1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
22
23 #include <trace/events/block.h>
24 #include "blk.h"
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
27
28 #define ALLOC_CACHE_THRESHOLD 16
29 #define ALLOC_CACHE_MAX 256
30
31 struct bio_alloc_cache {
32 struct bio *free_list;
33 struct bio *free_list_irq;
34 unsigned int nr;
35 unsigned int nr_irq;
36 };
37
38 static struct biovec_slab {
39 int nr_vecs;
40 char *name;
41 struct kmem_cache *slab;
42 } bvec_slabs[] __read_mostly = {
43 { .nr_vecs = 16, .name = "biovec-16" },
44 { .nr_vecs = 64, .name = "biovec-64" },
45 { .nr_vecs = 128, .name = "biovec-128" },
46 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
47 };
48
biovec_slab(unsigned short nr_vecs)49 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
50 {
51 switch (nr_vecs) {
52 /* smaller bios use inline vecs */
53 case 5 ... 16:
54 return &bvec_slabs[0];
55 case 17 ... 64:
56 return &bvec_slabs[1];
57 case 65 ... 128:
58 return &bvec_slabs[2];
59 case 129 ... BIO_MAX_VECS:
60 return &bvec_slabs[3];
61 default:
62 BUG();
63 return NULL;
64 }
65 }
66
67 /*
68 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
69 * IO code that does not need private memory pools.
70 */
71 struct bio_set fs_bio_set;
72 EXPORT_SYMBOL(fs_bio_set);
73
74 /*
75 * Our slab pool management
76 */
77 struct bio_slab {
78 struct kmem_cache *slab;
79 unsigned int slab_ref;
80 unsigned int slab_size;
81 char name[8];
82 };
83 static DEFINE_MUTEX(bio_slab_lock);
84 static DEFINE_XARRAY(bio_slabs);
85
create_bio_slab(unsigned int size)86 static struct bio_slab *create_bio_slab(unsigned int size)
87 {
88 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
89
90 if (!bslab)
91 return NULL;
92
93 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
94 bslab->slab = kmem_cache_create(bslab->name, size,
95 ARCH_KMALLOC_MINALIGN,
96 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
97 if (!bslab->slab)
98 goto fail_alloc_slab;
99
100 bslab->slab_ref = 1;
101 bslab->slab_size = size;
102
103 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
104 return bslab;
105
106 kmem_cache_destroy(bslab->slab);
107
108 fail_alloc_slab:
109 kfree(bslab);
110 return NULL;
111 }
112
bs_bio_slab_size(struct bio_set * bs)113 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
114 {
115 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
116 }
117
bio_find_or_create_slab(struct bio_set * bs)118 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
119 {
120 unsigned int size = bs_bio_slab_size(bs);
121 struct bio_slab *bslab;
122
123 mutex_lock(&bio_slab_lock);
124 bslab = xa_load(&bio_slabs, size);
125 if (bslab)
126 bslab->slab_ref++;
127 else
128 bslab = create_bio_slab(size);
129 mutex_unlock(&bio_slab_lock);
130
131 if (bslab)
132 return bslab->slab;
133 return NULL;
134 }
135
bio_put_slab(struct bio_set * bs)136 static void bio_put_slab(struct bio_set *bs)
137 {
138 struct bio_slab *bslab = NULL;
139 unsigned int slab_size = bs_bio_slab_size(bs);
140
141 mutex_lock(&bio_slab_lock);
142
143 bslab = xa_load(&bio_slabs, slab_size);
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
148
149 WARN_ON(!bslab->slab_ref);
150
151 if (--bslab->slab_ref)
152 goto out;
153
154 xa_erase(&bio_slabs, slab_size);
155
156 kmem_cache_destroy(bslab->slab);
157 kfree(bslab);
158
159 out:
160 mutex_unlock(&bio_slab_lock);
161 }
162
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
164 {
165 BUG_ON(nr_vecs > BIO_MAX_VECS);
166
167 if (nr_vecs == BIO_MAX_VECS)
168 mempool_free(bv, pool);
169 else if (nr_vecs > BIO_INLINE_VECS)
170 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
171 }
172
173 /*
174 * Make the first allocation restricted and don't dump info on allocation
175 * failures, since we'll fall back to the mempool in case of failure.
176 */
bvec_alloc_gfp(gfp_t gfp)177 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
178 {
179 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
180 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
181 }
182
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)183 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
184 gfp_t gfp_mask)
185 {
186 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
187
188 if (WARN_ON_ONCE(!bvs))
189 return NULL;
190
191 /*
192 * Upgrade the nr_vecs request to take full advantage of the allocation.
193 * We also rely on this in the bvec_free path.
194 */
195 *nr_vecs = bvs->nr_vecs;
196
197 /*
198 * Try a slab allocation first for all smaller allocations. If that
199 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
200 * The mempool is sized to handle up to BIO_MAX_VECS entries.
201 */
202 if (*nr_vecs < BIO_MAX_VECS) {
203 struct bio_vec *bvl;
204
205 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
206 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
207 return bvl;
208 *nr_vecs = BIO_MAX_VECS;
209 }
210
211 return mempool_alloc(pool, gfp_mask);
212 }
213
bio_uninit(struct bio * bio)214 void bio_uninit(struct bio *bio)
215 {
216 #ifdef CONFIG_BLK_CGROUP
217 if (bio->bi_blkg) {
218 blkg_put(bio->bi_blkg);
219 bio->bi_blkg = NULL;
220 }
221 #endif
222 if (bio_integrity(bio))
223 bio_integrity_free(bio);
224
225 bio_crypt_free_ctx(bio);
226 }
227 EXPORT_SYMBOL(bio_uninit);
228
bio_free(struct bio * bio)229 static void bio_free(struct bio *bio)
230 {
231 struct bio_set *bs = bio->bi_pool;
232 void *p = bio;
233
234 WARN_ON_ONCE(!bs);
235
236 bio_uninit(bio);
237 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
238 mempool_free(p - bs->front_pad, &bs->bio_pool);
239 }
240
241 /*
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
245 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)246 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
247 unsigned short max_vecs, blk_opf_t opf)
248 {
249 bio->bi_next = NULL;
250 bio->bi_bdev = bdev;
251 bio->bi_opf = opf;
252 bio->bi_flags = 0;
253 bio->bi_ioprio = 0;
254 bio->bi_status = 0;
255 bio->bi_iter.bi_sector = 0;
256 bio->bi_iter.bi_size = 0;
257 bio->bi_iter.bi_idx = 0;
258 bio->bi_iter.bi_bvec_done = 0;
259 bio->bi_end_io = NULL;
260 bio->bi_private = NULL;
261 #ifdef CONFIG_BLK_CGROUP
262 bio->bi_blkg = NULL;
263 bio->bi_issue.value = 0;
264 if (bdev)
265 bio_associate_blkg(bio);
266 #ifdef CONFIG_BLK_CGROUP_IOCOST
267 bio->bi_iocost_cost = 0;
268 #endif
269 #endif
270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 bio->bi_crypt_context = NULL;
272 #endif
273 #ifdef CONFIG_BLK_DEV_INTEGRITY
274 bio->bi_integrity = NULL;
275 #endif
276 bio->bi_vcnt = 0;
277
278 atomic_set(&bio->__bi_remaining, 1);
279 atomic_set(&bio->__bi_cnt, 1);
280 bio->bi_cookie = BLK_QC_T_NONE;
281
282 bio->bi_max_vecs = max_vecs;
283 bio->bi_io_vec = table;
284 bio->bi_pool = NULL;
285 }
286 EXPORT_SYMBOL(bio_init);
287
288 /**
289 * bio_reset - reinitialize a bio
290 * @bio: bio to reset
291 * @bdev: block device to use the bio for
292 * @opf: operation and flags for bio
293 *
294 * Description:
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
299 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
301 {
302 bio_uninit(bio);
303 memset(bio, 0, BIO_RESET_BYTES);
304 atomic_set(&bio->__bi_remaining, 1);
305 bio->bi_bdev = bdev;
306 if (bio->bi_bdev)
307 bio_associate_blkg(bio);
308 bio->bi_opf = opf;
309 }
310 EXPORT_SYMBOL(bio_reset);
311
__bio_chain_endio(struct bio * bio)312 static struct bio *__bio_chain_endio(struct bio *bio)
313 {
314 struct bio *parent = bio->bi_private;
315
316 if (bio->bi_status && !parent->bi_status)
317 parent->bi_status = bio->bi_status;
318 bio_put(bio);
319 return parent;
320 }
321
bio_chain_endio(struct bio * bio)322 static void bio_chain_endio(struct bio *bio)
323 {
324 bio_endio(__bio_chain_endio(bio));
325 }
326
327 /**
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
bio_chain(struct bio * bio,struct bio * parent)338 void bio_chain(struct bio *bio, struct bio *parent)
339 {
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
344 bio_inc_remaining(parent);
345 }
346 EXPORT_SYMBOL(bio_chain);
347
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)348 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
349 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
350 {
351 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
352
353 if (bio) {
354 bio_chain(bio, new);
355 submit_bio(bio);
356 }
357
358 return new;
359 }
360 EXPORT_SYMBOL_GPL(blk_next_bio);
361
bio_alloc_rescue(struct work_struct * work)362 static void bio_alloc_rescue(struct work_struct *work)
363 {
364 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
365 struct bio *bio;
366
367 while (1) {
368 spin_lock(&bs->rescue_lock);
369 bio = bio_list_pop(&bs->rescue_list);
370 spin_unlock(&bs->rescue_lock);
371
372 if (!bio)
373 break;
374
375 submit_bio_noacct(bio);
376 }
377 }
378
punt_bios_to_rescuer(struct bio_set * bs)379 static void punt_bios_to_rescuer(struct bio_set *bs)
380 {
381 struct bio_list punt, nopunt;
382 struct bio *bio;
383
384 if (WARN_ON_ONCE(!bs->rescue_workqueue))
385 return;
386 /*
387 * In order to guarantee forward progress we must punt only bios that
388 * were allocated from this bio_set; otherwise, if there was a bio on
389 * there for a stacking driver higher up in the stack, processing it
390 * could require allocating bios from this bio_set, and doing that from
391 * our own rescuer would be bad.
392 *
393 * Since bio lists are singly linked, pop them all instead of trying to
394 * remove from the middle of the list:
395 */
396
397 bio_list_init(&punt);
398 bio_list_init(&nopunt);
399
400 while ((bio = bio_list_pop(¤t->bio_list[0])))
401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
402 current->bio_list[0] = nopunt;
403
404 bio_list_init(&nopunt);
405 while ((bio = bio_list_pop(¤t->bio_list[1])))
406 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
407 current->bio_list[1] = nopunt;
408
409 spin_lock(&bs->rescue_lock);
410 bio_list_merge(&bs->rescue_list, &punt);
411 spin_unlock(&bs->rescue_lock);
412
413 queue_work(bs->rescue_workqueue, &bs->rescue_work);
414 }
415
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)416 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
417 {
418 unsigned long flags;
419
420 /* cache->free_list must be empty */
421 if (WARN_ON_ONCE(cache->free_list))
422 return;
423
424 local_irq_save(flags);
425 cache->free_list = cache->free_list_irq;
426 cache->free_list_irq = NULL;
427 cache->nr += cache->nr_irq;
428 cache->nr_irq = 0;
429 local_irq_restore(flags);
430 }
431
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)432 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
433 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
434 struct bio_set *bs)
435 {
436 struct bio_alloc_cache *cache;
437 struct bio *bio;
438
439 cache = per_cpu_ptr(bs->cache, get_cpu());
440 if (!cache->free_list) {
441 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
442 bio_alloc_irq_cache_splice(cache);
443 if (!cache->free_list) {
444 put_cpu();
445 return NULL;
446 }
447 }
448 bio = cache->free_list;
449 cache->free_list = bio->bi_next;
450 cache->nr--;
451 put_cpu();
452
453 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
454 bio->bi_pool = bs;
455 return bio;
456 }
457
458 /**
459 * bio_alloc_bioset - allocate a bio for I/O
460 * @bdev: block device to allocate the bio for (can be %NULL)
461 * @nr_vecs: number of bvecs to pre-allocate
462 * @opf: operation and flags for bio
463 * @gfp_mask: the GFP_* mask given to the slab allocator
464 * @bs: the bio_set to allocate from.
465 *
466 * Allocate a bio from the mempools in @bs.
467 *
468 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
469 * allocate a bio. This is due to the mempool guarantees. To make this work,
470 * callers must never allocate more than 1 bio at a time from the general pool.
471 * Callers that need to allocate more than 1 bio must always submit the
472 * previously allocated bio for IO before attempting to allocate a new one.
473 * Failure to do so can cause deadlocks under memory pressure.
474 *
475 * Note that when running under submit_bio_noacct() (i.e. any block driver),
476 * bios are not submitted until after you return - see the code in
477 * submit_bio_noacct() that converts recursion into iteration, to prevent
478 * stack overflows.
479 *
480 * This would normally mean allocating multiple bios under submit_bio_noacct()
481 * would be susceptible to deadlocks, but we have
482 * deadlock avoidance code that resubmits any blocked bios from a rescuer
483 * thread.
484 *
485 * However, we do not guarantee forward progress for allocations from other
486 * mempools. Doing multiple allocations from the same mempool under
487 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
488 * for per bio allocations.
489 *
490 * Returns: Pointer to new bio on success, NULL on failure.
491 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)492 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
493 blk_opf_t opf, gfp_t gfp_mask,
494 struct bio_set *bs)
495 {
496 gfp_t saved_gfp = gfp_mask;
497 struct bio *bio;
498 void *p;
499
500 /* should not use nobvec bioset for nr_vecs > 0 */
501 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
502 return NULL;
503
504 if (opf & REQ_ALLOC_CACHE) {
505 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
506 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
507 gfp_mask, bs);
508 if (bio)
509 return bio;
510 /*
511 * No cached bio available, bio returned below marked with
512 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
513 */
514 } else {
515 opf &= ~REQ_ALLOC_CACHE;
516 }
517 }
518
519 /*
520 * submit_bio_noacct() converts recursion to iteration; this means if
521 * we're running beneath it, any bios we allocate and submit will not be
522 * submitted (and thus freed) until after we return.
523 *
524 * This exposes us to a potential deadlock if we allocate multiple bios
525 * from the same bio_set() while running underneath submit_bio_noacct().
526 * If we were to allocate multiple bios (say a stacking block driver
527 * that was splitting bios), we would deadlock if we exhausted the
528 * mempool's reserve.
529 *
530 * We solve this, and guarantee forward progress, with a rescuer
531 * workqueue per bio_set. If we go to allocate and there are bios on
532 * current->bio_list, we first try the allocation without
533 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
534 * blocking to the rescuer workqueue before we retry with the original
535 * gfp_flags.
536 */
537 if (current->bio_list &&
538 (!bio_list_empty(¤t->bio_list[0]) ||
539 !bio_list_empty(¤t->bio_list[1])) &&
540 bs->rescue_workqueue)
541 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
542
543 p = mempool_alloc(&bs->bio_pool, gfp_mask);
544 if (!p && gfp_mask != saved_gfp) {
545 punt_bios_to_rescuer(bs);
546 gfp_mask = saved_gfp;
547 p = mempool_alloc(&bs->bio_pool, gfp_mask);
548 }
549 if (unlikely(!p))
550 return NULL;
551 if (!mempool_is_saturated(&bs->bio_pool))
552 opf &= ~REQ_ALLOC_CACHE;
553
554 bio = p + bs->front_pad;
555 if (nr_vecs > BIO_INLINE_VECS) {
556 struct bio_vec *bvl = NULL;
557
558 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
559 if (!bvl && gfp_mask != saved_gfp) {
560 punt_bios_to_rescuer(bs);
561 gfp_mask = saved_gfp;
562 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
563 }
564 if (unlikely(!bvl))
565 goto err_free;
566
567 bio_init(bio, bdev, bvl, nr_vecs, opf);
568 } else if (nr_vecs) {
569 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
570 } else {
571 bio_init(bio, bdev, NULL, 0, opf);
572 }
573
574 bio->bi_pool = bs;
575 return bio;
576
577 err_free:
578 mempool_free(p, &bs->bio_pool);
579 return NULL;
580 }
581 EXPORT_SYMBOL(bio_alloc_bioset);
582
583 /**
584 * bio_kmalloc - kmalloc a bio
585 * @nr_vecs: number of bio_vecs to allocate
586 * @gfp_mask: the GFP_* mask given to the slab allocator
587 *
588 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
589 * using bio_init() before use. To free a bio returned from this function use
590 * kfree() after calling bio_uninit(). A bio returned from this function can
591 * be reused by calling bio_uninit() before calling bio_init() again.
592 *
593 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
594 * function are not backed by a mempool can fail. Do not use this function
595 * for allocations in the file system I/O path.
596 *
597 * Returns: Pointer to new bio on success, NULL on failure.
598 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)599 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
600 {
601 struct bio *bio;
602
603 if (nr_vecs > UIO_MAXIOV)
604 return NULL;
605 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
606 }
607 EXPORT_SYMBOL(bio_kmalloc);
608
zero_fill_bio(struct bio * bio)609 void zero_fill_bio(struct bio *bio)
610 {
611 struct bio_vec bv;
612 struct bvec_iter iter;
613
614 bio_for_each_segment(bv, bio, iter)
615 memzero_bvec(&bv);
616 }
617 EXPORT_SYMBOL(zero_fill_bio);
618
619 /**
620 * bio_truncate - truncate the bio to small size of @new_size
621 * @bio: the bio to be truncated
622 * @new_size: new size for truncating the bio
623 *
624 * Description:
625 * Truncate the bio to new size of @new_size. If bio_op(bio) is
626 * REQ_OP_READ, zero the truncated part. This function should only
627 * be used for handling corner cases, such as bio eod.
628 */
bio_truncate(struct bio * bio,unsigned new_size)629 static void bio_truncate(struct bio *bio, unsigned new_size)
630 {
631 struct bio_vec bv;
632 struct bvec_iter iter;
633 unsigned int done = 0;
634 bool truncated = false;
635
636 if (new_size >= bio->bi_iter.bi_size)
637 return;
638
639 if (bio_op(bio) != REQ_OP_READ)
640 goto exit;
641
642 bio_for_each_segment(bv, bio, iter) {
643 if (done + bv.bv_len > new_size) {
644 unsigned offset;
645
646 if (!truncated)
647 offset = new_size - done;
648 else
649 offset = 0;
650 zero_user(bv.bv_page, bv.bv_offset + offset,
651 bv.bv_len - offset);
652 truncated = true;
653 }
654 done += bv.bv_len;
655 }
656
657 exit:
658 /*
659 * Don't touch bvec table here and make it really immutable, since
660 * fs bio user has to retrieve all pages via bio_for_each_segment_all
661 * in its .end_bio() callback.
662 *
663 * It is enough to truncate bio by updating .bi_size since we can make
664 * correct bvec with the updated .bi_size for drivers.
665 */
666 bio->bi_iter.bi_size = new_size;
667 }
668
669 /**
670 * guard_bio_eod - truncate a BIO to fit the block device
671 * @bio: bio to truncate
672 *
673 * This allows us to do IO even on the odd last sectors of a device, even if the
674 * block size is some multiple of the physical sector size.
675 *
676 * We'll just truncate the bio to the size of the device, and clear the end of
677 * the buffer head manually. Truly out-of-range accesses will turn into actual
678 * I/O errors, this only handles the "we need to be able to do I/O at the final
679 * sector" case.
680 */
guard_bio_eod(struct bio * bio)681 void guard_bio_eod(struct bio *bio)
682 {
683 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
684
685 if (!maxsector)
686 return;
687
688 /*
689 * If the *whole* IO is past the end of the device,
690 * let it through, and the IO layer will turn it into
691 * an EIO.
692 */
693 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
694 return;
695
696 maxsector -= bio->bi_iter.bi_sector;
697 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
698 return;
699
700 bio_truncate(bio, maxsector << 9);
701 }
702
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)703 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
704 unsigned int nr)
705 {
706 unsigned int i = 0;
707 struct bio *bio;
708
709 while ((bio = cache->free_list) != NULL) {
710 cache->free_list = bio->bi_next;
711 cache->nr--;
712 bio_free(bio);
713 if (++i == nr)
714 break;
715 }
716 return i;
717 }
718
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)719 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
720 unsigned int nr)
721 {
722 nr -= __bio_alloc_cache_prune(cache, nr);
723 if (!READ_ONCE(cache->free_list)) {
724 bio_alloc_irq_cache_splice(cache);
725 __bio_alloc_cache_prune(cache, nr);
726 }
727 }
728
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)729 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
730 {
731 struct bio_set *bs;
732
733 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
734 if (bs->cache) {
735 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
736
737 bio_alloc_cache_prune(cache, -1U);
738 }
739 return 0;
740 }
741
bio_alloc_cache_destroy(struct bio_set * bs)742 static void bio_alloc_cache_destroy(struct bio_set *bs)
743 {
744 int cpu;
745
746 if (!bs->cache)
747 return;
748
749 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
750 for_each_possible_cpu(cpu) {
751 struct bio_alloc_cache *cache;
752
753 cache = per_cpu_ptr(bs->cache, cpu);
754 bio_alloc_cache_prune(cache, -1U);
755 }
756 free_percpu(bs->cache);
757 bs->cache = NULL;
758 }
759
bio_put_percpu_cache(struct bio * bio)760 static inline void bio_put_percpu_cache(struct bio *bio)
761 {
762 struct bio_alloc_cache *cache;
763
764 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
765 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
766 put_cpu();
767 bio_free(bio);
768 return;
769 }
770
771 bio_uninit(bio);
772
773 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
774 bio->bi_next = cache->free_list;
775 bio->bi_bdev = NULL;
776 cache->free_list = bio;
777 cache->nr++;
778 } else {
779 unsigned long flags;
780
781 local_irq_save(flags);
782 bio->bi_next = cache->free_list_irq;
783 cache->free_list_irq = bio;
784 cache->nr_irq++;
785 local_irq_restore(flags);
786 }
787 put_cpu();
788 }
789
790 /**
791 * bio_put - release a reference to a bio
792 * @bio: bio to release reference to
793 *
794 * Description:
795 * Put a reference to a &struct bio, either one you have gotten with
796 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
797 **/
bio_put(struct bio * bio)798 void bio_put(struct bio *bio)
799 {
800 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
801 BUG_ON(!atomic_read(&bio->__bi_cnt));
802 if (!atomic_dec_and_test(&bio->__bi_cnt))
803 return;
804 }
805 if (bio->bi_opf & REQ_ALLOC_CACHE)
806 bio_put_percpu_cache(bio);
807 else
808 bio_free(bio);
809 }
810 EXPORT_SYMBOL(bio_put);
811
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)812 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
813 {
814 bio_set_flag(bio, BIO_CLONED);
815 bio->bi_ioprio = bio_src->bi_ioprio;
816 bio->bi_iter = bio_src->bi_iter;
817
818 if (bio->bi_bdev) {
819 if (bio->bi_bdev == bio_src->bi_bdev &&
820 bio_flagged(bio_src, BIO_REMAPPED))
821 bio_set_flag(bio, BIO_REMAPPED);
822 bio_clone_blkg_association(bio, bio_src);
823 }
824
825 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
826 return -ENOMEM;
827 if (bio_integrity(bio_src) &&
828 bio_integrity_clone(bio, bio_src, gfp) < 0)
829 return -ENOMEM;
830 return 0;
831 }
832
833 /**
834 * bio_alloc_clone - clone a bio that shares the original bio's biovec
835 * @bdev: block_device to clone onto
836 * @bio_src: bio to clone from
837 * @gfp: allocation priority
838 * @bs: bio_set to allocate from
839 *
840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
841 * bio, but not the actual data it points to.
842 *
843 * The caller must ensure that the return bio is not freed before @bio_src.
844 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)845 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
846 gfp_t gfp, struct bio_set *bs)
847 {
848 struct bio *bio;
849
850 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
851 if (!bio)
852 return NULL;
853
854 if (__bio_clone(bio, bio_src, gfp) < 0) {
855 bio_put(bio);
856 return NULL;
857 }
858 bio->bi_io_vec = bio_src->bi_io_vec;
859
860 return bio;
861 }
862 EXPORT_SYMBOL(bio_alloc_clone);
863
864 /**
865 * bio_init_clone - clone a bio that shares the original bio's biovec
866 * @bdev: block_device to clone onto
867 * @bio: bio to clone into
868 * @bio_src: bio to clone from
869 * @gfp: allocation priority
870 *
871 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
872 * The caller owns the returned bio, but not the actual data it points to.
873 *
874 * The caller must ensure that @bio_src is not freed before @bio.
875 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)876 int bio_init_clone(struct block_device *bdev, struct bio *bio,
877 struct bio *bio_src, gfp_t gfp)
878 {
879 int ret;
880
881 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
882 ret = __bio_clone(bio, bio_src, gfp);
883 if (ret)
884 bio_uninit(bio);
885 return ret;
886 }
887 EXPORT_SYMBOL(bio_init_clone);
888
889 /**
890 * bio_full - check if the bio is full
891 * @bio: bio to check
892 * @len: length of one segment to be added
893 *
894 * Return true if @bio is full and one segment with @len bytes can't be
895 * added to the bio, otherwise return false
896 */
bio_full(struct bio * bio,unsigned len)897 static inline bool bio_full(struct bio *bio, unsigned len)
898 {
899 if (bio->bi_vcnt >= bio->bi_max_vecs)
900 return true;
901 if (bio->bi_iter.bi_size > UINT_MAX - len)
902 return true;
903 return false;
904 }
905
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)906 static inline bool page_is_mergeable(const struct bio_vec *bv,
907 struct page *page, unsigned int len, unsigned int off,
908 bool *same_page)
909 {
910 size_t bv_end = bv->bv_offset + bv->bv_len;
911 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
912 phys_addr_t page_addr = page_to_phys(page);
913
914 if (vec_end_addr + 1 != page_addr + off)
915 return false;
916 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
917 return false;
918 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
919 return false;
920
921 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
922 if (*same_page)
923 return true;
924 else if (IS_ENABLED(CONFIG_KMSAN))
925 return false;
926 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
927 }
928
929 /**
930 * __bio_try_merge_page - try appending data to an existing bvec.
931 * @bio: destination bio
932 * @page: start page to add
933 * @len: length of the data to add
934 * @off: offset of the data relative to @page
935 * @same_page: return if the segment has been merged inside the same page
936 *
937 * Try to add the data at @page + @off to the last bvec of @bio. This is a
938 * useful optimisation for file systems with a block size smaller than the
939 * page size.
940 *
941 * Warn if (@len, @off) crosses pages in case that @same_page is true.
942 *
943 * Return %true on success or %false on failure.
944 */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)945 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
946 unsigned int len, unsigned int off, bool *same_page)
947 {
948 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
949 return false;
950
951 if (bio->bi_vcnt > 0) {
952 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
953
954 if (page_is_mergeable(bv, page, len, off, same_page)) {
955 if (bio->bi_iter.bi_size > UINT_MAX - len) {
956 *same_page = false;
957 return false;
958 }
959 bv->bv_len += len;
960 bio->bi_iter.bi_size += len;
961 return true;
962 }
963 }
964 return false;
965 }
966
967 /*
968 * Try to merge a page into a segment, while obeying the hardware segment
969 * size limit. This is not for normal read/write bios, but for passthrough
970 * or Zone Append operations that we can't split.
971 */
bio_try_merge_hw_seg(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)972 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
973 struct page *page, unsigned len,
974 unsigned offset, bool *same_page)
975 {
976 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
977 unsigned long mask = queue_segment_boundary(q);
978 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
979 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
980
981 if ((addr1 | mask) != (addr2 | mask))
982 return false;
983 if (bv->bv_len + len > queue_max_segment_size(q))
984 return false;
985 return __bio_try_merge_page(bio, page, len, offset, same_page);
986 }
987
988 /**
989 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
990 * @q: the target queue
991 * @bio: destination bio
992 * @page: page to add
993 * @len: vec entry length
994 * @offset: vec entry offset
995 * @max_sectors: maximum number of sectors that can be added
996 * @same_page: return if the segment has been merged inside the same page
997 *
998 * Add a page to a bio while respecting the hardware max_sectors, max_segment
999 * and gap limitations.
1000 */
bio_add_hw_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors,bool * same_page)1001 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
1002 struct page *page, unsigned int len, unsigned int offset,
1003 unsigned int max_sectors, bool *same_page)
1004 {
1005 struct bio_vec *bvec;
1006
1007 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1008 return 0;
1009
1010 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1011 return 0;
1012
1013 if (bio->bi_vcnt > 0) {
1014 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
1015 return len;
1016
1017 /*
1018 * If the queue doesn't support SG gaps and adding this segment
1019 * would create a gap, disallow it.
1020 */
1021 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
1022 if (bvec_gap_to_prev(&q->limits, bvec, offset))
1023 return 0;
1024 }
1025
1026 if (bio_full(bio, len))
1027 return 0;
1028
1029 if (bio->bi_vcnt >= queue_max_segments(q))
1030 return 0;
1031
1032 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
1033 bio->bi_vcnt++;
1034 bio->bi_iter.bi_size += len;
1035 return len;
1036 }
1037
1038 /**
1039 * bio_add_pc_page - attempt to add page to passthrough bio
1040 * @q: the target queue
1041 * @bio: destination bio
1042 * @page: page to add
1043 * @len: vec entry length
1044 * @offset: vec entry offset
1045 *
1046 * Attempt to add a page to the bio_vec maplist. This can fail for a
1047 * number of reasons, such as the bio being full or target block device
1048 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1049 * so it is always possible to add a single page to an empty bio.
1050 *
1051 * This should only be used by passthrough bios.
1052 */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1053 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1054 struct page *page, unsigned int len, unsigned int offset)
1055 {
1056 bool same_page = false;
1057 return bio_add_hw_page(q, bio, page, len, offset,
1058 queue_max_hw_sectors(q), &same_page);
1059 }
1060 EXPORT_SYMBOL(bio_add_pc_page);
1061
1062 /**
1063 * bio_add_zone_append_page - attempt to add page to zone-append bio
1064 * @bio: destination bio
1065 * @page: page to add
1066 * @len: vec entry length
1067 * @offset: vec entry offset
1068 *
1069 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1070 * for a zone-append request. This can fail for a number of reasons, such as the
1071 * bio being full or the target block device is not a zoned block device or
1072 * other limitations of the target block device. The target block device must
1073 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1074 * to an empty bio.
1075 *
1076 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1077 */
bio_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1078 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1079 unsigned int len, unsigned int offset)
1080 {
1081 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1082 bool same_page = false;
1083
1084 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1085 return 0;
1086
1087 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1088 return 0;
1089
1090 return bio_add_hw_page(q, bio, page, len, offset,
1091 queue_max_zone_append_sectors(q), &same_page);
1092 }
1093 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1094
1095 /**
1096 * __bio_add_page - add page(s) to a bio in a new segment
1097 * @bio: destination bio
1098 * @page: start page to add
1099 * @len: length of the data to add, may cross pages
1100 * @off: offset of the data relative to @page, may cross pages
1101 *
1102 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1103 * that @bio has space for another bvec.
1104 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)1105 void __bio_add_page(struct bio *bio, struct page *page,
1106 unsigned int len, unsigned int off)
1107 {
1108 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1109 WARN_ON_ONCE(bio_full(bio, len));
1110
1111 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1112 bio->bi_iter.bi_size += len;
1113 bio->bi_vcnt++;
1114 }
1115 EXPORT_SYMBOL_GPL(__bio_add_page);
1116
1117 /**
1118 * bio_add_page - attempt to add page(s) to bio
1119 * @bio: destination bio
1120 * @page: start page to add
1121 * @len: vec entry length, may cross pages
1122 * @offset: vec entry offset relative to @page, may cross pages
1123 *
1124 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1125 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1126 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1127 int bio_add_page(struct bio *bio, struct page *page,
1128 unsigned int len, unsigned int offset)
1129 {
1130 bool same_page = false;
1131
1132 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1133 if (bio_full(bio, len))
1134 return 0;
1135 __bio_add_page(bio, page, len, offset);
1136 }
1137 return len;
1138 }
1139 EXPORT_SYMBOL(bio_add_page);
1140
1141 /**
1142 * bio_add_folio - Attempt to add part of a folio to a bio.
1143 * @bio: BIO to add to.
1144 * @folio: Folio to add.
1145 * @len: How many bytes from the folio to add.
1146 * @off: First byte in this folio to add.
1147 *
1148 * Filesystems that use folios can call this function instead of calling
1149 * bio_add_page() for each page in the folio. If @off is bigger than
1150 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1151 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1152 *
1153 * Return: Whether the addition was successful.
1154 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1155 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1156 size_t off)
1157 {
1158 if (len > UINT_MAX || off > UINT_MAX)
1159 return false;
1160 return bio_add_page(bio, &folio->page, len, off) > 0;
1161 }
1162
__bio_release_pages(struct bio * bio,bool mark_dirty)1163 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1164 {
1165 struct bvec_iter_all iter_all;
1166 struct bio_vec *bvec;
1167
1168 bio_for_each_segment_all(bvec, bio, iter_all) {
1169 if (mark_dirty && !PageCompound(bvec->bv_page))
1170 set_page_dirty_lock(bvec->bv_page);
1171 put_page(bvec->bv_page);
1172 }
1173 }
1174 EXPORT_SYMBOL_GPL(__bio_release_pages);
1175
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1176 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1177 {
1178 size_t size = iov_iter_count(iter);
1179
1180 WARN_ON_ONCE(bio->bi_max_vecs);
1181
1182 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1183 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1184 size_t max_sectors = queue_max_zone_append_sectors(q);
1185
1186 size = min(size, max_sectors << SECTOR_SHIFT);
1187 }
1188
1189 bio->bi_vcnt = iter->nr_segs;
1190 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1191 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1192 bio->bi_iter.bi_size = size;
1193 bio_set_flag(bio, BIO_NO_PAGE_REF);
1194 bio_set_flag(bio, BIO_CLONED);
1195 }
1196
bio_iov_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1197 static int bio_iov_add_page(struct bio *bio, struct page *page,
1198 unsigned int len, unsigned int offset)
1199 {
1200 bool same_page = false;
1201
1202 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1203 __bio_add_page(bio, page, len, offset);
1204 return 0;
1205 }
1206
1207 if (same_page)
1208 put_page(page);
1209 return 0;
1210 }
1211
bio_iov_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1212 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1213 unsigned int len, unsigned int offset)
1214 {
1215 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1216 bool same_page = false;
1217
1218 if (bio_add_hw_page(q, bio, page, len, offset,
1219 queue_max_zone_append_sectors(q), &same_page) != len)
1220 return -EINVAL;
1221 if (same_page)
1222 put_page(page);
1223 return 0;
1224 }
1225
1226 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1227
1228 /**
1229 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1230 * @bio: bio to add pages to
1231 * @iter: iov iterator describing the region to be mapped
1232 *
1233 * Pins pages from *iter and appends them to @bio's bvec array. The
1234 * pages will have to be released using put_page() when done.
1235 * For multi-segment *iter, this function only adds pages from the
1236 * next non-empty segment of the iov iterator.
1237 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1238 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1239 {
1240 iov_iter_extraction_t extraction_flags = 0;
1241 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1242 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1243 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1244 struct page **pages = (struct page **)bv;
1245 ssize_t size, left;
1246 unsigned len, i = 0;
1247 size_t offset, trim;
1248 int ret = 0;
1249
1250 /*
1251 * Move page array up in the allocated memory for the bio vecs as far as
1252 * possible so that we can start filling biovecs from the beginning
1253 * without overwriting the temporary page array.
1254 */
1255 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1256 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1257
1258 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1259 extraction_flags |= ITER_ALLOW_P2PDMA;
1260
1261 /*
1262 * Each segment in the iov is required to be a block size multiple.
1263 * However, we may not be able to get the entire segment if it spans
1264 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1265 * result to ensure the bio's total size is correct. The remainder of
1266 * the iov data will be picked up in the next bio iteration.
1267 */
1268 size = iov_iter_get_pages(iter, pages,
1269 UINT_MAX - bio->bi_iter.bi_size,
1270 nr_pages, &offset, extraction_flags);
1271 if (unlikely(size <= 0))
1272 return size ? size : -EFAULT;
1273
1274 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1275
1276 trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1277 iov_iter_revert(iter, trim);
1278
1279 size -= trim;
1280 if (unlikely(!size)) {
1281 ret = -EFAULT;
1282 goto out;
1283 }
1284
1285 for (left = size, i = 0; left > 0; left -= len, i++) {
1286 struct page *page = pages[i];
1287
1288 len = min_t(size_t, PAGE_SIZE - offset, left);
1289 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1290 ret = bio_iov_add_zone_append_page(bio, page, len,
1291 offset);
1292 if (ret)
1293 break;
1294 } else
1295 bio_iov_add_page(bio, page, len, offset);
1296
1297 offset = 0;
1298 }
1299
1300 iov_iter_revert(iter, left);
1301 out:
1302 while (i < nr_pages)
1303 put_page(pages[i++]);
1304
1305 return ret;
1306 }
1307
1308 /**
1309 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1310 * @bio: bio to add pages to
1311 * @iter: iov iterator describing the region to be added
1312 *
1313 * This takes either an iterator pointing to user memory, or one pointing to
1314 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1315 * map them into the kernel. On IO completion, the caller should put those
1316 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1317 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1318 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1319 * completed by a call to ->ki_complete() or returns with an error other than
1320 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1321 * on IO completion. If it isn't, then pages should be released.
1322 *
1323 * The function tries, but does not guarantee, to pin as many pages as
1324 * fit into the bio, or are requested in @iter, whatever is smaller. If
1325 * MM encounters an error pinning the requested pages, it stops. Error
1326 * is returned only if 0 pages could be pinned.
1327 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1328 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1329 {
1330 int ret = 0;
1331
1332 if (iov_iter_is_bvec(iter)) {
1333 bio_iov_bvec_set(bio, iter);
1334 iov_iter_advance(iter, bio->bi_iter.bi_size);
1335 return 0;
1336 }
1337
1338 do {
1339 ret = __bio_iov_iter_get_pages(bio, iter);
1340 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1341
1342 return bio->bi_vcnt ? 0 : ret;
1343 }
1344 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1345
submit_bio_wait_endio(struct bio * bio)1346 static void submit_bio_wait_endio(struct bio *bio)
1347 {
1348 complete(bio->bi_private);
1349 }
1350
1351 /**
1352 * submit_bio_wait - submit a bio, and wait until it completes
1353 * @bio: The &struct bio which describes the I/O
1354 *
1355 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1356 * bio_endio() on failure.
1357 *
1358 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1359 * result in bio reference to be consumed. The caller must drop the reference
1360 * on his own.
1361 */
submit_bio_wait(struct bio * bio)1362 int submit_bio_wait(struct bio *bio)
1363 {
1364 DECLARE_COMPLETION_ONSTACK_MAP(done,
1365 bio->bi_bdev->bd_disk->lockdep_map);
1366 unsigned long hang_check;
1367
1368 bio->bi_private = &done;
1369 bio->bi_end_io = submit_bio_wait_endio;
1370 bio->bi_opf |= REQ_SYNC;
1371 submit_bio(bio);
1372
1373 /* Prevent hang_check timer from firing at us during very long I/O */
1374 hang_check = sysctl_hung_task_timeout_secs;
1375 if (hang_check)
1376 while (!wait_for_completion_io_timeout(&done,
1377 hang_check * (HZ/2)))
1378 ;
1379 else
1380 wait_for_completion_io(&done);
1381
1382 return blk_status_to_errno(bio->bi_status);
1383 }
1384 EXPORT_SYMBOL(submit_bio_wait);
1385
__bio_advance(struct bio * bio,unsigned bytes)1386 void __bio_advance(struct bio *bio, unsigned bytes)
1387 {
1388 if (bio_integrity(bio))
1389 bio_integrity_advance(bio, bytes);
1390
1391 bio_crypt_advance(bio, bytes);
1392 bio_advance_iter(bio, &bio->bi_iter, bytes);
1393 }
1394 EXPORT_SYMBOL(__bio_advance);
1395
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1396 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1397 struct bio *src, struct bvec_iter *src_iter)
1398 {
1399 while (src_iter->bi_size && dst_iter->bi_size) {
1400 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1401 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1402 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1403 void *src_buf = bvec_kmap_local(&src_bv);
1404 void *dst_buf = bvec_kmap_local(&dst_bv);
1405
1406 memcpy(dst_buf, src_buf, bytes);
1407
1408 kunmap_local(dst_buf);
1409 kunmap_local(src_buf);
1410
1411 bio_advance_iter_single(src, src_iter, bytes);
1412 bio_advance_iter_single(dst, dst_iter, bytes);
1413 }
1414 }
1415 EXPORT_SYMBOL(bio_copy_data_iter);
1416
1417 /**
1418 * bio_copy_data - copy contents of data buffers from one bio to another
1419 * @src: source bio
1420 * @dst: destination bio
1421 *
1422 * Stops when it reaches the end of either @src or @dst - that is, copies
1423 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1424 */
bio_copy_data(struct bio * dst,struct bio * src)1425 void bio_copy_data(struct bio *dst, struct bio *src)
1426 {
1427 struct bvec_iter src_iter = src->bi_iter;
1428 struct bvec_iter dst_iter = dst->bi_iter;
1429
1430 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1431 }
1432 EXPORT_SYMBOL(bio_copy_data);
1433
bio_free_pages(struct bio * bio)1434 void bio_free_pages(struct bio *bio)
1435 {
1436 struct bio_vec *bvec;
1437 struct bvec_iter_all iter_all;
1438
1439 bio_for_each_segment_all(bvec, bio, iter_all)
1440 __free_page(bvec->bv_page);
1441 }
1442 EXPORT_SYMBOL(bio_free_pages);
1443
1444 /*
1445 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1446 * for performing direct-IO in BIOs.
1447 *
1448 * The problem is that we cannot run set_page_dirty() from interrupt context
1449 * because the required locks are not interrupt-safe. So what we can do is to
1450 * mark the pages dirty _before_ performing IO. And in interrupt context,
1451 * check that the pages are still dirty. If so, fine. If not, redirty them
1452 * in process context.
1453 *
1454 * We special-case compound pages here: normally this means reads into hugetlb
1455 * pages. The logic in here doesn't really work right for compound pages
1456 * because the VM does not uniformly chase down the head page in all cases.
1457 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1458 * handle them at all. So we skip compound pages here at an early stage.
1459 *
1460 * Note that this code is very hard to test under normal circumstances because
1461 * direct-io pins the pages with get_user_pages(). This makes
1462 * is_page_cache_freeable return false, and the VM will not clean the pages.
1463 * But other code (eg, flusher threads) could clean the pages if they are mapped
1464 * pagecache.
1465 *
1466 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1467 * deferred bio dirtying paths.
1468 */
1469
1470 /*
1471 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1472 */
bio_set_pages_dirty(struct bio * bio)1473 void bio_set_pages_dirty(struct bio *bio)
1474 {
1475 struct bio_vec *bvec;
1476 struct bvec_iter_all iter_all;
1477
1478 bio_for_each_segment_all(bvec, bio, iter_all) {
1479 if (!PageCompound(bvec->bv_page))
1480 set_page_dirty_lock(bvec->bv_page);
1481 }
1482 }
1483
1484 /*
1485 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1486 * If they are, then fine. If, however, some pages are clean then they must
1487 * have been written out during the direct-IO read. So we take another ref on
1488 * the BIO and re-dirty the pages in process context.
1489 *
1490 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1491 * here on. It will run one put_page() against each page and will run one
1492 * bio_put() against the BIO.
1493 */
1494
1495 static void bio_dirty_fn(struct work_struct *work);
1496
1497 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1498 static DEFINE_SPINLOCK(bio_dirty_lock);
1499 static struct bio *bio_dirty_list;
1500
1501 /*
1502 * This runs in process context
1503 */
bio_dirty_fn(struct work_struct * work)1504 static void bio_dirty_fn(struct work_struct *work)
1505 {
1506 struct bio *bio, *next;
1507
1508 spin_lock_irq(&bio_dirty_lock);
1509 next = bio_dirty_list;
1510 bio_dirty_list = NULL;
1511 spin_unlock_irq(&bio_dirty_lock);
1512
1513 while ((bio = next) != NULL) {
1514 next = bio->bi_private;
1515
1516 bio_release_pages(bio, true);
1517 bio_put(bio);
1518 }
1519 }
1520
bio_check_pages_dirty(struct bio * bio)1521 void bio_check_pages_dirty(struct bio *bio)
1522 {
1523 struct bio_vec *bvec;
1524 unsigned long flags;
1525 struct bvec_iter_all iter_all;
1526
1527 bio_for_each_segment_all(bvec, bio, iter_all) {
1528 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1529 goto defer;
1530 }
1531
1532 bio_release_pages(bio, false);
1533 bio_put(bio);
1534 return;
1535 defer:
1536 spin_lock_irqsave(&bio_dirty_lock, flags);
1537 bio->bi_private = bio_dirty_list;
1538 bio_dirty_list = bio;
1539 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1540 schedule_work(&bio_dirty_work);
1541 }
1542
bio_remaining_done(struct bio * bio)1543 static inline bool bio_remaining_done(struct bio *bio)
1544 {
1545 /*
1546 * If we're not chaining, then ->__bi_remaining is always 1 and
1547 * we always end io on the first invocation.
1548 */
1549 if (!bio_flagged(bio, BIO_CHAIN))
1550 return true;
1551
1552 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1553
1554 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1555 bio_clear_flag(bio, BIO_CHAIN);
1556 return true;
1557 }
1558
1559 return false;
1560 }
1561
1562 /**
1563 * bio_endio - end I/O on a bio
1564 * @bio: bio
1565 *
1566 * Description:
1567 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1568 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1569 * bio unless they own it and thus know that it has an end_io function.
1570 *
1571 * bio_endio() can be called several times on a bio that has been chained
1572 * using bio_chain(). The ->bi_end_io() function will only be called the
1573 * last time.
1574 **/
bio_endio(struct bio * bio)1575 void bio_endio(struct bio *bio)
1576 {
1577 again:
1578 if (!bio_remaining_done(bio))
1579 return;
1580 if (!bio_integrity_endio(bio))
1581 return;
1582
1583 rq_qos_done_bio(bio);
1584
1585 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1586 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1587 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1588 }
1589
1590 /*
1591 * Need to have a real endio function for chained bios, otherwise
1592 * various corner cases will break (like stacking block devices that
1593 * save/restore bi_end_io) - however, we want to avoid unbounded
1594 * recursion and blowing the stack. Tail call optimization would
1595 * handle this, but compiling with frame pointers also disables
1596 * gcc's sibling call optimization.
1597 */
1598 if (bio->bi_end_io == bio_chain_endio) {
1599 bio = __bio_chain_endio(bio);
1600 goto again;
1601 }
1602
1603 blk_throtl_bio_endio(bio);
1604 /* release cgroup info */
1605 bio_uninit(bio);
1606 if (bio->bi_end_io)
1607 bio->bi_end_io(bio);
1608 }
1609 EXPORT_SYMBOL(bio_endio);
1610
1611 /**
1612 * bio_split - split a bio
1613 * @bio: bio to split
1614 * @sectors: number of sectors to split from the front of @bio
1615 * @gfp: gfp mask
1616 * @bs: bio set to allocate from
1617 *
1618 * Allocates and returns a new bio which represents @sectors from the start of
1619 * @bio, and updates @bio to represent the remaining sectors.
1620 *
1621 * Unless this is a discard request the newly allocated bio will point
1622 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1623 * neither @bio nor @bs are freed before the split bio.
1624 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1625 struct bio *bio_split(struct bio *bio, int sectors,
1626 gfp_t gfp, struct bio_set *bs)
1627 {
1628 struct bio *split;
1629
1630 BUG_ON(sectors <= 0);
1631 BUG_ON(sectors >= bio_sectors(bio));
1632
1633 /* Zone append commands cannot be split */
1634 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1635 return NULL;
1636
1637 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1638 if (!split)
1639 return NULL;
1640
1641 split->bi_iter.bi_size = sectors << 9;
1642
1643 if (bio_integrity(split))
1644 bio_integrity_trim(split);
1645
1646 bio_advance(bio, split->bi_iter.bi_size);
1647
1648 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1649 bio_set_flag(split, BIO_TRACE_COMPLETION);
1650
1651 return split;
1652 }
1653 EXPORT_SYMBOL(bio_split);
1654
1655 /**
1656 * bio_trim - trim a bio
1657 * @bio: bio to trim
1658 * @offset: number of sectors to trim from the front of @bio
1659 * @size: size we want to trim @bio to, in sectors
1660 *
1661 * This function is typically used for bios that are cloned and submitted
1662 * to the underlying device in parts.
1663 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1664 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1665 {
1666 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1667 offset + size > bio_sectors(bio)))
1668 return;
1669
1670 size <<= 9;
1671 if (offset == 0 && size == bio->bi_iter.bi_size)
1672 return;
1673
1674 bio_advance(bio, offset << 9);
1675 bio->bi_iter.bi_size = size;
1676
1677 if (bio_integrity(bio))
1678 bio_integrity_trim(bio);
1679 }
1680 EXPORT_SYMBOL_GPL(bio_trim);
1681
1682 /*
1683 * create memory pools for biovec's in a bio_set.
1684 * use the global biovec slabs created for general use.
1685 */
biovec_init_pool(mempool_t * pool,int pool_entries)1686 int biovec_init_pool(mempool_t *pool, int pool_entries)
1687 {
1688 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1689
1690 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1691 }
1692
1693 /*
1694 * bioset_exit - exit a bioset initialized with bioset_init()
1695 *
1696 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1697 * kzalloc()).
1698 */
bioset_exit(struct bio_set * bs)1699 void bioset_exit(struct bio_set *bs)
1700 {
1701 bio_alloc_cache_destroy(bs);
1702 if (bs->rescue_workqueue)
1703 destroy_workqueue(bs->rescue_workqueue);
1704 bs->rescue_workqueue = NULL;
1705
1706 mempool_exit(&bs->bio_pool);
1707 mempool_exit(&bs->bvec_pool);
1708
1709 bioset_integrity_free(bs);
1710 if (bs->bio_slab)
1711 bio_put_slab(bs);
1712 bs->bio_slab = NULL;
1713 }
1714 EXPORT_SYMBOL(bioset_exit);
1715
1716 /**
1717 * bioset_init - Initialize a bio_set
1718 * @bs: pool to initialize
1719 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1720 * @front_pad: Number of bytes to allocate in front of the returned bio
1721 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1722 * and %BIOSET_NEED_RESCUER
1723 *
1724 * Description:
1725 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1726 * to ask for a number of bytes to be allocated in front of the bio.
1727 * Front pad allocation is useful for embedding the bio inside
1728 * another structure, to avoid allocating extra data to go with the bio.
1729 * Note that the bio must be embedded at the END of that structure always,
1730 * or things will break badly.
1731 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1732 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1733 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1734 * to dispatch queued requests when the mempool runs out of space.
1735 *
1736 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1737 int bioset_init(struct bio_set *bs,
1738 unsigned int pool_size,
1739 unsigned int front_pad,
1740 int flags)
1741 {
1742 bs->front_pad = front_pad;
1743 if (flags & BIOSET_NEED_BVECS)
1744 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1745 else
1746 bs->back_pad = 0;
1747
1748 spin_lock_init(&bs->rescue_lock);
1749 bio_list_init(&bs->rescue_list);
1750 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1751
1752 bs->bio_slab = bio_find_or_create_slab(bs);
1753 if (!bs->bio_slab)
1754 return -ENOMEM;
1755
1756 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1757 goto bad;
1758
1759 if ((flags & BIOSET_NEED_BVECS) &&
1760 biovec_init_pool(&bs->bvec_pool, pool_size))
1761 goto bad;
1762
1763 if (flags & BIOSET_NEED_RESCUER) {
1764 bs->rescue_workqueue = alloc_workqueue("bioset",
1765 WQ_MEM_RECLAIM, 0);
1766 if (!bs->rescue_workqueue)
1767 goto bad;
1768 }
1769 if (flags & BIOSET_PERCPU_CACHE) {
1770 bs->cache = alloc_percpu(struct bio_alloc_cache);
1771 if (!bs->cache)
1772 goto bad;
1773 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1774 }
1775
1776 return 0;
1777 bad:
1778 bioset_exit(bs);
1779 return -ENOMEM;
1780 }
1781 EXPORT_SYMBOL(bioset_init);
1782
init_bio(void)1783 static int __init init_bio(void)
1784 {
1785 int i;
1786
1787 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1788
1789 bio_integrity_init();
1790
1791 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1792 struct biovec_slab *bvs = bvec_slabs + i;
1793
1794 bvs->slab = kmem_cache_create(bvs->name,
1795 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1796 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1797 }
1798
1799 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1800 bio_cpu_dead);
1801
1802 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1803 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1804 panic("bio: can't allocate bios\n");
1805
1806 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1807 panic("bio: can't create integrity pool\n");
1808
1809 return 0;
1810 }
1811 subsys_initcall(init_bio);
1812