1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
22 #include "libata.h"
23
24 static struct workqueue_struct *ata_sff_wq;
25
26 const struct ata_port_operations ata_sff_port_ops = {
27 .inherits = &ata_base_port_ops,
28
29 .qc_prep = ata_noop_qc_prep,
30 .qc_issue = ata_sff_qc_issue,
31 .qc_fill_rtf = ata_sff_qc_fill_rtf,
32
33 .freeze = ata_sff_freeze,
34 .thaw = ata_sff_thaw,
35 .prereset = ata_sff_prereset,
36 .softreset = ata_sff_softreset,
37 .hardreset = sata_sff_hardreset,
38 .postreset = ata_sff_postreset,
39 .error_handler = ata_sff_error_handler,
40
41 .sff_dev_select = ata_sff_dev_select,
42 .sff_check_status = ata_sff_check_status,
43 .sff_tf_load = ata_sff_tf_load,
44 .sff_tf_read = ata_sff_tf_read,
45 .sff_exec_command = ata_sff_exec_command,
46 .sff_data_xfer = ata_sff_data_xfer,
47 .sff_drain_fifo = ata_sff_drain_fifo,
48
49 .lost_interrupt = ata_sff_lost_interrupt,
50 };
51 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
52
53 /**
54 * ata_sff_check_status - Read device status reg & clear interrupt
55 * @ap: port where the device is
56 *
57 * Reads ATA taskfile status register for currently-selected device
58 * and return its value. This also clears pending interrupts
59 * from this device
60 *
61 * LOCKING:
62 * Inherited from caller.
63 */
ata_sff_check_status(struct ata_port * ap)64 u8 ata_sff_check_status(struct ata_port *ap)
65 {
66 return ioread8(ap->ioaddr.status_addr);
67 }
68 EXPORT_SYMBOL_GPL(ata_sff_check_status);
69
70 /**
71 * ata_sff_altstatus - Read device alternate status reg
72 * @ap: port where the device is
73 * @status: pointer to a status value
74 *
75 * Reads ATA alternate status register for currently-selected device
76 * and return its value.
77 *
78 * RETURN:
79 * true if the register exists, false if not.
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_altstatus(struct ata_port * ap,u8 * status)84 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
85 {
86 u8 tmp;
87
88 if (ap->ops->sff_check_altstatus) {
89 tmp = ap->ops->sff_check_altstatus(ap);
90 goto read;
91 }
92 if (ap->ioaddr.altstatus_addr) {
93 tmp = ioread8(ap->ioaddr.altstatus_addr);
94 goto read;
95 }
96 return false;
97
98 read:
99 if (status)
100 *status = tmp;
101 return true;
102 }
103
104 /**
105 * ata_sff_irq_status - Check if the device is busy
106 * @ap: port where the device is
107 *
108 * Determine if the port is currently busy. Uses altstatus
109 * if available in order to avoid clearing shared IRQ status
110 * when finding an IRQ source. Non ctl capable devices don't
111 * share interrupt lines fortunately for us.
112 *
113 * LOCKING:
114 * Inherited from caller.
115 */
ata_sff_irq_status(struct ata_port * ap)116 static u8 ata_sff_irq_status(struct ata_port *ap)
117 {
118 u8 status;
119
120 /* Not us: We are busy */
121 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
122 return status;
123 /* Clear INTRQ latch */
124 status = ap->ops->sff_check_status(ap);
125 return status;
126 }
127
128 /**
129 * ata_sff_sync - Flush writes
130 * @ap: Port to wait for.
131 *
132 * CAUTION:
133 * If we have an mmio device with no ctl and no altstatus
134 * method this will fail. No such devices are known to exist.
135 *
136 * LOCKING:
137 * Inherited from caller.
138 */
139
ata_sff_sync(struct ata_port * ap)140 static void ata_sff_sync(struct ata_port *ap)
141 {
142 ata_sff_altstatus(ap, NULL);
143 }
144
145 /**
146 * ata_sff_pause - Flush writes and wait 400nS
147 * @ap: Port to pause for.
148 *
149 * CAUTION:
150 * If we have an mmio device with no ctl and no altstatus
151 * method this will fail. No such devices are known to exist.
152 *
153 * LOCKING:
154 * Inherited from caller.
155 */
156
ata_sff_pause(struct ata_port * ap)157 void ata_sff_pause(struct ata_port *ap)
158 {
159 ata_sff_sync(ap);
160 ndelay(400);
161 }
162 EXPORT_SYMBOL_GPL(ata_sff_pause);
163
164 /**
165 * ata_sff_dma_pause - Pause before commencing DMA
166 * @ap: Port to pause for.
167 *
168 * Perform I/O fencing and ensure sufficient cycle delays occur
169 * for the HDMA1:0 transition
170 */
171
ata_sff_dma_pause(struct ata_port * ap)172 void ata_sff_dma_pause(struct ata_port *ap)
173 {
174 /*
175 * An altstatus read will cause the needed delay without
176 * messing up the IRQ status
177 */
178 if (ata_sff_altstatus(ap, NULL))
179 return;
180 /* There are no DMA controllers without ctl. BUG here to ensure
181 we never violate the HDMA1:0 transition timing and risk
182 corruption. */
183 BUG();
184 }
185 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
186
ata_sff_check_ready(struct ata_link * link)187 static int ata_sff_check_ready(struct ata_link *link)
188 {
189 u8 status = link->ap->ops->sff_check_status(link->ap);
190
191 return ata_check_ready(status);
192 }
193
194 /**
195 * ata_sff_wait_ready - sleep until BSY clears, or timeout
196 * @link: SFF link to wait ready status for
197 * @deadline: deadline jiffies for the operation
198 *
199 * Sleep until ATA Status register bit BSY clears, or timeout
200 * occurs.
201 *
202 * LOCKING:
203 * Kernel thread context (may sleep).
204 *
205 * RETURNS:
206 * 0 on success, -errno otherwise.
207 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)208 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
209 {
210 return ata_wait_ready(link, deadline, ata_sff_check_ready);
211 }
212 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
213
214 /**
215 * ata_sff_set_devctl - Write device control reg
216 * @ap: port where the device is
217 * @ctl: value to write
218 *
219 * Writes ATA device control register.
220 *
221 * RETURN:
222 * true if the register exists, false if not.
223 *
224 * LOCKING:
225 * Inherited from caller.
226 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)227 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
228 {
229 if (ap->ops->sff_set_devctl) {
230 ap->ops->sff_set_devctl(ap, ctl);
231 return true;
232 }
233 if (ap->ioaddr.ctl_addr) {
234 iowrite8(ctl, ap->ioaddr.ctl_addr);
235 return true;
236 }
237
238 return false;
239 }
240
241 /**
242 * ata_sff_dev_select - Select device 0/1 on ATA bus
243 * @ap: ATA channel to manipulate
244 * @device: ATA device (numbered from zero) to select
245 *
246 * Use the method defined in the ATA specification to
247 * make either device 0, or device 1, active on the
248 * ATA channel. Works with both PIO and MMIO.
249 *
250 * May be used as the dev_select() entry in ata_port_operations.
251 *
252 * LOCKING:
253 * caller.
254 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)255 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
256 {
257 u8 tmp;
258
259 if (device == 0)
260 tmp = ATA_DEVICE_OBS;
261 else
262 tmp = ATA_DEVICE_OBS | ATA_DEV1;
263
264 iowrite8(tmp, ap->ioaddr.device_addr);
265 ata_sff_pause(ap); /* needed; also flushes, for mmio */
266 }
267 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
268
269 /**
270 * ata_dev_select - Select device 0/1 on ATA bus
271 * @ap: ATA channel to manipulate
272 * @device: ATA device (numbered from zero) to select
273 * @wait: non-zero to wait for Status register BSY bit to clear
274 * @can_sleep: non-zero if context allows sleeping
275 *
276 * Use the method defined in the ATA specification to
277 * make either device 0, or device 1, active on the
278 * ATA channel.
279 *
280 * This is a high-level version of ata_sff_dev_select(), which
281 * additionally provides the services of inserting the proper
282 * pauses and status polling, where needed.
283 *
284 * LOCKING:
285 * caller.
286 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)287 static void ata_dev_select(struct ata_port *ap, unsigned int device,
288 unsigned int wait, unsigned int can_sleep)
289 {
290 if (wait)
291 ata_wait_idle(ap);
292
293 ap->ops->sff_dev_select(ap, device);
294
295 if (wait) {
296 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
297 ata_msleep(ap, 150);
298 ata_wait_idle(ap);
299 }
300 }
301
302 /**
303 * ata_sff_irq_on - Enable interrupts on a port.
304 * @ap: Port on which interrupts are enabled.
305 *
306 * Enable interrupts on a legacy IDE device using MMIO or PIO,
307 * wait for idle, clear any pending interrupts.
308 *
309 * Note: may NOT be used as the sff_irq_on() entry in
310 * ata_port_operations.
311 *
312 * LOCKING:
313 * Inherited from caller.
314 */
ata_sff_irq_on(struct ata_port * ap)315 void ata_sff_irq_on(struct ata_port *ap)
316 {
317 if (ap->ops->sff_irq_on) {
318 ap->ops->sff_irq_on(ap);
319 return;
320 }
321
322 ap->ctl &= ~ATA_NIEN;
323 ap->last_ctl = ap->ctl;
324
325 ata_sff_set_devctl(ap, ap->ctl);
326 ata_wait_idle(ap);
327
328 if (ap->ops->sff_irq_clear)
329 ap->ops->sff_irq_clear(ap);
330 }
331 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
332
333 /**
334 * ata_sff_tf_load - send taskfile registers to host controller
335 * @ap: Port to which output is sent
336 * @tf: ATA taskfile register set
337 *
338 * Outputs ATA taskfile to standard ATA host controller.
339 *
340 * LOCKING:
341 * Inherited from caller.
342 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)343 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
344 {
345 struct ata_ioports *ioaddr = &ap->ioaddr;
346 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
347
348 if (tf->ctl != ap->last_ctl) {
349 if (ioaddr->ctl_addr)
350 iowrite8(tf->ctl, ioaddr->ctl_addr);
351 ap->last_ctl = tf->ctl;
352 ata_wait_idle(ap);
353 }
354
355 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
356 WARN_ON_ONCE(!ioaddr->ctl_addr);
357 iowrite8(tf->hob_feature, ioaddr->feature_addr);
358 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
359 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
360 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
361 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
362 }
363
364 if (is_addr) {
365 iowrite8(tf->feature, ioaddr->feature_addr);
366 iowrite8(tf->nsect, ioaddr->nsect_addr);
367 iowrite8(tf->lbal, ioaddr->lbal_addr);
368 iowrite8(tf->lbam, ioaddr->lbam_addr);
369 iowrite8(tf->lbah, ioaddr->lbah_addr);
370 }
371
372 if (tf->flags & ATA_TFLAG_DEVICE)
373 iowrite8(tf->device, ioaddr->device_addr);
374
375 ata_wait_idle(ap);
376 }
377 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
378
379 /**
380 * ata_sff_tf_read - input device's ATA taskfile shadow registers
381 * @ap: Port from which input is read
382 * @tf: ATA taskfile register set for storing input
383 *
384 * Reads ATA taskfile registers for currently-selected device
385 * into @tf. Assumes the device has a fully SFF compliant task file
386 * layout and behaviour. If you device does not (eg has a different
387 * status method) then you will need to provide a replacement tf_read
388 *
389 * LOCKING:
390 * Inherited from caller.
391 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)392 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
393 {
394 struct ata_ioports *ioaddr = &ap->ioaddr;
395
396 tf->status = ata_sff_check_status(ap);
397 tf->error = ioread8(ioaddr->error_addr);
398 tf->nsect = ioread8(ioaddr->nsect_addr);
399 tf->lbal = ioread8(ioaddr->lbal_addr);
400 tf->lbam = ioread8(ioaddr->lbam_addr);
401 tf->lbah = ioread8(ioaddr->lbah_addr);
402 tf->device = ioread8(ioaddr->device_addr);
403
404 if (tf->flags & ATA_TFLAG_LBA48) {
405 if (likely(ioaddr->ctl_addr)) {
406 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
407 tf->hob_feature = ioread8(ioaddr->error_addr);
408 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
409 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
410 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
411 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
412 iowrite8(tf->ctl, ioaddr->ctl_addr);
413 ap->last_ctl = tf->ctl;
414 } else
415 WARN_ON_ONCE(1);
416 }
417 }
418 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
419
420 /**
421 * ata_sff_exec_command - issue ATA command to host controller
422 * @ap: port to which command is being issued
423 * @tf: ATA taskfile register set
424 *
425 * Issues ATA command, with proper synchronization with interrupt
426 * handler / other threads.
427 *
428 * LOCKING:
429 * spin_lock_irqsave(host lock)
430 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)431 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
432 {
433 iowrite8(tf->command, ap->ioaddr.command_addr);
434 ata_sff_pause(ap);
435 }
436 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
437
438 /**
439 * ata_tf_to_host - issue ATA taskfile to host controller
440 * @ap: port to which command is being issued
441 * @tf: ATA taskfile register set
442 * @tag: tag of the associated command
443 *
444 * Issues ATA taskfile register set to ATA host controller,
445 * with proper synchronization with interrupt handler and
446 * other threads.
447 *
448 * LOCKING:
449 * spin_lock_irqsave(host lock)
450 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf,unsigned int tag)451 static inline void ata_tf_to_host(struct ata_port *ap,
452 const struct ata_taskfile *tf,
453 unsigned int tag)
454 {
455 trace_ata_tf_load(ap, tf);
456 ap->ops->sff_tf_load(ap, tf);
457 trace_ata_exec_command(ap, tf, tag);
458 ap->ops->sff_exec_command(ap, tf);
459 }
460
461 /**
462 * ata_sff_data_xfer - Transfer data by PIO
463 * @qc: queued command
464 * @buf: data buffer
465 * @buflen: buffer length
466 * @rw: read/write
467 *
468 * Transfer data from/to the device data register by PIO.
469 *
470 * LOCKING:
471 * Inherited from caller.
472 *
473 * RETURNS:
474 * Bytes consumed.
475 */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)476 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
477 unsigned int buflen, int rw)
478 {
479 struct ata_port *ap = qc->dev->link->ap;
480 void __iomem *data_addr = ap->ioaddr.data_addr;
481 unsigned int words = buflen >> 1;
482
483 /* Transfer multiple of 2 bytes */
484 if (rw == READ)
485 ioread16_rep(data_addr, buf, words);
486 else
487 iowrite16_rep(data_addr, buf, words);
488
489 /* Transfer trailing byte, if any. */
490 if (unlikely(buflen & 0x01)) {
491 unsigned char pad[2] = { };
492
493 /* Point buf to the tail of buffer */
494 buf += buflen - 1;
495
496 /*
497 * Use io*16_rep() accessors here as well to avoid pointlessly
498 * swapping bytes to and from on the big endian machines...
499 */
500 if (rw == READ) {
501 ioread16_rep(data_addr, pad, 1);
502 *buf = pad[0];
503 } else {
504 pad[0] = *buf;
505 iowrite16_rep(data_addr, pad, 1);
506 }
507 words++;
508 }
509
510 return words << 1;
511 }
512 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
513
514 /**
515 * ata_sff_data_xfer32 - Transfer data by PIO
516 * @qc: queued command
517 * @buf: data buffer
518 * @buflen: buffer length
519 * @rw: read/write
520 *
521 * Transfer data from/to the device data register by PIO using 32bit
522 * I/O operations.
523 *
524 * LOCKING:
525 * Inherited from caller.
526 *
527 * RETURNS:
528 * Bytes consumed.
529 */
530
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)531 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
532 unsigned int buflen, int rw)
533 {
534 struct ata_device *dev = qc->dev;
535 struct ata_port *ap = dev->link->ap;
536 void __iomem *data_addr = ap->ioaddr.data_addr;
537 unsigned int words = buflen >> 2;
538 int slop = buflen & 3;
539
540 if (!(ap->pflags & ATA_PFLAG_PIO32))
541 return ata_sff_data_xfer(qc, buf, buflen, rw);
542
543 /* Transfer multiple of 4 bytes */
544 if (rw == READ)
545 ioread32_rep(data_addr, buf, words);
546 else
547 iowrite32_rep(data_addr, buf, words);
548
549 /* Transfer trailing bytes, if any */
550 if (unlikely(slop)) {
551 unsigned char pad[4] = { };
552
553 /* Point buf to the tail of buffer */
554 buf += buflen - slop;
555
556 /*
557 * Use io*_rep() accessors here as well to avoid pointlessly
558 * swapping bytes to and from on the big endian machines...
559 */
560 if (rw == READ) {
561 if (slop < 3)
562 ioread16_rep(data_addr, pad, 1);
563 else
564 ioread32_rep(data_addr, pad, 1);
565 memcpy(buf, pad, slop);
566 } else {
567 memcpy(pad, buf, slop);
568 if (slop < 3)
569 iowrite16_rep(data_addr, pad, 1);
570 else
571 iowrite32_rep(data_addr, pad, 1);
572 }
573 }
574 return (buflen + 1) & ~1;
575 }
576 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
577
ata_pio_xfer(struct ata_queued_cmd * qc,struct page * page,unsigned int offset,size_t xfer_size)578 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
579 unsigned int offset, size_t xfer_size)
580 {
581 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
582 unsigned char *buf;
583
584 buf = kmap_atomic(page);
585 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
586 kunmap_atomic(buf);
587
588 if (!do_write && !PageSlab(page))
589 flush_dcache_page(page);
590 }
591
592 /**
593 * ata_pio_sector - Transfer a sector of data.
594 * @qc: Command on going
595 *
596 * Transfer qc->sect_size bytes of data from/to the ATA device.
597 *
598 * LOCKING:
599 * Inherited from caller.
600 */
ata_pio_sector(struct ata_queued_cmd * qc)601 static void ata_pio_sector(struct ata_queued_cmd *qc)
602 {
603 struct ata_port *ap = qc->ap;
604 struct page *page;
605 unsigned int offset;
606
607 if (!qc->cursg) {
608 qc->curbytes = qc->nbytes;
609 return;
610 }
611 if (qc->curbytes == qc->nbytes - qc->sect_size)
612 ap->hsm_task_state = HSM_ST_LAST;
613
614 page = sg_page(qc->cursg);
615 offset = qc->cursg->offset + qc->cursg_ofs;
616
617 /* get the current page and offset */
618 page = nth_page(page, (offset >> PAGE_SHIFT));
619 offset %= PAGE_SIZE;
620
621 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
622
623 /*
624 * Split the transfer when it splits a page boundary. Note that the
625 * split still has to be dword aligned like all ATA data transfers.
626 */
627 WARN_ON_ONCE(offset % 4);
628 if (offset + qc->sect_size > PAGE_SIZE) {
629 unsigned int split_len = PAGE_SIZE - offset;
630
631 ata_pio_xfer(qc, page, offset, split_len);
632 ata_pio_xfer(qc, nth_page(page, 1), 0,
633 qc->sect_size - split_len);
634 } else {
635 ata_pio_xfer(qc, page, offset, qc->sect_size);
636 }
637
638 qc->curbytes += qc->sect_size;
639 qc->cursg_ofs += qc->sect_size;
640
641 if (qc->cursg_ofs == qc->cursg->length) {
642 qc->cursg = sg_next(qc->cursg);
643 if (!qc->cursg)
644 ap->hsm_task_state = HSM_ST_LAST;
645 qc->cursg_ofs = 0;
646 }
647 }
648
649 /**
650 * ata_pio_sectors - Transfer one or many sectors.
651 * @qc: Command on going
652 *
653 * Transfer one or many sectors of data from/to the
654 * ATA device for the DRQ request.
655 *
656 * LOCKING:
657 * Inherited from caller.
658 */
ata_pio_sectors(struct ata_queued_cmd * qc)659 static void ata_pio_sectors(struct ata_queued_cmd *qc)
660 {
661 if (is_multi_taskfile(&qc->tf)) {
662 /* READ/WRITE MULTIPLE */
663 unsigned int nsect;
664
665 WARN_ON_ONCE(qc->dev->multi_count == 0);
666
667 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
668 qc->dev->multi_count);
669 while (nsect--)
670 ata_pio_sector(qc);
671 } else
672 ata_pio_sector(qc);
673
674 ata_sff_sync(qc->ap); /* flush */
675 }
676
677 /**
678 * atapi_send_cdb - Write CDB bytes to hardware
679 * @ap: Port to which ATAPI device is attached.
680 * @qc: Taskfile currently active
681 *
682 * When device has indicated its readiness to accept
683 * a CDB, this function is called. Send the CDB.
684 *
685 * LOCKING:
686 * caller.
687 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)688 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
689 {
690 /* send SCSI cdb */
691 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
692 WARN_ON_ONCE(qc->dev->cdb_len < 12);
693
694 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
695 ata_sff_sync(ap);
696 /* FIXME: If the CDB is for DMA do we need to do the transition delay
697 or is bmdma_start guaranteed to do it ? */
698 switch (qc->tf.protocol) {
699 case ATAPI_PROT_PIO:
700 ap->hsm_task_state = HSM_ST;
701 break;
702 case ATAPI_PROT_NODATA:
703 ap->hsm_task_state = HSM_ST_LAST;
704 break;
705 #ifdef CONFIG_ATA_BMDMA
706 case ATAPI_PROT_DMA:
707 ap->hsm_task_state = HSM_ST_LAST;
708 /* initiate bmdma */
709 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
710 ap->ops->bmdma_start(qc);
711 break;
712 #endif /* CONFIG_ATA_BMDMA */
713 default:
714 BUG();
715 }
716 }
717
718 /**
719 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
720 * @qc: Command on going
721 * @bytes: number of bytes
722 *
723 * Transfer data from/to the ATAPI device.
724 *
725 * LOCKING:
726 * Inherited from caller.
727 *
728 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)729 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
730 {
731 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
732 struct ata_port *ap = qc->ap;
733 struct ata_device *dev = qc->dev;
734 struct ata_eh_info *ehi = &dev->link->eh_info;
735 struct scatterlist *sg;
736 struct page *page;
737 unsigned char *buf;
738 unsigned int offset, count, consumed;
739
740 next_sg:
741 sg = qc->cursg;
742 if (unlikely(!sg)) {
743 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
744 "buf=%u cur=%u bytes=%u",
745 qc->nbytes, qc->curbytes, bytes);
746 return -1;
747 }
748
749 page = sg_page(sg);
750 offset = sg->offset + qc->cursg_ofs;
751
752 /* get the current page and offset */
753 page = nth_page(page, (offset >> PAGE_SHIFT));
754 offset %= PAGE_SIZE;
755
756 /* don't overrun current sg */
757 count = min(sg->length - qc->cursg_ofs, bytes);
758
759 /* don't cross page boundaries */
760 count = min(count, (unsigned int)PAGE_SIZE - offset);
761
762 trace_atapi_pio_transfer_data(qc, offset, count);
763
764 /* do the actual data transfer */
765 buf = kmap_atomic(page);
766 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
767 kunmap_atomic(buf);
768
769 bytes -= min(bytes, consumed);
770 qc->curbytes += count;
771 qc->cursg_ofs += count;
772
773 if (qc->cursg_ofs == sg->length) {
774 qc->cursg = sg_next(qc->cursg);
775 qc->cursg_ofs = 0;
776 }
777
778 /*
779 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
780 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
781 * check correctly as it doesn't know if it is the last request being
782 * made. Somebody should implement a proper sanity check.
783 */
784 if (bytes)
785 goto next_sg;
786 return 0;
787 }
788
789 /**
790 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
791 * @qc: Command on going
792 *
793 * Transfer Transfer data from/to the ATAPI device.
794 *
795 * LOCKING:
796 * Inherited from caller.
797 */
atapi_pio_bytes(struct ata_queued_cmd * qc)798 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
799 {
800 struct ata_port *ap = qc->ap;
801 struct ata_device *dev = qc->dev;
802 struct ata_eh_info *ehi = &dev->link->eh_info;
803 unsigned int ireason, bc_lo, bc_hi, bytes;
804 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
805
806 /* Abuse qc->result_tf for temp storage of intermediate TF
807 * here to save some kernel stack usage.
808 * For normal completion, qc->result_tf is not relevant. For
809 * error, qc->result_tf is later overwritten by ata_qc_complete().
810 * So, the correctness of qc->result_tf is not affected.
811 */
812 ap->ops->sff_tf_read(ap, &qc->result_tf);
813 ireason = qc->result_tf.nsect;
814 bc_lo = qc->result_tf.lbam;
815 bc_hi = qc->result_tf.lbah;
816 bytes = (bc_hi << 8) | bc_lo;
817
818 /* shall be cleared to zero, indicating xfer of data */
819 if (unlikely(ireason & ATAPI_COD))
820 goto atapi_check;
821
822 /* make sure transfer direction matches expected */
823 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
824 if (unlikely(do_write != i_write))
825 goto atapi_check;
826
827 if (unlikely(!bytes))
828 goto atapi_check;
829
830 if (unlikely(__atapi_pio_bytes(qc, bytes)))
831 goto err_out;
832 ata_sff_sync(ap); /* flush */
833
834 return;
835
836 atapi_check:
837 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
838 ireason, bytes);
839 err_out:
840 qc->err_mask |= AC_ERR_HSM;
841 ap->hsm_task_state = HSM_ST_ERR;
842 }
843
844 /**
845 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
846 * @ap: the target ata_port
847 * @qc: qc on going
848 *
849 * RETURNS:
850 * 1 if ok in workqueue, 0 otherwise.
851 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)852 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
853 struct ata_queued_cmd *qc)
854 {
855 if (qc->tf.flags & ATA_TFLAG_POLLING)
856 return 1;
857
858 if (ap->hsm_task_state == HSM_ST_FIRST) {
859 if (qc->tf.protocol == ATA_PROT_PIO &&
860 (qc->tf.flags & ATA_TFLAG_WRITE))
861 return 1;
862
863 if (ata_is_atapi(qc->tf.protocol) &&
864 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
865 return 1;
866 }
867
868 return 0;
869 }
870
871 /**
872 * ata_hsm_qc_complete - finish a qc running on standard HSM
873 * @qc: Command to complete
874 * @in_wq: 1 if called from workqueue, 0 otherwise
875 *
876 * Finish @qc which is running on standard HSM.
877 *
878 * LOCKING:
879 * If @in_wq is zero, spin_lock_irqsave(host lock).
880 * Otherwise, none on entry and grabs host lock.
881 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)882 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
883 {
884 struct ata_port *ap = qc->ap;
885
886 if (ap->ops->error_handler) {
887 if (in_wq) {
888 /* EH might have kicked in while host lock is
889 * released.
890 */
891 qc = ata_qc_from_tag(ap, qc->tag);
892 if (qc) {
893 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
894 ata_sff_irq_on(ap);
895 ata_qc_complete(qc);
896 } else
897 ata_port_freeze(ap);
898 }
899 } else {
900 if (likely(!(qc->err_mask & AC_ERR_HSM)))
901 ata_qc_complete(qc);
902 else
903 ata_port_freeze(ap);
904 }
905 } else {
906 if (in_wq) {
907 ata_sff_irq_on(ap);
908 ata_qc_complete(qc);
909 } else
910 ata_qc_complete(qc);
911 }
912 }
913
914 /**
915 * ata_sff_hsm_move - move the HSM to the next state.
916 * @ap: the target ata_port
917 * @qc: qc on going
918 * @status: current device status
919 * @in_wq: 1 if called from workqueue, 0 otherwise
920 *
921 * RETURNS:
922 * 1 when poll next status needed, 0 otherwise.
923 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)924 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
925 u8 status, int in_wq)
926 {
927 struct ata_link *link = qc->dev->link;
928 struct ata_eh_info *ehi = &link->eh_info;
929 int poll_next;
930
931 lockdep_assert_held(ap->lock);
932
933 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
934
935 /* Make sure ata_sff_qc_issue() does not throw things
936 * like DMA polling into the workqueue. Notice that
937 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
938 */
939 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
940
941 fsm_start:
942 trace_ata_sff_hsm_state(qc, status);
943
944 switch (ap->hsm_task_state) {
945 case HSM_ST_FIRST:
946 /* Send first data block or PACKET CDB */
947
948 /* If polling, we will stay in the work queue after
949 * sending the data. Otherwise, interrupt handler
950 * takes over after sending the data.
951 */
952 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
953
954 /* check device status */
955 if (unlikely((status & ATA_DRQ) == 0)) {
956 /* handle BSY=0, DRQ=0 as error */
957 if (likely(status & (ATA_ERR | ATA_DF)))
958 /* device stops HSM for abort/error */
959 qc->err_mask |= AC_ERR_DEV;
960 else {
961 /* HSM violation. Let EH handle this */
962 ata_ehi_push_desc(ehi,
963 "ST_FIRST: !(DRQ|ERR|DF)");
964 qc->err_mask |= AC_ERR_HSM;
965 }
966
967 ap->hsm_task_state = HSM_ST_ERR;
968 goto fsm_start;
969 }
970
971 /* Device should not ask for data transfer (DRQ=1)
972 * when it finds something wrong.
973 * We ignore DRQ here and stop the HSM by
974 * changing hsm_task_state to HSM_ST_ERR and
975 * let the EH abort the command or reset the device.
976 */
977 if (unlikely(status & (ATA_ERR | ATA_DF))) {
978 /* Some ATAPI tape drives forget to clear the ERR bit
979 * when doing the next command (mostly request sense).
980 * We ignore ERR here to workaround and proceed sending
981 * the CDB.
982 */
983 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
984 ata_ehi_push_desc(ehi, "ST_FIRST: "
985 "DRQ=1 with device error, "
986 "dev_stat 0x%X", status);
987 qc->err_mask |= AC_ERR_HSM;
988 ap->hsm_task_state = HSM_ST_ERR;
989 goto fsm_start;
990 }
991 }
992
993 if (qc->tf.protocol == ATA_PROT_PIO) {
994 /* PIO data out protocol.
995 * send first data block.
996 */
997
998 /* ata_pio_sectors() might change the state
999 * to HSM_ST_LAST. so, the state is changed here
1000 * before ata_pio_sectors().
1001 */
1002 ap->hsm_task_state = HSM_ST;
1003 ata_pio_sectors(qc);
1004 } else
1005 /* send CDB */
1006 atapi_send_cdb(ap, qc);
1007
1008 /* if polling, ata_sff_pio_task() handles the rest.
1009 * otherwise, interrupt handler takes over from here.
1010 */
1011 break;
1012
1013 case HSM_ST:
1014 /* complete command or read/write the data register */
1015 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1016 /* ATAPI PIO protocol */
1017 if ((status & ATA_DRQ) == 0) {
1018 /* No more data to transfer or device error.
1019 * Device error will be tagged in HSM_ST_LAST.
1020 */
1021 ap->hsm_task_state = HSM_ST_LAST;
1022 goto fsm_start;
1023 }
1024
1025 /* Device should not ask for data transfer (DRQ=1)
1026 * when it finds something wrong.
1027 * We ignore DRQ here and stop the HSM by
1028 * changing hsm_task_state to HSM_ST_ERR and
1029 * let the EH abort the command or reset the device.
1030 */
1031 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1032 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1033 "DRQ=1 with device error, "
1034 "dev_stat 0x%X", status);
1035 qc->err_mask |= AC_ERR_HSM;
1036 ap->hsm_task_state = HSM_ST_ERR;
1037 goto fsm_start;
1038 }
1039
1040 atapi_pio_bytes(qc);
1041
1042 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1043 /* bad ireason reported by device */
1044 goto fsm_start;
1045
1046 } else {
1047 /* ATA PIO protocol */
1048 if (unlikely((status & ATA_DRQ) == 0)) {
1049 /* handle BSY=0, DRQ=0 as error */
1050 if (likely(status & (ATA_ERR | ATA_DF))) {
1051 /* device stops HSM for abort/error */
1052 qc->err_mask |= AC_ERR_DEV;
1053
1054 /* If diagnostic failed and this is
1055 * IDENTIFY, it's likely a phantom
1056 * device. Mark hint.
1057 */
1058 if (qc->dev->horkage &
1059 ATA_HORKAGE_DIAGNOSTIC)
1060 qc->err_mask |=
1061 AC_ERR_NODEV_HINT;
1062 } else {
1063 /* HSM violation. Let EH handle this.
1064 * Phantom devices also trigger this
1065 * condition. Mark hint.
1066 */
1067 ata_ehi_push_desc(ehi, "ST-ATA: "
1068 "DRQ=0 without device error, "
1069 "dev_stat 0x%X", status);
1070 qc->err_mask |= AC_ERR_HSM |
1071 AC_ERR_NODEV_HINT;
1072 }
1073
1074 ap->hsm_task_state = HSM_ST_ERR;
1075 goto fsm_start;
1076 }
1077
1078 /* For PIO reads, some devices may ask for
1079 * data transfer (DRQ=1) alone with ERR=1.
1080 * We respect DRQ here and transfer one
1081 * block of junk data before changing the
1082 * hsm_task_state to HSM_ST_ERR.
1083 *
1084 * For PIO writes, ERR=1 DRQ=1 doesn't make
1085 * sense since the data block has been
1086 * transferred to the device.
1087 */
1088 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1089 /* data might be corrputed */
1090 qc->err_mask |= AC_ERR_DEV;
1091
1092 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1093 ata_pio_sectors(qc);
1094 status = ata_wait_idle(ap);
1095 }
1096
1097 if (status & (ATA_BUSY | ATA_DRQ)) {
1098 ata_ehi_push_desc(ehi, "ST-ATA: "
1099 "BUSY|DRQ persists on ERR|DF, "
1100 "dev_stat 0x%X", status);
1101 qc->err_mask |= AC_ERR_HSM;
1102 }
1103
1104 /* There are oddball controllers with
1105 * status register stuck at 0x7f and
1106 * lbal/m/h at zero which makes it
1107 * pass all other presence detection
1108 * mechanisms we have. Set NODEV_HINT
1109 * for it. Kernel bz#7241.
1110 */
1111 if (status == 0x7f)
1112 qc->err_mask |= AC_ERR_NODEV_HINT;
1113
1114 /* ata_pio_sectors() might change the
1115 * state to HSM_ST_LAST. so, the state
1116 * is changed after ata_pio_sectors().
1117 */
1118 ap->hsm_task_state = HSM_ST_ERR;
1119 goto fsm_start;
1120 }
1121
1122 ata_pio_sectors(qc);
1123
1124 if (ap->hsm_task_state == HSM_ST_LAST &&
1125 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1126 /* all data read */
1127 status = ata_wait_idle(ap);
1128 goto fsm_start;
1129 }
1130 }
1131
1132 poll_next = 1;
1133 break;
1134
1135 case HSM_ST_LAST:
1136 if (unlikely(!ata_ok(status))) {
1137 qc->err_mask |= __ac_err_mask(status);
1138 ap->hsm_task_state = HSM_ST_ERR;
1139 goto fsm_start;
1140 }
1141
1142 /* no more data to transfer */
1143 trace_ata_sff_hsm_command_complete(qc, status);
1144
1145 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1146
1147 ap->hsm_task_state = HSM_ST_IDLE;
1148
1149 /* complete taskfile transaction */
1150 ata_hsm_qc_complete(qc, in_wq);
1151
1152 poll_next = 0;
1153 break;
1154
1155 case HSM_ST_ERR:
1156 ap->hsm_task_state = HSM_ST_IDLE;
1157
1158 /* complete taskfile transaction */
1159 ata_hsm_qc_complete(qc, in_wq);
1160
1161 poll_next = 0;
1162 break;
1163 default:
1164 poll_next = 0;
1165 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1166 ap->print_id, ap->hsm_task_state);
1167 }
1168
1169 return poll_next;
1170 }
1171 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1172
ata_sff_queue_work(struct work_struct * work)1173 void ata_sff_queue_work(struct work_struct *work)
1174 {
1175 queue_work(ata_sff_wq, work);
1176 }
1177 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1178
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1179 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1180 {
1181 queue_delayed_work(ata_sff_wq, dwork, delay);
1182 }
1183 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1184
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1185 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1186 {
1187 struct ata_port *ap = link->ap;
1188
1189 WARN_ON((ap->sff_pio_task_link != NULL) &&
1190 (ap->sff_pio_task_link != link));
1191 ap->sff_pio_task_link = link;
1192
1193 /* may fail if ata_sff_flush_pio_task() in progress */
1194 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1195 }
1196 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1197
ata_sff_flush_pio_task(struct ata_port * ap)1198 void ata_sff_flush_pio_task(struct ata_port *ap)
1199 {
1200 trace_ata_sff_flush_pio_task(ap);
1201
1202 cancel_delayed_work_sync(&ap->sff_pio_task);
1203
1204 /*
1205 * We wanna reset the HSM state to IDLE. If we do so without
1206 * grabbing the port lock, critical sections protected by it which
1207 * expect the HSM state to stay stable may get surprised. For
1208 * example, we may set IDLE in between the time
1209 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1210 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1211 */
1212 spin_lock_irq(ap->lock);
1213 ap->hsm_task_state = HSM_ST_IDLE;
1214 spin_unlock_irq(ap->lock);
1215
1216 ap->sff_pio_task_link = NULL;
1217 }
1218
ata_sff_pio_task(struct work_struct * work)1219 static void ata_sff_pio_task(struct work_struct *work)
1220 {
1221 struct ata_port *ap =
1222 container_of(work, struct ata_port, sff_pio_task.work);
1223 struct ata_link *link = ap->sff_pio_task_link;
1224 struct ata_queued_cmd *qc;
1225 u8 status;
1226 int poll_next;
1227
1228 spin_lock_irq(ap->lock);
1229
1230 BUG_ON(ap->sff_pio_task_link == NULL);
1231 /* qc can be NULL if timeout occurred */
1232 qc = ata_qc_from_tag(ap, link->active_tag);
1233 if (!qc) {
1234 ap->sff_pio_task_link = NULL;
1235 goto out_unlock;
1236 }
1237
1238 fsm_start:
1239 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1240
1241 /*
1242 * This is purely heuristic. This is a fast path.
1243 * Sometimes when we enter, BSY will be cleared in
1244 * a chk-status or two. If not, the drive is probably seeking
1245 * or something. Snooze for a couple msecs, then
1246 * chk-status again. If still busy, queue delayed work.
1247 */
1248 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1249 if (status & ATA_BUSY) {
1250 spin_unlock_irq(ap->lock);
1251 ata_msleep(ap, 2);
1252 spin_lock_irq(ap->lock);
1253
1254 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1255 if (status & ATA_BUSY) {
1256 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1257 goto out_unlock;
1258 }
1259 }
1260
1261 /*
1262 * hsm_move() may trigger another command to be processed.
1263 * clean the link beforehand.
1264 */
1265 ap->sff_pio_task_link = NULL;
1266 /* move the HSM */
1267 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1268
1269 /* another command or interrupt handler
1270 * may be running at this point.
1271 */
1272 if (poll_next)
1273 goto fsm_start;
1274 out_unlock:
1275 spin_unlock_irq(ap->lock);
1276 }
1277
1278 /**
1279 * ata_sff_qc_issue - issue taskfile to a SFF controller
1280 * @qc: command to issue to device
1281 *
1282 * This function issues a PIO or NODATA command to a SFF
1283 * controller.
1284 *
1285 * LOCKING:
1286 * spin_lock_irqsave(host lock)
1287 *
1288 * RETURNS:
1289 * Zero on success, AC_ERR_* mask on failure
1290 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1291 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1292 {
1293 struct ata_port *ap = qc->ap;
1294 struct ata_link *link = qc->dev->link;
1295
1296 /* Use polling pio if the LLD doesn't handle
1297 * interrupt driven pio and atapi CDB interrupt.
1298 */
1299 if (ap->flags & ATA_FLAG_PIO_POLLING)
1300 qc->tf.flags |= ATA_TFLAG_POLLING;
1301
1302 /* select the device */
1303 ata_dev_select(ap, qc->dev->devno, 1, 0);
1304
1305 /* start the command */
1306 switch (qc->tf.protocol) {
1307 case ATA_PROT_NODATA:
1308 if (qc->tf.flags & ATA_TFLAG_POLLING)
1309 ata_qc_set_polling(qc);
1310
1311 ata_tf_to_host(ap, &qc->tf, qc->tag);
1312 ap->hsm_task_state = HSM_ST_LAST;
1313
1314 if (qc->tf.flags & ATA_TFLAG_POLLING)
1315 ata_sff_queue_pio_task(link, 0);
1316
1317 break;
1318
1319 case ATA_PROT_PIO:
1320 if (qc->tf.flags & ATA_TFLAG_POLLING)
1321 ata_qc_set_polling(qc);
1322
1323 ata_tf_to_host(ap, &qc->tf, qc->tag);
1324
1325 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1326 /* PIO data out protocol */
1327 ap->hsm_task_state = HSM_ST_FIRST;
1328 ata_sff_queue_pio_task(link, 0);
1329
1330 /* always send first data block using the
1331 * ata_sff_pio_task() codepath.
1332 */
1333 } else {
1334 /* PIO data in protocol */
1335 ap->hsm_task_state = HSM_ST;
1336
1337 if (qc->tf.flags & ATA_TFLAG_POLLING)
1338 ata_sff_queue_pio_task(link, 0);
1339
1340 /* if polling, ata_sff_pio_task() handles the
1341 * rest. otherwise, interrupt handler takes
1342 * over from here.
1343 */
1344 }
1345
1346 break;
1347
1348 case ATAPI_PROT_PIO:
1349 case ATAPI_PROT_NODATA:
1350 if (qc->tf.flags & ATA_TFLAG_POLLING)
1351 ata_qc_set_polling(qc);
1352
1353 ata_tf_to_host(ap, &qc->tf, qc->tag);
1354
1355 ap->hsm_task_state = HSM_ST_FIRST;
1356
1357 /* send cdb by polling if no cdb interrupt */
1358 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1359 (qc->tf.flags & ATA_TFLAG_POLLING))
1360 ata_sff_queue_pio_task(link, 0);
1361 break;
1362
1363 default:
1364 return AC_ERR_SYSTEM;
1365 }
1366
1367 return 0;
1368 }
1369 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1370
1371 /**
1372 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1373 * @qc: qc to fill result TF for
1374 *
1375 * @qc is finished and result TF needs to be filled. Fill it
1376 * using ->sff_tf_read.
1377 *
1378 * LOCKING:
1379 * spin_lock_irqsave(host lock)
1380 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1381 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1382 {
1383 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1384 }
1385 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1386
ata_sff_idle_irq(struct ata_port * ap)1387 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1388 {
1389 ap->stats.idle_irq++;
1390
1391 #ifdef ATA_IRQ_TRAP
1392 if ((ap->stats.idle_irq % 1000) == 0) {
1393 ap->ops->sff_check_status(ap);
1394 if (ap->ops->sff_irq_clear)
1395 ap->ops->sff_irq_clear(ap);
1396 ata_port_warn(ap, "irq trap\n");
1397 return 1;
1398 }
1399 #endif
1400 return 0; /* irq not handled */
1401 }
1402
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1403 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1404 struct ata_queued_cmd *qc,
1405 bool hsmv_on_idle)
1406 {
1407 u8 status;
1408
1409 trace_ata_sff_port_intr(qc, hsmv_on_idle);
1410
1411 /* Check whether we are expecting interrupt in this state */
1412 switch (ap->hsm_task_state) {
1413 case HSM_ST_FIRST:
1414 /* Some pre-ATAPI-4 devices assert INTRQ
1415 * at this state when ready to receive CDB.
1416 */
1417
1418 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1419 * The flag was turned on only for atapi devices. No
1420 * need to check ata_is_atapi(qc->tf.protocol) again.
1421 */
1422 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1423 return ata_sff_idle_irq(ap);
1424 break;
1425 case HSM_ST_IDLE:
1426 return ata_sff_idle_irq(ap);
1427 default:
1428 break;
1429 }
1430
1431 /* check main status, clearing INTRQ if needed */
1432 status = ata_sff_irq_status(ap);
1433 if (status & ATA_BUSY) {
1434 if (hsmv_on_idle) {
1435 /* BMDMA engine is already stopped, we're screwed */
1436 qc->err_mask |= AC_ERR_HSM;
1437 ap->hsm_task_state = HSM_ST_ERR;
1438 } else
1439 return ata_sff_idle_irq(ap);
1440 }
1441
1442 /* clear irq events */
1443 if (ap->ops->sff_irq_clear)
1444 ap->ops->sff_irq_clear(ap);
1445
1446 ata_sff_hsm_move(ap, qc, status, 0);
1447
1448 return 1; /* irq handled */
1449 }
1450
1451 /**
1452 * ata_sff_port_intr - Handle SFF port interrupt
1453 * @ap: Port on which interrupt arrived (possibly...)
1454 * @qc: Taskfile currently active in engine
1455 *
1456 * Handle port interrupt for given queued command.
1457 *
1458 * LOCKING:
1459 * spin_lock_irqsave(host lock)
1460 *
1461 * RETURNS:
1462 * One if interrupt was handled, zero if not (shared irq).
1463 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1464 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1465 {
1466 return __ata_sff_port_intr(ap, qc, false);
1467 }
1468 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1469
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1470 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1471 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1472 {
1473 struct ata_host *host = dev_instance;
1474 bool retried = false;
1475 unsigned int i;
1476 unsigned int handled, idle, polling;
1477 unsigned long flags;
1478
1479 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1480 spin_lock_irqsave(&host->lock, flags);
1481
1482 retry:
1483 handled = idle = polling = 0;
1484 for (i = 0; i < host->n_ports; i++) {
1485 struct ata_port *ap = host->ports[i];
1486 struct ata_queued_cmd *qc;
1487
1488 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1489 if (qc) {
1490 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1491 handled |= port_intr(ap, qc);
1492 else
1493 polling |= 1 << i;
1494 } else
1495 idle |= 1 << i;
1496 }
1497
1498 /*
1499 * If no port was expecting IRQ but the controller is actually
1500 * asserting IRQ line, nobody cared will ensue. Check IRQ
1501 * pending status if available and clear spurious IRQ.
1502 */
1503 if (!handled && !retried) {
1504 bool retry = false;
1505
1506 for (i = 0; i < host->n_ports; i++) {
1507 struct ata_port *ap = host->ports[i];
1508
1509 if (polling & (1 << i))
1510 continue;
1511
1512 if (!ap->ops->sff_irq_check ||
1513 !ap->ops->sff_irq_check(ap))
1514 continue;
1515
1516 if (idle & (1 << i)) {
1517 ap->ops->sff_check_status(ap);
1518 if (ap->ops->sff_irq_clear)
1519 ap->ops->sff_irq_clear(ap);
1520 } else {
1521 /* clear INTRQ and check if BUSY cleared */
1522 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1523 retry |= true;
1524 /*
1525 * With command in flight, we can't do
1526 * sff_irq_clear() w/o racing with completion.
1527 */
1528 }
1529 }
1530
1531 if (retry) {
1532 retried = true;
1533 goto retry;
1534 }
1535 }
1536
1537 spin_unlock_irqrestore(&host->lock, flags);
1538
1539 return IRQ_RETVAL(handled);
1540 }
1541
1542 /**
1543 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1544 * @irq: irq line (unused)
1545 * @dev_instance: pointer to our ata_host information structure
1546 *
1547 * Default interrupt handler for PCI IDE devices. Calls
1548 * ata_sff_port_intr() for each port that is not disabled.
1549 *
1550 * LOCKING:
1551 * Obtains host lock during operation.
1552 *
1553 * RETURNS:
1554 * IRQ_NONE or IRQ_HANDLED.
1555 */
ata_sff_interrupt(int irq,void * dev_instance)1556 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1557 {
1558 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1559 }
1560 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1561
1562 /**
1563 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1564 * @ap: port that appears to have timed out
1565 *
1566 * Called from the libata error handlers when the core code suspects
1567 * an interrupt has been lost. If it has complete anything we can and
1568 * then return. Interface must support altstatus for this faster
1569 * recovery to occur.
1570 *
1571 * Locking:
1572 * Caller holds host lock
1573 */
1574
ata_sff_lost_interrupt(struct ata_port * ap)1575 void ata_sff_lost_interrupt(struct ata_port *ap)
1576 {
1577 u8 status = 0;
1578 struct ata_queued_cmd *qc;
1579
1580 /* Only one outstanding command per SFF channel */
1581 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1582 /* We cannot lose an interrupt on a non-existent or polled command */
1583 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1584 return;
1585 /* See if the controller thinks it is still busy - if so the command
1586 isn't a lost IRQ but is still in progress */
1587 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1588 return;
1589 if (status & ATA_BUSY)
1590 return;
1591
1592 /* There was a command running, we are no longer busy and we have
1593 no interrupt. */
1594 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1595 /* Run the host interrupt logic as if the interrupt had not been
1596 lost */
1597 ata_sff_port_intr(ap, qc);
1598 }
1599 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1600
1601 /**
1602 * ata_sff_freeze - Freeze SFF controller port
1603 * @ap: port to freeze
1604 *
1605 * Freeze SFF controller port.
1606 *
1607 * LOCKING:
1608 * Inherited from caller.
1609 */
ata_sff_freeze(struct ata_port * ap)1610 void ata_sff_freeze(struct ata_port *ap)
1611 {
1612 ap->ctl |= ATA_NIEN;
1613 ap->last_ctl = ap->ctl;
1614
1615 ata_sff_set_devctl(ap, ap->ctl);
1616
1617 /* Under certain circumstances, some controllers raise IRQ on
1618 * ATA_NIEN manipulation. Also, many controllers fail to mask
1619 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1620 */
1621 ap->ops->sff_check_status(ap);
1622
1623 if (ap->ops->sff_irq_clear)
1624 ap->ops->sff_irq_clear(ap);
1625 }
1626 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1627
1628 /**
1629 * ata_sff_thaw - Thaw SFF controller port
1630 * @ap: port to thaw
1631 *
1632 * Thaw SFF controller port.
1633 *
1634 * LOCKING:
1635 * Inherited from caller.
1636 */
ata_sff_thaw(struct ata_port * ap)1637 void ata_sff_thaw(struct ata_port *ap)
1638 {
1639 /* clear & re-enable interrupts */
1640 ap->ops->sff_check_status(ap);
1641 if (ap->ops->sff_irq_clear)
1642 ap->ops->sff_irq_clear(ap);
1643 ata_sff_irq_on(ap);
1644 }
1645 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1646
1647 /**
1648 * ata_sff_prereset - prepare SFF link for reset
1649 * @link: SFF link to be reset
1650 * @deadline: deadline jiffies for the operation
1651 *
1652 * SFF link @link is about to be reset. Initialize it. It first
1653 * calls ata_std_prereset() and wait for !BSY if the port is
1654 * being softreset.
1655 *
1656 * LOCKING:
1657 * Kernel thread context (may sleep)
1658 *
1659 * RETURNS:
1660 * Always 0.
1661 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1662 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1663 {
1664 struct ata_eh_context *ehc = &link->eh_context;
1665 int rc;
1666
1667 /* The standard prereset is best-effort and always returns 0 */
1668 ata_std_prereset(link, deadline);
1669
1670 /* if we're about to do hardreset, nothing more to do */
1671 if (ehc->i.action & ATA_EH_HARDRESET)
1672 return 0;
1673
1674 /* wait for !BSY if we don't know that no device is attached */
1675 if (!ata_link_offline(link)) {
1676 rc = ata_sff_wait_ready(link, deadline);
1677 if (rc && rc != -ENODEV) {
1678 ata_link_warn(link,
1679 "device not ready (errno=%d), forcing hardreset\n",
1680 rc);
1681 ehc->i.action |= ATA_EH_HARDRESET;
1682 }
1683 }
1684
1685 return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1688
1689 /**
1690 * ata_devchk - PATA device presence detection
1691 * @ap: ATA channel to examine
1692 * @device: Device to examine (starting at zero)
1693 *
1694 * This technique was originally described in
1695 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1696 * later found its way into the ATA/ATAPI spec.
1697 *
1698 * Write a pattern to the ATA shadow registers,
1699 * and if a device is present, it will respond by
1700 * correctly storing and echoing back the
1701 * ATA shadow register contents.
1702 *
1703 * RETURN:
1704 * true if device is present, false if not.
1705 *
1706 * LOCKING:
1707 * caller.
1708 */
ata_devchk(struct ata_port * ap,unsigned int device)1709 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1710 {
1711 struct ata_ioports *ioaddr = &ap->ioaddr;
1712 u8 nsect, lbal;
1713
1714 ap->ops->sff_dev_select(ap, device);
1715
1716 iowrite8(0x55, ioaddr->nsect_addr);
1717 iowrite8(0xaa, ioaddr->lbal_addr);
1718
1719 iowrite8(0xaa, ioaddr->nsect_addr);
1720 iowrite8(0x55, ioaddr->lbal_addr);
1721
1722 iowrite8(0x55, ioaddr->nsect_addr);
1723 iowrite8(0xaa, ioaddr->lbal_addr);
1724
1725 nsect = ioread8(ioaddr->nsect_addr);
1726 lbal = ioread8(ioaddr->lbal_addr);
1727
1728 if ((nsect == 0x55) && (lbal == 0xaa))
1729 return true; /* we found a device */
1730
1731 return false; /* nothing found */
1732 }
1733
1734 /**
1735 * ata_sff_dev_classify - Parse returned ATA device signature
1736 * @dev: ATA device to classify (starting at zero)
1737 * @present: device seems present
1738 * @r_err: Value of error register on completion
1739 *
1740 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1741 * an ATA/ATAPI-defined set of values is placed in the ATA
1742 * shadow registers, indicating the results of device detection
1743 * and diagnostics.
1744 *
1745 * Select the ATA device, and read the values from the ATA shadow
1746 * registers. Then parse according to the Error register value,
1747 * and the spec-defined values examined by ata_dev_classify().
1748 *
1749 * LOCKING:
1750 * caller.
1751 *
1752 * RETURNS:
1753 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1754 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1755 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1756 u8 *r_err)
1757 {
1758 struct ata_port *ap = dev->link->ap;
1759 struct ata_taskfile tf;
1760 unsigned int class;
1761 u8 err;
1762
1763 ap->ops->sff_dev_select(ap, dev->devno);
1764
1765 memset(&tf, 0, sizeof(tf));
1766
1767 ap->ops->sff_tf_read(ap, &tf);
1768 err = tf.error;
1769 if (r_err)
1770 *r_err = err;
1771
1772 /* see if device passed diags: continue and warn later */
1773 if (err == 0)
1774 /* diagnostic fail : do nothing _YET_ */
1775 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1776 else if (err == 1)
1777 /* do nothing */ ;
1778 else if ((dev->devno == 0) && (err == 0x81))
1779 /* do nothing */ ;
1780 else
1781 return ATA_DEV_NONE;
1782
1783 /* determine if device is ATA or ATAPI */
1784 class = ata_port_classify(ap, &tf);
1785 switch (class) {
1786 case ATA_DEV_UNKNOWN:
1787 /*
1788 * If the device failed diagnostic, it's likely to
1789 * have reported incorrect device signature too.
1790 * Assume ATA device if the device seems present but
1791 * device signature is invalid with diagnostic
1792 * failure.
1793 */
1794 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1795 class = ATA_DEV_ATA;
1796 else
1797 class = ATA_DEV_NONE;
1798 break;
1799 case ATA_DEV_ATA:
1800 if (ap->ops->sff_check_status(ap) == 0)
1801 class = ATA_DEV_NONE;
1802 break;
1803 }
1804 return class;
1805 }
1806 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1807
1808 /**
1809 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1810 * @link: SFF link which is just reset
1811 * @devmask: mask of present devices
1812 * @deadline: deadline jiffies for the operation
1813 *
1814 * Wait devices attached to SFF @link to become ready after
1815 * reset. It contains preceding 150ms wait to avoid accessing TF
1816 * status register too early.
1817 *
1818 * LOCKING:
1819 * Kernel thread context (may sleep).
1820 *
1821 * RETURNS:
1822 * 0 on success, -ENODEV if some or all of devices in @devmask
1823 * don't seem to exist. -errno on other errors.
1824 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1825 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1826 unsigned long deadline)
1827 {
1828 struct ata_port *ap = link->ap;
1829 struct ata_ioports *ioaddr = &ap->ioaddr;
1830 unsigned int dev0 = devmask & (1 << 0);
1831 unsigned int dev1 = devmask & (1 << 1);
1832 int rc, ret = 0;
1833
1834 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1835
1836 /* always check readiness of the master device */
1837 rc = ata_sff_wait_ready(link, deadline);
1838 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1839 * and TF status is 0xff, bail out on it too.
1840 */
1841 if (rc)
1842 return rc;
1843
1844 /* if device 1 was found in ata_devchk, wait for register
1845 * access briefly, then wait for BSY to clear.
1846 */
1847 if (dev1) {
1848 int i;
1849
1850 ap->ops->sff_dev_select(ap, 1);
1851
1852 /* Wait for register access. Some ATAPI devices fail
1853 * to set nsect/lbal after reset, so don't waste too
1854 * much time on it. We're gonna wait for !BSY anyway.
1855 */
1856 for (i = 0; i < 2; i++) {
1857 u8 nsect, lbal;
1858
1859 nsect = ioread8(ioaddr->nsect_addr);
1860 lbal = ioread8(ioaddr->lbal_addr);
1861 if ((nsect == 1) && (lbal == 1))
1862 break;
1863 ata_msleep(ap, 50); /* give drive a breather */
1864 }
1865
1866 rc = ata_sff_wait_ready(link, deadline);
1867 if (rc) {
1868 if (rc != -ENODEV)
1869 return rc;
1870 ret = rc;
1871 }
1872 }
1873
1874 /* is all this really necessary? */
1875 ap->ops->sff_dev_select(ap, 0);
1876 if (dev1)
1877 ap->ops->sff_dev_select(ap, 1);
1878 if (dev0)
1879 ap->ops->sff_dev_select(ap, 0);
1880
1881 return ret;
1882 }
1883 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1884
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1885 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1886 unsigned long deadline)
1887 {
1888 struct ata_ioports *ioaddr = &ap->ioaddr;
1889
1890 if (ap->ioaddr.ctl_addr) {
1891 /* software reset. causes dev0 to be selected */
1892 iowrite8(ap->ctl, ioaddr->ctl_addr);
1893 udelay(20); /* FIXME: flush */
1894 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1895 udelay(20); /* FIXME: flush */
1896 iowrite8(ap->ctl, ioaddr->ctl_addr);
1897 ap->last_ctl = ap->ctl;
1898 }
1899
1900 /* wait the port to become ready */
1901 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1902 }
1903
1904 /**
1905 * ata_sff_softreset - reset host port via ATA SRST
1906 * @link: ATA link to reset
1907 * @classes: resulting classes of attached devices
1908 * @deadline: deadline jiffies for the operation
1909 *
1910 * Reset host port using ATA SRST.
1911 *
1912 * LOCKING:
1913 * Kernel thread context (may sleep)
1914 *
1915 * RETURNS:
1916 * 0 on success, -errno otherwise.
1917 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1918 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1919 unsigned long deadline)
1920 {
1921 struct ata_port *ap = link->ap;
1922 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1923 unsigned int devmask = 0;
1924 int rc;
1925 u8 err;
1926
1927 /* determine if device 0/1 are present */
1928 if (ata_devchk(ap, 0))
1929 devmask |= (1 << 0);
1930 if (slave_possible && ata_devchk(ap, 1))
1931 devmask |= (1 << 1);
1932
1933 /* select device 0 again */
1934 ap->ops->sff_dev_select(ap, 0);
1935
1936 /* issue bus reset */
1937 rc = ata_bus_softreset(ap, devmask, deadline);
1938 /* if link is occupied, -ENODEV too is an error */
1939 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1940 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1941 return rc;
1942 }
1943
1944 /* determine by signature whether we have ATA or ATAPI devices */
1945 classes[0] = ata_sff_dev_classify(&link->device[0],
1946 devmask & (1 << 0), &err);
1947 if (slave_possible && err != 0x81)
1948 classes[1] = ata_sff_dev_classify(&link->device[1],
1949 devmask & (1 << 1), &err);
1950
1951 return 0;
1952 }
1953 EXPORT_SYMBOL_GPL(ata_sff_softreset);
1954
1955 /**
1956 * sata_sff_hardreset - reset host port via SATA phy reset
1957 * @link: link to reset
1958 * @class: resulting class of attached device
1959 * @deadline: deadline jiffies for the operation
1960 *
1961 * SATA phy-reset host port using DET bits of SControl register,
1962 * wait for !BSY and classify the attached device.
1963 *
1964 * LOCKING:
1965 * Kernel thread context (may sleep)
1966 *
1967 * RETURNS:
1968 * 0 on success, -errno otherwise.
1969 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)1970 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1971 unsigned long deadline)
1972 {
1973 struct ata_eh_context *ehc = &link->eh_context;
1974 const unsigned long *timing = sata_ehc_deb_timing(ehc);
1975 bool online;
1976 int rc;
1977
1978 rc = sata_link_hardreset(link, timing, deadline, &online,
1979 ata_sff_check_ready);
1980 if (online)
1981 *class = ata_sff_dev_classify(link->device, 1, NULL);
1982
1983 return rc;
1984 }
1985 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1986
1987 /**
1988 * ata_sff_postreset - SFF postreset callback
1989 * @link: the target SFF ata_link
1990 * @classes: classes of attached devices
1991 *
1992 * This function is invoked after a successful reset. It first
1993 * calls ata_std_postreset() and performs SFF specific postreset
1994 * processing.
1995 *
1996 * LOCKING:
1997 * Kernel thread context (may sleep)
1998 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)1999 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2000 {
2001 struct ata_port *ap = link->ap;
2002
2003 ata_std_postreset(link, classes);
2004
2005 /* is double-select really necessary? */
2006 if (classes[0] != ATA_DEV_NONE)
2007 ap->ops->sff_dev_select(ap, 1);
2008 if (classes[1] != ATA_DEV_NONE)
2009 ap->ops->sff_dev_select(ap, 0);
2010
2011 /* bail out if no device is present */
2012 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2013 return;
2014
2015 /* set up device control */
2016 if (ata_sff_set_devctl(ap, ap->ctl))
2017 ap->last_ctl = ap->ctl;
2018 }
2019 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2020
2021 /**
2022 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2023 * @qc: command
2024 *
2025 * Drain the FIFO and device of any stuck data following a command
2026 * failing to complete. In some cases this is necessary before a
2027 * reset will recover the device.
2028 *
2029 */
2030
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2031 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2032 {
2033 int count;
2034 struct ata_port *ap;
2035
2036 /* We only need to flush incoming data when a command was running */
2037 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2038 return;
2039
2040 ap = qc->ap;
2041 /* Drain up to 64K of data before we give up this recovery method */
2042 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2043 && count < 65536; count += 2)
2044 ioread16(ap->ioaddr.data_addr);
2045
2046 if (count)
2047 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2048
2049 }
2050 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2051
2052 /**
2053 * ata_sff_error_handler - Stock error handler for SFF controller
2054 * @ap: port to handle error for
2055 *
2056 * Stock error handler for SFF controller. It can handle both
2057 * PATA and SATA controllers. Many controllers should be able to
2058 * use this EH as-is or with some added handling before and
2059 * after.
2060 *
2061 * LOCKING:
2062 * Kernel thread context (may sleep)
2063 */
ata_sff_error_handler(struct ata_port * ap)2064 void ata_sff_error_handler(struct ata_port *ap)
2065 {
2066 ata_reset_fn_t softreset = ap->ops->softreset;
2067 ata_reset_fn_t hardreset = ap->ops->hardreset;
2068 struct ata_queued_cmd *qc;
2069 unsigned long flags;
2070
2071 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2072 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2073 qc = NULL;
2074
2075 spin_lock_irqsave(ap->lock, flags);
2076
2077 /*
2078 * We *MUST* do FIFO draining before we issue a reset as
2079 * several devices helpfully clear their internal state and
2080 * will lock solid if we touch the data port post reset. Pass
2081 * qc in case anyone wants to do different PIO/DMA recovery or
2082 * has per command fixups
2083 */
2084 if (ap->ops->sff_drain_fifo)
2085 ap->ops->sff_drain_fifo(qc);
2086
2087 spin_unlock_irqrestore(ap->lock, flags);
2088
2089 /* ignore built-in hardresets if SCR access is not available */
2090 if ((hardreset == sata_std_hardreset ||
2091 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2092 hardreset = NULL;
2093
2094 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2095 ap->ops->postreset);
2096 }
2097 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2098
2099 /**
2100 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2101 * @ioaddr: IO address structure to be initialized
2102 *
2103 * Utility function which initializes data_addr, error_addr,
2104 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2105 * device_addr, status_addr, and command_addr to standard offsets
2106 * relative to cmd_addr.
2107 *
2108 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2109 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2110 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2111 {
2112 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2113 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2114 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2115 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2116 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2117 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2118 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2119 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2120 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2121 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2122 }
2123 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2124
2125 #ifdef CONFIG_PCI
2126
ata_resources_present(struct pci_dev * pdev,int port)2127 static bool ata_resources_present(struct pci_dev *pdev, int port)
2128 {
2129 int i;
2130
2131 /* Check the PCI resources for this channel are enabled */
2132 port *= 2;
2133 for (i = 0; i < 2; i++) {
2134 if (pci_resource_start(pdev, port + i) == 0 ||
2135 pci_resource_len(pdev, port + i) == 0)
2136 return false;
2137 }
2138 return true;
2139 }
2140
2141 /**
2142 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2143 * @host: target ATA host
2144 *
2145 * Acquire native PCI ATA resources for @host and initialize the
2146 * first two ports of @host accordingly. Ports marked dummy are
2147 * skipped and allocation failure makes the port dummy.
2148 *
2149 * Note that native PCI resources are valid even for legacy hosts
2150 * as we fix up pdev resources array early in boot, so this
2151 * function can be used for both native and legacy SFF hosts.
2152 *
2153 * LOCKING:
2154 * Inherited from calling layer (may sleep).
2155 *
2156 * RETURNS:
2157 * 0 if at least one port is initialized, -ENODEV if no port is
2158 * available.
2159 */
ata_pci_sff_init_host(struct ata_host * host)2160 int ata_pci_sff_init_host(struct ata_host *host)
2161 {
2162 struct device *gdev = host->dev;
2163 struct pci_dev *pdev = to_pci_dev(gdev);
2164 unsigned int mask = 0;
2165 int i, rc;
2166
2167 /* request, iomap BARs and init port addresses accordingly */
2168 for (i = 0; i < 2; i++) {
2169 struct ata_port *ap = host->ports[i];
2170 int base = i * 2;
2171 void __iomem * const *iomap;
2172
2173 if (ata_port_is_dummy(ap))
2174 continue;
2175
2176 /* Discard disabled ports. Some controllers show
2177 * their unused channels this way. Disabled ports are
2178 * made dummy.
2179 */
2180 if (!ata_resources_present(pdev, i)) {
2181 ap->ops = &ata_dummy_port_ops;
2182 continue;
2183 }
2184
2185 rc = pcim_iomap_regions(pdev, 0x3 << base,
2186 dev_driver_string(gdev));
2187 if (rc) {
2188 dev_warn(gdev,
2189 "failed to request/iomap BARs for port %d (errno=%d)\n",
2190 i, rc);
2191 if (rc == -EBUSY)
2192 pcim_pin_device(pdev);
2193 ap->ops = &ata_dummy_port_ops;
2194 continue;
2195 }
2196 host->iomap = iomap = pcim_iomap_table(pdev);
2197
2198 ap->ioaddr.cmd_addr = iomap[base];
2199 ap->ioaddr.altstatus_addr =
2200 ap->ioaddr.ctl_addr = (void __iomem *)
2201 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2202 ata_sff_std_ports(&ap->ioaddr);
2203
2204 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2205 (unsigned long long)pci_resource_start(pdev, base),
2206 (unsigned long long)pci_resource_start(pdev, base + 1));
2207
2208 mask |= 1 << i;
2209 }
2210
2211 if (!mask) {
2212 dev_err(gdev, "no available native port\n");
2213 return -ENODEV;
2214 }
2215
2216 return 0;
2217 }
2218 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2219
2220 /**
2221 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2222 * @pdev: target PCI device
2223 * @ppi: array of port_info, must be enough for two ports
2224 * @r_host: out argument for the initialized ATA host
2225 *
2226 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2227 * all PCI resources and initialize it accordingly in one go.
2228 *
2229 * LOCKING:
2230 * Inherited from calling layer (may sleep).
2231 *
2232 * RETURNS:
2233 * 0 on success, -errno otherwise.
2234 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2235 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2236 const struct ata_port_info * const *ppi,
2237 struct ata_host **r_host)
2238 {
2239 struct ata_host *host;
2240 int rc;
2241
2242 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2243 return -ENOMEM;
2244
2245 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2246 if (!host) {
2247 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2248 rc = -ENOMEM;
2249 goto err_out;
2250 }
2251
2252 rc = ata_pci_sff_init_host(host);
2253 if (rc)
2254 goto err_out;
2255
2256 devres_remove_group(&pdev->dev, NULL);
2257 *r_host = host;
2258 return 0;
2259
2260 err_out:
2261 devres_release_group(&pdev->dev, NULL);
2262 return rc;
2263 }
2264 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2265
2266 /**
2267 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2268 * @host: target SFF ATA host
2269 * @irq_handler: irq_handler used when requesting IRQ(s)
2270 * @sht: scsi_host_template to use when registering the host
2271 *
2272 * This is the counterpart of ata_host_activate() for SFF ATA
2273 * hosts. This separate helper is necessary because SFF hosts
2274 * use two separate interrupts in legacy mode.
2275 *
2276 * LOCKING:
2277 * Inherited from calling layer (may sleep).
2278 *
2279 * RETURNS:
2280 * 0 on success, -errno otherwise.
2281 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2282 int ata_pci_sff_activate_host(struct ata_host *host,
2283 irq_handler_t irq_handler,
2284 struct scsi_host_template *sht)
2285 {
2286 struct device *dev = host->dev;
2287 struct pci_dev *pdev = to_pci_dev(dev);
2288 const char *drv_name = dev_driver_string(host->dev);
2289 int legacy_mode = 0, rc;
2290
2291 rc = ata_host_start(host);
2292 if (rc)
2293 return rc;
2294
2295 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2296 u8 tmp8, mask = 0;
2297
2298 /*
2299 * ATA spec says we should use legacy mode when one
2300 * port is in legacy mode, but disabled ports on some
2301 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2302 * on which the secondary port is not wired, so
2303 * ignore ports that are marked as 'dummy' during
2304 * this check
2305 */
2306 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2307 if (!ata_port_is_dummy(host->ports[0]))
2308 mask |= (1 << 0);
2309 if (!ata_port_is_dummy(host->ports[1]))
2310 mask |= (1 << 2);
2311 if ((tmp8 & mask) != mask)
2312 legacy_mode = 1;
2313 }
2314
2315 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2316 return -ENOMEM;
2317
2318 if (!legacy_mode && pdev->irq) {
2319 int i;
2320
2321 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2322 IRQF_SHARED, drv_name, host);
2323 if (rc)
2324 goto out;
2325
2326 for (i = 0; i < 2; i++) {
2327 if (ata_port_is_dummy(host->ports[i]))
2328 continue;
2329 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2330 }
2331 } else if (legacy_mode) {
2332 if (!ata_port_is_dummy(host->ports[0])) {
2333 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2334 irq_handler, IRQF_SHARED,
2335 drv_name, host);
2336 if (rc)
2337 goto out;
2338
2339 ata_port_desc(host->ports[0], "irq %d",
2340 ATA_PRIMARY_IRQ(pdev));
2341 }
2342
2343 if (!ata_port_is_dummy(host->ports[1])) {
2344 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2345 irq_handler, IRQF_SHARED,
2346 drv_name, host);
2347 if (rc)
2348 goto out;
2349
2350 ata_port_desc(host->ports[1], "irq %d",
2351 ATA_SECONDARY_IRQ(pdev));
2352 }
2353 }
2354
2355 rc = ata_host_register(host, sht);
2356 out:
2357 if (rc == 0)
2358 devres_remove_group(dev, NULL);
2359 else
2360 devres_release_group(dev, NULL);
2361
2362 return rc;
2363 }
2364 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2365
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2366 static const struct ata_port_info *ata_sff_find_valid_pi(
2367 const struct ata_port_info * const *ppi)
2368 {
2369 int i;
2370
2371 /* look up the first valid port_info */
2372 for (i = 0; i < 2 && ppi[i]; i++)
2373 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2374 return ppi[i];
2375
2376 return NULL;
2377 }
2378
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2379 static int ata_pci_init_one(struct pci_dev *pdev,
2380 const struct ata_port_info * const *ppi,
2381 struct scsi_host_template *sht, void *host_priv,
2382 int hflags, bool bmdma)
2383 {
2384 struct device *dev = &pdev->dev;
2385 const struct ata_port_info *pi;
2386 struct ata_host *host = NULL;
2387 int rc;
2388
2389 pi = ata_sff_find_valid_pi(ppi);
2390 if (!pi) {
2391 dev_err(&pdev->dev, "no valid port_info specified\n");
2392 return -EINVAL;
2393 }
2394
2395 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2396 return -ENOMEM;
2397
2398 rc = pcim_enable_device(pdev);
2399 if (rc)
2400 goto out;
2401
2402 #ifdef CONFIG_ATA_BMDMA
2403 if (bmdma)
2404 /* prepare and activate BMDMA host */
2405 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2406 else
2407 #endif
2408 /* prepare and activate SFF host */
2409 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2410 if (rc)
2411 goto out;
2412 host->private_data = host_priv;
2413 host->flags |= hflags;
2414
2415 #ifdef CONFIG_ATA_BMDMA
2416 if (bmdma) {
2417 pci_set_master(pdev);
2418 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2419 } else
2420 #endif
2421 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2422 out:
2423 if (rc == 0)
2424 devres_remove_group(&pdev->dev, NULL);
2425 else
2426 devres_release_group(&pdev->dev, NULL);
2427
2428 return rc;
2429 }
2430
2431 /**
2432 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2433 * @pdev: Controller to be initialized
2434 * @ppi: array of port_info, must be enough for two ports
2435 * @sht: scsi_host_template to use when registering the host
2436 * @host_priv: host private_data
2437 * @hflag: host flags
2438 *
2439 * This is a helper function which can be called from a driver's
2440 * xxx_init_one() probe function if the hardware uses traditional
2441 * IDE taskfile registers and is PIO only.
2442 *
2443 * ASSUMPTION:
2444 * Nobody makes a single channel controller that appears solely as
2445 * the secondary legacy port on PCI.
2446 *
2447 * LOCKING:
2448 * Inherited from PCI layer (may sleep).
2449 *
2450 * RETURNS:
2451 * Zero on success, negative on errno-based value on error.
2452 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2453 int ata_pci_sff_init_one(struct pci_dev *pdev,
2454 const struct ata_port_info * const *ppi,
2455 struct scsi_host_template *sht, void *host_priv, int hflag)
2456 {
2457 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2458 }
2459 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2460
2461 #endif /* CONFIG_PCI */
2462
2463 /*
2464 * BMDMA support
2465 */
2466
2467 #ifdef CONFIG_ATA_BMDMA
2468
2469 const struct ata_port_operations ata_bmdma_port_ops = {
2470 .inherits = &ata_sff_port_ops,
2471
2472 .error_handler = ata_bmdma_error_handler,
2473 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2474
2475 .qc_prep = ata_bmdma_qc_prep,
2476 .qc_issue = ata_bmdma_qc_issue,
2477
2478 .sff_irq_clear = ata_bmdma_irq_clear,
2479 .bmdma_setup = ata_bmdma_setup,
2480 .bmdma_start = ata_bmdma_start,
2481 .bmdma_stop = ata_bmdma_stop,
2482 .bmdma_status = ata_bmdma_status,
2483
2484 .port_start = ata_bmdma_port_start,
2485 };
2486 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2487
2488 const struct ata_port_operations ata_bmdma32_port_ops = {
2489 .inherits = &ata_bmdma_port_ops,
2490
2491 .sff_data_xfer = ata_sff_data_xfer32,
2492 .port_start = ata_bmdma_port_start32,
2493 };
2494 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2495
2496 /**
2497 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2498 * @qc: Metadata associated with taskfile to be transferred
2499 *
2500 * Fill PCI IDE PRD (scatter-gather) table with segments
2501 * associated with the current disk command.
2502 *
2503 * LOCKING:
2504 * spin_lock_irqsave(host lock)
2505 *
2506 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2507 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2508 {
2509 struct ata_port *ap = qc->ap;
2510 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2511 struct scatterlist *sg;
2512 unsigned int si, pi;
2513
2514 pi = 0;
2515 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2516 u32 addr, offset;
2517 u32 sg_len, len;
2518
2519 /* determine if physical DMA addr spans 64K boundary.
2520 * Note h/w doesn't support 64-bit, so we unconditionally
2521 * truncate dma_addr_t to u32.
2522 */
2523 addr = (u32) sg_dma_address(sg);
2524 sg_len = sg_dma_len(sg);
2525
2526 while (sg_len) {
2527 offset = addr & 0xffff;
2528 len = sg_len;
2529 if ((offset + sg_len) > 0x10000)
2530 len = 0x10000 - offset;
2531
2532 prd[pi].addr = cpu_to_le32(addr);
2533 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2534
2535 pi++;
2536 sg_len -= len;
2537 addr += len;
2538 }
2539 }
2540
2541 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2542 }
2543
2544 /**
2545 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2546 * @qc: Metadata associated with taskfile to be transferred
2547 *
2548 * Fill PCI IDE PRD (scatter-gather) table with segments
2549 * associated with the current disk command. Perform the fill
2550 * so that we avoid writing any length 64K records for
2551 * controllers that don't follow the spec.
2552 *
2553 * LOCKING:
2554 * spin_lock_irqsave(host lock)
2555 *
2556 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2557 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2558 {
2559 struct ata_port *ap = qc->ap;
2560 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2561 struct scatterlist *sg;
2562 unsigned int si, pi;
2563
2564 pi = 0;
2565 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2566 u32 addr, offset;
2567 u32 sg_len, len, blen;
2568
2569 /* determine if physical DMA addr spans 64K boundary.
2570 * Note h/w doesn't support 64-bit, so we unconditionally
2571 * truncate dma_addr_t to u32.
2572 */
2573 addr = (u32) sg_dma_address(sg);
2574 sg_len = sg_dma_len(sg);
2575
2576 while (sg_len) {
2577 offset = addr & 0xffff;
2578 len = sg_len;
2579 if ((offset + sg_len) > 0x10000)
2580 len = 0x10000 - offset;
2581
2582 blen = len & 0xffff;
2583 prd[pi].addr = cpu_to_le32(addr);
2584 if (blen == 0) {
2585 /* Some PATA chipsets like the CS5530 can't
2586 cope with 0x0000 meaning 64K as the spec
2587 says */
2588 prd[pi].flags_len = cpu_to_le32(0x8000);
2589 blen = 0x8000;
2590 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2591 }
2592 prd[pi].flags_len = cpu_to_le32(blen);
2593
2594 pi++;
2595 sg_len -= len;
2596 addr += len;
2597 }
2598 }
2599
2600 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2601 }
2602
2603 /**
2604 * ata_bmdma_qc_prep - Prepare taskfile for submission
2605 * @qc: Metadata associated with taskfile to be prepared
2606 *
2607 * Prepare ATA taskfile for submission.
2608 *
2609 * LOCKING:
2610 * spin_lock_irqsave(host lock)
2611 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2612 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2613 {
2614 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2615 return AC_ERR_OK;
2616
2617 ata_bmdma_fill_sg(qc);
2618
2619 return AC_ERR_OK;
2620 }
2621 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2622
2623 /**
2624 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2625 * @qc: Metadata associated with taskfile to be prepared
2626 *
2627 * Prepare ATA taskfile for submission.
2628 *
2629 * LOCKING:
2630 * spin_lock_irqsave(host lock)
2631 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2632 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2633 {
2634 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2635 return AC_ERR_OK;
2636
2637 ata_bmdma_fill_sg_dumb(qc);
2638
2639 return AC_ERR_OK;
2640 }
2641 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2642
2643 /**
2644 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2645 * @qc: command to issue to device
2646 *
2647 * This function issues a PIO, NODATA or DMA command to a
2648 * SFF/BMDMA controller. PIO and NODATA are handled by
2649 * ata_sff_qc_issue().
2650 *
2651 * LOCKING:
2652 * spin_lock_irqsave(host lock)
2653 *
2654 * RETURNS:
2655 * Zero on success, AC_ERR_* mask on failure
2656 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2657 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2658 {
2659 struct ata_port *ap = qc->ap;
2660 struct ata_link *link = qc->dev->link;
2661
2662 /* defer PIO handling to sff_qc_issue */
2663 if (!ata_is_dma(qc->tf.protocol))
2664 return ata_sff_qc_issue(qc);
2665
2666 /* select the device */
2667 ata_dev_select(ap, qc->dev->devno, 1, 0);
2668
2669 /* start the command */
2670 switch (qc->tf.protocol) {
2671 case ATA_PROT_DMA:
2672 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2673
2674 trace_ata_tf_load(ap, &qc->tf);
2675 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2676 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2677 ap->ops->bmdma_setup(qc); /* set up bmdma */
2678 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2679 ap->ops->bmdma_start(qc); /* initiate bmdma */
2680 ap->hsm_task_state = HSM_ST_LAST;
2681 break;
2682
2683 case ATAPI_PROT_DMA:
2684 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2685
2686 trace_ata_tf_load(ap, &qc->tf);
2687 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2688 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2689 ap->ops->bmdma_setup(qc); /* set up bmdma */
2690 ap->hsm_task_state = HSM_ST_FIRST;
2691
2692 /* send cdb by polling if no cdb interrupt */
2693 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2694 ata_sff_queue_pio_task(link, 0);
2695 break;
2696
2697 default:
2698 WARN_ON(1);
2699 return AC_ERR_SYSTEM;
2700 }
2701
2702 return 0;
2703 }
2704 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2705
2706 /**
2707 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2708 * @ap: Port on which interrupt arrived (possibly...)
2709 * @qc: Taskfile currently active in engine
2710 *
2711 * Handle port interrupt for given queued command.
2712 *
2713 * LOCKING:
2714 * spin_lock_irqsave(host lock)
2715 *
2716 * RETURNS:
2717 * One if interrupt was handled, zero if not (shared irq).
2718 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2719 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2720 {
2721 struct ata_eh_info *ehi = &ap->link.eh_info;
2722 u8 host_stat = 0;
2723 bool bmdma_stopped = false;
2724 unsigned int handled;
2725
2726 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2727 /* check status of DMA engine */
2728 host_stat = ap->ops->bmdma_status(ap);
2729 trace_ata_bmdma_status(ap, host_stat);
2730
2731 /* if it's not our irq... */
2732 if (!(host_stat & ATA_DMA_INTR))
2733 return ata_sff_idle_irq(ap);
2734
2735 /* before we do anything else, clear DMA-Start bit */
2736 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2737 ap->ops->bmdma_stop(qc);
2738 bmdma_stopped = true;
2739
2740 if (unlikely(host_stat & ATA_DMA_ERR)) {
2741 /* error when transferring data to/from memory */
2742 qc->err_mask |= AC_ERR_HOST_BUS;
2743 ap->hsm_task_state = HSM_ST_ERR;
2744 }
2745 }
2746
2747 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2748
2749 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2750 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2751
2752 return handled;
2753 }
2754 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2755
2756 /**
2757 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2758 * @irq: irq line (unused)
2759 * @dev_instance: pointer to our ata_host information structure
2760 *
2761 * Default interrupt handler for PCI IDE devices. Calls
2762 * ata_bmdma_port_intr() for each port that is not disabled.
2763 *
2764 * LOCKING:
2765 * Obtains host lock during operation.
2766 *
2767 * RETURNS:
2768 * IRQ_NONE or IRQ_HANDLED.
2769 */
ata_bmdma_interrupt(int irq,void * dev_instance)2770 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2771 {
2772 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2773 }
2774 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2775
2776 /**
2777 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2778 * @ap: port to handle error for
2779 *
2780 * Stock error handler for BMDMA controller. It can handle both
2781 * PATA and SATA controllers. Most BMDMA controllers should be
2782 * able to use this EH as-is or with some added handling before
2783 * and after.
2784 *
2785 * LOCKING:
2786 * Kernel thread context (may sleep)
2787 */
ata_bmdma_error_handler(struct ata_port * ap)2788 void ata_bmdma_error_handler(struct ata_port *ap)
2789 {
2790 struct ata_queued_cmd *qc;
2791 unsigned long flags;
2792 bool thaw = false;
2793
2794 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2795 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2796 qc = NULL;
2797
2798 /* reset PIO HSM and stop DMA engine */
2799 spin_lock_irqsave(ap->lock, flags);
2800
2801 if (qc && ata_is_dma(qc->tf.protocol)) {
2802 u8 host_stat;
2803
2804 host_stat = ap->ops->bmdma_status(ap);
2805 trace_ata_bmdma_status(ap, host_stat);
2806
2807 /* BMDMA controllers indicate host bus error by
2808 * setting DMA_ERR bit and timing out. As it wasn't
2809 * really a timeout event, adjust error mask and
2810 * cancel frozen state.
2811 */
2812 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2813 qc->err_mask = AC_ERR_HOST_BUS;
2814 thaw = true;
2815 }
2816
2817 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2818 ap->ops->bmdma_stop(qc);
2819
2820 /* if we're gonna thaw, make sure IRQ is clear */
2821 if (thaw) {
2822 ap->ops->sff_check_status(ap);
2823 if (ap->ops->sff_irq_clear)
2824 ap->ops->sff_irq_clear(ap);
2825 }
2826 }
2827
2828 spin_unlock_irqrestore(ap->lock, flags);
2829
2830 if (thaw)
2831 ata_eh_thaw_port(ap);
2832
2833 ata_sff_error_handler(ap);
2834 }
2835 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2836
2837 /**
2838 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2839 * @qc: internal command to clean up
2840 *
2841 * LOCKING:
2842 * Kernel thread context (may sleep)
2843 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2844 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2845 {
2846 struct ata_port *ap = qc->ap;
2847 unsigned long flags;
2848
2849 if (ata_is_dma(qc->tf.protocol)) {
2850 spin_lock_irqsave(ap->lock, flags);
2851 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2852 ap->ops->bmdma_stop(qc);
2853 spin_unlock_irqrestore(ap->lock, flags);
2854 }
2855 }
2856 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2857
2858 /**
2859 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2860 * @ap: Port associated with this ATA transaction.
2861 *
2862 * Clear interrupt and error flags in DMA status register.
2863 *
2864 * May be used as the irq_clear() entry in ata_port_operations.
2865 *
2866 * LOCKING:
2867 * spin_lock_irqsave(host lock)
2868 */
ata_bmdma_irq_clear(struct ata_port * ap)2869 void ata_bmdma_irq_clear(struct ata_port *ap)
2870 {
2871 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2872
2873 if (!mmio)
2874 return;
2875
2876 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2877 }
2878 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2879
2880 /**
2881 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2882 * @qc: Info associated with this ATA transaction.
2883 *
2884 * LOCKING:
2885 * spin_lock_irqsave(host lock)
2886 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2887 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2888 {
2889 struct ata_port *ap = qc->ap;
2890 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2891 u8 dmactl;
2892
2893 /* load PRD table addr. */
2894 mb(); /* make sure PRD table writes are visible to controller */
2895 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2896
2897 /* specify data direction, triple-check start bit is clear */
2898 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2899 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2900 if (!rw)
2901 dmactl |= ATA_DMA_WR;
2902 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2903
2904 /* issue r/w command */
2905 ap->ops->sff_exec_command(ap, &qc->tf);
2906 }
2907 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2908
2909 /**
2910 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2911 * @qc: Info associated with this ATA transaction.
2912 *
2913 * LOCKING:
2914 * spin_lock_irqsave(host lock)
2915 */
ata_bmdma_start(struct ata_queued_cmd * qc)2916 void ata_bmdma_start(struct ata_queued_cmd *qc)
2917 {
2918 struct ata_port *ap = qc->ap;
2919 u8 dmactl;
2920
2921 /* start host DMA transaction */
2922 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2923 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2924
2925 /* Strictly, one may wish to issue an ioread8() here, to
2926 * flush the mmio write. However, control also passes
2927 * to the hardware at this point, and it will interrupt
2928 * us when we are to resume control. So, in effect,
2929 * we don't care when the mmio write flushes.
2930 * Further, a read of the DMA status register _immediately_
2931 * following the write may not be what certain flaky hardware
2932 * is expected, so I think it is best to not add a readb()
2933 * without first all the MMIO ATA cards/mobos.
2934 * Or maybe I'm just being paranoid.
2935 *
2936 * FIXME: The posting of this write means I/O starts are
2937 * unnecessarily delayed for MMIO
2938 */
2939 }
2940 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2941
2942 /**
2943 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2944 * @qc: Command we are ending DMA for
2945 *
2946 * Clears the ATA_DMA_START flag in the dma control register
2947 *
2948 * May be used as the bmdma_stop() entry in ata_port_operations.
2949 *
2950 * LOCKING:
2951 * spin_lock_irqsave(host lock)
2952 */
ata_bmdma_stop(struct ata_queued_cmd * qc)2953 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2954 {
2955 struct ata_port *ap = qc->ap;
2956 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2957
2958 /* clear start/stop bit */
2959 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2960 mmio + ATA_DMA_CMD);
2961
2962 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2963 ata_sff_dma_pause(ap);
2964 }
2965 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2966
2967 /**
2968 * ata_bmdma_status - Read PCI IDE BMDMA status
2969 * @ap: Port associated with this ATA transaction.
2970 *
2971 * Read and return BMDMA status register.
2972 *
2973 * May be used as the bmdma_status() entry in ata_port_operations.
2974 *
2975 * LOCKING:
2976 * spin_lock_irqsave(host lock)
2977 */
ata_bmdma_status(struct ata_port * ap)2978 u8 ata_bmdma_status(struct ata_port *ap)
2979 {
2980 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2981 }
2982 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2983
2984
2985 /**
2986 * ata_bmdma_port_start - Set port up for bmdma.
2987 * @ap: Port to initialize
2988 *
2989 * Called just after data structures for each port are
2990 * initialized. Allocates space for PRD table.
2991 *
2992 * May be used as the port_start() entry in ata_port_operations.
2993 *
2994 * LOCKING:
2995 * Inherited from caller.
2996 */
ata_bmdma_port_start(struct ata_port * ap)2997 int ata_bmdma_port_start(struct ata_port *ap)
2998 {
2999 if (ap->mwdma_mask || ap->udma_mask) {
3000 ap->bmdma_prd =
3001 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3002 &ap->bmdma_prd_dma, GFP_KERNEL);
3003 if (!ap->bmdma_prd)
3004 return -ENOMEM;
3005 }
3006
3007 return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3010
3011 /**
3012 * ata_bmdma_port_start32 - Set port up for dma.
3013 * @ap: Port to initialize
3014 *
3015 * Called just after data structures for each port are
3016 * initialized. Enables 32bit PIO and allocates space for PRD
3017 * table.
3018 *
3019 * May be used as the port_start() entry in ata_port_operations for
3020 * devices that are capable of 32bit PIO.
3021 *
3022 * LOCKING:
3023 * Inherited from caller.
3024 */
ata_bmdma_port_start32(struct ata_port * ap)3025 int ata_bmdma_port_start32(struct ata_port *ap)
3026 {
3027 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3028 return ata_bmdma_port_start(ap);
3029 }
3030 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3031
3032 #ifdef CONFIG_PCI
3033
3034 /**
3035 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3036 * @pdev: PCI device
3037 *
3038 * Some PCI ATA devices report simplex mode but in fact can be told to
3039 * enter non simplex mode. This implements the necessary logic to
3040 * perform the task on such devices. Calling it on other devices will
3041 * have -undefined- behaviour.
3042 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3043 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3044 {
3045 unsigned long bmdma = pci_resource_start(pdev, 4);
3046 u8 simplex;
3047
3048 if (bmdma == 0)
3049 return -ENOENT;
3050
3051 simplex = inb(bmdma + 0x02);
3052 outb(simplex & 0x60, bmdma + 0x02);
3053 simplex = inb(bmdma + 0x02);
3054 if (simplex & 0x80)
3055 return -EOPNOTSUPP;
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3059
ata_bmdma_nodma(struct ata_host * host,const char * reason)3060 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3061 {
3062 int i;
3063
3064 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3065
3066 for (i = 0; i < 2; i++) {
3067 host->ports[i]->mwdma_mask = 0;
3068 host->ports[i]->udma_mask = 0;
3069 }
3070 }
3071
3072 /**
3073 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3074 * @host: target ATA host
3075 *
3076 * Acquire PCI BMDMA resources and initialize @host accordingly.
3077 *
3078 * LOCKING:
3079 * Inherited from calling layer (may sleep).
3080 */
ata_pci_bmdma_init(struct ata_host * host)3081 void ata_pci_bmdma_init(struct ata_host *host)
3082 {
3083 struct device *gdev = host->dev;
3084 struct pci_dev *pdev = to_pci_dev(gdev);
3085 int i, rc;
3086
3087 /* No BAR4 allocation: No DMA */
3088 if (pci_resource_start(pdev, 4) == 0) {
3089 ata_bmdma_nodma(host, "BAR4 is zero");
3090 return;
3091 }
3092
3093 /*
3094 * Some controllers require BMDMA region to be initialized
3095 * even if DMA is not in use to clear IRQ status via
3096 * ->sff_irq_clear method. Try to initialize bmdma_addr
3097 * regardless of dma masks.
3098 */
3099 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3100 if (rc)
3101 ata_bmdma_nodma(host, "failed to set dma mask");
3102
3103 /* request and iomap DMA region */
3104 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3105 if (rc) {
3106 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3107 return;
3108 }
3109 host->iomap = pcim_iomap_table(pdev);
3110
3111 for (i = 0; i < 2; i++) {
3112 struct ata_port *ap = host->ports[i];
3113 void __iomem *bmdma = host->iomap[4] + 8 * i;
3114
3115 if (ata_port_is_dummy(ap))
3116 continue;
3117
3118 ap->ioaddr.bmdma_addr = bmdma;
3119 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3120 (ioread8(bmdma + 2) & 0x80))
3121 host->flags |= ATA_HOST_SIMPLEX;
3122
3123 ata_port_desc(ap, "bmdma 0x%llx",
3124 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3125 }
3126 }
3127 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3128
3129 /**
3130 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3131 * @pdev: target PCI device
3132 * @ppi: array of port_info, must be enough for two ports
3133 * @r_host: out argument for the initialized ATA host
3134 *
3135 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3136 * resources and initialize it accordingly in one go.
3137 *
3138 * LOCKING:
3139 * Inherited from calling layer (may sleep).
3140 *
3141 * RETURNS:
3142 * 0 on success, -errno otherwise.
3143 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3144 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3145 const struct ata_port_info * const * ppi,
3146 struct ata_host **r_host)
3147 {
3148 int rc;
3149
3150 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3151 if (rc)
3152 return rc;
3153
3154 ata_pci_bmdma_init(*r_host);
3155 return 0;
3156 }
3157 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3158
3159 /**
3160 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3161 * @pdev: Controller to be initialized
3162 * @ppi: array of port_info, must be enough for two ports
3163 * @sht: scsi_host_template to use when registering the host
3164 * @host_priv: host private_data
3165 * @hflags: host flags
3166 *
3167 * This function is similar to ata_pci_sff_init_one() but also
3168 * takes care of BMDMA initialization.
3169 *
3170 * LOCKING:
3171 * Inherited from PCI layer (may sleep).
3172 *
3173 * RETURNS:
3174 * Zero on success, negative on errno-based value on error.
3175 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3176 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3177 const struct ata_port_info * const * ppi,
3178 struct scsi_host_template *sht, void *host_priv,
3179 int hflags)
3180 {
3181 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3182 }
3183 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3184
3185 #endif /* CONFIG_PCI */
3186 #endif /* CONFIG_ATA_BMDMA */
3187
3188 /**
3189 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3190 * @ap: Port to initialize
3191 *
3192 * Called on port allocation to initialize SFF/BMDMA specific
3193 * fields.
3194 *
3195 * LOCKING:
3196 * None.
3197 */
ata_sff_port_init(struct ata_port * ap)3198 void ata_sff_port_init(struct ata_port *ap)
3199 {
3200 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3201 ap->ctl = ATA_DEVCTL_OBS;
3202 ap->last_ctl = 0xFF;
3203 }
3204
ata_sff_init(void)3205 int __init ata_sff_init(void)
3206 {
3207 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3208 if (!ata_sff_wq)
3209 return -ENOMEM;
3210
3211 return 0;
3212 }
3213
ata_sff_exit(void)3214 void ata_sff_exit(void)
3215 {
3216 destroy_workqueue(ata_sff_wq);
3217 }
3218