1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52
53 struct dentry *blk_debugfs_root;
54
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
61
62 static DEFINE_IDA(blk_queue_ida);
63
64 /*
65 * For queue allocation
66 */
67 static struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84
85 /**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95
96 /**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
110 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111 static const char *const blk_op_name[] = {
112 REQ_OP_NAME(READ),
113 REQ_OP_NAME(WRITE),
114 REQ_OP_NAME(FLUSH),
115 REQ_OP_NAME(DISCARD),
116 REQ_OP_NAME(SECURE_ERASE),
117 REQ_OP_NAME(ZONE_RESET),
118 REQ_OP_NAME(ZONE_RESET_ALL),
119 REQ_OP_NAME(ZONE_OPEN),
120 REQ_OP_NAME(ZONE_CLOSE),
121 REQ_OP_NAME(ZONE_FINISH),
122 REQ_OP_NAME(ZONE_APPEND),
123 REQ_OP_NAME(WRITE_ZEROES),
124 REQ_OP_NAME(DRV_IN),
125 REQ_OP_NAME(DRV_OUT),
126 };
127 #undef REQ_OP_NAME
128
129 /**
130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
131 * @op: REQ_OP_XXX.
132 *
133 * Description: Centralize block layer function to convert REQ_OP_XXX into
134 * string format. Useful in the debugging and tracing bio or request. For
135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
136 */
blk_op_str(enum req_op op)137 inline const char *blk_op_str(enum req_op op)
138 {
139 const char *op_str = "UNKNOWN";
140
141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 op_str = blk_op_name[op];
143
144 return op_str;
145 }
146 EXPORT_SYMBOL_GPL(blk_op_str);
147
148 static const struct {
149 int errno;
150 const char *name;
151 } blk_errors[] = {
152 [BLK_STS_OK] = { 0, "" },
153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
165
166 /* device mapper special case, should not leak out: */
167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
168
169 /* zone device specific errors */
170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
172
173 /* everything else not covered above: */
174 [BLK_STS_IOERR] = { -EIO, "I/O" },
175 };
176
errno_to_blk_status(int errno)177 blk_status_t errno_to_blk_status(int errno)
178 {
179 int i;
180
181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
182 if (blk_errors[i].errno == errno)
183 return (__force blk_status_t)i;
184 }
185
186 return BLK_STS_IOERR;
187 }
188 EXPORT_SYMBOL_GPL(errno_to_blk_status);
189
blk_status_to_errno(blk_status_t status)190 int blk_status_to_errno(blk_status_t status)
191 {
192 int idx = (__force int)status;
193
194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
195 return -EIO;
196 return blk_errors[idx].errno;
197 }
198 EXPORT_SYMBOL_GPL(blk_status_to_errno);
199
blk_status_to_str(blk_status_t status)200 const char *blk_status_to_str(blk_status_t status)
201 {
202 int idx = (__force int)status;
203
204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return "<null>";
206 return blk_errors[idx].name;
207 }
208
209 /**
210 * blk_sync_queue - cancel any pending callbacks on a queue
211 * @q: the queue
212 *
213 * Description:
214 * The block layer may perform asynchronous callback activity
215 * on a queue, such as calling the unplug function after a timeout.
216 * A block device may call blk_sync_queue to ensure that any
217 * such activity is cancelled, thus allowing it to release resources
218 * that the callbacks might use. The caller must already have made sure
219 * that its ->submit_bio will not re-add plugging prior to calling
220 * this function.
221 *
222 * This function does not cancel any asynchronous activity arising
223 * out of elevator or throttling code. That would require elevator_exit()
224 * and blkcg_exit_queue() to be called with queue lock initialized.
225 *
226 */
blk_sync_queue(struct request_queue * q)227 void blk_sync_queue(struct request_queue *q)
228 {
229 del_timer_sync(&q->timeout);
230 cancel_work_sync(&q->timeout_work);
231 }
232 EXPORT_SYMBOL(blk_sync_queue);
233
234 /**
235 * blk_set_pm_only - increment pm_only counter
236 * @q: request queue pointer
237 */
blk_set_pm_only(struct request_queue * q)238 void blk_set_pm_only(struct request_queue *q)
239 {
240 atomic_inc(&q->pm_only);
241 }
242 EXPORT_SYMBOL_GPL(blk_set_pm_only);
243
blk_clear_pm_only(struct request_queue * q)244 void blk_clear_pm_only(struct request_queue *q)
245 {
246 int pm_only;
247
248 pm_only = atomic_dec_return(&q->pm_only);
249 WARN_ON_ONCE(pm_only < 0);
250 if (pm_only == 0)
251 wake_up_all(&q->mq_freeze_wq);
252 }
253 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
254
blk_free_queue_rcu(struct rcu_head * rcu_head)255 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
256 {
257 struct request_queue *q = container_of(rcu_head,
258 struct request_queue, rcu_head);
259
260 percpu_ref_exit(&q->q_usage_counter);
261 kmem_cache_free(blk_requestq_cachep, q);
262 }
263
blk_free_queue(struct request_queue * q)264 static void blk_free_queue(struct request_queue *q)
265 {
266 if (q->poll_stat)
267 blk_stat_remove_callback(q, q->poll_cb);
268 blk_stat_free_callback(q->poll_cb);
269
270 blk_free_queue_stats(q->stats);
271 kfree(q->poll_stat);
272
273 if (queue_is_mq(q))
274 blk_mq_release(q);
275
276 ida_free(&blk_queue_ida, q->id);
277 call_rcu(&q->rcu_head, blk_free_queue_rcu);
278 }
279
280 /**
281 * blk_put_queue - decrement the request_queue refcount
282 * @q: the request_queue structure to decrement the refcount for
283 *
284 * Decrements the refcount of the request_queue and free it when the refcount
285 * reaches 0.
286 */
blk_put_queue(struct request_queue * q)287 void blk_put_queue(struct request_queue *q)
288 {
289 if (refcount_dec_and_test(&q->refs))
290 blk_free_queue(q);
291 }
292 EXPORT_SYMBOL(blk_put_queue);
293
blk_queue_start_drain(struct request_queue * q)294 void blk_queue_start_drain(struct request_queue *q)
295 {
296 /*
297 * When queue DYING flag is set, we need to block new req
298 * entering queue, so we call blk_freeze_queue_start() to
299 * prevent I/O from crossing blk_queue_enter().
300 */
301 blk_freeze_queue_start(q);
302 if (queue_is_mq(q))
303 blk_mq_wake_waiters(q);
304 /* Make blk_queue_enter() reexamine the DYING flag. */
305 wake_up_all(&q->mq_freeze_wq);
306 }
307
308 /**
309 * blk_queue_enter() - try to increase q->q_usage_counter
310 * @q: request queue pointer
311 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
312 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)313 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
314 {
315 const bool pm = flags & BLK_MQ_REQ_PM;
316
317 while (!blk_try_enter_queue(q, pm)) {
318 if (flags & BLK_MQ_REQ_NOWAIT)
319 return -EAGAIN;
320
321 /*
322 * read pair of barrier in blk_freeze_queue_start(), we need to
323 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
324 * reading .mq_freeze_depth or queue dying flag, otherwise the
325 * following wait may never return if the two reads are
326 * reordered.
327 */
328 smp_rmb();
329 wait_event(q->mq_freeze_wq,
330 (!q->mq_freeze_depth &&
331 blk_pm_resume_queue(pm, q)) ||
332 blk_queue_dying(q));
333 if (blk_queue_dying(q))
334 return -ENODEV;
335 }
336
337 return 0;
338 }
339
__bio_queue_enter(struct request_queue * q,struct bio * bio)340 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
341 {
342 while (!blk_try_enter_queue(q, false)) {
343 struct gendisk *disk = bio->bi_bdev->bd_disk;
344
345 if (bio->bi_opf & REQ_NOWAIT) {
346 if (test_bit(GD_DEAD, &disk->state))
347 goto dead;
348 bio_wouldblock_error(bio);
349 return -EAGAIN;
350 }
351
352 /*
353 * read pair of barrier in blk_freeze_queue_start(), we need to
354 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
355 * reading .mq_freeze_depth or queue dying flag, otherwise the
356 * following wait may never return if the two reads are
357 * reordered.
358 */
359 smp_rmb();
360 wait_event(q->mq_freeze_wq,
361 (!q->mq_freeze_depth &&
362 blk_pm_resume_queue(false, q)) ||
363 test_bit(GD_DEAD, &disk->state));
364 if (test_bit(GD_DEAD, &disk->state))
365 goto dead;
366 }
367
368 return 0;
369 dead:
370 bio_io_error(bio);
371 return -ENODEV;
372 }
373
blk_queue_exit(struct request_queue * q)374 void blk_queue_exit(struct request_queue *q)
375 {
376 percpu_ref_put(&q->q_usage_counter);
377 }
378
blk_queue_usage_counter_release(struct percpu_ref * ref)379 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
380 {
381 struct request_queue *q =
382 container_of(ref, struct request_queue, q_usage_counter);
383
384 wake_up_all(&q->mq_freeze_wq);
385 }
386
blk_rq_timed_out_timer(struct timer_list * t)387 static void blk_rq_timed_out_timer(struct timer_list *t)
388 {
389 struct request_queue *q = from_timer(q, t, timeout);
390
391 kblockd_schedule_work(&q->timeout_work);
392 }
393
blk_timeout_work(struct work_struct * work)394 static void blk_timeout_work(struct work_struct *work)
395 {
396 }
397
blk_alloc_queue(int node_id)398 struct request_queue *blk_alloc_queue(int node_id)
399 {
400 struct request_queue *q;
401
402 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
403 node_id);
404 if (!q)
405 return NULL;
406
407 q->last_merge = NULL;
408
409 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
410 if (q->id < 0)
411 goto fail_q;
412
413 q->stats = blk_alloc_queue_stats();
414 if (!q->stats)
415 goto fail_id;
416
417 q->node = node_id;
418
419 atomic_set(&q->nr_active_requests_shared_tags, 0);
420
421 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
422 INIT_WORK(&q->timeout_work, blk_timeout_work);
423 INIT_LIST_HEAD(&q->icq_list);
424
425 refcount_set(&q->refs, 1);
426 mutex_init(&q->debugfs_mutex);
427 mutex_init(&q->sysfs_lock);
428 mutex_init(&q->sysfs_dir_lock);
429 spin_lock_init(&q->queue_lock);
430
431 init_waitqueue_head(&q->mq_freeze_wq);
432 mutex_init(&q->mq_freeze_lock);
433
434 /*
435 * Init percpu_ref in atomic mode so that it's faster to shutdown.
436 * See blk_register_queue() for details.
437 */
438 if (percpu_ref_init(&q->q_usage_counter,
439 blk_queue_usage_counter_release,
440 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
441 goto fail_stats;
442
443 blk_set_default_limits(&q->limits);
444 q->nr_requests = BLKDEV_DEFAULT_RQ;
445
446 return q;
447
448 fail_stats:
449 blk_free_queue_stats(q->stats);
450 fail_id:
451 ida_free(&blk_queue_ida, q->id);
452 fail_q:
453 kmem_cache_free(blk_requestq_cachep, q);
454 return NULL;
455 }
456
457 /**
458 * blk_get_queue - increment the request_queue refcount
459 * @q: the request_queue structure to increment the refcount for
460 *
461 * Increment the refcount of the request_queue kobject.
462 *
463 * Context: Any context.
464 */
blk_get_queue(struct request_queue * q)465 bool blk_get_queue(struct request_queue *q)
466 {
467 if (unlikely(blk_queue_dying(q)))
468 return false;
469 refcount_inc(&q->refs);
470 return true;
471 }
472 EXPORT_SYMBOL(blk_get_queue);
473
474 #ifdef CONFIG_FAIL_MAKE_REQUEST
475
476 static DECLARE_FAULT_ATTR(fail_make_request);
477
setup_fail_make_request(char * str)478 static int __init setup_fail_make_request(char *str)
479 {
480 return setup_fault_attr(&fail_make_request, str);
481 }
482 __setup("fail_make_request=", setup_fail_make_request);
483
should_fail_request(struct block_device * part,unsigned int bytes)484 bool should_fail_request(struct block_device *part, unsigned int bytes)
485 {
486 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
487 }
488
fail_make_request_debugfs(void)489 static int __init fail_make_request_debugfs(void)
490 {
491 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
492 NULL, &fail_make_request);
493
494 return PTR_ERR_OR_ZERO(dir);
495 }
496
497 late_initcall(fail_make_request_debugfs);
498 #endif /* CONFIG_FAIL_MAKE_REQUEST */
499
bio_check_ro(struct bio * bio)500 static inline void bio_check_ro(struct bio *bio)
501 {
502 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
503 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
504 return;
505 pr_warn("Trying to write to read-only block-device %pg\n",
506 bio->bi_bdev);
507 /* Older lvm-tools actually trigger this */
508 }
509 }
510
should_fail_bio(struct bio * bio)511 static noinline int should_fail_bio(struct bio *bio)
512 {
513 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
514 return -EIO;
515 return 0;
516 }
517 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
518
519 /*
520 * Check whether this bio extends beyond the end of the device or partition.
521 * This may well happen - the kernel calls bread() without checking the size of
522 * the device, e.g., when mounting a file system.
523 */
bio_check_eod(struct bio * bio)524 static inline int bio_check_eod(struct bio *bio)
525 {
526 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
527 unsigned int nr_sectors = bio_sectors(bio);
528
529 if (nr_sectors && maxsector &&
530 (nr_sectors > maxsector ||
531 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
532 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
533 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
534 current->comm, bio->bi_bdev, bio->bi_opf,
535 bio->bi_iter.bi_sector, nr_sectors, maxsector);
536 return -EIO;
537 }
538 return 0;
539 }
540
541 /*
542 * Remap block n of partition p to block n+start(p) of the disk.
543 */
blk_partition_remap(struct bio * bio)544 static int blk_partition_remap(struct bio *bio)
545 {
546 struct block_device *p = bio->bi_bdev;
547
548 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
549 return -EIO;
550 if (bio_sectors(bio)) {
551 bio->bi_iter.bi_sector += p->bd_start_sect;
552 trace_block_bio_remap(bio, p->bd_dev,
553 bio->bi_iter.bi_sector -
554 p->bd_start_sect);
555 }
556 bio_set_flag(bio, BIO_REMAPPED);
557 return 0;
558 }
559
560 /*
561 * Check write append to a zoned block device.
562 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)563 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
564 struct bio *bio)
565 {
566 int nr_sectors = bio_sectors(bio);
567
568 /* Only applicable to zoned block devices */
569 if (!bdev_is_zoned(bio->bi_bdev))
570 return BLK_STS_NOTSUPP;
571
572 /* The bio sector must point to the start of a sequential zone */
573 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
574 !bio_zone_is_seq(bio))
575 return BLK_STS_IOERR;
576
577 /*
578 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
579 * split and could result in non-contiguous sectors being written in
580 * different zones.
581 */
582 if (nr_sectors > q->limits.chunk_sectors)
583 return BLK_STS_IOERR;
584
585 /* Make sure the BIO is small enough and will not get split */
586 if (nr_sectors > q->limits.max_zone_append_sectors)
587 return BLK_STS_IOERR;
588
589 bio->bi_opf |= REQ_NOMERGE;
590
591 return BLK_STS_OK;
592 }
593
__submit_bio(struct bio * bio)594 static void __submit_bio(struct bio *bio)
595 {
596 struct gendisk *disk = bio->bi_bdev->bd_disk;
597
598 if (unlikely(!blk_crypto_bio_prep(&bio)))
599 return;
600
601 if (!disk->fops->submit_bio) {
602 blk_mq_submit_bio(bio);
603 } else if (likely(bio_queue_enter(bio) == 0)) {
604 disk->fops->submit_bio(bio);
605 blk_queue_exit(disk->queue);
606 }
607 }
608
609 /*
610 * The loop in this function may be a bit non-obvious, and so deserves some
611 * explanation:
612 *
613 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
614 * that), so we have a list with a single bio.
615 * - We pretend that we have just taken it off a longer list, so we assign
616 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
617 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
618 * bios through a recursive call to submit_bio_noacct. If it did, we find a
619 * non-NULL value in bio_list and re-enter the loop from the top.
620 * - In this case we really did just take the bio of the top of the list (no
621 * pretending) and so remove it from bio_list, and call into ->submit_bio()
622 * again.
623 *
624 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
625 * bio_list_on_stack[1] contains bios that were submitted before the current
626 * ->submit_bio, but that haven't been processed yet.
627 */
__submit_bio_noacct(struct bio * bio)628 static void __submit_bio_noacct(struct bio *bio)
629 {
630 struct bio_list bio_list_on_stack[2];
631
632 BUG_ON(bio->bi_next);
633
634 bio_list_init(&bio_list_on_stack[0]);
635 current->bio_list = bio_list_on_stack;
636
637 do {
638 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
639 struct bio_list lower, same;
640
641 /*
642 * Create a fresh bio_list for all subordinate requests.
643 */
644 bio_list_on_stack[1] = bio_list_on_stack[0];
645 bio_list_init(&bio_list_on_stack[0]);
646
647 __submit_bio(bio);
648
649 /*
650 * Sort new bios into those for a lower level and those for the
651 * same level.
652 */
653 bio_list_init(&lower);
654 bio_list_init(&same);
655 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
656 if (q == bdev_get_queue(bio->bi_bdev))
657 bio_list_add(&same, bio);
658 else
659 bio_list_add(&lower, bio);
660
661 /*
662 * Now assemble so we handle the lowest level first.
663 */
664 bio_list_merge(&bio_list_on_stack[0], &lower);
665 bio_list_merge(&bio_list_on_stack[0], &same);
666 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
667 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
668
669 current->bio_list = NULL;
670 }
671
__submit_bio_noacct_mq(struct bio * bio)672 static void __submit_bio_noacct_mq(struct bio *bio)
673 {
674 struct bio_list bio_list[2] = { };
675
676 current->bio_list = bio_list;
677
678 do {
679 __submit_bio(bio);
680 } while ((bio = bio_list_pop(&bio_list[0])));
681
682 current->bio_list = NULL;
683 }
684
submit_bio_noacct_nocheck(struct bio * bio)685 void submit_bio_noacct_nocheck(struct bio *bio)
686 {
687 blk_cgroup_bio_start(bio);
688 blkcg_bio_issue_init(bio);
689
690 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
691 trace_block_bio_queue(bio);
692 /*
693 * Now that enqueuing has been traced, we need to trace
694 * completion as well.
695 */
696 bio_set_flag(bio, BIO_TRACE_COMPLETION);
697 }
698
699 /*
700 * We only want one ->submit_bio to be active at a time, else stack
701 * usage with stacked devices could be a problem. Use current->bio_list
702 * to collect a list of requests submited by a ->submit_bio method while
703 * it is active, and then process them after it returned.
704 */
705 if (current->bio_list)
706 bio_list_add(¤t->bio_list[0], bio);
707 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
708 __submit_bio_noacct_mq(bio);
709 else
710 __submit_bio_noacct(bio);
711 }
712
713 /**
714 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
715 * @bio: The bio describing the location in memory and on the device.
716 *
717 * This is a version of submit_bio() that shall only be used for I/O that is
718 * resubmitted to lower level drivers by stacking block drivers. All file
719 * systems and other upper level users of the block layer should use
720 * submit_bio() instead.
721 */
submit_bio_noacct(struct bio * bio)722 void submit_bio_noacct(struct bio *bio)
723 {
724 struct block_device *bdev = bio->bi_bdev;
725 struct request_queue *q = bdev_get_queue(bdev);
726 blk_status_t status = BLK_STS_IOERR;
727 struct blk_plug *plug;
728
729 might_sleep();
730
731 plug = blk_mq_plug(bio);
732 if (plug && plug->nowait)
733 bio->bi_opf |= REQ_NOWAIT;
734
735 /*
736 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
737 * if queue does not support NOWAIT.
738 */
739 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
740 goto not_supported;
741
742 if (should_fail_bio(bio))
743 goto end_io;
744 bio_check_ro(bio);
745 if (!bio_flagged(bio, BIO_REMAPPED)) {
746 if (unlikely(bio_check_eod(bio)))
747 goto end_io;
748 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
749 goto end_io;
750 }
751
752 /*
753 * Filter flush bio's early so that bio based drivers without flush
754 * support don't have to worry about them.
755 */
756 if (op_is_flush(bio->bi_opf)) {
757 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
758 bio_op(bio) != REQ_OP_ZONE_APPEND))
759 goto end_io;
760 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
761 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
762 if (!bio_sectors(bio)) {
763 status = BLK_STS_OK;
764 goto end_io;
765 }
766 }
767 }
768
769 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
770 bio_clear_polled(bio);
771
772 switch (bio_op(bio)) {
773 case REQ_OP_DISCARD:
774 if (!bdev_max_discard_sectors(bdev))
775 goto not_supported;
776 break;
777 case REQ_OP_SECURE_ERASE:
778 if (!bdev_max_secure_erase_sectors(bdev))
779 goto not_supported;
780 break;
781 case REQ_OP_ZONE_APPEND:
782 status = blk_check_zone_append(q, bio);
783 if (status != BLK_STS_OK)
784 goto end_io;
785 break;
786 case REQ_OP_ZONE_RESET:
787 case REQ_OP_ZONE_OPEN:
788 case REQ_OP_ZONE_CLOSE:
789 case REQ_OP_ZONE_FINISH:
790 if (!bdev_is_zoned(bio->bi_bdev))
791 goto not_supported;
792 break;
793 case REQ_OP_ZONE_RESET_ALL:
794 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
795 goto not_supported;
796 break;
797 case REQ_OP_WRITE_ZEROES:
798 if (!q->limits.max_write_zeroes_sectors)
799 goto not_supported;
800 break;
801 default:
802 break;
803 }
804
805 if (blk_throtl_bio(bio))
806 return;
807 submit_bio_noacct_nocheck(bio);
808 return;
809
810 not_supported:
811 status = BLK_STS_NOTSUPP;
812 end_io:
813 bio->bi_status = status;
814 bio_endio(bio);
815 }
816 EXPORT_SYMBOL(submit_bio_noacct);
817
818 /**
819 * submit_bio - submit a bio to the block device layer for I/O
820 * @bio: The &struct bio which describes the I/O
821 *
822 * submit_bio() is used to submit I/O requests to block devices. It is passed a
823 * fully set up &struct bio that describes the I/O that needs to be done. The
824 * bio will be send to the device described by the bi_bdev field.
825 *
826 * The success/failure status of the request, along with notification of
827 * completion, is delivered asynchronously through the ->bi_end_io() callback
828 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
829 * been called.
830 */
submit_bio(struct bio * bio)831 void submit_bio(struct bio *bio)
832 {
833 if (blkcg_punt_bio_submit(bio))
834 return;
835
836 if (bio_op(bio) == REQ_OP_READ) {
837 task_io_account_read(bio->bi_iter.bi_size);
838 count_vm_events(PGPGIN, bio_sectors(bio));
839 } else if (bio_op(bio) == REQ_OP_WRITE) {
840 count_vm_events(PGPGOUT, bio_sectors(bio));
841 }
842
843 submit_bio_noacct(bio);
844 }
845 EXPORT_SYMBOL(submit_bio);
846
847 /**
848 * bio_poll - poll for BIO completions
849 * @bio: bio to poll for
850 * @iob: batches of IO
851 * @flags: BLK_POLL_* flags that control the behavior
852 *
853 * Poll for completions on queue associated with the bio. Returns number of
854 * completed entries found.
855 *
856 * Note: the caller must either be the context that submitted @bio, or
857 * be in a RCU critical section to prevent freeing of @bio.
858 */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)859 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
860 {
861 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
862 struct block_device *bdev;
863 struct request_queue *q;
864 int ret = 0;
865
866 bdev = READ_ONCE(bio->bi_bdev);
867 if (!bdev)
868 return 0;
869
870 q = bdev_get_queue(bdev);
871 if (cookie == BLK_QC_T_NONE ||
872 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
873 return 0;
874
875 /*
876 * As the requests that require a zone lock are not plugged in the
877 * first place, directly accessing the plug instead of using
878 * blk_mq_plug() should not have any consequences during flushing for
879 * zoned devices.
880 */
881 blk_flush_plug(current->plug, false);
882
883 /*
884 * We need to be able to enter a frozen queue, similar to how
885 * timeouts also need to do that. If that is blocked, then we can
886 * have pending IO when a queue freeze is started, and then the
887 * wait for the freeze to finish will wait for polled requests to
888 * timeout as the poller is preventer from entering the queue and
889 * completing them. As long as we prevent new IO from being queued,
890 * that should be all that matters.
891 */
892 if (!percpu_ref_tryget(&q->q_usage_counter))
893 return 0;
894 if (queue_is_mq(q)) {
895 ret = blk_mq_poll(q, cookie, iob, flags);
896 } else {
897 struct gendisk *disk = q->disk;
898
899 if (disk && disk->fops->poll_bio)
900 ret = disk->fops->poll_bio(bio, iob, flags);
901 }
902 blk_queue_exit(q);
903 return ret;
904 }
905 EXPORT_SYMBOL_GPL(bio_poll);
906
907 /*
908 * Helper to implement file_operations.iopoll. Requires the bio to be stored
909 * in iocb->private, and cleared before freeing the bio.
910 */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)911 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
912 unsigned int flags)
913 {
914 struct bio *bio;
915 int ret = 0;
916
917 /*
918 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
919 * point to a freshly allocated bio at this point. If that happens
920 * we have a few cases to consider:
921 *
922 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
923 * simply nothing in this case
924 * 2) the bio points to a not poll enabled device. bio_poll will catch
925 * this and return 0
926 * 3) the bio points to a poll capable device, including but not
927 * limited to the one that the original bio pointed to. In this
928 * case we will call into the actual poll method and poll for I/O,
929 * even if we don't need to, but it won't cause harm either.
930 *
931 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
932 * is still allocated. Because partitions hold a reference to the whole
933 * device bdev and thus disk, the disk is also still valid. Grabbing
934 * a reference to the queue in bio_poll() ensures the hctxs and requests
935 * are still valid as well.
936 */
937 rcu_read_lock();
938 bio = READ_ONCE(kiocb->private);
939 if (bio)
940 ret = bio_poll(bio, iob, flags);
941 rcu_read_unlock();
942
943 return ret;
944 }
945 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
946
update_io_ticks(struct block_device * part,unsigned long now,bool end)947 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
948 {
949 unsigned long stamp;
950 again:
951 stamp = READ_ONCE(part->bd_stamp);
952 if (unlikely(time_after(now, stamp))) {
953 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
954 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
955 }
956 if (part->bd_partno) {
957 part = bdev_whole(part);
958 goto again;
959 }
960 }
961
bdev_start_io_acct(struct block_device * bdev,unsigned int sectors,enum req_op op,unsigned long start_time)962 unsigned long bdev_start_io_acct(struct block_device *bdev,
963 unsigned int sectors, enum req_op op,
964 unsigned long start_time)
965 {
966 const int sgrp = op_stat_group(op);
967
968 part_stat_lock();
969 update_io_ticks(bdev, start_time, false);
970 part_stat_inc(bdev, ios[sgrp]);
971 part_stat_add(bdev, sectors[sgrp], sectors);
972 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
973 part_stat_unlock();
974
975 return start_time;
976 }
977 EXPORT_SYMBOL(bdev_start_io_acct);
978
979 /**
980 * bio_start_io_acct - start I/O accounting for bio based drivers
981 * @bio: bio to start account for
982 *
983 * Returns the start time that should be passed back to bio_end_io_acct().
984 */
bio_start_io_acct(struct bio * bio)985 unsigned long bio_start_io_acct(struct bio *bio)
986 {
987 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
988 bio_op(bio), jiffies);
989 }
990 EXPORT_SYMBOL_GPL(bio_start_io_acct);
991
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)992 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
993 unsigned long start_time)
994 {
995 const int sgrp = op_stat_group(op);
996 unsigned long now = READ_ONCE(jiffies);
997 unsigned long duration = now - start_time;
998
999 part_stat_lock();
1000 update_io_ticks(bdev, now, true);
1001 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1002 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1003 part_stat_unlock();
1004 }
1005 EXPORT_SYMBOL(bdev_end_io_acct);
1006
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1007 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1008 struct block_device *orig_bdev)
1009 {
1010 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
1011 }
1012 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1013
1014 /**
1015 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1016 * @q : the queue of the device being checked
1017 *
1018 * Description:
1019 * Check if underlying low-level drivers of a device are busy.
1020 * If the drivers want to export their busy state, they must set own
1021 * exporting function using blk_queue_lld_busy() first.
1022 *
1023 * Basically, this function is used only by request stacking drivers
1024 * to stop dispatching requests to underlying devices when underlying
1025 * devices are busy. This behavior helps more I/O merging on the queue
1026 * of the request stacking driver and prevents I/O throughput regression
1027 * on burst I/O load.
1028 *
1029 * Return:
1030 * 0 - Not busy (The request stacking driver should dispatch request)
1031 * 1 - Busy (The request stacking driver should stop dispatching request)
1032 */
blk_lld_busy(struct request_queue * q)1033 int blk_lld_busy(struct request_queue *q)
1034 {
1035 if (queue_is_mq(q) && q->mq_ops->busy)
1036 return q->mq_ops->busy(q);
1037
1038 return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(blk_lld_busy);
1041
kblockd_schedule_work(struct work_struct * work)1042 int kblockd_schedule_work(struct work_struct *work)
1043 {
1044 return queue_work(kblockd_workqueue, work);
1045 }
1046 EXPORT_SYMBOL(kblockd_schedule_work);
1047
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1048 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1049 unsigned long delay)
1050 {
1051 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1052 }
1053 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1054
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1055 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1056 {
1057 struct task_struct *tsk = current;
1058
1059 /*
1060 * If this is a nested plug, don't actually assign it.
1061 */
1062 if (tsk->plug)
1063 return;
1064
1065 plug->mq_list = NULL;
1066 plug->cached_rq = NULL;
1067 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1068 plug->rq_count = 0;
1069 plug->multiple_queues = false;
1070 plug->has_elevator = false;
1071 plug->nowait = false;
1072 INIT_LIST_HEAD(&plug->cb_list);
1073
1074 /*
1075 * Store ordering should not be needed here, since a potential
1076 * preempt will imply a full memory barrier
1077 */
1078 tsk->plug = plug;
1079 }
1080
1081 /**
1082 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1083 * @plug: The &struct blk_plug that needs to be initialized
1084 *
1085 * Description:
1086 * blk_start_plug() indicates to the block layer an intent by the caller
1087 * to submit multiple I/O requests in a batch. The block layer may use
1088 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1089 * is called. However, the block layer may choose to submit requests
1090 * before a call to blk_finish_plug() if the number of queued I/Os
1091 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1092 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1093 * the task schedules (see below).
1094 *
1095 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1096 * pending I/O should the task end up blocking between blk_start_plug() and
1097 * blk_finish_plug(). This is important from a performance perspective, but
1098 * also ensures that we don't deadlock. For instance, if the task is blocking
1099 * for a memory allocation, memory reclaim could end up wanting to free a
1100 * page belonging to that request that is currently residing in our private
1101 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1102 * this kind of deadlock.
1103 */
blk_start_plug(struct blk_plug * plug)1104 void blk_start_plug(struct blk_plug *plug)
1105 {
1106 blk_start_plug_nr_ios(plug, 1);
1107 }
1108 EXPORT_SYMBOL(blk_start_plug);
1109
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1110 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1111 {
1112 LIST_HEAD(callbacks);
1113
1114 while (!list_empty(&plug->cb_list)) {
1115 list_splice_init(&plug->cb_list, &callbacks);
1116
1117 while (!list_empty(&callbacks)) {
1118 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1119 struct blk_plug_cb,
1120 list);
1121 list_del(&cb->list);
1122 cb->callback(cb, from_schedule);
1123 }
1124 }
1125 }
1126
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1127 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1128 int size)
1129 {
1130 struct blk_plug *plug = current->plug;
1131 struct blk_plug_cb *cb;
1132
1133 if (!plug)
1134 return NULL;
1135
1136 list_for_each_entry(cb, &plug->cb_list, list)
1137 if (cb->callback == unplug && cb->data == data)
1138 return cb;
1139
1140 /* Not currently on the callback list */
1141 BUG_ON(size < sizeof(*cb));
1142 cb = kzalloc(size, GFP_ATOMIC);
1143 if (cb) {
1144 cb->data = data;
1145 cb->callback = unplug;
1146 list_add(&cb->list, &plug->cb_list);
1147 }
1148 return cb;
1149 }
1150 EXPORT_SYMBOL(blk_check_plugged);
1151
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1152 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1153 {
1154 if (!list_empty(&plug->cb_list))
1155 flush_plug_callbacks(plug, from_schedule);
1156 if (!rq_list_empty(plug->mq_list))
1157 blk_mq_flush_plug_list(plug, from_schedule);
1158 /*
1159 * Unconditionally flush out cached requests, even if the unplug
1160 * event came from schedule. Since we know hold references to the
1161 * queue for cached requests, we don't want a blocked task holding
1162 * up a queue freeze/quiesce event.
1163 */
1164 if (unlikely(!rq_list_empty(plug->cached_rq)))
1165 blk_mq_free_plug_rqs(plug);
1166 }
1167
1168 /**
1169 * blk_finish_plug - mark the end of a batch of submitted I/O
1170 * @plug: The &struct blk_plug passed to blk_start_plug()
1171 *
1172 * Description:
1173 * Indicate that a batch of I/O submissions is complete. This function
1174 * must be paired with an initial call to blk_start_plug(). The intent
1175 * is to allow the block layer to optimize I/O submission. See the
1176 * documentation for blk_start_plug() for more information.
1177 */
blk_finish_plug(struct blk_plug * plug)1178 void blk_finish_plug(struct blk_plug *plug)
1179 {
1180 if (plug == current->plug) {
1181 __blk_flush_plug(plug, false);
1182 current->plug = NULL;
1183 }
1184 }
1185 EXPORT_SYMBOL(blk_finish_plug);
1186
blk_io_schedule(void)1187 void blk_io_schedule(void)
1188 {
1189 /* Prevent hang_check timer from firing at us during very long I/O */
1190 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1191
1192 if (timeout)
1193 io_schedule_timeout(timeout);
1194 else
1195 io_schedule();
1196 }
1197 EXPORT_SYMBOL_GPL(blk_io_schedule);
1198
blk_dev_init(void)1199 int __init blk_dev_init(void)
1200 {
1201 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1202 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1203 sizeof_field(struct request, cmd_flags));
1204 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1205 sizeof_field(struct bio, bi_opf));
1206
1207 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1208 kblockd_workqueue = alloc_workqueue("kblockd",
1209 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1210 if (!kblockd_workqueue)
1211 panic("Failed to create kblockd\n");
1212
1213 blk_requestq_cachep = kmem_cache_create("request_queue",
1214 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1215
1216 blk_debugfs_root = debugfs_create_dir("block", NULL);
1217
1218 return 0;
1219 }
1220