1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common Block IO controller cgroup interface
4 *
5 * Based on ideas and code from CFQ, CFS and BFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12 * Nauman Rafique <nauman@google.com>
13 *
14 * For policy-specific per-blkcg data:
15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16 * Arianna Avanzini <avanzini.arianna@gmail.com>
17 */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 #include "blk-rq-qos.h"
37
38 /*
39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41 * policy [un]register operations including cgroup file additions /
42 * removals. Putting cgroup file registration outside blkcg_pol_mutex
43 * allows grabbing it from cgroup callbacks.
44 */
45 static DEFINE_MUTEX(blkcg_pol_register_mutex);
46 static DEFINE_MUTEX(blkcg_pol_mutex);
47
48 struct blkcg blkcg_root;
49 EXPORT_SYMBOL_GPL(blkcg_root);
50
51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52 EXPORT_SYMBOL_GPL(blkcg_root_css);
53
54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55
56 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
57
58 bool blkcg_debug_stats = false;
59 static struct workqueue_struct *blkcg_punt_bio_wq;
60
61 #define BLKG_DESTROY_BATCH_SIZE 64
62
63 /*
64 * Lockless lists for tracking IO stats update
65 *
66 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
67 * There are multiple blkg's (one for each block device) attached to each
68 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
69 * but it doesn't know which blkg has the updated stats. If there are many
70 * block devices in a system, the cost of iterating all the blkg's to flush
71 * out the IO stats can be high. To reduce such overhead, a set of percpu
72 * lockless lists (lhead) per blkcg are used to track the set of recently
73 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
74 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
75 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
76 * References to blkg are gotten and then put back in the process to
77 * protect against blkg removal.
78 *
79 * Return: 0 if successful or -ENOMEM if allocation fails.
80 */
init_blkcg_llists(struct blkcg * blkcg)81 static int init_blkcg_llists(struct blkcg *blkcg)
82 {
83 int cpu;
84
85 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
86 if (!blkcg->lhead)
87 return -ENOMEM;
88
89 for_each_possible_cpu(cpu)
90 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
91 return 0;
92 }
93
94 /**
95 * blkcg_css - find the current css
96 *
97 * Find the css associated with either the kthread or the current task.
98 * This may return a dying css, so it is up to the caller to use tryget logic
99 * to confirm it is alive and well.
100 */
blkcg_css(void)101 static struct cgroup_subsys_state *blkcg_css(void)
102 {
103 struct cgroup_subsys_state *css;
104
105 css = kthread_blkcg();
106 if (css)
107 return css;
108 return task_css(current, io_cgrp_id);
109 }
110
blkcg_policy_enabled(struct request_queue * q,const struct blkcg_policy * pol)111 static bool blkcg_policy_enabled(struct request_queue *q,
112 const struct blkcg_policy *pol)
113 {
114 return pol && test_bit(pol->plid, q->blkcg_pols);
115 }
116
blkg_free_workfn(struct work_struct * work)117 static void blkg_free_workfn(struct work_struct *work)
118 {
119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 free_work);
121 struct request_queue *q = blkg->q;
122 int i;
123
124 /*
125 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
126 * in order to make sure pd_free_fn() is called in order, the deletion
127 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
128 * blkcg_mutex is used to synchronize blkg_free_workfn() and
129 * blkcg_deactivate_policy().
130 */
131 mutex_lock(&q->blkcg_mutex);
132 for (i = 0; i < BLKCG_MAX_POLS; i++)
133 if (blkg->pd[i])
134 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
135 if (blkg->parent)
136 blkg_put(blkg->parent);
137 list_del_init(&blkg->q_node);
138 mutex_unlock(&q->blkcg_mutex);
139
140 blk_put_queue(q);
141 free_percpu(blkg->iostat_cpu);
142 percpu_ref_exit(&blkg->refcnt);
143 kfree(blkg);
144 }
145
146 /**
147 * blkg_free - free a blkg
148 * @blkg: blkg to free
149 *
150 * Free @blkg which may be partially allocated.
151 */
blkg_free(struct blkcg_gq * blkg)152 static void blkg_free(struct blkcg_gq *blkg)
153 {
154 if (!blkg)
155 return;
156
157 /*
158 * Both ->pd_free_fn() and request queue's release handler may
159 * sleep, so free us by scheduling one work func
160 */
161 INIT_WORK(&blkg->free_work, blkg_free_workfn);
162 schedule_work(&blkg->free_work);
163 }
164
__blkg_release(struct rcu_head * rcu)165 static void __blkg_release(struct rcu_head *rcu)
166 {
167 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
168
169 WARN_ON(!bio_list_empty(&blkg->async_bios));
170
171 /* release the blkcg and parent blkg refs this blkg has been holding */
172 css_put(&blkg->blkcg->css);
173 blkg_free(blkg);
174 }
175
176 /*
177 * A group is RCU protected, but having an rcu lock does not mean that one
178 * can access all the fields of blkg and assume these are valid. For
179 * example, don't try to follow throtl_data and request queue links.
180 *
181 * Having a reference to blkg under an rcu allows accesses to only values
182 * local to groups like group stats and group rate limits.
183 */
blkg_release(struct percpu_ref * ref)184 static void blkg_release(struct percpu_ref *ref)
185 {
186 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
187
188 call_rcu(&blkg->rcu_head, __blkg_release);
189 }
190
blkg_async_bio_workfn(struct work_struct * work)191 static void blkg_async_bio_workfn(struct work_struct *work)
192 {
193 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
194 async_bio_work);
195 struct bio_list bios = BIO_EMPTY_LIST;
196 struct bio *bio;
197 struct blk_plug plug;
198 bool need_plug = false;
199
200 /* as long as there are pending bios, @blkg can't go away */
201 spin_lock_bh(&blkg->async_bio_lock);
202 bio_list_merge(&bios, &blkg->async_bios);
203 bio_list_init(&blkg->async_bios);
204 spin_unlock_bh(&blkg->async_bio_lock);
205
206 /* start plug only when bio_list contains at least 2 bios */
207 if (bios.head && bios.head->bi_next) {
208 need_plug = true;
209 blk_start_plug(&plug);
210 }
211 while ((bio = bio_list_pop(&bios)))
212 submit_bio(bio);
213 if (need_plug)
214 blk_finish_plug(&plug);
215 }
216
217 /**
218 * bio_blkcg_css - return the blkcg CSS associated with a bio
219 * @bio: target bio
220 *
221 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
222 * associated. Callers are expected to either handle %NULL or know association
223 * has been done prior to calling this.
224 */
bio_blkcg_css(struct bio * bio)225 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
226 {
227 if (!bio || !bio->bi_blkg)
228 return NULL;
229 return &bio->bi_blkg->blkcg->css;
230 }
231 EXPORT_SYMBOL_GPL(bio_blkcg_css);
232
233 /**
234 * blkcg_parent - get the parent of a blkcg
235 * @blkcg: blkcg of interest
236 *
237 * Return the parent blkcg of @blkcg. Can be called anytime.
238 */
blkcg_parent(struct blkcg * blkcg)239 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
240 {
241 return css_to_blkcg(blkcg->css.parent);
242 }
243
244 /**
245 * blkg_alloc - allocate a blkg
246 * @blkcg: block cgroup the new blkg is associated with
247 * @disk: gendisk the new blkg is associated with
248 * @gfp_mask: allocation mask to use
249 *
250 * Allocate a new blkg assocating @blkcg and @q.
251 */
blkg_alloc(struct blkcg * blkcg,struct gendisk * disk,gfp_t gfp_mask)252 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
253 gfp_t gfp_mask)
254 {
255 struct blkcg_gq *blkg;
256 int i, cpu;
257
258 /* alloc and init base part */
259 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
260 if (!blkg)
261 return NULL;
262 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
263 goto out_free_blkg;
264 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
265 if (!blkg->iostat_cpu)
266 goto out_exit_refcnt;
267 if (!blk_get_queue(disk->queue))
268 goto out_free_iostat;
269
270 blkg->q = disk->queue;
271 INIT_LIST_HEAD(&blkg->q_node);
272 spin_lock_init(&blkg->async_bio_lock);
273 bio_list_init(&blkg->async_bios);
274 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
275 blkg->blkcg = blkcg;
276
277 u64_stats_init(&blkg->iostat.sync);
278 for_each_possible_cpu(cpu) {
279 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
280 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
281 }
282
283 for (i = 0; i < BLKCG_MAX_POLS; i++) {
284 struct blkcg_policy *pol = blkcg_policy[i];
285 struct blkg_policy_data *pd;
286
287 if (!blkcg_policy_enabled(disk->queue, pol))
288 continue;
289
290 /* alloc per-policy data and attach it to blkg */
291 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
292 if (!pd)
293 goto out_free_pds;
294 blkg->pd[i] = pd;
295 pd->blkg = blkg;
296 pd->plid = i;
297 pd->online = false;
298 }
299
300 return blkg;
301
302 out_free_pds:
303 while (--i >= 0)
304 if (blkg->pd[i])
305 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
306 blk_put_queue(disk->queue);
307 out_free_iostat:
308 free_percpu(blkg->iostat_cpu);
309 out_exit_refcnt:
310 percpu_ref_exit(&blkg->refcnt);
311 out_free_blkg:
312 kfree(blkg);
313 return NULL;
314 }
315
316 /*
317 * If @new_blkg is %NULL, this function tries to allocate a new one as
318 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
319 */
blkg_create(struct blkcg * blkcg,struct gendisk * disk,struct blkcg_gq * new_blkg)320 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
321 struct blkcg_gq *new_blkg)
322 {
323 struct blkcg_gq *blkg;
324 int i, ret;
325
326 lockdep_assert_held(&disk->queue->queue_lock);
327
328 /* request_queue is dying, do not create/recreate a blkg */
329 if (blk_queue_dying(disk->queue)) {
330 ret = -ENODEV;
331 goto err_free_blkg;
332 }
333
334 /* blkg holds a reference to blkcg */
335 if (!css_tryget_online(&blkcg->css)) {
336 ret = -ENODEV;
337 goto err_free_blkg;
338 }
339
340 /* allocate */
341 if (!new_blkg) {
342 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
343 if (unlikely(!new_blkg)) {
344 ret = -ENOMEM;
345 goto err_put_css;
346 }
347 }
348 blkg = new_blkg;
349
350 /* link parent */
351 if (blkcg_parent(blkcg)) {
352 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
353 if (WARN_ON_ONCE(!blkg->parent)) {
354 ret = -ENODEV;
355 goto err_put_css;
356 }
357 blkg_get(blkg->parent);
358 }
359
360 /* invoke per-policy init */
361 for (i = 0; i < BLKCG_MAX_POLS; i++) {
362 struct blkcg_policy *pol = blkcg_policy[i];
363
364 if (blkg->pd[i] && pol->pd_init_fn)
365 pol->pd_init_fn(blkg->pd[i]);
366 }
367
368 /* insert */
369 spin_lock(&blkcg->lock);
370 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
371 if (likely(!ret)) {
372 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
373 list_add(&blkg->q_node, &disk->queue->blkg_list);
374
375 for (i = 0; i < BLKCG_MAX_POLS; i++) {
376 struct blkcg_policy *pol = blkcg_policy[i];
377
378 if (blkg->pd[i]) {
379 if (pol->pd_online_fn)
380 pol->pd_online_fn(blkg->pd[i]);
381 blkg->pd[i]->online = true;
382 }
383 }
384 }
385 blkg->online = true;
386 spin_unlock(&blkcg->lock);
387
388 if (!ret)
389 return blkg;
390
391 /* @blkg failed fully initialized, use the usual release path */
392 blkg_put(blkg);
393 return ERR_PTR(ret);
394
395 err_put_css:
396 css_put(&blkcg->css);
397 err_free_blkg:
398 if (new_blkg)
399 blkg_free(new_blkg);
400 return ERR_PTR(ret);
401 }
402
403 /**
404 * blkg_lookup_create - lookup blkg, try to create one if not there
405 * @blkcg: blkcg of interest
406 * @disk: gendisk of interest
407 *
408 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
409 * create one. blkg creation is performed recursively from blkcg_root such
410 * that all non-root blkg's have access to the parent blkg. This function
411 * should be called under RCU read lock and takes @disk->queue->queue_lock.
412 *
413 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
414 * down from root.
415 */
blkg_lookup_create(struct blkcg * blkcg,struct gendisk * disk)416 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
417 struct gendisk *disk)
418 {
419 struct request_queue *q = disk->queue;
420 struct blkcg_gq *blkg;
421 unsigned long flags;
422
423 WARN_ON_ONCE(!rcu_read_lock_held());
424
425 blkg = blkg_lookup(blkcg, q);
426 if (blkg)
427 return blkg;
428
429 spin_lock_irqsave(&q->queue_lock, flags);
430 blkg = blkg_lookup(blkcg, q);
431 if (blkg) {
432 if (blkcg != &blkcg_root &&
433 blkg != rcu_dereference(blkcg->blkg_hint))
434 rcu_assign_pointer(blkcg->blkg_hint, blkg);
435 goto found;
436 }
437
438 /*
439 * Create blkgs walking down from blkcg_root to @blkcg, so that all
440 * non-root blkgs have access to their parents. Returns the closest
441 * blkg to the intended blkg should blkg_create() fail.
442 */
443 while (true) {
444 struct blkcg *pos = blkcg;
445 struct blkcg *parent = blkcg_parent(blkcg);
446 struct blkcg_gq *ret_blkg = q->root_blkg;
447
448 while (parent) {
449 blkg = blkg_lookup(parent, q);
450 if (blkg) {
451 /* remember closest blkg */
452 ret_blkg = blkg;
453 break;
454 }
455 pos = parent;
456 parent = blkcg_parent(parent);
457 }
458
459 blkg = blkg_create(pos, disk, NULL);
460 if (IS_ERR(blkg)) {
461 blkg = ret_blkg;
462 break;
463 }
464 if (pos == blkcg)
465 break;
466 }
467
468 found:
469 spin_unlock_irqrestore(&q->queue_lock, flags);
470 return blkg;
471 }
472
blkg_destroy(struct blkcg_gq * blkg)473 static void blkg_destroy(struct blkcg_gq *blkg)
474 {
475 struct blkcg *blkcg = blkg->blkcg;
476 int i;
477
478 lockdep_assert_held(&blkg->q->queue_lock);
479 lockdep_assert_held(&blkcg->lock);
480
481 /*
482 * blkg stays on the queue list until blkg_free_workfn(), see details in
483 * blkg_free_workfn(), hence this function can be called from
484 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
485 * blkg_free_workfn().
486 */
487 if (hlist_unhashed(&blkg->blkcg_node))
488 return;
489
490 for (i = 0; i < BLKCG_MAX_POLS; i++) {
491 struct blkcg_policy *pol = blkcg_policy[i];
492
493 if (blkg->pd[i] && blkg->pd[i]->online) {
494 blkg->pd[i]->online = false;
495 if (pol->pd_offline_fn)
496 pol->pd_offline_fn(blkg->pd[i]);
497 }
498 }
499
500 blkg->online = false;
501
502 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
503 hlist_del_init_rcu(&blkg->blkcg_node);
504
505 /*
506 * Both setting lookup hint to and clearing it from @blkg are done
507 * under queue_lock. If it's not pointing to @blkg now, it never
508 * will. Hint assignment itself can race safely.
509 */
510 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
511 rcu_assign_pointer(blkcg->blkg_hint, NULL);
512
513 /*
514 * Put the reference taken at the time of creation so that when all
515 * queues are gone, group can be destroyed.
516 */
517 percpu_ref_kill(&blkg->refcnt);
518 }
519
blkg_destroy_all(struct gendisk * disk)520 static void blkg_destroy_all(struct gendisk *disk)
521 {
522 struct request_queue *q = disk->queue;
523 struct blkcg_gq *blkg, *n;
524 int count = BLKG_DESTROY_BATCH_SIZE;
525
526 restart:
527 spin_lock_irq(&q->queue_lock);
528 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
529 struct blkcg *blkcg = blkg->blkcg;
530
531 spin_lock(&blkcg->lock);
532 blkg_destroy(blkg);
533 spin_unlock(&blkcg->lock);
534
535 /*
536 * in order to avoid holding the spin lock for too long, release
537 * it when a batch of blkgs are destroyed.
538 */
539 if (!(--count)) {
540 count = BLKG_DESTROY_BATCH_SIZE;
541 spin_unlock_irq(&q->queue_lock);
542 cond_resched();
543 goto restart;
544 }
545 }
546
547 q->root_blkg = NULL;
548 spin_unlock_irq(&q->queue_lock);
549 }
550
blkcg_reset_stats(struct cgroup_subsys_state * css,struct cftype * cftype,u64 val)551 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
552 struct cftype *cftype, u64 val)
553 {
554 struct blkcg *blkcg = css_to_blkcg(css);
555 struct blkcg_gq *blkg;
556 int i, cpu;
557
558 mutex_lock(&blkcg_pol_mutex);
559 spin_lock_irq(&blkcg->lock);
560
561 /*
562 * Note that stat reset is racy - it doesn't synchronize against
563 * stat updates. This is a debug feature which shouldn't exist
564 * anyway. If you get hit by a race, retry.
565 */
566 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
567 for_each_possible_cpu(cpu) {
568 struct blkg_iostat_set *bis =
569 per_cpu_ptr(blkg->iostat_cpu, cpu);
570 memset(bis, 0, sizeof(*bis));
571 }
572 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
573
574 for (i = 0; i < BLKCG_MAX_POLS; i++) {
575 struct blkcg_policy *pol = blkcg_policy[i];
576
577 if (blkg->pd[i] && pol->pd_reset_stats_fn)
578 pol->pd_reset_stats_fn(blkg->pd[i]);
579 }
580 }
581
582 spin_unlock_irq(&blkcg->lock);
583 mutex_unlock(&blkcg_pol_mutex);
584 return 0;
585 }
586
blkg_dev_name(struct blkcg_gq * blkg)587 const char *blkg_dev_name(struct blkcg_gq *blkg)
588 {
589 if (!blkg->q->disk)
590 return NULL;
591 return bdi_dev_name(blkg->q->disk->bdi);
592 }
593
594 /**
595 * blkcg_print_blkgs - helper for printing per-blkg data
596 * @sf: seq_file to print to
597 * @blkcg: blkcg of interest
598 * @prfill: fill function to print out a blkg
599 * @pol: policy in question
600 * @data: data to be passed to @prfill
601 * @show_total: to print out sum of prfill return values or not
602 *
603 * This function invokes @prfill on each blkg of @blkcg if pd for the
604 * policy specified by @pol exists. @prfill is invoked with @sf, the
605 * policy data and @data and the matching queue lock held. If @show_total
606 * is %true, the sum of the return values from @prfill is printed with
607 * "Total" label at the end.
608 *
609 * This is to be used to construct print functions for
610 * cftype->read_seq_string method.
611 */
blkcg_print_blkgs(struct seq_file * sf,struct blkcg * blkcg,u64 (* prfill)(struct seq_file *,struct blkg_policy_data *,int),const struct blkcg_policy * pol,int data,bool show_total)612 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
613 u64 (*prfill)(struct seq_file *,
614 struct blkg_policy_data *, int),
615 const struct blkcg_policy *pol, int data,
616 bool show_total)
617 {
618 struct blkcg_gq *blkg;
619 u64 total = 0;
620
621 rcu_read_lock();
622 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
623 spin_lock_irq(&blkg->q->queue_lock);
624 if (blkcg_policy_enabled(blkg->q, pol))
625 total += prfill(sf, blkg->pd[pol->plid], data);
626 spin_unlock_irq(&blkg->q->queue_lock);
627 }
628 rcu_read_unlock();
629
630 if (show_total)
631 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
632 }
633 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
634
635 /**
636 * __blkg_prfill_u64 - prfill helper for a single u64 value
637 * @sf: seq_file to print to
638 * @pd: policy private data of interest
639 * @v: value to print
640 *
641 * Print @v to @sf for the device associated with @pd.
642 */
__blkg_prfill_u64(struct seq_file * sf,struct blkg_policy_data * pd,u64 v)643 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
644 {
645 const char *dname = blkg_dev_name(pd->blkg);
646
647 if (!dname)
648 return 0;
649
650 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
651 return v;
652 }
653 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
654
655 /**
656 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
657 * @inputp: input string pointer
658 *
659 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
660 * from @input and get and return the matching bdev. *@inputp is
661 * updated to point past the device node prefix. Returns an ERR_PTR()
662 * value on error.
663 *
664 * Use this function iff blkg_conf_prep() can't be used for some reason.
665 */
blkcg_conf_open_bdev(char ** inputp)666 struct block_device *blkcg_conf_open_bdev(char **inputp)
667 {
668 char *input = *inputp;
669 unsigned int major, minor;
670 struct block_device *bdev;
671 int key_len;
672
673 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
674 return ERR_PTR(-EINVAL);
675
676 input += key_len;
677 if (!isspace(*input))
678 return ERR_PTR(-EINVAL);
679 input = skip_spaces(input);
680
681 bdev = blkdev_get_no_open(MKDEV(major, minor));
682 if (!bdev)
683 return ERR_PTR(-ENODEV);
684 if (bdev_is_partition(bdev)) {
685 blkdev_put_no_open(bdev);
686 return ERR_PTR(-ENODEV);
687 }
688
689 *inputp = input;
690 return bdev;
691 }
692
693 /**
694 * blkg_conf_prep - parse and prepare for per-blkg config update
695 * @blkcg: target block cgroup
696 * @pol: target policy
697 * @input: input string
698 * @ctx: blkg_conf_ctx to be filled
699 *
700 * Parse per-blkg config update from @input and initialize @ctx with the
701 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the
702 * part of @input following MAJ:MIN. This function returns with RCU read
703 * lock and queue lock held and must be paired with blkg_conf_finish().
704 */
blkg_conf_prep(struct blkcg * blkcg,const struct blkcg_policy * pol,char * input,struct blkg_conf_ctx * ctx)705 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
706 char *input, struct blkg_conf_ctx *ctx)
707 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
708 {
709 struct block_device *bdev;
710 struct gendisk *disk;
711 struct request_queue *q;
712 struct blkcg_gq *blkg;
713 int ret;
714
715 bdev = blkcg_conf_open_bdev(&input);
716 if (IS_ERR(bdev))
717 return PTR_ERR(bdev);
718 disk = bdev->bd_disk;
719 q = disk->queue;
720
721 /*
722 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
723 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
724 */
725 ret = blk_queue_enter(q, 0);
726 if (ret)
727 goto fail;
728
729 rcu_read_lock();
730 spin_lock_irq(&q->queue_lock);
731
732 if (!blkcg_policy_enabled(q, pol)) {
733 ret = -EOPNOTSUPP;
734 goto fail_unlock;
735 }
736
737 blkg = blkg_lookup(blkcg, q);
738 if (blkg)
739 goto success;
740
741 /*
742 * Create blkgs walking down from blkcg_root to @blkcg, so that all
743 * non-root blkgs have access to their parents.
744 */
745 while (true) {
746 struct blkcg *pos = blkcg;
747 struct blkcg *parent;
748 struct blkcg_gq *new_blkg;
749
750 parent = blkcg_parent(blkcg);
751 while (parent && !blkg_lookup(parent, q)) {
752 pos = parent;
753 parent = blkcg_parent(parent);
754 }
755
756 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
757 spin_unlock_irq(&q->queue_lock);
758 rcu_read_unlock();
759
760 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
761 if (unlikely(!new_blkg)) {
762 ret = -ENOMEM;
763 goto fail_exit_queue;
764 }
765
766 if (radix_tree_preload(GFP_KERNEL)) {
767 blkg_free(new_blkg);
768 ret = -ENOMEM;
769 goto fail_exit_queue;
770 }
771
772 rcu_read_lock();
773 spin_lock_irq(&q->queue_lock);
774
775 if (!blkcg_policy_enabled(q, pol)) {
776 blkg_free(new_blkg);
777 ret = -EOPNOTSUPP;
778 goto fail_preloaded;
779 }
780
781 blkg = blkg_lookup(pos, q);
782 if (blkg) {
783 blkg_free(new_blkg);
784 } else {
785 blkg = blkg_create(pos, disk, new_blkg);
786 if (IS_ERR(blkg)) {
787 ret = PTR_ERR(blkg);
788 goto fail_preloaded;
789 }
790 }
791
792 radix_tree_preload_end();
793
794 if (pos == blkcg)
795 goto success;
796 }
797 success:
798 blk_queue_exit(q);
799 ctx->bdev = bdev;
800 ctx->blkg = blkg;
801 ctx->body = input;
802 return 0;
803
804 fail_preloaded:
805 radix_tree_preload_end();
806 fail_unlock:
807 spin_unlock_irq(&q->queue_lock);
808 rcu_read_unlock();
809 fail_exit_queue:
810 blk_queue_exit(q);
811 fail:
812 blkdev_put_no_open(bdev);
813 /*
814 * If queue was bypassing, we should retry. Do so after a
815 * short msleep(). It isn't strictly necessary but queue
816 * can be bypassing for some time and it's always nice to
817 * avoid busy looping.
818 */
819 if (ret == -EBUSY) {
820 msleep(10);
821 ret = restart_syscall();
822 }
823 return ret;
824 }
825 EXPORT_SYMBOL_GPL(blkg_conf_prep);
826
827 /**
828 * blkg_conf_finish - finish up per-blkg config update
829 * @ctx: blkg_conf_ctx initialized by blkg_conf_prep()
830 *
831 * Finish up after per-blkg config update. This function must be paired
832 * with blkg_conf_prep().
833 */
blkg_conf_finish(struct blkg_conf_ctx * ctx)834 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
835 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
836 {
837 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
838 rcu_read_unlock();
839 blkdev_put_no_open(ctx->bdev);
840 }
841 EXPORT_SYMBOL_GPL(blkg_conf_finish);
842
blkg_iostat_set(struct blkg_iostat * dst,struct blkg_iostat * src)843 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
844 {
845 int i;
846
847 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
848 dst->bytes[i] = src->bytes[i];
849 dst->ios[i] = src->ios[i];
850 }
851 }
852
blkg_iostat_add(struct blkg_iostat * dst,struct blkg_iostat * src)853 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
854 {
855 int i;
856
857 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
858 dst->bytes[i] += src->bytes[i];
859 dst->ios[i] += src->ios[i];
860 }
861 }
862
blkg_iostat_sub(struct blkg_iostat * dst,struct blkg_iostat * src)863 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
864 {
865 int i;
866
867 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
868 dst->bytes[i] -= src->bytes[i];
869 dst->ios[i] -= src->ios[i];
870 }
871 }
872
blkcg_iostat_update(struct blkcg_gq * blkg,struct blkg_iostat * cur,struct blkg_iostat * last)873 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
874 struct blkg_iostat *last)
875 {
876 struct blkg_iostat delta;
877 unsigned long flags;
878
879 /* propagate percpu delta to global */
880 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
881 blkg_iostat_set(&delta, cur);
882 blkg_iostat_sub(&delta, last);
883 blkg_iostat_add(&blkg->iostat.cur, &delta);
884 blkg_iostat_add(last, &delta);
885 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
886 }
887
blkcg_rstat_flush(struct cgroup_subsys_state * css,int cpu)888 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
889 {
890 struct blkcg *blkcg = css_to_blkcg(css);
891 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
892 struct llist_node *lnode;
893 struct blkg_iostat_set *bisc, *next_bisc;
894
895 /* Root-level stats are sourced from system-wide IO stats */
896 if (!cgroup_parent(css->cgroup))
897 return;
898
899 rcu_read_lock();
900
901 lnode = llist_del_all(lhead);
902 if (!lnode)
903 goto out;
904
905 /*
906 * Iterate only the iostat_cpu's queued in the lockless list.
907 */
908 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
909 struct blkcg_gq *blkg = bisc->blkg;
910 struct blkcg_gq *parent = blkg->parent;
911 struct blkg_iostat cur;
912 unsigned int seq;
913
914 WRITE_ONCE(bisc->lqueued, false);
915
916 /* fetch the current per-cpu values */
917 do {
918 seq = u64_stats_fetch_begin(&bisc->sync);
919 blkg_iostat_set(&cur, &bisc->cur);
920 } while (u64_stats_fetch_retry(&bisc->sync, seq));
921
922 blkcg_iostat_update(blkg, &cur, &bisc->last);
923
924 /* propagate global delta to parent (unless that's root) */
925 if (parent && parent->parent)
926 blkcg_iostat_update(parent, &blkg->iostat.cur,
927 &blkg->iostat.last);
928 percpu_ref_put(&blkg->refcnt);
929 }
930
931 out:
932 rcu_read_unlock();
933 }
934
935 /*
936 * We source root cgroup stats from the system-wide stats to avoid
937 * tracking the same information twice and incurring overhead when no
938 * cgroups are defined. For that reason, cgroup_rstat_flush in
939 * blkcg_print_stat does not actually fill out the iostat in the root
940 * cgroup's blkcg_gq.
941 *
942 * However, we would like to re-use the printing code between the root and
943 * non-root cgroups to the extent possible. For that reason, we simulate
944 * flushing the root cgroup's stats by explicitly filling in the iostat
945 * with disk level statistics.
946 */
blkcg_fill_root_iostats(void)947 static void blkcg_fill_root_iostats(void)
948 {
949 struct class_dev_iter iter;
950 struct device *dev;
951
952 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
953 while ((dev = class_dev_iter_next(&iter))) {
954 struct block_device *bdev = dev_to_bdev(dev);
955 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
956 struct blkg_iostat tmp;
957 int cpu;
958 unsigned long flags;
959
960 memset(&tmp, 0, sizeof(tmp));
961 for_each_possible_cpu(cpu) {
962 struct disk_stats *cpu_dkstats;
963
964 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
965 tmp.ios[BLKG_IOSTAT_READ] +=
966 cpu_dkstats->ios[STAT_READ];
967 tmp.ios[BLKG_IOSTAT_WRITE] +=
968 cpu_dkstats->ios[STAT_WRITE];
969 tmp.ios[BLKG_IOSTAT_DISCARD] +=
970 cpu_dkstats->ios[STAT_DISCARD];
971 // convert sectors to bytes
972 tmp.bytes[BLKG_IOSTAT_READ] +=
973 cpu_dkstats->sectors[STAT_READ] << 9;
974 tmp.bytes[BLKG_IOSTAT_WRITE] +=
975 cpu_dkstats->sectors[STAT_WRITE] << 9;
976 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
977 cpu_dkstats->sectors[STAT_DISCARD] << 9;
978 }
979
980 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
981 blkg_iostat_set(&blkg->iostat.cur, &tmp);
982 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
983 }
984 }
985
blkcg_print_one_stat(struct blkcg_gq * blkg,struct seq_file * s)986 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
987 {
988 struct blkg_iostat_set *bis = &blkg->iostat;
989 u64 rbytes, wbytes, rios, wios, dbytes, dios;
990 const char *dname;
991 unsigned seq;
992 int i;
993
994 if (!blkg->online)
995 return;
996
997 dname = blkg_dev_name(blkg);
998 if (!dname)
999 return;
1000
1001 seq_printf(s, "%s ", dname);
1002
1003 do {
1004 seq = u64_stats_fetch_begin(&bis->sync);
1005
1006 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1007 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1008 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1009 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1010 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1011 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1012 } while (u64_stats_fetch_retry(&bis->sync, seq));
1013
1014 if (rbytes || wbytes || rios || wios) {
1015 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1016 rbytes, wbytes, rios, wios,
1017 dbytes, dios);
1018 }
1019
1020 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1021 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1022 atomic_read(&blkg->use_delay),
1023 atomic64_read(&blkg->delay_nsec));
1024 }
1025
1026 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1027 struct blkcg_policy *pol = blkcg_policy[i];
1028
1029 if (!blkg->pd[i] || !pol->pd_stat_fn)
1030 continue;
1031
1032 pol->pd_stat_fn(blkg->pd[i], s);
1033 }
1034
1035 seq_puts(s, "\n");
1036 }
1037
blkcg_print_stat(struct seq_file * sf,void * v)1038 static int blkcg_print_stat(struct seq_file *sf, void *v)
1039 {
1040 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1041 struct blkcg_gq *blkg;
1042
1043 if (!seq_css(sf)->parent)
1044 blkcg_fill_root_iostats();
1045 else
1046 cgroup_rstat_flush(blkcg->css.cgroup);
1047
1048 rcu_read_lock();
1049 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1050 spin_lock_irq(&blkg->q->queue_lock);
1051 blkcg_print_one_stat(blkg, sf);
1052 spin_unlock_irq(&blkg->q->queue_lock);
1053 }
1054 rcu_read_unlock();
1055 return 0;
1056 }
1057
1058 static struct cftype blkcg_files[] = {
1059 {
1060 .name = "stat",
1061 .seq_show = blkcg_print_stat,
1062 },
1063 { } /* terminate */
1064 };
1065
1066 static struct cftype blkcg_legacy_files[] = {
1067 {
1068 .name = "reset_stats",
1069 .write_u64 = blkcg_reset_stats,
1070 },
1071 { } /* terminate */
1072 };
1073
1074 #ifdef CONFIG_CGROUP_WRITEBACK
blkcg_get_cgwb_list(struct cgroup_subsys_state * css)1075 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1076 {
1077 return &css_to_blkcg(css)->cgwb_list;
1078 }
1079 #endif
1080
1081 /*
1082 * blkcg destruction is a three-stage process.
1083 *
1084 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1085 * which offlines writeback. Here we tie the next stage of blkg destruction
1086 * to the completion of writeback associated with the blkcg. This lets us
1087 * avoid punting potentially large amounts of outstanding writeback to root
1088 * while maintaining any ongoing policies. The next stage is triggered when
1089 * the nr_cgwbs count goes to zero.
1090 *
1091 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1092 * and handles the destruction of blkgs. Here the css reference held by
1093 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1094 * This work may occur in cgwb_release_workfn() on the cgwb_release
1095 * workqueue. Any submitted ios that fail to get the blkg ref will be
1096 * punted to the root_blkg.
1097 *
1098 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1099 * This finally frees the blkcg.
1100 */
1101
1102 /**
1103 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1104 * @blkcg: blkcg of interest
1105 *
1106 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1107 * is nested inside q lock, this function performs reverse double lock dancing.
1108 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1109 * blkcg_css_free to eventually be called.
1110 *
1111 * This is the blkcg counterpart of ioc_release_fn().
1112 */
blkcg_destroy_blkgs(struct blkcg * blkcg)1113 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1114 {
1115 might_sleep();
1116
1117 spin_lock_irq(&blkcg->lock);
1118
1119 while (!hlist_empty(&blkcg->blkg_list)) {
1120 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1121 struct blkcg_gq, blkcg_node);
1122 struct request_queue *q = blkg->q;
1123
1124 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1125 /*
1126 * Given that the system can accumulate a huge number
1127 * of blkgs in pathological cases, check to see if we
1128 * need to rescheduling to avoid softlockup.
1129 */
1130 spin_unlock_irq(&blkcg->lock);
1131 cond_resched();
1132 spin_lock_irq(&blkcg->lock);
1133 continue;
1134 }
1135
1136 blkg_destroy(blkg);
1137 spin_unlock(&q->queue_lock);
1138 }
1139
1140 spin_unlock_irq(&blkcg->lock);
1141 }
1142
1143 /**
1144 * blkcg_pin_online - pin online state
1145 * @blkcg_css: blkcg of interest
1146 *
1147 * While pinned, a blkcg is kept online. This is primarily used to
1148 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1149 * while an associated cgwb is still active.
1150 */
blkcg_pin_online(struct cgroup_subsys_state * blkcg_css)1151 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1152 {
1153 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1154 }
1155
1156 /**
1157 * blkcg_unpin_online - unpin online state
1158 * @blkcg_css: blkcg of interest
1159 *
1160 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1161 * that blkg doesn't go offline while an associated cgwb is still active.
1162 * When this count goes to zero, all active cgwbs have finished so the
1163 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1164 */
blkcg_unpin_online(struct cgroup_subsys_state * blkcg_css)1165 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1166 {
1167 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1168
1169 do {
1170 if (!refcount_dec_and_test(&blkcg->online_pin))
1171 break;
1172 blkcg_destroy_blkgs(blkcg);
1173 blkcg = blkcg_parent(blkcg);
1174 } while (blkcg);
1175 }
1176
1177 /**
1178 * blkcg_css_offline - cgroup css_offline callback
1179 * @css: css of interest
1180 *
1181 * This function is called when @css is about to go away. Here the cgwbs are
1182 * offlined first and only once writeback associated with the blkcg has
1183 * finished do we start step 2 (see above).
1184 */
blkcg_css_offline(struct cgroup_subsys_state * css)1185 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1186 {
1187 /* this prevents anyone from attaching or migrating to this blkcg */
1188 wb_blkcg_offline(css);
1189
1190 /* put the base online pin allowing step 2 to be triggered */
1191 blkcg_unpin_online(css);
1192 }
1193
blkcg_css_free(struct cgroup_subsys_state * css)1194 static void blkcg_css_free(struct cgroup_subsys_state *css)
1195 {
1196 struct blkcg *blkcg = css_to_blkcg(css);
1197 int i;
1198
1199 mutex_lock(&blkcg_pol_mutex);
1200
1201 list_del(&blkcg->all_blkcgs_node);
1202
1203 for (i = 0; i < BLKCG_MAX_POLS; i++)
1204 if (blkcg->cpd[i])
1205 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1206
1207 mutex_unlock(&blkcg_pol_mutex);
1208
1209 free_percpu(blkcg->lhead);
1210 kfree(blkcg);
1211 }
1212
1213 static struct cgroup_subsys_state *
blkcg_css_alloc(struct cgroup_subsys_state * parent_css)1214 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1215 {
1216 struct blkcg *blkcg;
1217 int i;
1218
1219 mutex_lock(&blkcg_pol_mutex);
1220
1221 if (!parent_css) {
1222 blkcg = &blkcg_root;
1223 } else {
1224 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1225 if (!blkcg)
1226 goto unlock;
1227 }
1228
1229 if (init_blkcg_llists(blkcg))
1230 goto free_blkcg;
1231
1232 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1233 struct blkcg_policy *pol = blkcg_policy[i];
1234 struct blkcg_policy_data *cpd;
1235
1236 /*
1237 * If the policy hasn't been attached yet, wait for it
1238 * to be attached before doing anything else. Otherwise,
1239 * check if the policy requires any specific per-cgroup
1240 * data: if it does, allocate and initialize it.
1241 */
1242 if (!pol || !pol->cpd_alloc_fn)
1243 continue;
1244
1245 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1246 if (!cpd)
1247 goto free_pd_blkcg;
1248
1249 blkcg->cpd[i] = cpd;
1250 cpd->blkcg = blkcg;
1251 cpd->plid = i;
1252 if (pol->cpd_init_fn)
1253 pol->cpd_init_fn(cpd);
1254 }
1255
1256 spin_lock_init(&blkcg->lock);
1257 refcount_set(&blkcg->online_pin, 1);
1258 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1259 INIT_HLIST_HEAD(&blkcg->blkg_list);
1260 #ifdef CONFIG_CGROUP_WRITEBACK
1261 INIT_LIST_HEAD(&blkcg->cgwb_list);
1262 #endif
1263 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1264
1265 mutex_unlock(&blkcg_pol_mutex);
1266 return &blkcg->css;
1267
1268 free_pd_blkcg:
1269 for (i--; i >= 0; i--)
1270 if (blkcg->cpd[i])
1271 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1272 free_percpu(blkcg->lhead);
1273 free_blkcg:
1274 if (blkcg != &blkcg_root)
1275 kfree(blkcg);
1276 unlock:
1277 mutex_unlock(&blkcg_pol_mutex);
1278 return ERR_PTR(-ENOMEM);
1279 }
1280
blkcg_css_online(struct cgroup_subsys_state * css)1281 static int blkcg_css_online(struct cgroup_subsys_state *css)
1282 {
1283 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1284
1285 /*
1286 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1287 * don't go offline while cgwbs are still active on them. Pin the
1288 * parent so that offline always happens towards the root.
1289 */
1290 if (parent)
1291 blkcg_pin_online(&parent->css);
1292 return 0;
1293 }
1294
blkcg_init_disk(struct gendisk * disk)1295 int blkcg_init_disk(struct gendisk *disk)
1296 {
1297 struct request_queue *q = disk->queue;
1298 struct blkcg_gq *new_blkg, *blkg;
1299 bool preloaded;
1300 int ret;
1301
1302 INIT_LIST_HEAD(&q->blkg_list);
1303 mutex_init(&q->blkcg_mutex);
1304
1305 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1306 if (!new_blkg)
1307 return -ENOMEM;
1308
1309 preloaded = !radix_tree_preload(GFP_KERNEL);
1310
1311 /* Make sure the root blkg exists. */
1312 /* spin_lock_irq can serve as RCU read-side critical section. */
1313 spin_lock_irq(&q->queue_lock);
1314 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1315 if (IS_ERR(blkg))
1316 goto err_unlock;
1317 q->root_blkg = blkg;
1318 spin_unlock_irq(&q->queue_lock);
1319
1320 if (preloaded)
1321 radix_tree_preload_end();
1322
1323 ret = blk_ioprio_init(disk);
1324 if (ret)
1325 goto err_destroy_all;
1326
1327 ret = blk_throtl_init(disk);
1328 if (ret)
1329 goto err_ioprio_exit;
1330
1331 ret = blk_iolatency_init(disk);
1332 if (ret)
1333 goto err_throtl_exit;
1334
1335 return 0;
1336
1337 err_throtl_exit:
1338 blk_throtl_exit(disk);
1339 err_ioprio_exit:
1340 blk_ioprio_exit(disk);
1341 err_destroy_all:
1342 blkg_destroy_all(disk);
1343 return ret;
1344 err_unlock:
1345 spin_unlock_irq(&q->queue_lock);
1346 if (preloaded)
1347 radix_tree_preload_end();
1348 return PTR_ERR(blkg);
1349 }
1350
blkcg_exit_disk(struct gendisk * disk)1351 void blkcg_exit_disk(struct gendisk *disk)
1352 {
1353 blkg_destroy_all(disk);
1354 rq_qos_exit(disk->queue);
1355 blk_throtl_exit(disk);
1356 }
1357
blkcg_bind(struct cgroup_subsys_state * root_css)1358 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1359 {
1360 int i;
1361
1362 mutex_lock(&blkcg_pol_mutex);
1363
1364 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1365 struct blkcg_policy *pol = blkcg_policy[i];
1366 struct blkcg *blkcg;
1367
1368 if (!pol || !pol->cpd_bind_fn)
1369 continue;
1370
1371 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1372 if (blkcg->cpd[pol->plid])
1373 pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1374 }
1375 mutex_unlock(&blkcg_pol_mutex);
1376 }
1377
blkcg_exit(struct task_struct * tsk)1378 static void blkcg_exit(struct task_struct *tsk)
1379 {
1380 if (tsk->throttle_disk)
1381 put_disk(tsk->throttle_disk);
1382 tsk->throttle_disk = NULL;
1383 }
1384
1385 struct cgroup_subsys io_cgrp_subsys = {
1386 .css_alloc = blkcg_css_alloc,
1387 .css_online = blkcg_css_online,
1388 .css_offline = blkcg_css_offline,
1389 .css_free = blkcg_css_free,
1390 .css_rstat_flush = blkcg_rstat_flush,
1391 .bind = blkcg_bind,
1392 .dfl_cftypes = blkcg_files,
1393 .legacy_cftypes = blkcg_legacy_files,
1394 .legacy_name = "blkio",
1395 .exit = blkcg_exit,
1396 #ifdef CONFIG_MEMCG
1397 /*
1398 * This ensures that, if available, memcg is automatically enabled
1399 * together on the default hierarchy so that the owner cgroup can
1400 * be retrieved from writeback pages.
1401 */
1402 .depends_on = 1 << memory_cgrp_id,
1403 #endif
1404 };
1405 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1406
1407 /**
1408 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1409 * @disk: gendisk of interest
1410 * @pol: blkcg policy to activate
1411 *
1412 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1413 * bypass mode to populate its blkgs with policy_data for @pol.
1414 *
1415 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1416 * from IO path. Update of each blkg is protected by both queue and blkcg
1417 * locks so that holding either lock and testing blkcg_policy_enabled() is
1418 * always enough for dereferencing policy data.
1419 *
1420 * The caller is responsible for synchronizing [de]activations and policy
1421 * [un]registerations. Returns 0 on success, -errno on failure.
1422 */
blkcg_activate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1423 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1424 {
1425 struct request_queue *q = disk->queue;
1426 struct blkg_policy_data *pd_prealloc = NULL;
1427 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1428 int ret;
1429
1430 if (blkcg_policy_enabled(q, pol))
1431 return 0;
1432
1433 if (queue_is_mq(q))
1434 blk_mq_freeze_queue(q);
1435 retry:
1436 spin_lock_irq(&q->queue_lock);
1437
1438 /* blkg_list is pushed at the head, reverse walk to allocate parents first */
1439 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1440 struct blkg_policy_data *pd;
1441
1442 if (blkg->pd[pol->plid])
1443 continue;
1444
1445 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1446 if (blkg == pinned_blkg) {
1447 pd = pd_prealloc;
1448 pd_prealloc = NULL;
1449 } else {
1450 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1451 GFP_NOWAIT | __GFP_NOWARN);
1452 }
1453
1454 if (!pd) {
1455 /*
1456 * GFP_NOWAIT failed. Free the existing one and
1457 * prealloc for @blkg w/ GFP_KERNEL.
1458 */
1459 if (pinned_blkg)
1460 blkg_put(pinned_blkg);
1461 blkg_get(blkg);
1462 pinned_blkg = blkg;
1463
1464 spin_unlock_irq(&q->queue_lock);
1465
1466 if (pd_prealloc)
1467 pol->pd_free_fn(pd_prealloc);
1468 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1469 GFP_KERNEL);
1470 if (pd_prealloc)
1471 goto retry;
1472 else
1473 goto enomem;
1474 }
1475
1476 blkg->pd[pol->plid] = pd;
1477 pd->blkg = blkg;
1478 pd->plid = pol->plid;
1479 pd->online = false;
1480 }
1481
1482 /* all allocated, init in the same order */
1483 if (pol->pd_init_fn)
1484 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1485 pol->pd_init_fn(blkg->pd[pol->plid]);
1486
1487 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1488 if (pol->pd_online_fn)
1489 pol->pd_online_fn(blkg->pd[pol->plid]);
1490 blkg->pd[pol->plid]->online = true;
1491 }
1492
1493 __set_bit(pol->plid, q->blkcg_pols);
1494 ret = 0;
1495
1496 spin_unlock_irq(&q->queue_lock);
1497 out:
1498 if (queue_is_mq(q))
1499 blk_mq_unfreeze_queue(q);
1500 if (pinned_blkg)
1501 blkg_put(pinned_blkg);
1502 if (pd_prealloc)
1503 pol->pd_free_fn(pd_prealloc);
1504 return ret;
1505
1506 enomem:
1507 /* alloc failed, nothing's initialized yet, free everything */
1508 spin_lock_irq(&q->queue_lock);
1509 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1510 struct blkcg *blkcg = blkg->blkcg;
1511
1512 spin_lock(&blkcg->lock);
1513 if (blkg->pd[pol->plid]) {
1514 pol->pd_free_fn(blkg->pd[pol->plid]);
1515 blkg->pd[pol->plid] = NULL;
1516 }
1517 spin_unlock(&blkcg->lock);
1518 }
1519 spin_unlock_irq(&q->queue_lock);
1520 ret = -ENOMEM;
1521 goto out;
1522 }
1523 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1524
1525 /**
1526 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1527 * @disk: gendisk of interest
1528 * @pol: blkcg policy to deactivate
1529 *
1530 * Deactivate @pol on @disk. Follows the same synchronization rules as
1531 * blkcg_activate_policy().
1532 */
blkcg_deactivate_policy(struct gendisk * disk,const struct blkcg_policy * pol)1533 void blkcg_deactivate_policy(struct gendisk *disk,
1534 const struct blkcg_policy *pol)
1535 {
1536 struct request_queue *q = disk->queue;
1537 struct blkcg_gq *blkg;
1538
1539 if (!blkcg_policy_enabled(q, pol))
1540 return;
1541
1542 if (queue_is_mq(q))
1543 blk_mq_freeze_queue(q);
1544
1545 mutex_lock(&q->blkcg_mutex);
1546 spin_lock_irq(&q->queue_lock);
1547
1548 __clear_bit(pol->plid, q->blkcg_pols);
1549
1550 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1551 struct blkcg *blkcg = blkg->blkcg;
1552
1553 spin_lock(&blkcg->lock);
1554 if (blkg->pd[pol->plid]) {
1555 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1556 pol->pd_offline_fn(blkg->pd[pol->plid]);
1557 pol->pd_free_fn(blkg->pd[pol->plid]);
1558 blkg->pd[pol->plid] = NULL;
1559 }
1560 spin_unlock(&blkcg->lock);
1561 }
1562
1563 spin_unlock_irq(&q->queue_lock);
1564 mutex_unlock(&q->blkcg_mutex);
1565
1566 if (queue_is_mq(q))
1567 blk_mq_unfreeze_queue(q);
1568 }
1569 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1570
blkcg_free_all_cpd(struct blkcg_policy * pol)1571 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1572 {
1573 struct blkcg *blkcg;
1574
1575 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1576 if (blkcg->cpd[pol->plid]) {
1577 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1578 blkcg->cpd[pol->plid] = NULL;
1579 }
1580 }
1581 }
1582
1583 /**
1584 * blkcg_policy_register - register a blkcg policy
1585 * @pol: blkcg policy to register
1586 *
1587 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1588 * successful registration. Returns 0 on success and -errno on failure.
1589 */
blkcg_policy_register(struct blkcg_policy * pol)1590 int blkcg_policy_register(struct blkcg_policy *pol)
1591 {
1592 struct blkcg *blkcg;
1593 int i, ret;
1594
1595 mutex_lock(&blkcg_pol_register_mutex);
1596 mutex_lock(&blkcg_pol_mutex);
1597
1598 /* find an empty slot */
1599 ret = -ENOSPC;
1600 for (i = 0; i < BLKCG_MAX_POLS; i++)
1601 if (!blkcg_policy[i])
1602 break;
1603 if (i >= BLKCG_MAX_POLS) {
1604 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1605 goto err_unlock;
1606 }
1607
1608 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1609 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1610 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1611 goto err_unlock;
1612
1613 /* register @pol */
1614 pol->plid = i;
1615 blkcg_policy[pol->plid] = pol;
1616
1617 /* allocate and install cpd's */
1618 if (pol->cpd_alloc_fn) {
1619 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1620 struct blkcg_policy_data *cpd;
1621
1622 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1623 if (!cpd)
1624 goto err_free_cpds;
1625
1626 blkcg->cpd[pol->plid] = cpd;
1627 cpd->blkcg = blkcg;
1628 cpd->plid = pol->plid;
1629 if (pol->cpd_init_fn)
1630 pol->cpd_init_fn(cpd);
1631 }
1632 }
1633
1634 mutex_unlock(&blkcg_pol_mutex);
1635
1636 /* everything is in place, add intf files for the new policy */
1637 if (pol->dfl_cftypes)
1638 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1639 pol->dfl_cftypes));
1640 if (pol->legacy_cftypes)
1641 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1642 pol->legacy_cftypes));
1643 mutex_unlock(&blkcg_pol_register_mutex);
1644 return 0;
1645
1646 err_free_cpds:
1647 if (pol->cpd_free_fn)
1648 blkcg_free_all_cpd(pol);
1649
1650 blkcg_policy[pol->plid] = NULL;
1651 err_unlock:
1652 mutex_unlock(&blkcg_pol_mutex);
1653 mutex_unlock(&blkcg_pol_register_mutex);
1654 return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1657
1658 /**
1659 * blkcg_policy_unregister - unregister a blkcg policy
1660 * @pol: blkcg policy to unregister
1661 *
1662 * Undo blkcg_policy_register(@pol). Might sleep.
1663 */
blkcg_policy_unregister(struct blkcg_policy * pol)1664 void blkcg_policy_unregister(struct blkcg_policy *pol)
1665 {
1666 mutex_lock(&blkcg_pol_register_mutex);
1667
1668 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1669 goto out_unlock;
1670
1671 /* kill the intf files first */
1672 if (pol->dfl_cftypes)
1673 cgroup_rm_cftypes(pol->dfl_cftypes);
1674 if (pol->legacy_cftypes)
1675 cgroup_rm_cftypes(pol->legacy_cftypes);
1676
1677 /* remove cpds and unregister */
1678 mutex_lock(&blkcg_pol_mutex);
1679
1680 if (pol->cpd_free_fn)
1681 blkcg_free_all_cpd(pol);
1682
1683 blkcg_policy[pol->plid] = NULL;
1684
1685 mutex_unlock(&blkcg_pol_mutex);
1686 out_unlock:
1687 mutex_unlock(&blkcg_pol_register_mutex);
1688 }
1689 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1690
__blkcg_punt_bio_submit(struct bio * bio)1691 bool __blkcg_punt_bio_submit(struct bio *bio)
1692 {
1693 struct blkcg_gq *blkg = bio->bi_blkg;
1694
1695 /* consume the flag first */
1696 bio->bi_opf &= ~REQ_CGROUP_PUNT;
1697
1698 /* never bounce for the root cgroup */
1699 if (!blkg->parent)
1700 return false;
1701
1702 spin_lock_bh(&blkg->async_bio_lock);
1703 bio_list_add(&blkg->async_bios, bio);
1704 spin_unlock_bh(&blkg->async_bio_lock);
1705
1706 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1707 return true;
1708 }
1709
1710 /*
1711 * Scale the accumulated delay based on how long it has been since we updated
1712 * the delay. We only call this when we are adding delay, in case it's been a
1713 * while since we added delay, and when we are checking to see if we need to
1714 * delay a task, to account for any delays that may have occurred.
1715 */
blkcg_scale_delay(struct blkcg_gq * blkg,u64 now)1716 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1717 {
1718 u64 old = atomic64_read(&blkg->delay_start);
1719
1720 /* negative use_delay means no scaling, see blkcg_set_delay() */
1721 if (atomic_read(&blkg->use_delay) < 0)
1722 return;
1723
1724 /*
1725 * We only want to scale down every second. The idea here is that we
1726 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1727 * time window. We only want to throttle tasks for recent delay that
1728 * has occurred, in 1 second time windows since that's the maximum
1729 * things can be throttled. We save the current delay window in
1730 * blkg->last_delay so we know what amount is still left to be charged
1731 * to the blkg from this point onward. blkg->last_use keeps track of
1732 * the use_delay counter. The idea is if we're unthrottling the blkg we
1733 * are ok with whatever is happening now, and we can take away more of
1734 * the accumulated delay as we've already throttled enough that
1735 * everybody is happy with their IO latencies.
1736 */
1737 if (time_before64(old + NSEC_PER_SEC, now) &&
1738 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1739 u64 cur = atomic64_read(&blkg->delay_nsec);
1740 u64 sub = min_t(u64, blkg->last_delay, now - old);
1741 int cur_use = atomic_read(&blkg->use_delay);
1742
1743 /*
1744 * We've been unthrottled, subtract a larger chunk of our
1745 * accumulated delay.
1746 */
1747 if (cur_use < blkg->last_use)
1748 sub = max_t(u64, sub, blkg->last_delay >> 1);
1749
1750 /*
1751 * This shouldn't happen, but handle it anyway. Our delay_nsec
1752 * should only ever be growing except here where we subtract out
1753 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1754 * rather not end up with negative numbers.
1755 */
1756 if (unlikely(cur < sub)) {
1757 atomic64_set(&blkg->delay_nsec, 0);
1758 blkg->last_delay = 0;
1759 } else {
1760 atomic64_sub(sub, &blkg->delay_nsec);
1761 blkg->last_delay = cur - sub;
1762 }
1763 blkg->last_use = cur_use;
1764 }
1765 }
1766
1767 /*
1768 * This is called when we want to actually walk up the hierarchy and check to
1769 * see if we need to throttle, and then actually throttle if there is some
1770 * accumulated delay. This should only be called upon return to user space so
1771 * we're not holding some lock that would induce a priority inversion.
1772 */
blkcg_maybe_throttle_blkg(struct blkcg_gq * blkg,bool use_memdelay)1773 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1774 {
1775 unsigned long pflags;
1776 bool clamp;
1777 u64 now = ktime_to_ns(ktime_get());
1778 u64 exp;
1779 u64 delay_nsec = 0;
1780 int tok;
1781
1782 while (blkg->parent) {
1783 int use_delay = atomic_read(&blkg->use_delay);
1784
1785 if (use_delay) {
1786 u64 this_delay;
1787
1788 blkcg_scale_delay(blkg, now);
1789 this_delay = atomic64_read(&blkg->delay_nsec);
1790 if (this_delay > delay_nsec) {
1791 delay_nsec = this_delay;
1792 clamp = use_delay > 0;
1793 }
1794 }
1795 blkg = blkg->parent;
1796 }
1797
1798 if (!delay_nsec)
1799 return;
1800
1801 /*
1802 * Let's not sleep for all eternity if we've amassed a huge delay.
1803 * Swapping or metadata IO can accumulate 10's of seconds worth of
1804 * delay, and we want userspace to be able to do _something_ so cap the
1805 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1806 * tasks will be delayed for 0.25 second for every syscall. If
1807 * blkcg_set_delay() was used as indicated by negative use_delay, the
1808 * caller is responsible for regulating the range.
1809 */
1810 if (clamp)
1811 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1812
1813 if (use_memdelay)
1814 psi_memstall_enter(&pflags);
1815
1816 exp = ktime_add_ns(now, delay_nsec);
1817 tok = io_schedule_prepare();
1818 do {
1819 __set_current_state(TASK_KILLABLE);
1820 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1821 break;
1822 } while (!fatal_signal_pending(current));
1823 io_schedule_finish(tok);
1824
1825 if (use_memdelay)
1826 psi_memstall_leave(&pflags);
1827 }
1828
1829 /**
1830 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1831 *
1832 * This is only called if we've been marked with set_notify_resume(). Obviously
1833 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1834 * check to see if current->throttle_disk is set and if not this doesn't do
1835 * anything. This should only ever be called by the resume code, it's not meant
1836 * to be called by people willy-nilly as it will actually do the work to
1837 * throttle the task if it is setup for throttling.
1838 */
blkcg_maybe_throttle_current(void)1839 void blkcg_maybe_throttle_current(void)
1840 {
1841 struct gendisk *disk = current->throttle_disk;
1842 struct blkcg *blkcg;
1843 struct blkcg_gq *blkg;
1844 bool use_memdelay = current->use_memdelay;
1845
1846 if (!disk)
1847 return;
1848
1849 current->throttle_disk = NULL;
1850 current->use_memdelay = false;
1851
1852 rcu_read_lock();
1853 blkcg = css_to_blkcg(blkcg_css());
1854 if (!blkcg)
1855 goto out;
1856 blkg = blkg_lookup(blkcg, disk->queue);
1857 if (!blkg)
1858 goto out;
1859 if (!blkg_tryget(blkg))
1860 goto out;
1861 rcu_read_unlock();
1862
1863 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1864 blkg_put(blkg);
1865 put_disk(disk);
1866 return;
1867 out:
1868 rcu_read_unlock();
1869 }
1870
1871 /**
1872 * blkcg_schedule_throttle - this task needs to check for throttling
1873 * @disk: disk to throttle
1874 * @use_memdelay: do we charge this to memory delay for PSI
1875 *
1876 * This is called by the IO controller when we know there's delay accumulated
1877 * for the blkg for this task. We do not pass the blkg because there are places
1878 * we call this that may not have that information, the swapping code for
1879 * instance will only have a block_device at that point. This set's the
1880 * notify_resume for the task to check and see if it requires throttling before
1881 * returning to user space.
1882 *
1883 * We will only schedule once per syscall. You can call this over and over
1884 * again and it will only do the check once upon return to user space, and only
1885 * throttle once. If the task needs to be throttled again it'll need to be
1886 * re-set at the next time we see the task.
1887 */
blkcg_schedule_throttle(struct gendisk * disk,bool use_memdelay)1888 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1889 {
1890 if (unlikely(current->flags & PF_KTHREAD))
1891 return;
1892
1893 if (current->throttle_disk != disk) {
1894 if (test_bit(GD_DEAD, &disk->state))
1895 return;
1896 get_device(disk_to_dev(disk));
1897
1898 if (current->throttle_disk)
1899 put_disk(current->throttle_disk);
1900 current->throttle_disk = disk;
1901 }
1902
1903 if (use_memdelay)
1904 current->use_memdelay = use_memdelay;
1905 set_notify_resume(current);
1906 }
1907
1908 /**
1909 * blkcg_add_delay - add delay to this blkg
1910 * @blkg: blkg of interest
1911 * @now: the current time in nanoseconds
1912 * @delta: how many nanoseconds of delay to add
1913 *
1914 * Charge @delta to the blkg's current delay accumulation. This is used to
1915 * throttle tasks if an IO controller thinks we need more throttling.
1916 */
blkcg_add_delay(struct blkcg_gq * blkg,u64 now,u64 delta)1917 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1918 {
1919 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1920 return;
1921 blkcg_scale_delay(blkg, now);
1922 atomic64_add(delta, &blkg->delay_nsec);
1923 }
1924
1925 /**
1926 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1927 * @bio: target bio
1928 * @css: target css
1929 *
1930 * As the failure mode here is to walk up the blkg tree, this ensure that the
1931 * blkg->parent pointers are always valid. This returns the blkg that it ended
1932 * up taking a reference on or %NULL if no reference was taken.
1933 */
blkg_tryget_closest(struct bio * bio,struct cgroup_subsys_state * css)1934 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1935 struct cgroup_subsys_state *css)
1936 {
1937 struct blkcg_gq *blkg, *ret_blkg = NULL;
1938
1939 rcu_read_lock();
1940 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1941 while (blkg) {
1942 if (blkg_tryget(blkg)) {
1943 ret_blkg = blkg;
1944 break;
1945 }
1946 blkg = blkg->parent;
1947 }
1948 rcu_read_unlock();
1949
1950 return ret_blkg;
1951 }
1952
1953 /**
1954 * bio_associate_blkg_from_css - associate a bio with a specified css
1955 * @bio: target bio
1956 * @css: target css
1957 *
1958 * Associate @bio with the blkg found by combining the css's blkg and the
1959 * request_queue of the @bio. An association failure is handled by walking up
1960 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
1961 * and q->root_blkg. This situation only happens when a cgroup is dying and
1962 * then the remaining bios will spill to the closest alive blkg.
1963 *
1964 * A reference will be taken on the blkg and will be released when @bio is
1965 * freed.
1966 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)1967 void bio_associate_blkg_from_css(struct bio *bio,
1968 struct cgroup_subsys_state *css)
1969 {
1970 if (bio->bi_blkg)
1971 blkg_put(bio->bi_blkg);
1972
1973 if (css && css->parent) {
1974 bio->bi_blkg = blkg_tryget_closest(bio, css);
1975 } else {
1976 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1977 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1978 }
1979 }
1980 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1981
1982 /**
1983 * bio_associate_blkg - associate a bio with a blkg
1984 * @bio: target bio
1985 *
1986 * Associate @bio with the blkg found from the bio's css and request_queue.
1987 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1988 * already associated, the css is reused and association redone as the
1989 * request_queue may have changed.
1990 */
bio_associate_blkg(struct bio * bio)1991 void bio_associate_blkg(struct bio *bio)
1992 {
1993 struct cgroup_subsys_state *css;
1994
1995 rcu_read_lock();
1996
1997 if (bio->bi_blkg)
1998 css = bio_blkcg_css(bio);
1999 else
2000 css = blkcg_css();
2001
2002 bio_associate_blkg_from_css(bio, css);
2003
2004 rcu_read_unlock();
2005 }
2006 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2007
2008 /**
2009 * bio_clone_blkg_association - clone blkg association from src to dst bio
2010 * @dst: destination bio
2011 * @src: source bio
2012 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2013 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2014 {
2015 if (src->bi_blkg)
2016 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2017 }
2018 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2019
blk_cgroup_io_type(struct bio * bio)2020 static int blk_cgroup_io_type(struct bio *bio)
2021 {
2022 if (op_is_discard(bio->bi_opf))
2023 return BLKG_IOSTAT_DISCARD;
2024 if (op_is_write(bio->bi_opf))
2025 return BLKG_IOSTAT_WRITE;
2026 return BLKG_IOSTAT_READ;
2027 }
2028
blk_cgroup_bio_start(struct bio * bio)2029 void blk_cgroup_bio_start(struct bio *bio)
2030 {
2031 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2032 int rwd = blk_cgroup_io_type(bio), cpu;
2033 struct blkg_iostat_set *bis;
2034 unsigned long flags;
2035
2036 /* Root-level stats are sourced from system-wide IO stats */
2037 if (!cgroup_parent(blkcg->css.cgroup))
2038 return;
2039
2040 cpu = get_cpu();
2041 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2042 flags = u64_stats_update_begin_irqsave(&bis->sync);
2043
2044 /*
2045 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2046 * bio and we would have already accounted for the size of the bio.
2047 */
2048 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2049 bio_set_flag(bio, BIO_CGROUP_ACCT);
2050 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2051 }
2052 bis->cur.ios[rwd]++;
2053
2054 /*
2055 * If the iostat_cpu isn't in a lockless list, put it into the
2056 * list to indicate that a stat update is pending.
2057 */
2058 if (!READ_ONCE(bis->lqueued)) {
2059 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2060
2061 llist_add(&bis->lnode, lhead);
2062 WRITE_ONCE(bis->lqueued, true);
2063 percpu_ref_get(&bis->blkg->refcnt);
2064 }
2065
2066 u64_stats_update_end_irqrestore(&bis->sync, flags);
2067 if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2068 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2069 put_cpu();
2070 }
2071
blk_cgroup_congested(void)2072 bool blk_cgroup_congested(void)
2073 {
2074 struct cgroup_subsys_state *css;
2075 bool ret = false;
2076
2077 rcu_read_lock();
2078 for (css = blkcg_css(); css; css = css->parent) {
2079 if (atomic_read(&css->cgroup->congestion_count)) {
2080 ret = true;
2081 break;
2082 }
2083 }
2084 rcu_read_unlock();
2085 return ret;
2086 }
2087
blkcg_init(void)2088 static int __init blkcg_init(void)
2089 {
2090 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2091 WQ_MEM_RECLAIM | WQ_FREEZABLE |
2092 WQ_UNBOUND | WQ_SYSFS, 0);
2093 if (!blkcg_punt_bio_wq)
2094 return -ENOMEM;
2095 return 0;
2096 }
2097 subsys_initcall(blkcg_init);
2098
2099 module_param(blkcg_debug_stats, bool, 0644);
2100 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2101