (sstatus >> 4) & 0xf;
3118 else
3119 spd = link->sata_spd;
3120
3121 mask = link->sata_spd_limit;
3122 if (mask <= 1)
3123 return -EINVAL;
3124
3125 /* unconditionally mask off the highest bit */
3126 bit = fls(mask) - 1;
3127 mask &= ~(1 << bit);
3128
3129 /*
3130 * Mask off all speeds higher than or equal to the current one. At
3131 * this point, if current SPD is not available and we previously
3132 * recorded the link speed from SStatus, the driver has already
3133 * masked off the highest bit so mask should already be 1 or 0.
3134 * Otherwise, we should not force 1.5Gbps on a link where we have
3135 * not previously recorded speed from SStatus. Just return in this
3136 * case.
3137 */
3138 if (spd > 1)
3139 mask &= (1 << (spd - 1)) - 1;
3140 else if (link->sata_spd)
3141 return -EINVAL;
3142
3143 /* were we already at the bottom? */
3144 if (!mask)
3145 return -EINVAL;
3146
3147 if (spd_limit) {
3148 if (mask & ((1 << spd_limit) - 1))
3149 mask &= (1 << spd_limit) - 1;
3150 else {
3151 bit = ffs(mask) - 1;
3152 mask = 1 << bit;
3153 }
3154 }
3155
3156 link->sata_spd_limit = mask;
3157
3158 ata_link_warn(link, "limiting SATA link speed to %s\n",
3159 sata_spd_string(fls(mask)));
3160
3161 return 0;
3162 }
3163
3164 #ifdef CONFIG_ATA_ACPI
3165 /**
3166 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3167 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3168 * @cycle: cycle duration in ns
3169 *
3170 * Return matching xfer mode for @cycle. The returned mode is of
3171 * the transfer type specified by @xfer_shift. If @cycle is too
3172 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3173 * than the fastest known mode, the fasted mode is returned.
3174 *
3175 * LOCKING:
3176 * None.
3177 *
3178 * RETURNS:
3179 * Matching xfer_mode, 0xff if no match found.
3180 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3181 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3182 {
3183 u8 base_mode = 0xff, last_mode = 0xff;
3184 const struct ata_xfer_ent *ent;
3185 const struct ata_timing *t;
3186
3187 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3188 if (ent->shift == xfer_shift)
3189 base_mode = ent->base;
3190
3191 for (t = ata_timing_find_mode(base_mode);
3192 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3193 unsigned short this_cycle;
3194
3195 switch (xfer_shift) {
3196 case ATA_SHIFT_PIO:
3197 case ATA_SHIFT_MWDMA:
3198 this_cycle = t->cycle;
3199 break;
3200 case ATA_SHIFT_UDMA:
3201 this_cycle = t->udma;
3202 break;
3203 default:
3204 return 0xff;
3205 }
3206
3207 if (cycle > this_cycle)
3208 break;
3209
3210 last_mode = t->mode;
3211 }
3212
3213 return last_mode;
3214 }
3215 #endif
3216
3217 /**
3218 * ata_down_xfermask_limit - adjust dev xfer masks downward
3219 * @dev: Device to adjust xfer masks
3220 * @sel: ATA_DNXFER_* selector
3221 *
3222 * Adjust xfer masks of @dev downward. Note that this function
3223 * does not apply the change. Invoking ata_set_mode() afterwards
3224 * will apply the limit.
3225 *
3226 * LOCKING:
3227 * Inherited from caller.
3228 *
3229 * RETURNS:
3230 * 0 on success, negative errno on failure
3231 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3232 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3233 {
3234 char buf[32];
3235 unsigned int orig_mask, xfer_mask;
3236 unsigned int pio_mask, mwdma_mask, udma_mask;
3237 int quiet, highbit;
3238
3239 quiet = !!(sel & ATA_DNXFER_QUIET);
3240 sel &= ~ATA_DNXFER_QUIET;
3241
3242 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3243 dev->mwdma_mask,
3244 dev->udma_mask);
3245 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3246
3247 switch (sel) {
3248 case ATA_DNXFER_PIO:
3249 highbit = fls(pio_mask) - 1;
3250 pio_mask &= ~(1 << highbit);
3251 break;
3252
3253 case ATA_DNXFER_DMA:
3254 if (udma_mask) {
3255 highbit = fls(udma_mask) - 1;
3256 udma_mask &= ~(1 << highbit);
3257 if (!udma_mask)
3258 return -ENOENT;
3259 } else if (mwdma_mask) {
3260 highbit = fls(mwdma_mask) - 1;
3261 mwdma_mask &= ~(1 << highbit);
3262 if (!mwdma_mask)
3263 return -ENOENT;
3264 }
3265 break;
3266
3267 case ATA_DNXFER_40C:
3268 udma_mask &= ATA_UDMA_MASK_40C;
3269 break;
3270
3271 case ATA_DNXFER_FORCE_PIO0:
3272 pio_mask &= 1;
3273 fallthrough;
3274 case ATA_DNXFER_FORCE_PIO:
3275 mwdma_mask = 0;
3276 udma_mask = 0;
3277 break;
3278
3279 default:
3280 BUG();
3281 }
3282
3283 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3284
3285 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3286 return -ENOENT;
3287
3288 if (!quiet) {
3289 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3290 snprintf(buf, sizeof(buf), "%s:%s",
3291 ata_mode_string(xfer_mask),
3292 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3293 else
3294 snprintf(buf, sizeof(buf), "%s",
3295 ata_mode_string(xfer_mask));
3296
3297 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3298 }
3299
3300 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3301 &dev->udma_mask);
3302
3303 return 0;
3304 }
3305
ata_dev_set_mode(struct ata_device * dev)3306 static int ata_dev_set_mode(struct ata_device *dev)
3307 {
3308 struct ata_port *ap = dev->link->ap;
3309 struct ata_eh_context *ehc = &dev->link->eh_context;
3310 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3311 const char *dev_err_whine = "";
3312 int ign_dev_err = 0;
3313 unsigned int err_mask = 0;
3314 int rc;
3315
3316 dev->flags &= ~ATA_DFLAG_PIO;
3317 if (dev->xfer_shift == ATA_SHIFT_PIO)
3318 dev->flags |= ATA_DFLAG_PIO;
3319
3320 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3321 dev_err_whine = " (SET_XFERMODE skipped)";
3322 else {
3323 if (nosetxfer)
3324 ata_dev_warn(dev,
3325 "NOSETXFER but PATA detected - can't "
3326 "skip SETXFER, might malfunction\n");
3327 err_mask = ata_dev_set_xfermode(dev);
3328 }
3329
3330 if (err_mask & ~AC_ERR_DEV)
3331 goto fail;
3332
3333 /* revalidate */
3334 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3335 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3336 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3337 if (rc)
3338 return rc;
3339
3340 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3341 /* Old CFA may refuse this command, which is just fine */
3342 if (ata_id_is_cfa(dev->id))
3343 ign_dev_err = 1;
3344 /* Catch several broken garbage emulations plus some pre
3345 ATA devices */
3346 if (ata_id_major_version(dev->id) == 0 &&
3347 dev->pio_mode <= XFER_PIO_2)
3348 ign_dev_err = 1;
3349 /* Some very old devices and some bad newer ones fail
3350 any kind of SET_XFERMODE request but support PIO0-2
3351 timings and no IORDY */
3352 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3353 ign_dev_err = 1;
3354 }
3355 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3356 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3357 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3358 dev->dma_mode == XFER_MW_DMA_0 &&
3359 (dev->id[63] >> 8) & 1)
3360 ign_dev_err = 1;
3361
3362 /* if the device is actually configured correctly, ignore dev err */
3363 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3364 ign_dev_err = 1;
3365
3366 if (err_mask & AC_ERR_DEV) {
3367 if (!ign_dev_err)
3368 goto fail;
3369 else
3370 dev_err_whine = " (device error ignored)";
3371 }
3372
3373 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3374 dev->xfer_shift, (int)dev->xfer_mode);
3375
3376 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3377 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3378 ata_dev_info(dev, "configured for %s%s\n",
3379 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3380 dev_err_whine);
3381
3382 return 0;
3383
3384 fail:
3385 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3386 return -EIO;
3387 }
3388
3389 /**
3390 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3391 * @link: link on which timings will be programmed
3392 * @r_failed_dev: out parameter for failed device
3393 *
3394 * Standard implementation of the function used to tune and set
3395 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3396 * ata_dev_set_mode() fails, pointer to the failing device is
3397 * returned in @r_failed_dev.
3398 *
3399 * LOCKING:
3400 * PCI/etc. bus probe sem.
3401 *
3402 * RETURNS:
3403 * 0 on success, negative errno otherwise
3404 */
3405
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3406 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3407 {
3408 struct ata_port *ap = link->ap;
3409 struct ata_device *dev;
3410 int rc = 0, used_dma = 0, found = 0;
3411
3412 /* step 1: calculate xfer_mask */
3413 ata_for_each_dev(dev, link, ENABLED) {
3414 unsigned int pio_mask, dma_mask;
3415 unsigned int mode_mask;
3416
3417 mode_mask = ATA_DMA_MASK_ATA;
3418 if (dev->class == ATA_DEV_ATAPI)
3419 mode_mask = ATA_DMA_MASK_ATAPI;
3420 else if (ata_id_is_cfa(dev->id))
3421 mode_mask = ATA_DMA_MASK_CFA;
3422
3423 ata_dev_xfermask(dev);
3424 ata_force_xfermask(dev);
3425
3426 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3427
3428 if (libata_dma_mask & mode_mask)
3429 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3430 dev->udma_mask);
3431 else
3432 dma_mask = 0;
3433
3434 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3435 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3436
3437 found = 1;
3438 if (ata_dma_enabled(dev))
3439 used_dma = 1;
3440 }
3441 if (!found)
3442 goto out;
3443
3444 /* step 2: always set host PIO timings */
3445 ata_for_each_dev(dev, link, ENABLED) {
3446 if (dev->pio_mode == 0xff) {
3447 ata_dev_warn(dev, "no PIO support\n");
3448 rc = -EINVAL;
3449 goto out;
3450 }
3451
3452 dev->xfer_mode = dev->pio_mode;
3453 dev->xfer_shift = ATA_SHIFT_PIO;
3454 if (ap->ops->set_piomode)
3455 ap->ops->set_piomode(ap, dev);
3456 }
3457
3458 /* step 3: set host DMA timings */
3459 ata_for_each_dev(dev, link, ENABLED) {
3460 if (!ata_dma_enabled(dev))
3461 continue;
3462
3463 dev->xfer_mode = dev->dma_mode;
3464 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3465 if (ap->ops->set_dmamode)
3466 ap->ops->set_dmamode(ap, dev);
3467 }
3468
3469 /* step 4: update devices' xfer mode */
3470 ata_for_each_dev(dev, link, ENABLED) {
3471 rc = ata_dev_set_mode(dev);
3472 if (rc)
3473 goto out;
3474 }
3475
3476 /* Record simplex status. If we selected DMA then the other
3477 * host channels are not permitted to do so.
3478 */
3479 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3480 ap->host->simplex_claimed = ap;
3481
3482 out:
3483 if (rc)
3484 *r_failed_dev = dev;
3485 return rc;
3486 }
3487 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3488
3489 /**
3490 * ata_wait_ready - wait for link to become ready
3491 * @link: link to be waited on
3492 * @deadline: deadline jiffies for the operation
3493 * @check_ready: callback to check link readiness
3494 *
3495 * Wait for @link to become ready. @check_ready should return
3496 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3497 * link doesn't seem to be occupied, other errno for other error
3498 * conditions.
3499 *
3500 * Transient -ENODEV conditions are allowed for
3501 * ATA_TMOUT_FF_WAIT.
3502 *
3503 * LOCKING:
3504 * EH context.
3505 *
3506 * RETURNS:
3507 * 0 if @link is ready before @deadline; otherwise, -errno.
3508 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3509 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3510 int (*check_ready)(struct ata_link *link))
3511 {
3512 unsigned long start = jiffies;
3513 unsigned long nodev_deadline;
3514 int warned = 0;
3515
3516 /* choose which 0xff timeout to use, read comment in libata.h */
3517 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3518 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3519 else
3520 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3521
3522 /* Slave readiness can't be tested separately from master. On
3523 * M/S emulation configuration, this function should be called
3524 * only on the master and it will handle both master and slave.
3525 */
3526 WARN_ON(link == link->ap->slave_link);
3527
3528 if (time_after(nodev_deadline, deadline))
3529 nodev_deadline = deadline;
3530
3531 while (1) {
3532 unsigned long now = jiffies;
3533 int ready, tmp;
3534
3535 ready = tmp = check_ready(link);
3536 if (ready > 0)
3537 return 0;
3538
3539 /*
3540 * -ENODEV could be transient. Ignore -ENODEV if link
3541 * is online. Also, some SATA devices take a long
3542 * time to clear 0xff after reset. Wait for
3543 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3544 * offline.
3545 *
3546 * Note that some PATA controllers (pata_ali) explode
3547 * if status register is read more than once when
3548 * there's no device attached.
3549 */
3550 if (ready == -ENODEV) {
3551 if (ata_link_online(link))
3552 ready = 0;
3553 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3554 !ata_link_offline(link) &&
3555 time_before(now, nodev_deadline))
3556 ready = 0;
3557 }
3558
3559 if (ready)
3560 return ready;
3561 if (time_after(now, deadline))
3562 return -EBUSY;
3563
3564 if (!warned && time_after(now, start + 5 * HZ) &&
3565 (deadline - now > 3 * HZ)) {
3566 ata_link_warn(link,
3567 "link is slow to respond, please be patient "
3568 "(ready=%d)\n", tmp);
3569 warned = 1;
3570 }
3571
3572 ata_msleep(link->ap, 50);
3573 }
3574 }
3575
3576 /**
3577 * ata_wait_after_reset - wait for link to become ready after reset
3578 * @link: link to be waited on
3579 * @deadline: deadline jiffies for the operation
3580 * @check_ready: callback to check link readiness
3581 *
3582 * Wait for @link to become ready after reset.
3583 *
3584 * LOCKING:
3585 * EH context.
3586 *
3587 * RETURNS:
3588 * 0 if @link is ready before @deadline; otherwise, -errno.
3589 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3590 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3591 int (*check_ready)(struct ata_link *link))
3592 {
3593 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3594
3595 return ata_wait_ready(link, deadline, check_ready);
3596 }
3597 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3598
3599 /**
3600 * ata_std_prereset - prepare for reset
3601 * @link: ATA link to be reset
3602 * @deadline: deadline jiffies for the operation
3603 *
3604 * @link is about to be reset. Initialize it. Failure from
3605 * prereset makes libata abort whole reset sequence and give up
3606 * that port, so prereset should be best-effort. It does its
3607 * best to prepare for reset sequence but if things go wrong, it
3608 * should just whine, not fail.
3609 *
3610 * LOCKING:
3611 * Kernel thread context (may sleep)
3612 *
3613 * RETURNS:
3614 * Always 0.
3615 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3616 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3617 {
3618 struct ata_port *ap = link->ap;
3619 struct ata_eh_context *ehc = &link->eh_context;
3620 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3621 int rc;
3622
3623 /* if we're about to do hardreset, nothing more to do */
3624 if (ehc->i.action & ATA_EH_HARDRESET)
3625 return 0;
3626
3627 /* if SATA, resume link */
3628 if (ap->flags & ATA_FLAG_SATA) {
3629 rc = sata_link_resume(link, timing, deadline);
3630 /* whine about phy resume failure but proceed */
3631 if (rc && rc != -EOPNOTSUPP)
3632 ata_link_warn(link,
3633 "failed to resume link for reset (errno=%d)\n",
3634 rc);
3635 }
3636
3637 /* no point in trying softreset on offline link */
3638 if (ata_phys_link_offline(link))
3639 ehc->i.action &= ~ATA_EH_SOFTRESET;
3640
3641 return 0;
3642 }
3643 EXPORT_SYMBOL_GPL(ata_std_prereset);
3644
3645 /**
3646 * sata_std_hardreset - COMRESET w/o waiting or classification
3647 * @link: link to reset
3648 * @class: resulting class of attached device
3649 * @deadline: deadline jiffies for the operation
3650 *
3651 * Standard SATA COMRESET w/o waiting or classification.
3652 *
3653 * LOCKING:
3654 * Kernel thread context (may sleep)
3655 *
3656 * RETURNS:
3657 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3658 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3659 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3660 unsigned long deadline)
3661 {
3662 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3663 bool online;
3664 int rc;
3665
3666 /* do hardreset */
3667 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3668 return online ? -EAGAIN : rc;
3669 }
3670 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3671
3672 /**
3673 * ata_std_postreset - standard postreset callback
3674 * @link: the target ata_link
3675 * @classes: classes of attached devices
3676 *
3677 * This function is invoked after a successful reset. Note that
3678 * the device might have been reset more than once using
3679 * different reset methods before postreset is invoked.
3680 *
3681 * LOCKING:
3682 * Kernel thread context (may sleep)
3683 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3684 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3685 {
3686 u32 serror;
3687
3688 /* reset complete, clear SError */
3689 if (!sata_scr_read(link, SCR_ERROR, &serror))
3690 sata_scr_write(link, SCR_ERROR, serror);
3691
3692 /* print link status */
3693 sata_print_link_status(link);
3694 }
3695 EXPORT_SYMBOL_GPL(ata_std_postreset);
3696
3697 /**
3698 * ata_dev_same_device - Determine whether new ID matches configured device
3699 * @dev: device to compare against
3700 * @new_class: class of the new device
3701 * @new_id: IDENTIFY page of the new device
3702 *
3703 * Compare @new_class and @new_id against @dev and determine
3704 * whether @dev is the device indicated by @new_class and
3705 * @new_id.
3706 *
3707 * LOCKING:
3708 * None.
3709 *
3710 * RETURNS:
3711 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3712 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3713 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3714 const u16 *new_id)
3715 {
3716 const u16 *old_id = dev->id;
3717 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3718 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3719
3720 if (dev->class != new_class) {
3721 ata_dev_info(dev, "class mismatch %d != %d\n",
3722 dev->class, new_class);
3723 return 0;
3724 }
3725
3726 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3727 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3728 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3729 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3730
3731 if (strcmp(model[0], model[1])) {
3732 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3733 model[0], model[1]);
3734 return 0;
3735 }
3736
3737 if (strcmp(serial[0], serial[1])) {
3738 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3739 serial[0], serial[1]);
3740 return 0;
3741 }
3742
3743 return 1;
3744 }
3745
3746 /**
3747 * ata_dev_reread_id - Re-read IDENTIFY data
3748 * @dev: target ATA device
3749 * @readid_flags: read ID flags
3750 *
3751 * Re-read IDENTIFY page and make sure @dev is still attached to
3752 * the port.
3753 *
3754 * LOCKING:
3755 * Kernel thread context (may sleep)
3756 *
3757 * RETURNS:
3758 * 0 on success, negative errno otherwise
3759 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3760 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3761 {
3762 unsigned int class = dev->class;
3763 u16 *id = (void *)dev->link->ap->sector_buf;
3764 int rc;
3765
3766 /* read ID data */
3767 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3768 if (rc)
3769 return rc;
3770
3771 /* is the device still there? */
3772 if (!ata_dev_same_device(dev, class, id))
3773 return -ENODEV;
3774
3775 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3776 return 0;
3777 }
3778
3779 /**
3780 * ata_dev_revalidate - Revalidate ATA device
3781 * @dev: device to revalidate
3782 * @new_class: new class code
3783 * @readid_flags: read ID flags
3784 *
3785 * Re-read IDENTIFY page, make sure @dev is still attached to the
3786 * port and reconfigure it according to the new IDENTIFY page.
3787 *
3788 * LOCKING:
3789 * Kernel thread context (may sleep)
3790 *
3791 * RETURNS:
3792 * 0 on success, negative errno otherwise
3793 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3794 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3795 unsigned int readid_flags)
3796 {
3797 u64 n_sectors = dev->n_sectors;
3798 u64 n_native_sectors = dev->n_native_sectors;
3799 int rc;
3800
3801 if (!ata_dev_enabled(dev))
3802 return -ENODEV;
3803
3804 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3805 if (ata_class_enabled(new_class) &&
3806 new_class != ATA_DEV_ATA &&
3807 new_class != ATA_DEV_ATAPI &&
3808 new_class != ATA_DEV_ZAC &&
3809 new_class != ATA_DEV_SEMB) {
3810 ata_dev_info(dev, "class mismatch %u != %u\n",
3811 dev->class, new_class);
3812 rc = -ENODEV;
3813 goto fail;
3814 }
3815
3816 /* re-read ID */
3817 rc = ata_dev_reread_id(dev, readid_flags);
3818 if (rc)
3819 goto fail;
3820
3821 /* configure device according to the new ID */
3822 rc = ata_dev_configure(dev);
3823 if (rc)
3824 goto fail;
3825
3826 /* verify n_sectors hasn't changed */
3827 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3828 dev->n_sectors == n_sectors)
3829 return 0;
3830
3831 /* n_sectors has changed */
3832 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3833 (unsigned long long)n_sectors,
3834 (unsigned long long)dev->n_sectors);
3835
3836 /*
3837 * Something could have caused HPA to be unlocked
3838 * involuntarily. If n_native_sectors hasn't changed and the
3839 * new size matches it, keep the device.
3840 */
3841 if (dev->n_native_sectors == n_native_sectors &&
3842 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3843 ata_dev_warn(dev,
3844 "new n_sectors matches native, probably "
3845 "late HPA unlock, n_sectors updated\n");
3846 /* use the larger n_sectors */
3847 return 0;
3848 }
3849
3850 /*
3851 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3852 * unlocking HPA in those cases.
3853 *
3854 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3855 */
3856 if (dev->n_native_sectors == n_native_sectors &&
3857 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3858 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3859 ata_dev_warn(dev,
3860 "old n_sectors matches native, probably "
3861 "late HPA lock, will try to unlock HPA\n");
3862 /* try unlocking HPA */
3863 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3864 rc = -EIO;
3865 } else
3866 rc = -ENODEV;
3867
3868 /* restore original n_[native_]sectors and fail */
3869 dev->n_native_sectors = n_native_sectors;
3870 dev->n_sectors = n_sectors;
3871 fail:
3872 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3873 return rc;
3874 }
3875
3876 struct ata_blacklist_entry {
3877 const char *model_num;
3878 const char *model_rev;
3879 unsigned long horkage;
3880 };
3881
3882 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3883 /* Devices with DMA related problems under Linux */
3884 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3885 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3886 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3887 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3888 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3889 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3890 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3891 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3892 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3893 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3894 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3895 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3896 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3897 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3898 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3899 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3900 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3901 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3902 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3903 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3904 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3905 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3906 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3907 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3908 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3909 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3910 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3911 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3912 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3913 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3914 /* Odd clown on sil3726/4726 PMPs */
3915 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3916 /* Similar story with ASMedia 1092 */
3917 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
3918
3919 /* Weird ATAPI devices */
3920 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3921 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3922 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3923 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3924
3925 /*
3926 * Causes silent data corruption with higher max sects.
3927 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3928 */
3929 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3930
3931 /*
3932 * These devices time out with higher max sects.
3933 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3934 */
3935 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3936 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3937
3938 /* Devices we expect to fail diagnostics */
3939
3940 /* Devices where NCQ should be avoided */
3941 /* NCQ is slow */
3942 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3943 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
3944 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3945 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3946 /* NCQ is broken */
3947 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3948 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3949 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3950 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3951 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3952
3953 /* Seagate NCQ + FLUSH CACHE firmware bug */
3954 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3955 ATA_HORKAGE_FIRMWARE_WARN },
3956
3957 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3958 ATA_HORKAGE_FIRMWARE_WARN },
3959
3960 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3961 ATA_HORKAGE_FIRMWARE_WARN },
3962
3963 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3964 ATA_HORKAGE_FIRMWARE_WARN },
3965
3966 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3967 the ST disks also have LPM issues */
3968 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3969 ATA_HORKAGE_NOLPM },
3970 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3971
3972 /* Blacklist entries taken from Silicon Image 3124/3132
3973 Windows driver .inf file - also several Linux problem reports */
3974 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
3975 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
3976 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
3977
3978 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3979 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
3980
3981 /* Sandisk SD7/8/9s lock up hard on large trims */
3982 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
3983
3984 /* devices which puke on READ_NATIVE_MAX */
3985 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
3986 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3987 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3988 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3989
3990 /* this one allows HPA unlocking but fails IOs on the area */
3991 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3992
3993 /* Devices which report 1 sector over size HPA */
3994 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
3995 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
3996 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
3997
3998 /* Devices which get the IVB wrong */
3999 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4000 /* Maybe we should just blacklist TSSTcorp... */
4001 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
4002
4003 /* Devices that do not need bridging limits applied */
4004 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
4005 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
4006
4007 /* Devices which aren't very happy with higher link speeds */
4008 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
4009 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
4010
4011 /*
4012 * Devices which choke on SETXFER. Applies only if both the
4013 * device and controller are SATA.
4014 */
4015 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4016 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4017 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4018 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4019 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4020
4021 /* These specific Pioneer models have LPM issues */
4022 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
4023 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
4024
4025 /* Crucial BX100 SSD 500GB has broken LPM support */
4026 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4027
4028 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4029 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4030 ATA_HORKAGE_ZERO_AFTER_TRIM |
4031 ATA_HORKAGE_NOLPM },
4032 /* 512GB MX100 with newer firmware has only LPM issues */
4033 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4034 ATA_HORKAGE_NOLPM },
4035
4036 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4037 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4038 ATA_HORKAGE_ZERO_AFTER_TRIM |
4039 ATA_HORKAGE_NOLPM },
4040 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4041 ATA_HORKAGE_ZERO_AFTER_TRIM |
4042 ATA_HORKAGE_NOLPM },
4043
4044 /* These specific Samsung models/firmware-revs do not handle LPM well */
4045 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4046 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4047 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4048 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4049
4050 /* devices that don't properly handle queued TRIM commands */
4051 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4052 ATA_HORKAGE_ZERO_AFTER_TRIM },
4053 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4054 ATA_HORKAGE_ZERO_AFTER_TRIM },
4055 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4056 ATA_HORKAGE_ZERO_AFTER_TRIM },
4057 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4058 ATA_HORKAGE_ZERO_AFTER_TRIM },
4059 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4060 ATA_HORKAGE_ZERO_AFTER_TRIM },
4061 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4062 ATA_HORKAGE_ZERO_AFTER_TRIM },
4063 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4064 ATA_HORKAGE_NO_DMA_LOG |
4065 ATA_HORKAGE_ZERO_AFTER_TRIM },
4066 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4067 ATA_HORKAGE_ZERO_AFTER_TRIM },
4068 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4069 ATA_HORKAGE_ZERO_AFTER_TRIM },
4070 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4071 ATA_HORKAGE_ZERO_AFTER_TRIM |
4072 ATA_HORKAGE_NO_NCQ_ON_ATI },
4073 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4074 ATA_HORKAGE_ZERO_AFTER_TRIM |
4075 ATA_HORKAGE_NO_NCQ_ON_ATI },
4076 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4077 ATA_HORKAGE_ZERO_AFTER_TRIM |
4078 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4079 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4080 ATA_HORKAGE_ZERO_AFTER_TRIM },
4081
4082 /* devices that don't properly handle TRIM commands */
4083 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4084 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4085
4086 /*
4087 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4088 * (Return Zero After Trim) flags in the ATA Command Set are
4089 * unreliable in the sense that they only define what happens if
4090 * the device successfully executed the DSM TRIM command. TRIM
4091 * is only advisory, however, and the device is free to silently
4092 * ignore all or parts of the request.
4093 *
4094 * Whitelist drives that are known to reliably return zeroes
4095 * after TRIM.
4096 */
4097
4098 /*
4099 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4100 * that model before whitelisting all other intel SSDs.
4101 */
4102 { "INTEL*SSDSC2MH*", NULL, 0 },
4103
4104 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4105 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4106 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4107 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4108 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4109 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4110 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4111 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4112
4113 /*
4114 * Some WD SATA-I drives spin up and down erratically when the link
4115 * is put into the slumber mode. We don't have full list of the
4116 * affected devices. Disable LPM if the device matches one of the
4117 * known prefixes and is SATA-1. As a side effect LPM partial is
4118 * lost too.
4119 *
4120 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4121 */
4122 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4123 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4124 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4125 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4126 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4127 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4128 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4129
4130 /*
4131 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4132 * log page is accessed. Ensure we never ask for this log page with
4133 * these devices.
4134 */
4135 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4136
4137 /* Buggy FUA */
4138 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA },
4139 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA },
4140 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA },
4141 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA },
4142
4143 /* End Marker */
4144 { }
4145 };
4146
ata_dev_blacklisted(const struct ata_device * dev)4147 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4148 {
4149 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4150 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4151 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4152
4153 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4154 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4155
4156 while (ad->model_num) {
4157 if (glob_match(ad->model_num, model_num)) {
4158 if (ad->model_rev == NULL)
4159 return ad->horkage;
4160 if (glob_match(ad->model_rev, model_rev))
4161 return ad->horkage;
4162 }
4163 ad++;
4164 }
4165 return 0;
4166 }
4167
ata_dma_blacklisted(const struct ata_device * dev)4168 static int ata_dma_blacklisted(const struct ata_device *dev)
4169 {
4170 /* We don't support polling DMA.
4171 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4172 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4173 */
4174 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4175 (dev->flags & ATA_DFLAG_CDB_INTR))
4176 return 1;
4177 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4178 }
4179
4180 /**
4181 * ata_is_40wire - check drive side detection
4182 * @dev: device
4183 *
4184 * Perform drive side detection decoding, allowing for device vendors
4185 * who can't follow the documentation.
4186 */
4187
ata_is_40wire(struct ata_device * dev)4188 static int ata_is_40wire(struct ata_device *dev)
4189 {
4190 if (dev->horkage & ATA_HORKAGE_IVB)
4191 return ata_drive_40wire_relaxed(dev->id);
4192 return ata_drive_40wire(dev->id);
4193 }
4194
4195 /**
4196 * cable_is_40wire - 40/80/SATA decider
4197 * @ap: port to consider
4198 *
4199 * This function encapsulates the policy for speed management
4200 * in one place. At the moment we don't cache the result but
4201 * there is a good case for setting ap->cbl to the result when
4202 * we are called with unknown cables (and figuring out if it
4203 * impacts hotplug at all).
4204 *
4205 * Return 1 if the cable appears to be 40 wire.
4206 */
4207
cable_is_40wire(struct ata_port * ap)4208 static int cable_is_40wire(struct ata_port *ap)
4209 {
4210 struct ata_link *link;
4211 struct ata_device *dev;
4212
4213 /* If the controller thinks we are 40 wire, we are. */
4214 if (ap->cbl == ATA_CBL_PATA40)
4215 return 1;
4216
4217 /* If the controller thinks we are 80 wire, we are. */
4218 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4219 return 0;
4220
4221 /* If the system is known to be 40 wire short cable (eg
4222 * laptop), then we allow 80 wire modes even if the drive
4223 * isn't sure.
4224 */
4225 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4226 return 0;
4227
4228 /* If the controller doesn't know, we scan.
4229 *
4230 * Note: We look for all 40 wire detects at this point. Any
4231 * 80 wire detect is taken to be 80 wire cable because
4232 * - in many setups only the one drive (slave if present) will
4233 * give a valid detect
4234 * - if you have a non detect capable drive you don't want it
4235 * to colour the choice
4236 */
4237 ata_for_each_link(link, ap, EDGE) {
4238 ata_for_each_dev(dev, link, ENABLED) {
4239 if (!ata_is_40wire(dev))
4240 return 0;
4241 }
4242 }
4243 return 1;
4244 }
4245
4246 /**
4247 * ata_dev_xfermask - Compute supported xfermask of the given device
4248 * @dev: Device to compute xfermask for
4249 *
4250 * Compute supported xfermask of @dev and store it in
4251 * dev->*_mask. This function is responsible for applying all
4252 * known limits including host controller limits, device
4253 * blacklist, etc...
4254 *
4255 * LOCKING:
4256 * None.
4257 */
ata_dev_xfermask(struct ata_device * dev)4258 static void ata_dev_xfermask(struct ata_device *dev)
4259 {
4260 struct ata_link *link = dev->link;
4261 struct ata_port *ap = link->ap;
4262 struct ata_host *host = ap->host;
4263 unsigned int xfer_mask;
4264
4265 /* controller modes available */
4266 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4267 ap->mwdma_mask, ap->udma_mask);
4268
4269 /* drive modes available */
4270 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4271 dev->mwdma_mask, dev->udma_mask);
4272 xfer_mask &= ata_id_xfermask(dev->id);
4273
4274 /*
4275 * CFA Advanced TrueIDE timings are not allowed on a shared
4276 * cable
4277 */
4278 if (ata_dev_pair(dev)) {
4279 /* No PIO5 or PIO6 */
4280 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4281 /* No MWDMA3 or MWDMA 4 */
4282 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4283 }
4284
4285 if (ata_dma_blacklisted(dev)) {
4286 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4287 ata_dev_warn(dev,
4288 "device is on DMA blacklist, disabling DMA\n");
4289 }
4290
4291 if ((host->flags & ATA_HOST_SIMPLEX) &&
4292 host->simplex_claimed && host->simplex_claimed != ap) {
4293 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4294 ata_dev_warn(dev,
4295 "simplex DMA is claimed by other device, disabling DMA\n");
4296 }
4297
4298 if (ap->flags & ATA_FLAG_NO_IORDY)
4299 xfer_mask &= ata_pio_mask_no_iordy(dev);
4300
4301 if (ap->ops->mode_filter)
4302 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4303
4304 /* Apply cable rule here. Don't apply it early because when
4305 * we handle hot plug the cable type can itself change.
4306 * Check this last so that we know if the transfer rate was
4307 * solely limited by the cable.
4308 * Unknown or 80 wire cables reported host side are checked
4309 * drive side as well. Cases where we know a 40wire cable
4310 * is used safely for 80 are not checked here.
4311 */
4312 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4313 /* UDMA/44 or higher would be available */
4314 if (cable_is_40wire(ap)) {
4315 ata_dev_warn(dev,
4316 "limited to UDMA/33 due to 40-wire cable\n");
4317 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4318 }
4319
4320 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4321 &dev->mwdma_mask, &dev->udma_mask);
4322 }
4323
4324 /**
4325 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4326 * @dev: Device to which command will be sent
4327 *
4328 * Issue SET FEATURES - XFER MODE command to device @dev
4329 * on port @ap.
4330 *
4331 * LOCKING:
4332 * PCI/etc. bus probe sem.
4333 *
4334 * RETURNS:
4335 * 0 on success, AC_ERR_* mask otherwise.
4336 */
4337
ata_dev_set_xfermode(struct ata_device * dev)4338 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4339 {
4340 struct ata_taskfile tf;
4341
4342 /* set up set-features taskfile */
4343 ata_dev_dbg(dev, "set features - xfer mode\n");
4344
4345 /* Some controllers and ATAPI devices show flaky interrupt
4346 * behavior after setting xfer mode. Use polling instead.
4347 */
4348 ata_tf_init(dev, &tf);
4349 tf.command = ATA_CMD_SET_FEATURES;
4350 tf.feature = SETFEATURES_XFER;
4351 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4352 tf.protocol = ATA_PROT_NODATA;
4353 /* If we are using IORDY we must send the mode setting command */
4354 if (ata_pio_need_iordy(dev))
4355 tf.nsect = dev->xfer_mode;
4356 /* If the device has IORDY and the controller does not - turn it off */
4357 else if (ata_id_has_iordy(dev->id))
4358 tf.nsect = 0x01;
4359 else /* In the ancient relic department - skip all of this */
4360 return 0;
4361
4362 /*
4363 * On some disks, this command causes spin-up, so we need longer
4364 * timeout.
4365 */
4366 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4367 }
4368
4369 /**
4370 * ata_dev_set_feature - Issue SET FEATURES
4371 * @dev: Device to which command will be sent
4372 * @subcmd: The SET FEATURES subcommand to be sent
4373 * @action: The sector count represents a subcommand specific action
4374 *
4375 * Issue SET FEATURES command to device @dev on port @ap with sector count
4376 *
4377 * LOCKING:
4378 * PCI/etc. bus probe sem.
4379 *
4380 * RETURNS:
4381 * 0 on success, AC_ERR_* mask otherwise.
4382 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4383 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4384 {
4385 struct ata_taskfile tf;
4386 unsigned int timeout = 0;
4387
4388 /* set up set-features taskfile */
4389 ata_dev_dbg(dev, "set features\n");
4390
4391 ata_tf_init(dev, &tf);
4392 tf.command = ATA_CMD_SET_FEATURES;
4393 tf.feature = subcmd;
4394 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4395 tf.protocol = ATA_PROT_NODATA;
4396 tf.nsect = action;
4397
4398 if (subcmd == SETFEATURES_SPINUP)
4399 timeout = ata_probe_timeout ?
4400 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4401
4402 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4403 }
4404 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4405
4406 /**
4407 * ata_dev_init_params - Issue INIT DEV PARAMS command
4408 * @dev: Device to which command will be sent
4409 * @heads: Number of heads (taskfile parameter)
4410 * @sectors: Number of sectors (taskfile parameter)
4411 *
4412 * LOCKING:
4413 * Kernel thread context (may sleep)
4414 *
4415 * RETURNS:
4416 * 0 on success, AC_ERR_* mask otherwise.
4417 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4418 static unsigned int ata_dev_init_params(struct ata_device *dev,
4419 u16 heads, u16 sectors)
4420 {
4421 struct ata_taskfile tf;
4422 unsigned int err_mask;
4423
4424 /* Number of sectors per track 1-255. Number of heads 1-16 */
4425 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4426 return AC_ERR_INVALID;
4427
4428 /* set up init dev params taskfile */
4429 ata_dev_dbg(dev, "init dev params \n");
4430
4431 ata_tf_init(dev, &tf);
4432 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4433 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4434 tf.protocol = ATA_PROT_NODATA;
4435 tf.nsect = sectors;
4436 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4437
4438 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4439 /* A clean abort indicates an original or just out of spec drive
4440 and we should continue as we issue the setup based on the
4441 drive reported working geometry */
4442 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4443 err_mask = 0;
4444
4445 return err_mask;
4446 }
4447
4448 /**
4449 * atapi_check_dma - Check whether ATAPI DMA can be supported
4450 * @qc: Metadata associated with taskfile to check
4451 *
4452 * Allow low-level driver to filter ATA PACKET commands, returning
4453 * a status indicating whether or not it is OK to use DMA for the
4454 * supplied PACKET command.
4455 *
4456 * LOCKING:
4457 * spin_lock_irqsave(host lock)
4458 *
4459 * RETURNS: 0 when ATAPI DMA can be used
4460 * nonzero otherwise
4461 */
atapi_check_dma(struct ata_queued_cmd * qc)4462 int atapi_check_dma(struct ata_queued_cmd *qc)
4463 {
4464 struct ata_port *ap = qc->ap;
4465
4466 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4467 * few ATAPI devices choke on such DMA requests.
4468 */
4469 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4470 unlikely(qc->nbytes & 15))
4471 return 1;
4472
4473 if (ap->ops->check_atapi_dma)
4474 return ap->ops->check_atapi_dma(qc);
4475
4476 return 0;
4477 }
4478
4479 /**
4480 * ata_std_qc_defer - Check whether a qc needs to be deferred
4481 * @qc: ATA command in question
4482 *
4483 * Non-NCQ commands cannot run with any other command, NCQ or
4484 * not. As upper layer only knows the queue depth, we are
4485 * responsible for maintaining exclusion. This function checks
4486 * whether a new command @qc can be issued.
4487 *
4488 * LOCKING:
4489 * spin_lock_irqsave(host lock)
4490 *
4491 * RETURNS:
4492 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4493 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4494 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4495 {
4496 struct ata_link *link = qc->dev->link;
4497
4498 if (ata_is_ncq(qc->tf.protocol)) {
4499 if (!ata_tag_valid(link->active_tag))
4500 return 0;
4501 } else {
4502 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4503 return 0;
4504 }
4505
4506 return ATA_DEFER_LINK;
4507 }
4508 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4509
ata_noop_qc_prep(struct ata_queued_cmd * qc)4510 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4511 {
4512 return AC_ERR_OK;
4513 }
4514 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4515
4516 /**
4517 * ata_sg_init - Associate command with scatter-gather table.
4518 * @qc: Command to be associated
4519 * @sg: Scatter-gather table.
4520 * @n_elem: Number of elements in s/g table.
4521 *
4522 * Initialize the data-related elements of queued_cmd @qc
4523 * to point to a scatter-gather table @sg, containing @n_elem
4524 * elements.
4525 *
4526 * LOCKING:
4527 * spin_lock_irqsave(host lock)
4528 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4529 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4530 unsigned int n_elem)
4531 {
4532 qc->sg = sg;
4533 qc->n_elem = n_elem;
4534 qc->cursg = qc->sg;
4535 }
4536
4537 #ifdef CONFIG_HAS_DMA
4538
4539 /**
4540 * ata_sg_clean - Unmap DMA memory associated with command
4541 * @qc: Command containing DMA memory to be released
4542 *
4543 * Unmap all mapped DMA memory associated with this command.
4544 *
4545 * LOCKING:
4546 * spin_lock_irqsave(host lock)
4547 */
ata_sg_clean(struct ata_queued_cmd * qc)4548 static void ata_sg_clean(struct ata_queued_cmd *qc)
4549 {
4550 struct ata_port *ap = qc->ap;
4551 struct scatterlist *sg = qc->sg;
4552 int dir = qc->dma_dir;
4553
4554 WARN_ON_ONCE(sg == NULL);
4555
4556 if (qc->n_elem)
4557 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4558
4559 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4560 qc->sg = NULL;
4561 }
4562
4563 /**
4564 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4565 * @qc: Command with scatter-gather table to be mapped.
4566 *
4567 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4568 *
4569 * LOCKING:
4570 * spin_lock_irqsave(host lock)
4571 *
4572 * RETURNS:
4573 * Zero on success, negative on error.
4574 *
4575 */
ata_sg_setup(struct ata_queued_cmd * qc)4576 static int ata_sg_setup(struct ata_queued_cmd *qc)
4577 {
4578 struct ata_port *ap = qc->ap;
4579 unsigned int n_elem;
4580
4581 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4582 if (n_elem < 1)
4583 return -1;
4584
4585 qc->orig_n_elem = qc->n_elem;
4586 qc->n_elem = n_elem;
4587 qc->flags |= ATA_QCFLAG_DMAMAP;
4588
4589 return 0;
4590 }
4591
4592 #else /* !CONFIG_HAS_DMA */
4593
ata_sg_clean(struct ata_queued_cmd * qc)4594 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4595 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4596
4597 #endif /* !CONFIG_HAS_DMA */
4598
4599 /**
4600 * swap_buf_le16 - swap halves of 16-bit words in place
4601 * @buf: Buffer to swap
4602 * @buf_words: Number of 16-bit words in buffer.
4603 *
4604 * Swap halves of 16-bit words if needed to convert from
4605 * little-endian byte order to native cpu byte order, or
4606 * vice-versa.
4607 *
4608 * LOCKING:
4609 * Inherited from caller.
4610 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4611 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4612 {
4613 #ifdef __BIG_ENDIAN
4614 unsigned int i;
4615
4616 for (i = 0; i < buf_words; i++)
4617 buf[i] = le16_to_cpu(buf[i]);
4618 #endif /* __BIG_ENDIAN */
4619 }
4620
4621 /**
4622 * ata_qc_free - free unused ata_queued_cmd
4623 * @qc: Command to complete
4624 *
4625 * Designed to free unused ata_queued_cmd object
4626 * in case something prevents using it.
4627 *
4628 * LOCKING:
4629 * spin_lock_irqsave(host lock)
4630 */
ata_qc_free(struct ata_queued_cmd * qc)4631 void ata_qc_free(struct ata_queued_cmd *qc)
4632 {
4633 qc->flags = 0;
4634 if (ata_tag_valid(qc->tag))
4635 qc->tag = ATA_TAG_POISON;
4636 }
4637
__ata_qc_complete(struct ata_queued_cmd * qc)4638 void __ata_qc_complete(struct ata_queued_cmd *qc)
4639 {
4640 struct ata_port *ap;
4641 struct ata_link *link;
4642
4643 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4644 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4645 ap = qc->ap;
4646 link = qc->dev->link;
4647
4648 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4649 ata_sg_clean(qc);
4650
4651 /* command should be marked inactive atomically with qc completion */
4652 if (ata_is_ncq(qc->tf.protocol)) {
4653 link->sactive &= ~(1 << qc->hw_tag);
4654 if (!link->sactive)
4655 ap->nr_active_links--;
4656 } else {
4657 link->active_tag = ATA_TAG_POISON;
4658 ap->nr_active_links--;
4659 }
4660
4661 /* clear exclusive status */
4662 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4663 ap->excl_link == link))
4664 ap->excl_link = NULL;
4665
4666 /* atapi: mark qc as inactive to prevent the interrupt handler
4667 * from completing the command twice later, before the error handler
4668 * is called. (when rc != 0 and atapi request sense is needed)
4669 */
4670 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4671 ap->qc_active &= ~(1ULL << qc->tag);
4672
4673 /* call completion callback */
4674 qc->complete_fn(qc);
4675 }
4676
fill_result_tf(struct ata_queued_cmd * qc)4677 static void fill_result_tf(struct ata_queued_cmd *qc)
4678 {
4679 struct ata_port *ap = qc->ap;
4680
4681 qc->result_tf.flags = qc->tf.flags;
4682 ap->ops->qc_fill_rtf(qc);
4683 }
4684
ata_verify_xfer(struct ata_queued_cmd * qc)4685 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4686 {
4687 struct ata_device *dev = qc->dev;
4688
4689 if (!ata_is_data(qc->tf.protocol))
4690 return;
4691
4692 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4693 return;
4694
4695 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4696 }
4697
4698 /**
4699 * ata_qc_complete - Complete an active ATA command
4700 * @qc: Command to complete
4701 *
4702 * Indicate to the mid and upper layers that an ATA command has
4703 * completed, with either an ok or not-ok status.
4704 *
4705 * Refrain from calling this function multiple times when
4706 * successfully completing multiple NCQ commands.
4707 * ata_qc_complete_multiple() should be used instead, which will
4708 * properly update IRQ expect state.
4709 *
4710 * LOCKING:
4711 * spin_lock_irqsave(host lock)
4712 */
ata_qc_complete(struct ata_queued_cmd * qc)4713 void ata_qc_complete(struct ata_queued_cmd *qc)
4714 {
4715 struct ata_port *ap = qc->ap;
4716
4717 /* Trigger the LED (if available) */
4718 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4719
4720 /* XXX: New EH and old EH use different mechanisms to
4721 * synchronize EH with regular execution path.
4722 *
4723 * In new EH, a qc owned by EH is marked with ATA_QCFLAG_EH.
4724 * Normal execution path is responsible for not accessing a
4725 * qc owned by EH. libata core enforces the rule by returning NULL
4726 * from ata_qc_from_tag() for qcs owned by EH.
4727 *
4728 * Old EH depends on ata_qc_complete() nullifying completion
4729 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4730 * not synchronize with interrupt handler. Only PIO task is
4731 * taken care of.
4732 */
4733 if (ap->ops->error_handler) {
4734 struct ata_device *dev = qc->dev;
4735 struct ata_eh_info *ehi = &dev->link->eh_info;
4736
4737 if (unlikely(qc->err_mask))
4738 qc->flags |= ATA_QCFLAG_EH;
4739
4740 /*
4741 * Finish internal commands without any further processing
4742 * and always with the result TF filled.
4743 */
4744 if (unlikely(ata_tag_internal(qc->tag))) {
4745 fill_result_tf(qc);
4746 trace_ata_qc_complete_internal(qc);
4747 __ata_qc_complete(qc);
4748 return;
4749 }
4750
4751 /*
4752 * Non-internal qc has failed. Fill the result TF and
4753 * summon EH.
4754 */
4755 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4756 fill_result_tf(qc);
4757 trace_ata_qc_complete_failed(qc);
4758 ata_qc_schedule_eh(qc);
4759 return;
4760 }
4761
4762 WARN_ON_ONCE(ata_port_is_frozen(ap));
4763
4764 /* read result TF if requested */
4765 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4766 fill_result_tf(qc);
4767
4768 trace_ata_qc_complete_done(qc);
4769 /* Some commands need post-processing after successful
4770 * completion.
4771 */
4772 switch (qc->tf.command) {
4773 case ATA_CMD_SET_FEATURES:
4774 if (qc->tf.feature != SETFEATURES_WC_ON &&
4775 qc->tf.feature != SETFEATURES_WC_OFF &&
4776 qc->tf.feature != SETFEATURES_RA_ON &&
4777 qc->tf.feature != SETFEATURES_RA_OFF)
4778 break;
4779 fallthrough;
4780 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4781 case ATA_CMD_SET_MULTI: /* multi_count changed */
4782 /* revalidate device */
4783 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4784 ata_port_schedule_eh(ap);
4785 break;
4786
4787 case ATA_CMD_SLEEP:
4788 dev->flags |= ATA_DFLAG_SLEEPING;
4789 break;
4790 }
4791
4792 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4793 ata_verify_xfer(qc);
4794
4795 __ata_qc_complete(qc);
4796 } else {
4797 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4798 return;
4799
4800 /* read result TF if failed or requested */
4801 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4802 fill_result_tf(qc);
4803
4804 __ata_qc_complete(qc);
4805 }
4806 }
4807 EXPORT_SYMBOL_GPL(ata_qc_complete);
4808
4809 /**
4810 * ata_qc_get_active - get bitmask of active qcs
4811 * @ap: port in question
4812 *
4813 * LOCKING:
4814 * spin_lock_irqsave(host lock)
4815 *
4816 * RETURNS:
4817 * Bitmask of active qcs
4818 */
ata_qc_get_active(struct ata_port * ap)4819 u64 ata_qc_get_active(struct ata_port *ap)
4820 {
4821 u64 qc_active = ap->qc_active;
4822
4823 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4824 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4825 qc_active |= (1 << 0);
4826 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4827 }
4828
4829 return qc_active;
4830 }
4831 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4832
4833 /**
4834 * ata_qc_issue - issue taskfile to device
4835 * @qc: command to issue to device
4836 *
4837 * Prepare an ATA command to submission to device.
4838 * This includes mapping the data into a DMA-able
4839 * area, filling in the S/G table, and finally
4840 * writing the taskfile to hardware, starting the command.
4841 *
4842 * LOCKING:
4843 * spin_lock_irqsave(host lock)
4844 */
ata_qc_issue(struct ata_queued_cmd * qc)4845 void ata_qc_issue(struct ata_queued_cmd *qc)
4846 {
4847 struct ata_port *ap = qc->ap;
4848 struct ata_link *link = qc->dev->link;
4849 u8 prot = qc->tf.protocol;
4850
4851 /* Make sure only one non-NCQ command is outstanding. The
4852 * check is skipped for old EH because it reuses active qc to
4853 * request ATAPI sense.
4854 */
4855 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4856
4857 if (ata_is_ncq(prot)) {
4858 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4859
4860 if (!link->sactive)
4861 ap->nr_active_links++;
4862 link->sactive |= 1 << qc->hw_tag;
4863 } else {
4864 WARN_ON_ONCE(link->sactive);
4865
4866 ap->nr_active_links++;
4867 link->active_tag = qc->tag;
4868 }
4869
4870 qc->flags |= ATA_QCFLAG_ACTIVE;
4871 ap->qc_active |= 1ULL << qc->tag;
4872
4873 /*
4874 * We guarantee to LLDs that they will have at least one
4875 * non-zero sg if the command is a data command.
4876 */
4877 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4878 goto sys_err;
4879
4880 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4881 (ap->flags & ATA_FLAG_PIO_DMA)))
4882 if (ata_sg_setup(qc))
4883 goto sys_err;
4884
4885 /* if device is sleeping, schedule reset and abort the link */
4886 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4887 link->eh_info.action |= ATA_EH_RESET;
4888 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4889 ata_link_abort(link);
4890 return;
4891 }
4892
4893 trace_ata_qc_prep(qc);
4894 qc->err_mask |= ap->ops->qc_prep(qc);
4895 if (unlikely(qc->err_mask))
4896 goto err;
4897 trace_ata_qc_issue(qc);
4898 qc->err_mask |= ap->ops->qc_issue(qc);
4899 if (unlikely(qc->err_mask))
4900 goto err;
4901 return;
4902
4903 sys_err:
4904 qc->err_mask |= AC_ERR_SYSTEM;
4905 err:
4906 ata_qc_complete(qc);
4907 }
4908
4909 /**
4910 * ata_phys_link_online - test whether the given link is online
4911 * @link: ATA link to test
4912 *
4913 * Test whether @link is online. Note that this function returns
4914 * 0 if online status of @link cannot be obtained, so
4915 * ata_link_online(link) != !ata_link_offline(link).
4916 *
4917 * LOCKING:
4918 * None.
4919 *
4920 * RETURNS:
4921 * True if the port online status is available and online.
4922 */
ata_phys_link_online(struct ata_link * link)4923 bool ata_phys_link_online(struct ata_link *link)
4924 {
4925 u32 sstatus;
4926
4927 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4928 ata_sstatus_online(sstatus))
4929 return true;
4930 return false;
4931 }
4932
4933 /**
4934 * ata_phys_link_offline - test whether the given link is offline
4935 * @link: ATA link to test
4936 *
4937 * Test whether @link is offline. Note that this function
4938 * returns 0 if offline status of @link cannot be obtained, so
4939 * ata_link_online(link) != !ata_link_offline(link).
4940 *
4941 * LOCKING:
4942 * None.
4943 *
4944 * RETURNS:
4945 * True if the port offline status is available and offline.
4946 */
ata_phys_link_offline(struct ata_link * link)4947 bool ata_phys_link_offline(struct ata_link *link)
4948 {
4949 u32 sstatus;
4950
4951 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4952 !ata_sstatus_online(sstatus))
4953 return true;
4954 return false;
4955 }
4956
4957 /**
4958 * ata_link_online - test whether the given link is online
4959 * @link: ATA link to test
4960 *
4961 * Test whether @link is online. This is identical to
4962 * ata_phys_link_online() when there's no slave link. When
4963 * there's a slave link, this function should only be called on
4964 * the master link and will return true if any of M/S links is
4965 * online.
4966 *
4967 * LOCKING:
4968 * None.
4969 *
4970 * RETURNS:
4971 * True if the port online status is available and online.
4972 */
ata_link_online(struct ata_link * link)4973 bool ata_link_online(struct ata_link *link)
4974 {
4975 struct ata_link *slave = link->ap->slave_link;
4976
4977 WARN_ON(link == slave); /* shouldn't be called on slave link */
4978
4979 return ata_phys_link_online(link) ||
4980 (slave && ata_phys_link_online(slave));
4981 }
4982 EXPORT_SYMBOL_GPL(ata_link_online);
4983
4984 /**
4985 * ata_link_offline - test whether the given link is offline
4986 * @link: ATA link to test
4987 *
4988 * Test whether @link is offline. This is identical to
4989 * ata_phys_link_offline() when there's no slave link. When
4990 * there's a slave link, this function should only be called on
4991 * the master link and will return true if both M/S links are
4992 * offline.
4993 *
4994 * LOCKING:
4995 * None.
4996 *
4997 * RETURNS:
4998 * True if the port offline status is available and offline.
4999 */
ata_link_offline(struct ata_link * link)5000 bool ata_link_offline(struct ata_link *link)
5001 {
5002 struct ata_link *slave = link->ap->slave_link;
5003
5004 WARN_ON(link == slave); /* shouldn't be called on slave link */
5005
5006 return ata_phys_link_offline(link) &&
5007 (!slave || ata_phys_link_offline(slave));
5008 }
5009 EXPORT_SYMBOL_GPL(ata_link_offline);
5010
5011 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5012 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5013 unsigned int action, unsigned int ehi_flags,
5014 bool async)
5015 {
5016 struct ata_link *link;
5017 unsigned long flags;
5018
5019 /* Previous resume operation might still be in
5020 * progress. Wait for PM_PENDING to clear.
5021 */
5022 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5023 ata_port_wait_eh(ap);
5024 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5025 }
5026
5027 /* request PM ops to EH */
5028 spin_lock_irqsave(ap->lock, flags);
5029
5030 ap->pm_mesg = mesg;
5031 ap->pflags |= ATA_PFLAG_PM_PENDING;
5032 ata_for_each_link(link, ap, HOST_FIRST) {
5033 link->eh_info.action |= action;
5034 link->eh_info.flags |= ehi_flags;
5035 }
5036
5037 ata_port_schedule_eh(ap);
5038
5039 spin_unlock_irqrestore(ap->lock, flags);
5040
5041 if (!async) {
5042 ata_port_wait_eh(ap);
5043 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5044 }
5045 }
5046
5047 /*
5048 * On some hardware, device fails to respond after spun down for suspend. As
5049 * the device won't be used before being resumed, we don't need to touch the
5050 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5051 *
5052 * http://thread.gmane.org/gmane.linux.ide/46764
5053 */
5054 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5055 | ATA_EHI_NO_AUTOPSY
5056 | ATA_EHI_NO_RECOVERY;
5057
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5058 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5059 {
5060 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5061 }
5062
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5063 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5064 {
5065 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5066 }
5067
ata_port_pm_suspend(struct device * dev)5068 static int ata_port_pm_suspend(struct device *dev)
5069 {
5070 struct ata_port *ap = to_ata_port(dev);
5071
5072 if (pm_runtime_suspended(dev))
5073 return 0;
5074
5075 ata_port_suspend(ap, PMSG_SUSPEND);
5076 return 0;
5077 }
5078
ata_port_pm_freeze(struct device * dev)5079 static int ata_port_pm_freeze(struct device *dev)
5080 {
5081 struct ata_port *ap = to_ata_port(dev);
5082
5083 if (pm_runtime_suspended(dev))
5084 return 0;
5085
5086 ata_port_suspend(ap, PMSG_FREEZE);
5087 return 0;
5088 }
5089
ata_port_pm_poweroff(struct device * dev)5090 static int ata_port_pm_poweroff(struct device *dev)
5091 {
5092 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5093 return 0;
5094 }
5095
5096 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5097 | ATA_EHI_QUIET;
5098
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5099 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5100 {
5101 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5102 }
5103
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5104 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5105 {
5106 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5107 }
5108
ata_port_pm_resume(struct device * dev)5109 static int ata_port_pm_resume(struct device *dev)
5110 {
5111 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5112 pm_runtime_disable(dev);
5113 pm_runtime_set_active(dev);
5114 pm_runtime_enable(dev);
5115 return 0;
5116 }
5117
5118 /*
5119 * For ODDs, the upper layer will poll for media change every few seconds,
5120 * which will make it enter and leave suspend state every few seconds. And
5121 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5122 * is very little and the ODD may malfunction after constantly being reset.
5123 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5124 * ODD is attached to the port.
5125 */
ata_port_runtime_idle(struct device * dev)5126 static int ata_port_runtime_idle(struct device *dev)
5127 {
5128 struct ata_port *ap = to_ata_port(dev);
5129 struct ata_link *link;
5130 struct ata_device *adev;
5131
5132 ata_for_each_link(link, ap, HOST_FIRST) {
5133 ata_for_each_dev(adev, link, ENABLED)
5134 if (adev->class == ATA_DEV_ATAPI &&
5135 !zpodd_dev_enabled(adev))
5136 return -EBUSY;
5137 }
5138
5139 return 0;
5140 }
5141
ata_port_runtime_suspend(struct device * dev)5142 static int ata_port_runtime_suspend(struct device *dev)
5143 {
5144 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5145 return 0;
5146 }
5147
ata_port_runtime_resume(struct device * dev)5148 static int ata_port_runtime_resume(struct device *dev)
5149 {
5150 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5151 return 0;
5152 }
5153
5154 static const struct dev_pm_ops ata_port_pm_ops = {
5155 .suspend = ata_port_pm_suspend,
5156 .resume = ata_port_pm_resume,
5157 .freeze = ata_port_pm_freeze,
5158 .thaw = ata_port_pm_resume,
5159 .poweroff = ata_port_pm_poweroff,
5160 .restore = ata_port_pm_resume,
5161
5162 .runtime_suspend = ata_port_runtime_suspend,
5163 .runtime_resume = ata_port_runtime_resume,
5164 .runtime_idle = ata_port_runtime_idle,
5165 };
5166
5167 /* sas ports don't participate in pm runtime management of ata_ports,
5168 * and need to resume ata devices at the domain level, not the per-port
5169 * level. sas suspend/resume is async to allow parallel port recovery
5170 * since sas has multiple ata_port instances per Scsi_Host.
5171 */
ata_sas_port_suspend(struct ata_port * ap)5172 void ata_sas_port_suspend(struct ata_port *ap)
5173 {
5174 ata_port_suspend_async(ap, PMSG_SUSPEND);
5175 }
5176 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5177
ata_sas_port_resume(struct ata_port * ap)5178 void ata_sas_port_resume(struct ata_port *ap)
5179 {
5180 ata_port_resume_async(ap, PMSG_RESUME);
5181 }
5182 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5183
5184 /**
5185 * ata_host_suspend - suspend host
5186 * @host: host to suspend
5187 * @mesg: PM message
5188 *
5189 * Suspend @host. Actual operation is performed by port suspend.
5190 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5191 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5192 {
5193 host->dev->power.power_state = mesg;
5194 }
5195 EXPORT_SYMBOL_GPL(ata_host_suspend);
5196
5197 /**
5198 * ata_host_resume - resume host
5199 * @host: host to resume
5200 *
5201 * Resume @host. Actual operation is performed by port resume.
5202 */
ata_host_resume(struct ata_host * host)5203 void ata_host_resume(struct ata_host *host)
5204 {
5205 host->dev->power.power_state = PMSG_ON;
5206 }
5207 EXPORT_SYMBOL_GPL(ata_host_resume);
5208 #endif
5209
5210 const struct device_type ata_port_type = {
5211 .name = "ata_port",
5212 #ifdef CONFIG_PM
5213 .pm = &ata_port_pm_ops,
5214 #endif
5215 };
5216
5217 /**
5218 * ata_dev_init - Initialize an ata_device structure
5219 * @dev: Device structure to initialize
5220 *
5221 * Initialize @dev in preparation for probing.
5222 *
5223 * LOCKING:
5224 * Inherited from caller.
5225 */
ata_dev_init(struct ata_device * dev)5226 void ata_dev_init(struct ata_device *dev)
5227 {
5228 struct ata_link *link = ata_dev_phys_link(dev);
5229 struct ata_port *ap = link->ap;
5230 unsigned long flags;
5231
5232 /* SATA spd limit is bound to the attached device, reset together */
5233 link->sata_spd_limit = link->hw_sata_spd_limit;
5234 link->sata_spd = 0;
5235
5236 /* High bits of dev->flags are used to record warm plug
5237 * requests which occur asynchronously. Synchronize using
5238 * host lock.
5239 */
5240 spin_lock_irqsave(ap->lock, flags);
5241 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5242 dev->horkage = 0;
5243 spin_unlock_irqrestore(ap->lock, flags);
5244
5245 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5246 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5247 dev->pio_mask = UINT_MAX;
5248 dev->mwdma_mask = UINT_MAX;
5249 dev->udma_mask = UINT_MAX;
5250 }
5251
5252 /**
5253 * ata_link_init - Initialize an ata_link structure
5254 * @ap: ATA port link is attached to
5255 * @link: Link structure to initialize
5256 * @pmp: Port multiplier port number
5257 *
5258 * Initialize @link.
5259 *
5260 * LOCKING:
5261 * Kernel thread context (may sleep)
5262 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5263 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5264 {
5265 int i;
5266
5267 /* clear everything except for devices */
5268 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5269 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5270
5271 link->ap = ap;
5272 link->pmp = pmp;
5273 link->active_tag = ATA_TAG_POISON;
5274 link->hw_sata_spd_limit = UINT_MAX;
5275
5276 /* can't use iterator, ap isn't initialized yet */
5277 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5278 struct ata_device *dev = &link->device[i];
5279
5280 dev->link = link;
5281 dev->devno = dev - link->device;
5282 #ifdef CONFIG_ATA_ACPI
5283 dev->gtf_filter = ata_acpi_gtf_filter;
5284 #endif
5285 ata_dev_init(dev);
5286 }
5287 }
5288
5289 /**
5290 * sata_link_init_spd - Initialize link->sata_spd_limit
5291 * @link: Link to configure sata_spd_limit for
5292 *
5293 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5294 * configured value.
5295 *
5296 * LOCKING:
5297 * Kernel thread context (may sleep).
5298 *
5299 * RETURNS:
5300 * 0 on success, -errno on failure.
5301 */
sata_link_init_spd(struct ata_link * link)5302 int sata_link_init_spd(struct ata_link *link)
5303 {
5304 u8 spd;
5305 int rc;
5306
5307 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5308 if (rc)
5309 return rc;
5310
5311 spd = (link->saved_scontrol >> 4) & 0xf;
5312 if (spd)
5313 link->hw_sata_spd_limit &= (1 << spd) - 1;
5314
5315 ata_force_link_limits(link);
5316
5317 link->sata_spd_limit = link->hw_sata_spd_limit;
5318
5319 return 0;
5320 }
5321
5322 /**
5323 * ata_port_alloc - allocate and initialize basic ATA port resources
5324 * @host: ATA host this allocated port belongs to
5325 *
5326 * Allocate and initialize basic ATA port resources.
5327 *
5328 * RETURNS:
5329 * Allocate ATA port on success, NULL on failure.
5330 *
5331 * LOCKING:
5332 * Inherited from calling layer (may sleep).
5333 */
ata_port_alloc(struct ata_host * host)5334 struct ata_port *ata_port_alloc(struct ata_host *host)
5335 {
5336 struct ata_port *ap;
5337
5338 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5339 if (!ap)
5340 return NULL;
5341
5342 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5343 ap->lock = &host->lock;
5344 ap->print_id = -1;
5345 ap->local_port_no = -1;
5346 ap->host = host;
5347 ap->dev = host->dev;
5348
5349 mutex_init(&ap->scsi_scan_mutex);
5350 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5351 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5352 INIT_LIST_HEAD(&ap->eh_done_q);
5353 init_waitqueue_head(&ap->eh_wait_q);
5354 init_completion(&ap->park_req_pending);
5355 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5356 TIMER_DEFERRABLE);
5357
5358 ap->cbl = ATA_CBL_NONE;
5359
5360 ata_link_init(ap, &ap->link, 0);
5361
5362 #ifdef ATA_IRQ_TRAP
5363 ap->stats.unhandled_irq = 1;
5364 ap->stats.idle_irq = 1;
5365 #endif
5366 ata_sff_port_init(ap);
5367
5368 return ap;
5369 }
5370
ata_devres_release(struct device * gendev,void * res)5371 static void ata_devres_release(struct device *gendev, void *res)
5372 {
5373 struct ata_host *host = dev_get_drvdata(gendev);
5374 int i;
5375
5376 for (i = 0; i < host->n_ports; i++) {
5377 struct ata_port *ap = host->ports[i];
5378
5379 if (!ap)
5380 continue;
5381
5382 if (ap->scsi_host)
5383 scsi_host_put(ap->scsi_host);
5384
5385 }
5386
5387 dev_set_drvdata(gendev, NULL);
5388 ata_host_put(host);
5389 }
5390
ata_host_release(struct kref * kref)5391 static void ata_host_release(struct kref *kref)
5392 {
5393 struct ata_host *host = container_of(kref, struct ata_host, kref);
5394 int i;
5395
5396 for (i = 0; i < host->n_ports; i++) {
5397 struct ata_port *ap = host->ports[i];
5398
5399 kfree(ap->pmp_link);
5400 kfree(ap->slave_link);
5401 kfree(ap);
5402 host->ports[i] = NULL;
5403 }
5404 kfree(host);
5405 }
5406
ata_host_get(struct ata_host * host)5407 void ata_host_get(struct ata_host *host)
5408 {
5409 kref_get(&host->kref);
5410 }
5411
ata_host_put(struct ata_host * host)5412 void ata_host_put(struct ata_host *host)
5413 {
5414 kref_put(&host->kref, ata_host_release);
5415 }
5416 EXPORT_SYMBOL_GPL(ata_host_put);
5417
5418 /**
5419 * ata_host_alloc - allocate and init basic ATA host resources
5420 * @dev: generic device this host is associated with
5421 * @max_ports: maximum number of ATA ports associated with this host
5422 *
5423 * Allocate and initialize basic ATA host resources. LLD calls
5424 * this function to allocate a host, initializes it fully and
5425 * attaches it using ata_host_register().
5426 *
5427 * @max_ports ports are allocated and host->n_ports is
5428 * initialized to @max_ports. The caller is allowed to decrease
5429 * host->n_ports before calling ata_host_register(). The unused
5430 * ports will be automatically freed on registration.
5431 *
5432 * RETURNS:
5433 * Allocate ATA host on success, NULL on failure.
5434 *
5435 * LOCKING:
5436 * Inherited from calling layer (may sleep).
5437 */
ata_host_alloc(struct device * dev,int max_ports)5438 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5439 {
5440 struct ata_host *host;
5441 size_t sz;
5442 int i;
5443 void *dr;
5444
5445 /* alloc a container for our list of ATA ports (buses) */
5446 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5447 host = kzalloc(sz, GFP_KERNEL);
5448 if (!host)
5449 return NULL;
5450
5451 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5452 goto err_free;
5453
5454 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5455 if (!dr)
5456 goto err_out;
5457
5458 devres_add(dev, dr);
5459 dev_set_drvdata(dev, host);
5460
5461 spin_lock_init(&host->lock);
5462 mutex_init(&host->eh_mutex);
5463 host->dev = dev;
5464 host->n_ports = max_ports;
5465 kref_init(&host->kref);
5466
5467 /* allocate ports bound to this host */
5468 for (i = 0; i < max_ports; i++) {
5469 struct ata_port *ap;
5470
5471 ap = ata_port_alloc(host);
5472 if (!ap)
5473 goto err_out;
5474
5475 ap->port_no = i;
5476 host->ports[i] = ap;
5477 }
5478
5479 devres_remove_group(dev, NULL);
5480 return host;
5481
5482 err_out:
5483 devres_release_group(dev, NULL);
5484 err_free:
5485 kfree(host);
5486 return NULL;
5487 }
5488 EXPORT_SYMBOL_GPL(ata_host_alloc);
5489
5490 /**
5491 * ata_host_alloc_pinfo - alloc host and init with port_info array
5492 * @dev: generic device this host is associated with
5493 * @ppi: array of ATA port_info to initialize host with
5494 * @n_ports: number of ATA ports attached to this host
5495 *
5496 * Allocate ATA host and initialize with info from @ppi. If NULL
5497 * terminated, @ppi may contain fewer entries than @n_ports. The
5498 * last entry will be used for the remaining ports.
5499 *
5500 * RETURNS:
5501 * Allocate ATA host on success, NULL on failure.
5502 *
5503 * LOCKING:
5504 * Inherited from calling layer (may sleep).
5505 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5506 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5507 const struct ata_port_info * const * ppi,
5508 int n_ports)
5509 {
5510 const struct ata_port_info *pi = &ata_dummy_port_info;
5511 struct ata_host *host;
5512 int i, j;
5513
5514 host = ata_host_alloc(dev, n_ports);
5515 if (!host)
5516 return NULL;
5517
5518 for (i = 0, j = 0; i < host->n_ports; i++) {
5519 struct ata_port *ap = host->ports[i];
5520
5521 if (ppi[j])
5522 pi = ppi[j++];
5523
5524 ap->pio_mask = pi->pio_mask;
5525 ap->mwdma_mask = pi->mwdma_mask;
5526 ap->udma_mask = pi->udma_mask;
5527 ap->flags |= pi->flags;
5528 ap->link.flags |= pi->link_flags;
5529 ap->ops = pi->port_ops;
5530
5531 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5532 host->ops = pi->port_ops;
5533 }
5534
5535 return host;
5536 }
5537 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5538
ata_host_stop(struct device * gendev,void * res)5539 static void ata_host_stop(struct device *gendev, void *res)
5540 {
5541 struct ata_host *host = dev_get_drvdata(gendev);
5542 int i;
5543
5544 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5545
5546 for (i = 0; i < host->n_ports; i++) {
5547 struct ata_port *ap = host->ports[i];
5548
5549 if (ap->ops->port_stop)
5550 ap->ops->port_stop(ap);
5551 }
5552
5553 if (host->ops->host_stop)
5554 host->ops->host_stop(host);
5555 }
5556
5557 /**
5558 * ata_finalize_port_ops - finalize ata_port_operations
5559 * @ops: ata_port_operations to finalize
5560 *
5561 * An ata_port_operations can inherit from another ops and that
5562 * ops can again inherit from another. This can go on as many
5563 * times as necessary as long as there is no loop in the
5564 * inheritance chain.
5565 *
5566 * Ops tables are finalized when the host is started. NULL or
5567 * unspecified entries are inherited from the closet ancestor
5568 * which has the method and the entry is populated with it.
5569 * After finalization, the ops table directly points to all the
5570 * methods and ->inherits is no longer necessary and cleared.
5571 *
5572 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5573 *
5574 * LOCKING:
5575 * None.
5576 */
ata_finalize_port_ops(struct ata_port_operations * ops)5577 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5578 {
5579 static DEFINE_SPINLOCK(lock);
5580 const struct ata_port_operations *cur;
5581 void **begin = (void **)ops;
5582 void **end = (void **)&ops->inherits;
5583 void **pp;
5584
5585 if (!ops || !ops->inherits)
5586 return;
5587
5588 spin_lock(&lock);
5589
5590 for (cur = ops->inherits; cur; cur = cur->inherits) {
5591 void **inherit = (void **)cur;
5592
5593 for (pp = begin; pp < end; pp++, inherit++)
5594 if (!*pp)
5595 *pp = *inherit;
5596 }
5597
5598 for (pp = begin; pp < end; pp++)
5599 if (IS_ERR(*pp))
5600 *pp = NULL;
5601
5602 ops->inherits = NULL;
5603
5604 spin_unlock(&lock);
5605 }
5606
5607 /**
5608 * ata_host_start - start and freeze ports of an ATA host
5609 * @host: ATA host to start ports for
5610 *
5611 * Start and then freeze ports of @host. Started status is
5612 * recorded in host->flags, so this function can be called
5613 * multiple times. Ports are guaranteed to get started only
5614 * once. If host->ops is not initialized yet, it is set to the
5615 * first non-dummy port ops.
5616 *
5617 * LOCKING:
5618 * Inherited from calling layer (may sleep).
5619 *
5620 * RETURNS:
5621 * 0 if all ports are started successfully, -errno otherwise.
5622 */
ata_host_start(struct ata_host * host)5623 int ata_host_start(struct ata_host *host)
5624 {
5625 int have_stop = 0;
5626 void *start_dr = NULL;
5627 int i, rc;
5628
5629 if (host->flags & ATA_HOST_STARTED)
5630 return 0;
5631
5632 ata_finalize_port_ops(host->ops);
5633
5634 for (i = 0; i < host->n_ports; i++) {
5635 struct ata_port *ap = host->ports[i];
5636
5637 ata_finalize_port_ops(ap->ops);
5638
5639 if (!host->ops && !ata_port_is_dummy(ap))
5640 host->ops = ap->ops;
5641
5642 if (ap->ops->port_stop)
5643 have_stop = 1;
5644 }
5645
5646 if (host->ops && host->ops->host_stop)
5647 have_stop = 1;
5648
5649 if (have_stop) {
5650 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5651 if (!start_dr)
5652 return -ENOMEM;
5653 }
5654
5655 for (i = 0; i < host->n_ports; i++) {
5656 struct ata_port *ap = host->ports[i];
5657
5658 if (ap->ops->port_start) {
5659 rc = ap->ops->port_start(ap);
5660 if (rc) {
5661 if (rc != -ENODEV)
5662 dev_err(host->dev,
5663 "failed to start port %d (errno=%d)\n",
5664 i, rc);
5665 goto err_out;
5666 }
5667 }
5668 ata_eh_freeze_port(ap);
5669 }
5670
5671 if (start_dr)
5672 devres_add(host->dev, start_dr);
5673 host->flags |= ATA_HOST_STARTED;
5674 return 0;
5675
5676 err_out:
5677 while (--i >= 0) {
5678 struct ata_port *ap = host->ports[i];
5679
5680 if (ap->ops->port_stop)
5681 ap->ops->port_stop(ap);
5682 }
5683 devres_free(start_dr);
5684 return rc;
5685 }
5686 EXPORT_SYMBOL_GPL(ata_host_start);
5687
5688 /**
5689 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5690 * @host: host to initialize
5691 * @dev: device host is attached to
5692 * @ops: port_ops
5693 *
5694 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5695 void ata_host_init(struct ata_host *host, struct device *dev,
5696 struct ata_port_operations *ops)
5697 {
5698 spin_lock_init(&host->lock);
5699 mutex_init(&host->eh_mutex);
5700 host->n_tags = ATA_MAX_QUEUE;
5701 host->dev = dev;
5702 host->ops = ops;
5703 kref_init(&host->kref);
5704 }
5705 EXPORT_SYMBOL_GPL(ata_host_init);
5706
__ata_port_probe(struct ata_port * ap)5707 void __ata_port_probe(struct ata_port *ap)
5708 {
5709 struct ata_eh_info *ehi = &ap->link.eh_info;
5710 unsigned long flags;
5711
5712 /* kick EH for boot probing */
5713 spin_lock_irqsave(ap->lock, flags);
5714
5715 ehi->probe_mask |= ATA_ALL_DEVICES;
5716 ehi->action |= ATA_EH_RESET;
5717 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5718
5719 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5720 ap->pflags |= ATA_PFLAG_LOADING;
5721 ata_port_schedule_eh(ap);
5722
5723 spin_unlock_irqrestore(ap->lock, flags);
5724 }
5725
ata_port_probe(struct ata_port * ap)5726 int ata_port_probe(struct ata_port *ap)
5727 {
5728 int rc = 0;
5729
5730 if (ap->ops->error_handler) {
5731 __ata_port_probe(ap);
5732 ata_port_wait_eh(ap);
5733 } else {
5734 rc = ata_bus_probe(ap);
5735 }
5736 return rc;
5737 }
5738
5739
async_port_probe(void * data,async_cookie_t cookie)5740 static void async_port_probe(void *data, async_cookie_t cookie)
5741 {
5742 struct ata_port *ap = data;
5743
5744 /*
5745 * If we're not allowed to scan this host in parallel,
5746 * we need to wait until all previous scans have completed
5747 * before going further.
5748 * Jeff Garzik says this is only within a controller, so we
5749 * don't need to wait for port 0, only for later ports.
5750 */
5751 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5752 async_synchronize_cookie(cookie);
5753
5754 (void)ata_port_probe(ap);
5755
5756 /* in order to keep device order, we need to synchronize at this point */
5757 async_synchronize_cookie(cookie);
5758
5759 ata_scsi_scan_host(ap, 1);
5760 }
5761
5762 /**
5763 * ata_host_register - register initialized ATA host
5764 * @host: ATA host to register
5765 * @sht: template for SCSI host
5766 *
5767 * Register initialized ATA host. @host is allocated using
5768 * ata_host_alloc() and fully initialized by LLD. This function
5769 * starts ports, registers @host with ATA and SCSI layers and
5770 * probe registered devices.
5771 *
5772 * LOCKING:
5773 * Inherited from calling layer (may sleep).
5774 *
5775 * RETURNS:
5776 * 0 on success, -errno otherwise.
5777 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)5778 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5779 {
5780 int i, rc;
5781
5782 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5783
5784 /* host must have been started */
5785 if (!(host->flags & ATA_HOST_STARTED)) {
5786 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5787 WARN_ON(1);
5788 return -EINVAL;
5789 }
5790
5791 /* Blow away unused ports. This happens when LLD can't
5792 * determine the exact number of ports to allocate at
5793 * allocation time.
5794 */
5795 for (i = host->n_ports; host->ports[i]; i++)
5796 kfree(host->ports[i]);
5797
5798 /* give ports names and add SCSI hosts */
5799 for (i = 0; i < host->n_ports; i++) {
5800 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5801 host->ports[i]->local_port_no = i + 1;
5802 }
5803
5804 /* Create associated sysfs transport objects */
5805 for (i = 0; i < host->n_ports; i++) {
5806 rc = ata_tport_add(host->dev,host->ports[i]);
5807 if (rc) {
5808 goto err_tadd;
5809 }
5810 }
5811
5812 rc = ata_scsi_add_hosts(host, sht);
5813 if (rc)
5814 goto err_tadd;
5815
5816 /* set cable, sata_spd_limit and report */
5817 for (i = 0; i < host->n_ports; i++) {
5818 struct ata_port *ap = host->ports[i];
5819 unsigned int xfer_mask;
5820
5821 /* set SATA cable type if still unset */
5822 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5823 ap->cbl = ATA_CBL_SATA;
5824
5825 /* init sata_spd_limit to the current value */
5826 sata_link_init_spd(&ap->link);
5827 if (ap->slave_link)
5828 sata_link_init_spd(ap->slave_link);
5829
5830 /* print per-port info to dmesg */
5831 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5832 ap->udma_mask);
5833
5834 if (!ata_port_is_dummy(ap)) {
5835 ata_port_info(ap, "%cATA max %s %s\n",
5836 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5837 ata_mode_string(xfer_mask),
5838 ap->link.eh_info.desc);
5839 ata_ehi_clear_desc(&ap->link.eh_info);
5840 } else
5841 ata_port_info(ap, "DUMMY\n");
5842 }
5843
5844 /* perform each probe asynchronously */
5845 for (i = 0; i < host->n_ports; i++) {
5846 struct ata_port *ap = host->ports[i];
5847 ap->cookie = async_schedule(async_port_probe, ap);
5848 }
5849
5850 return 0;
5851
5852 err_tadd:
5853 while (--i >= 0) {
5854 ata_tport_delete(host->ports[i]);
5855 }
5856 return rc;
5857
5858 }
5859 EXPORT_SYMBOL_GPL(ata_host_register);
5860
5861 /**
5862 * ata_host_activate - start host, request IRQ and register it
5863 * @host: target ATA host
5864 * @irq: IRQ to request
5865 * @irq_handler: irq_handler used when requesting IRQ
5866 * @irq_flags: irq_flags used when requesting IRQ
5867 * @sht: scsi_host_template to use when registering the host
5868 *
5869 * After allocating an ATA host and initializing it, most libata
5870 * LLDs perform three steps to activate the host - start host,
5871 * request IRQ and register it. This helper takes necessary
5872 * arguments and performs the three steps in one go.
5873 *
5874 * An invalid IRQ skips the IRQ registration and expects the host to
5875 * have set polling mode on the port. In this case, @irq_handler
5876 * should be NULL.
5877 *
5878 * LOCKING:
5879 * Inherited from calling layer (may sleep).
5880 *
5881 * RETURNS:
5882 * 0 on success, -errno otherwise.
5883 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)5884 int ata_host_activate(struct ata_host *host, int irq,
5885 irq_handler_t irq_handler, unsigned long irq_flags,
5886 struct scsi_host_template *sht)
5887 {
5888 int i, rc;
5889 char *irq_desc;
5890
5891 rc = ata_host_start(host);
5892 if (rc)
5893 return rc;
5894
5895 /* Special case for polling mode */
5896 if (!irq) {
5897 WARN_ON(irq_handler);
5898 return ata_host_register(host, sht);
5899 }
5900
5901 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5902 dev_driver_string(host->dev),
5903 dev_name(host->dev));
5904 if (!irq_desc)
5905 return -ENOMEM;
5906
5907 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5908 irq_desc, host);
5909 if (rc)
5910 return rc;
5911
5912 for (i = 0; i < host->n_ports; i++)
5913 ata_port_desc(host->ports[i], "irq %d", irq);
5914
5915 rc = ata_host_register(host, sht);
5916 /* if failed, just free the IRQ and leave ports alone */
5917 if (rc)
5918 devm_free_irq(host->dev, irq, host);
5919
5920 return rc;
5921 }
5922 EXPORT_SYMBOL_GPL(ata_host_activate);
5923
5924 /**
5925 * ata_port_detach - Detach ATA port in preparation of device removal
5926 * @ap: ATA port to be detached
5927 *
5928 * Detach all ATA devices and the associated SCSI devices of @ap;
5929 * then, remove the associated SCSI host. @ap is guaranteed to
5930 * be quiescent on return from this function.
5931 *
5932 * LOCKING:
5933 * Kernel thread context (may sleep).
5934 */
ata_port_detach(struct ata_port * ap)5935 static void ata_port_detach(struct ata_port *ap)
5936 {
5937 unsigned long flags;
5938 struct ata_link *link;
5939 struct ata_device *dev;
5940
5941 if (!ap->ops->error_handler)
5942 goto skip_eh;
5943
5944 /* tell EH we're leaving & flush EH */
5945 spin_lock_irqsave(ap->lock, flags);
5946 ap->pflags |= ATA_PFLAG_UNLOADING;
5947 ata_port_schedule_eh(ap);
5948 spin_unlock_irqrestore(ap->lock, flags);
5949
5950 /* wait till EH commits suicide */
5951 ata_port_wait_eh(ap);
5952
5953 /* it better be dead now */
5954 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5955
5956 cancel_delayed_work_sync(&ap->hotplug_task);
5957
5958 skip_eh:
5959 /* clean up zpodd on port removal */
5960 ata_for_each_link(link, ap, HOST_FIRST) {
5961 ata_for_each_dev(dev, link, ALL) {
5962 if (zpodd_dev_enabled(dev))
5963 zpodd_exit(dev);
5964 }
5965 }
5966 if (ap->pmp_link) {
5967 int i;
5968 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5969 ata_tlink_delete(&ap->pmp_link[i]);
5970 }
5971 /* remove the associated SCSI host */
5972 scsi_remove_host(ap->scsi_host);
5973 ata_tport_delete(ap);
5974 }
5975
5976 /**
5977 * ata_host_detach - Detach all ports of an ATA host
5978 * @host: Host to detach
5979 *
5980 * Detach all ports of @host.
5981 *
5982 * LOCKING:
5983 * Kernel thread context (may sleep).
5984 */
ata_host_detach(struct ata_host * host)5985 void ata_host_detach(struct ata_host *host)
5986 {
5987 int i;
5988
5989 for (i = 0; i < host->n_ports; i++) {
5990 /* Ensure ata_port probe has completed */
5991 async_synchronize_cookie(host->ports[i]->cookie + 1);
5992 ata_port_detach(host->ports[i]);
5993 }
5994
5995 /* the host is dead now, dissociate ACPI */
5996 ata_acpi_dissociate(host);
5997 }
5998 EXPORT_SYMBOL_GPL(ata_host_detach);
5999
6000 #ifdef CONFIG_PCI
6001
6002 /**
6003 * ata_pci_remove_one - PCI layer callback for device removal
6004 * @pdev: PCI device that was removed
6005 *
6006 * PCI layer indicates to libata via this hook that hot-unplug or
6007 * module unload event has occurred. Detach all ports. Resource
6008 * release is handled via devres.
6009 *
6010 * LOCKING:
6011 * Inherited from PCI layer (may sleep).
6012 */
ata_pci_remove_one(struct pci_dev * pdev)6013 void ata_pci_remove_one(struct pci_dev *pdev)
6014 {
6015 struct ata_host *host = pci_get_drvdata(pdev);
6016
6017 ata_host_detach(host);
6018 }
6019 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6020
ata_pci_shutdown_one(struct pci_dev * pdev)6021 void ata_pci_shutdown_one(struct pci_dev *pdev)
6022 {
6023 struct ata_host *host = pci_get_drvdata(pdev);
6024 int i;
6025
6026 for (i = 0; i < host->n_ports; i++) {
6027 struct ata_port *ap = host->ports[i];
6028
6029 ap->pflags |= ATA_PFLAG_FROZEN;
6030
6031 /* Disable port interrupts */
6032 if (ap->ops->freeze)
6033 ap->ops->freeze(ap);
6034
6035 /* Stop the port DMA engines */
6036 if (ap->ops->port_stop)
6037 ap->ops->port_stop(ap);
6038 }
6039 }
6040 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6041
6042 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6043 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6044 {
6045 unsigned long tmp = 0;
6046
6047 switch (bits->width) {
6048 case 1: {
6049 u8 tmp8 = 0;
6050 pci_read_config_byte(pdev, bits->reg, &tmp8);
6051 tmp = tmp8;
6052 break;
6053 }
6054 case 2: {
6055 u16 tmp16 = 0;
6056 pci_read_config_word(pdev, bits->reg, &tmp16);
6057 tmp = tmp16;
6058 break;
6059 }
6060 case 4: {
6061 u32 tmp32 = 0;
6062 pci_read_config_dword(pdev, bits->reg, &tmp32);
6063 tmp = tmp32;
6064 break;
6065 }
6066
6067 default:
6068 return -EINVAL;
6069 }
6070
6071 tmp &= bits->mask;
6072
6073 return (tmp == bits->val) ? 1 : 0;
6074 }
6075 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6076
6077 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6078 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6079 {
6080 pci_save_state(pdev);
6081 pci_disable_device(pdev);
6082
6083 if (mesg.event & PM_EVENT_SLEEP)
6084 pci_set_power_state(pdev, PCI_D3hot);
6085 }
6086 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6087
ata_pci_device_do_resume(struct pci_dev * pdev)6088 int ata_pci_device_do_resume(struct pci_dev *pdev)
6089 {
6090 int rc;
6091
6092 pci_set_power_state(pdev, PCI_D0);
6093 pci_restore_state(pdev);
6094
6095 rc = pcim_enable_device(pdev);
6096 if (rc) {
6097 dev_err(&pdev->dev,
6098 "failed to enable device after resume (%d)\n", rc);
6099 return rc;
6100 }
6101
6102 pci_set_master(pdev);
6103 return 0;
6104 }
6105 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6106
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6107 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6108 {
6109 struct ata_host *host = pci_get_drvdata(pdev);
6110
6111 ata_host_suspend(host, mesg);
6112
6113 ata_pci_device_do_suspend(pdev, mesg);
6114
6115 return 0;
6116 }
6117 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6118
ata_pci_device_resume(struct pci_dev * pdev)6119 int ata_pci_device_resume(struct pci_dev *pdev)
6120 {
6121 struct ata_host *host = pci_get_drvdata(pdev);
6122 int rc;
6123
6124 rc = ata_pci_device_do_resume(pdev);
6125 if (rc == 0)
6126 ata_host_resume(host);
6127 return rc;
6128 }
6129 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6130 #endif /* CONFIG_PM */
6131 #endif /* CONFIG_PCI */
6132
6133 /**
6134 * ata_platform_remove_one - Platform layer callback for device removal
6135 * @pdev: Platform device that was removed
6136 *
6137 * Platform layer indicates to libata via this hook that hot-unplug or
6138 * module unload event has occurred. Detach all ports. Resource
6139 * release is handled via devres.
6140 *
6141 * LOCKING:
6142 * Inherited from platform layer (may sleep).
6143 */
ata_platform_remove_one(struct platform_device * pdev)6144 int ata_platform_remove_one(struct platform_device *pdev)
6145 {
6146 struct ata_host *host = platform_get_drvdata(pdev);
6147
6148 ata_host_detach(host);
6149
6150 return 0;
6151 }
6152 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6153
6154 #ifdef CONFIG_ATA_FORCE
6155
6156 #define force_cbl(name, flag) \
6157 { #name, .cbl = (flag) }
6158
6159 #define force_spd_limit(spd, val) \
6160 { #spd, .spd_limit = (val) }
6161
6162 #define force_xfer(mode, shift) \
6163 { #mode, .xfer_mask = (1UL << (shift)) }
6164
6165 #define force_lflag_on(name, flags) \
6166 { #name, .lflags_on = (flags) }
6167
6168 #define force_lflag_onoff(name, flags) \
6169 { "no" #name, .lflags_on = (flags) }, \
6170 { #name, .lflags_off = (flags) }
6171
6172 #define force_horkage_on(name, flag) \
6173 { #name, .horkage_on = (flag) }
6174
6175 #define force_horkage_onoff(name, flag) \
6176 { "no" #name, .horkage_on = (flag) }, \
6177 { #name, .horkage_off = (flag) }
6178
6179 static const struct ata_force_param force_tbl[] __initconst = {
6180 force_cbl(40c, ATA_CBL_PATA40),
6181 force_cbl(80c, ATA_CBL_PATA80),
6182 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6183 force_cbl(unk, ATA_CBL_PATA_UNK),
6184 force_cbl(ign, ATA_CBL_PATA_IGN),
6185 force_cbl(sata, ATA_CBL_SATA),
6186
6187 force_spd_limit(1.5Gbps, 1),
6188 force_spd_limit(3.0Gbps, 2),
6189
6190 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6191 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6192 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6193 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6194 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6195 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6196 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6197 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6198 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6199 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6200 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6201 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6202 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6203 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6204 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6205 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6206 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6207 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6208 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6209 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6210 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6211 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6212 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6213 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6214 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6215 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6216 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6217 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6218 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6219 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6220 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6221 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6222 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6223 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6224
6225 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6226 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6227 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6228 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6229 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6230
6231 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6232 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6233 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6234
6235 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6236 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6237 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6238
6239 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6240 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6241 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6242
6243 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6244 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6245 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6246
6247 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6248 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6249 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6250
6251 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6252 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6253 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6254 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA),
6255
6256 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6257 };
6258
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6259 static int __init ata_parse_force_one(char **cur,
6260 struct ata_force_ent *force_ent,
6261 const char **reason)
6262 {
6263 char *start = *cur, *p = *cur;
6264 char *id, *val, *endp;
6265 const struct ata_force_param *match_fp = NULL;
6266 int nr_matches = 0, i;
6267
6268 /* find where this param ends and update *cur */
6269 while (*p != '\0' && *p != ',')
6270 p++;
6271
6272 if (*p == '\0')
6273 *cur = p;
6274 else
6275 *cur = p + 1;
6276
6277 *p = '\0';
6278
6279 /* parse */
6280 p = strchr(start, ':');
6281 if (!p) {
6282 val = strstrip(start);
6283 goto parse_val;
6284 }
6285 *p = '\0';
6286
6287 id = strstrip(start);
6288 val = strstrip(p + 1);
6289
6290 /* parse id */
6291 p = strchr(id, '.');
6292 if (p) {
6293 *p++ = '\0';
6294 force_ent->device = simple_strtoul(p, &endp, 10);
6295 if (p == endp || *endp != '\0') {
6296 *reason = "invalid device";
6297 return -EINVAL;
6298 }
6299 }
6300
6301 force_ent->port = simple_strtoul(id, &endp, 10);
6302 if (id == endp || *endp != '\0') {
6303 *reason = "invalid port/link";
6304 return -EINVAL;
6305 }
6306
6307 parse_val:
6308 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6309 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6310 const struct ata_force_param *fp = &force_tbl[i];
6311
6312 if (strncasecmp(val, fp->name, strlen(val)))
6313 continue;
6314
6315 nr_matches++;
6316 match_fp = fp;
6317
6318 if (strcasecmp(val, fp->name) == 0) {
6319 nr_matches = 1;
6320 break;
6321 }
6322 }
6323
6324 if (!nr_matches) {
6325 *reason = "unknown value";
6326 return -EINVAL;
6327 }
6328 if (nr_matches > 1) {
6329 *reason = "ambiguous value";
6330 return -EINVAL;
6331 }
6332
6333 force_ent->param = *match_fp;
6334
6335 return 0;
6336 }
6337
ata_parse_force_param(void)6338 static void __init ata_parse_force_param(void)
6339 {
6340 int idx = 0, size = 1;
6341 int last_port = -1, last_device = -1;
6342 char *p, *cur, *next;
6343
6344 /* Calculate maximum number of params and allocate ata_force_tbl */
6345 for (p = ata_force_param_buf; *p; p++)
6346 if (*p == ',')
6347 size++;
6348
6349 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6350 if (!ata_force_tbl) {
6351 printk(KERN_WARNING "ata: failed to extend force table, "
6352 "libata.force ignored\n");
6353 return;
6354 }
6355
6356 /* parse and populate the table */
6357 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6358 const char *reason = "";
6359 struct ata_force_ent te = { .port = -1, .device = -1 };
6360
6361 next = cur;
6362 if (ata_parse_force_one(&next, &te, &reason)) {
6363 printk(KERN_WARNING "ata: failed to parse force "
6364 "parameter \"%s\" (%s)\n",
6365 cur, reason);
6366 continue;
6367 }
6368
6369 if (te.port == -1) {
6370 te.port = last_port;
6371 te.device = last_device;
6372 }
6373
6374 ata_force_tbl[idx++] = te;
6375
6376 last_port = te.port;
6377 last_device = te.device;
6378 }
6379
6380 ata_force_tbl_size = idx;
6381 }
6382
ata_free_force_param(void)6383 static void ata_free_force_param(void)
6384 {
6385 kfree(ata_force_tbl);
6386 }
6387 #else
ata_parse_force_param(void)6388 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6389 static inline void ata_free_force_param(void) { }
6390 #endif
6391
ata_init(void)6392 static int __init ata_init(void)
6393 {
6394 int rc;
6395
6396 ata_parse_force_param();
6397
6398 rc = ata_sff_init();
6399 if (rc) {
6400 ata_free_force_param();
6401 return rc;
6402 }
6403
6404 libata_transport_init();
6405 ata_scsi_transport_template = ata_attach_transport();
6406 if (!ata_scsi_transport_template) {
6407 ata_sff_exit();
6408 rc = -ENOMEM;
6409 goto err_out;
6410 }
6411
6412 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6413 return 0;
6414
6415 err_out:
6416 return rc;
6417 }
6418
ata_exit(void)6419 static void __exit ata_exit(void)
6420 {
6421 ata_release_transport(ata_scsi_transport_template);
6422 libata_transport_exit();
6423 ata_sff_exit();
6424 ata_free_force_param();
6425 }
6426
6427 subsys_initcall(ata_init);
6428 module_exit(ata_exit);
6429
6430 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6431
ata_ratelimit(void)6432 int ata_ratelimit(void)
6433 {
6434 return __ratelimit(&ratelimit);
6435 }
6436 EXPORT_SYMBOL_GPL(ata_ratelimit);
6437
6438 /**
6439 * ata_msleep - ATA EH owner aware msleep
6440 * @ap: ATA port to attribute the sleep to
6441 * @msecs: duration to sleep in milliseconds
6442 *
6443 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6444 * ownership is released before going to sleep and reacquired
6445 * after the sleep is complete. IOW, other ports sharing the
6446 * @ap->host will be allowed to own the EH while this task is
6447 * sleeping.
6448 *
6449 * LOCKING:
6450 * Might sleep.
6451 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6452 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6453 {
6454 bool owns_eh = ap && ap->host->eh_owner == current;
6455
6456 if (owns_eh)
6457 ata_eh_release(ap);
6458
6459 if (msecs < 20) {
6460 unsigned long usecs = msecs * USEC_PER_MSEC;
6461 usleep_range(usecs, usecs + 50);
6462 } else {
6463 msleep(msecs);
6464 }
6465
6466 if (owns_eh)
6467 ata_eh_acquire(ap);
6468 }
6469 EXPORT_SYMBOL_GPL(ata_msleep);
6470
6471 /**
6472 * ata_wait_register - wait until register value changes
6473 * @ap: ATA port to wait register for, can be NULL
6474 * @reg: IO-mapped register
6475 * @mask: Mask to apply to read register value
6476 * @val: Wait condition
6477 * @interval: polling interval in milliseconds
6478 * @timeout: timeout in milliseconds
6479 *
6480 * Waiting for some bits of register to change is a common
6481 * operation for ATA controllers. This function reads 32bit LE
6482 * IO-mapped register @reg and tests for the following condition.
6483 *
6484 * (*@reg & mask) != val
6485 *
6486 * If the condition is met, it returns; otherwise, the process is
6487 * repeated after @interval_msec until timeout.
6488 *
6489 * LOCKING:
6490 * Kernel thread context (may sleep)
6491 *
6492 * RETURNS:
6493 * The final register value.
6494 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6495 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6496 unsigned long interval, unsigned long timeout)
6497 {
6498 unsigned long deadline;
6499 u32 tmp;
6500
6501 tmp = ioread32(reg);
6502
6503 /* Calculate timeout _after_ the first read to make sure
6504 * preceding writes reach the controller before starting to
6505 * eat away the timeout.
6506 */
6507 deadline = ata_deadline(jiffies, timeout);
6508
6509 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6510 ata_msleep(ap, interval);
6511 tmp = ioread32(reg);
6512 }
6513
6514 return tmp;
6515 }
6516 EXPORT_SYMBOL_GPL(ata_wait_register);
6517
6518 /*
6519 * Dummy port_ops
6520 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6521 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6522 {
6523 return AC_ERR_SYSTEM;
6524 }
6525
ata_dummy_error_handler(struct ata_port * ap)6526 static void ata_dummy_error_handler(struct ata_port *ap)
6527 {
6528 /* truly dummy */
6529 }
6530
6531 struct ata_port_operations ata_dummy_port_ops = {
6532 .qc_prep = ata_noop_qc_prep,
6533 .qc_issue = ata_dummy_qc_issue,
6534 .error_handler = ata_dummy_error_handler,
6535 .sched_eh = ata_std_sched_eh,
6536 .end_eh = ata_std_end_eh,
6537 };
6538 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6539
6540 const struct ata_port_info ata_dummy_port_info = {
6541 .port_ops = &ata_dummy_port_ops,
6542 };
6543 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6544
ata_print_version(const struct device * dev,const char * version)6545 void ata_print_version(const struct device *dev, const char *version)
6546 {
6547 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6548 }
6549 EXPORT_SYMBOL(ata_print_version);
6550
6551 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6552 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6553 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6554 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6555 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6556