1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2019 Facebook */
3 #include <linux/hash.h>
4 #include <linux/bpf.h>
5 #include <linux/filter.h>
6 #include <linux/ftrace.h>
7 #include <linux/rbtree_latch.h>
8 #include <linux/perf_event.h>
9 #include <linux/btf.h>
10 #include <linux/rcupdate_trace.h>
11 #include <linux/rcupdate_wait.h>
12 #include <linux/module.h>
13 #include <linux/static_call.h>
14 #include <linux/bpf_verifier.h>
15 #include <linux/bpf_lsm.h>
16 #include <linux/delay.h>
17
18 /* dummy _ops. The verifier will operate on target program's ops. */
19 const struct bpf_verifier_ops bpf_extension_verifier_ops = {
20 };
21 const struct bpf_prog_ops bpf_extension_prog_ops = {
22 };
23
24 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
25 #define TRAMPOLINE_HASH_BITS 10
26 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
27
28 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
29
30 /* serializes access to trampoline_table */
31 static DEFINE_MUTEX(trampoline_mutex);
32
33 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
34 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex);
35
bpf_tramp_ftrace_ops_func(struct ftrace_ops * ops,enum ftrace_ops_cmd cmd)36 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd)
37 {
38 struct bpf_trampoline *tr = ops->private;
39 int ret = 0;
40
41 if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) {
42 /* This is called inside register_ftrace_direct_multi(), so
43 * tr->mutex is already locked.
44 */
45 lockdep_assert_held_once(&tr->mutex);
46
47 /* Instead of updating the trampoline here, we propagate
48 * -EAGAIN to register_ftrace_direct_multi(). Then we can
49 * retry register_ftrace_direct_multi() after updating the
50 * trampoline.
51 */
52 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
53 !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) {
54 if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY))
55 return -EBUSY;
56
57 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
58 return -EAGAIN;
59 }
60
61 return 0;
62 }
63
64 /* The normal locking order is
65 * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c)
66 *
67 * The following two commands are called from
68 *
69 * prepare_direct_functions_for_ipmodify
70 * cleanup_direct_functions_after_ipmodify
71 *
72 * In both cases, direct_mutex is already locked. Use
73 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition
74 * (something else is making changes to this same trampoline).
75 */
76 if (!mutex_trylock(&tr->mutex)) {
77 /* sleep 1 ms to make sure whatever holding tr->mutex makes
78 * some progress.
79 */
80 msleep(1);
81 return -EAGAIN;
82 }
83
84 switch (cmd) {
85 case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER:
86 tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
87
88 if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
89 !(tr->flags & BPF_TRAMP_F_ORIG_STACK))
90 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
91 break;
92 case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER:
93 tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY;
94
95 if (tr->flags & BPF_TRAMP_F_ORIG_STACK)
96 ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
97 break;
98 default:
99 ret = -EINVAL;
100 break;
101 }
102
103 mutex_unlock(&tr->mutex);
104 return ret;
105 }
106 #endif
107
bpf_prog_has_trampoline(const struct bpf_prog * prog)108 bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
109 {
110 enum bpf_attach_type eatype = prog->expected_attach_type;
111 enum bpf_prog_type ptype = prog->type;
112
113 return (ptype == BPF_PROG_TYPE_TRACING &&
114 (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT ||
115 eatype == BPF_MODIFY_RETURN)) ||
116 (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC);
117 }
118
bpf_image_ksym_add(void * data,struct bpf_ksym * ksym)119 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym)
120 {
121 ksym->start = (unsigned long) data;
122 ksym->end = ksym->start + PAGE_SIZE;
123 bpf_ksym_add(ksym);
124 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
125 PAGE_SIZE, false, ksym->name);
126 }
127
bpf_image_ksym_del(struct bpf_ksym * ksym)128 void bpf_image_ksym_del(struct bpf_ksym *ksym)
129 {
130 bpf_ksym_del(ksym);
131 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
132 PAGE_SIZE, true, ksym->name);
133 }
134
bpf_trampoline_lookup(u64 key)135 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
136 {
137 struct bpf_trampoline *tr;
138 struct hlist_head *head;
139 int i;
140
141 mutex_lock(&trampoline_mutex);
142 head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
143 hlist_for_each_entry(tr, head, hlist) {
144 if (tr->key == key) {
145 refcount_inc(&tr->refcnt);
146 goto out;
147 }
148 }
149 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
150 if (!tr)
151 goto out;
152 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
153 tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL);
154 if (!tr->fops) {
155 kfree(tr);
156 tr = NULL;
157 goto out;
158 }
159 tr->fops->private = tr;
160 tr->fops->ops_func = bpf_tramp_ftrace_ops_func;
161 #endif
162
163 tr->key = key;
164 INIT_HLIST_NODE(&tr->hlist);
165 hlist_add_head(&tr->hlist, head);
166 refcount_set(&tr->refcnt, 1);
167 mutex_init(&tr->mutex);
168 for (i = 0; i < BPF_TRAMP_MAX; i++)
169 INIT_HLIST_HEAD(&tr->progs_hlist[i]);
170 out:
171 mutex_unlock(&trampoline_mutex);
172 return tr;
173 }
174
bpf_trampoline_module_get(struct bpf_trampoline * tr)175 static int bpf_trampoline_module_get(struct bpf_trampoline *tr)
176 {
177 struct module *mod;
178 int err = 0;
179
180 preempt_disable();
181 mod = __module_text_address((unsigned long) tr->func.addr);
182 if (mod && !try_module_get(mod))
183 err = -ENOENT;
184 preempt_enable();
185 tr->mod = mod;
186 return err;
187 }
188
bpf_trampoline_module_put(struct bpf_trampoline * tr)189 static void bpf_trampoline_module_put(struct bpf_trampoline *tr)
190 {
191 module_put(tr->mod);
192 tr->mod = NULL;
193 }
194
unregister_fentry(struct bpf_trampoline * tr,void * old_addr)195 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
196 {
197 void *ip = tr->func.addr;
198 int ret;
199
200 if (tr->func.ftrace_managed)
201 ret = unregister_ftrace_direct_multi(tr->fops, (long)old_addr);
202 else
203 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
204
205 if (!ret)
206 bpf_trampoline_module_put(tr);
207 return ret;
208 }
209
modify_fentry(struct bpf_trampoline * tr,void * old_addr,void * new_addr,bool lock_direct_mutex)210 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr,
211 bool lock_direct_mutex)
212 {
213 void *ip = tr->func.addr;
214 int ret;
215
216 if (tr->func.ftrace_managed) {
217 if (lock_direct_mutex)
218 ret = modify_ftrace_direct_multi(tr->fops, (long)new_addr);
219 else
220 ret = modify_ftrace_direct_multi_nolock(tr->fops, (long)new_addr);
221 } else {
222 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
223 }
224 return ret;
225 }
226
227 /* first time registering */
register_fentry(struct bpf_trampoline * tr,void * new_addr)228 static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
229 {
230 void *ip = tr->func.addr;
231 unsigned long faddr;
232 int ret;
233
234 faddr = ftrace_location((unsigned long)ip);
235 if (faddr) {
236 if (!tr->fops)
237 return -ENOTSUPP;
238 tr->func.ftrace_managed = true;
239 }
240
241 if (bpf_trampoline_module_get(tr))
242 return -ENOENT;
243
244 if (tr->func.ftrace_managed) {
245 ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1);
246 ret = register_ftrace_direct_multi(tr->fops, (long)new_addr);
247 } else {
248 ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
249 }
250
251 if (ret)
252 bpf_trampoline_module_put(tr);
253 return ret;
254 }
255
256 static struct bpf_tramp_links *
bpf_trampoline_get_progs(const struct bpf_trampoline * tr,int * total,bool * ip_arg)257 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
258 {
259 struct bpf_tramp_link *link;
260 struct bpf_tramp_links *tlinks;
261 struct bpf_tramp_link **links;
262 int kind;
263
264 *total = 0;
265 tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL);
266 if (!tlinks)
267 return ERR_PTR(-ENOMEM);
268
269 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
270 tlinks[kind].nr_links = tr->progs_cnt[kind];
271 *total += tr->progs_cnt[kind];
272 links = tlinks[kind].links;
273
274 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
275 *ip_arg |= link->link.prog->call_get_func_ip;
276 *links++ = link;
277 }
278 }
279 return tlinks;
280 }
281
__bpf_tramp_image_put_deferred(struct work_struct * work)282 static void __bpf_tramp_image_put_deferred(struct work_struct *work)
283 {
284 struct bpf_tramp_image *im;
285
286 im = container_of(work, struct bpf_tramp_image, work);
287 bpf_image_ksym_del(&im->ksym);
288 bpf_jit_free_exec(im->image);
289 bpf_jit_uncharge_modmem(PAGE_SIZE);
290 percpu_ref_exit(&im->pcref);
291 kfree_rcu(im, rcu);
292 }
293
294 /* callback, fexit step 3 or fentry step 2 */
__bpf_tramp_image_put_rcu(struct rcu_head * rcu)295 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
296 {
297 struct bpf_tramp_image *im;
298
299 im = container_of(rcu, struct bpf_tramp_image, rcu);
300 INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
301 schedule_work(&im->work);
302 }
303
304 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */
__bpf_tramp_image_release(struct percpu_ref * pcref)305 static void __bpf_tramp_image_release(struct percpu_ref *pcref)
306 {
307 struct bpf_tramp_image *im;
308
309 im = container_of(pcref, struct bpf_tramp_image, pcref);
310 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
311 }
312
313 /* callback, fexit or fentry step 1 */
__bpf_tramp_image_put_rcu_tasks(struct rcu_head * rcu)314 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
315 {
316 struct bpf_tramp_image *im;
317
318 im = container_of(rcu, struct bpf_tramp_image, rcu);
319 if (im->ip_after_call)
320 /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
321 percpu_ref_kill(&im->pcref);
322 else
323 /* the case of fentry trampoline */
324 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
325 }
326
bpf_tramp_image_put(struct bpf_tramp_image * im)327 static void bpf_tramp_image_put(struct bpf_tramp_image *im)
328 {
329 /* The trampoline image that calls original function is using:
330 * rcu_read_lock_trace to protect sleepable bpf progs
331 * rcu_read_lock to protect normal bpf progs
332 * percpu_ref to protect trampoline itself
333 * rcu tasks to protect trampoline asm not covered by percpu_ref
334 * (which are few asm insns before __bpf_tramp_enter and
335 * after __bpf_tramp_exit)
336 *
337 * The trampoline is unreachable before bpf_tramp_image_put().
338 *
339 * First, patch the trampoline to avoid calling into fexit progs.
340 * The progs will be freed even if the original function is still
341 * executing or sleeping.
342 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
343 * first few asm instructions to execute and call into
344 * __bpf_tramp_enter->percpu_ref_get.
345 * Then use percpu_ref_kill to wait for the trampoline and the original
346 * function to finish.
347 * Then use call_rcu_tasks() to make sure few asm insns in
348 * the trampoline epilogue are done as well.
349 *
350 * In !PREEMPT case the task that got interrupted in the first asm
351 * insns won't go through an RCU quiescent state which the
352 * percpu_ref_kill will be waiting for. Hence the first
353 * call_rcu_tasks() is not necessary.
354 */
355 if (im->ip_after_call) {
356 int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
357 NULL, im->ip_epilogue);
358 WARN_ON(err);
359 if (IS_ENABLED(CONFIG_PREEMPTION))
360 call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
361 else
362 percpu_ref_kill(&im->pcref);
363 return;
364 }
365
366 /* The trampoline without fexit and fmod_ret progs doesn't call original
367 * function and doesn't use percpu_ref.
368 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
369 * Then use call_rcu_tasks() to wait for the rest of trampoline asm
370 * and normal progs.
371 */
372 call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
373 }
374
bpf_tramp_image_alloc(u64 key,u32 idx)375 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx)
376 {
377 struct bpf_tramp_image *im;
378 struct bpf_ksym *ksym;
379 void *image;
380 int err = -ENOMEM;
381
382 im = kzalloc(sizeof(*im), GFP_KERNEL);
383 if (!im)
384 goto out;
385
386 err = bpf_jit_charge_modmem(PAGE_SIZE);
387 if (err)
388 goto out_free_im;
389
390 err = -ENOMEM;
391 im->image = image = bpf_jit_alloc_exec(PAGE_SIZE);
392 if (!image)
393 goto out_uncharge;
394 set_vm_flush_reset_perms(image);
395
396 err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
397 if (err)
398 goto out_free_image;
399
400 ksym = &im->ksym;
401 INIT_LIST_HEAD_RCU(&ksym->lnode);
402 snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx);
403 bpf_image_ksym_add(image, ksym);
404 return im;
405
406 out_free_image:
407 bpf_jit_free_exec(im->image);
408 out_uncharge:
409 bpf_jit_uncharge_modmem(PAGE_SIZE);
410 out_free_im:
411 kfree(im);
412 out:
413 return ERR_PTR(err);
414 }
415
bpf_trampoline_update(struct bpf_trampoline * tr,bool lock_direct_mutex)416 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex)
417 {
418 struct bpf_tramp_image *im;
419 struct bpf_tramp_links *tlinks;
420 u32 orig_flags = tr->flags;
421 bool ip_arg = false;
422 int err, total;
423
424 tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg);
425 if (IS_ERR(tlinks))
426 return PTR_ERR(tlinks);
427
428 if (total == 0) {
429 err = unregister_fentry(tr, tr->cur_image->image);
430 bpf_tramp_image_put(tr->cur_image);
431 tr->cur_image = NULL;
432 tr->selector = 0;
433 goto out;
434 }
435
436 im = bpf_tramp_image_alloc(tr->key, tr->selector);
437 if (IS_ERR(im)) {
438 err = PTR_ERR(im);
439 goto out;
440 }
441
442 /* clear all bits except SHARE_IPMODIFY */
443 tr->flags &= BPF_TRAMP_F_SHARE_IPMODIFY;
444
445 if (tlinks[BPF_TRAMP_FEXIT].nr_links ||
446 tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) {
447 /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME
448 * should not be set together.
449 */
450 tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
451 } else {
452 tr->flags |= BPF_TRAMP_F_RESTORE_REGS;
453 }
454
455 if (ip_arg)
456 tr->flags |= BPF_TRAMP_F_IP_ARG;
457
458 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
459 again:
460 if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) &&
461 (tr->flags & BPF_TRAMP_F_CALL_ORIG))
462 tr->flags |= BPF_TRAMP_F_ORIG_STACK;
463 #endif
464
465 err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE,
466 &tr->func.model, tr->flags, tlinks,
467 tr->func.addr);
468 if (err < 0)
469 goto out;
470
471 set_memory_rox((long)im->image, 1);
472
473 WARN_ON(tr->cur_image && tr->selector == 0);
474 WARN_ON(!tr->cur_image && tr->selector);
475 if (tr->cur_image)
476 /* progs already running at this address */
477 err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex);
478 else
479 /* first time registering */
480 err = register_fentry(tr, im->image);
481
482 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
483 if (err == -EAGAIN) {
484 /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now
485 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the
486 * trampoline again, and retry register.
487 */
488 /* reset fops->func and fops->trampoline for re-register */
489 tr->fops->func = NULL;
490 tr->fops->trampoline = 0;
491
492 /* reset im->image memory attr for arch_prepare_bpf_trampoline */
493 set_memory_nx((long)im->image, 1);
494 set_memory_rw((long)im->image, 1);
495 goto again;
496 }
497 #endif
498 if (err)
499 goto out;
500
501 if (tr->cur_image)
502 bpf_tramp_image_put(tr->cur_image);
503 tr->cur_image = im;
504 tr->selector++;
505 out:
506 /* If any error happens, restore previous flags */
507 if (err)
508 tr->flags = orig_flags;
509 kfree(tlinks);
510 return err;
511 }
512
bpf_attach_type_to_tramp(struct bpf_prog * prog)513 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
514 {
515 switch (prog->expected_attach_type) {
516 case BPF_TRACE_FENTRY:
517 return BPF_TRAMP_FENTRY;
518 case BPF_MODIFY_RETURN:
519 return BPF_TRAMP_MODIFY_RETURN;
520 case BPF_TRACE_FEXIT:
521 return BPF_TRAMP_FEXIT;
522 case BPF_LSM_MAC:
523 if (!prog->aux->attach_func_proto->type)
524 /* The function returns void, we cannot modify its
525 * return value.
526 */
527 return BPF_TRAMP_FEXIT;
528 else
529 return BPF_TRAMP_MODIFY_RETURN;
530 default:
531 return BPF_TRAMP_REPLACE;
532 }
533 }
534
__bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)535 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
536 {
537 enum bpf_tramp_prog_type kind;
538 struct bpf_tramp_link *link_exiting;
539 int err = 0;
540 int cnt = 0, i;
541
542 kind = bpf_attach_type_to_tramp(link->link.prog);
543 if (tr->extension_prog)
544 /* cannot attach fentry/fexit if extension prog is attached.
545 * cannot overwrite extension prog either.
546 */
547 return -EBUSY;
548
549 for (i = 0; i < BPF_TRAMP_MAX; i++)
550 cnt += tr->progs_cnt[i];
551
552 if (kind == BPF_TRAMP_REPLACE) {
553 /* Cannot attach extension if fentry/fexit are in use. */
554 if (cnt)
555 return -EBUSY;
556 tr->extension_prog = link->link.prog;
557 return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
558 link->link.prog->bpf_func);
559 }
560 if (cnt >= BPF_MAX_TRAMP_LINKS)
561 return -E2BIG;
562 if (!hlist_unhashed(&link->tramp_hlist))
563 /* prog already linked */
564 return -EBUSY;
565 hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) {
566 if (link_exiting->link.prog != link->link.prog)
567 continue;
568 /* prog already linked */
569 return -EBUSY;
570 }
571
572 hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]);
573 tr->progs_cnt[kind]++;
574 err = bpf_trampoline_update(tr, true /* lock_direct_mutex */);
575 if (err) {
576 hlist_del_init(&link->tramp_hlist);
577 tr->progs_cnt[kind]--;
578 }
579 return err;
580 }
581
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)582 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
583 {
584 int err;
585
586 mutex_lock(&tr->mutex);
587 err = __bpf_trampoline_link_prog(link, tr);
588 mutex_unlock(&tr->mutex);
589 return err;
590 }
591
__bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)592 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
593 {
594 enum bpf_tramp_prog_type kind;
595 int err;
596
597 kind = bpf_attach_type_to_tramp(link->link.prog);
598 if (kind == BPF_TRAMP_REPLACE) {
599 WARN_ON_ONCE(!tr->extension_prog);
600 err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
601 tr->extension_prog->bpf_func, NULL);
602 tr->extension_prog = NULL;
603 return err;
604 }
605 hlist_del_init(&link->tramp_hlist);
606 tr->progs_cnt[kind]--;
607 return bpf_trampoline_update(tr, true /* lock_direct_mutex */);
608 }
609
610 /* bpf_trampoline_unlink_prog() should never fail. */
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr)611 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
612 {
613 int err;
614
615 mutex_lock(&tr->mutex);
616 err = __bpf_trampoline_unlink_prog(link, tr);
617 mutex_unlock(&tr->mutex);
618 return err;
619 }
620
621 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
bpf_shim_tramp_link_release(struct bpf_link * link)622 static void bpf_shim_tramp_link_release(struct bpf_link *link)
623 {
624 struct bpf_shim_tramp_link *shim_link =
625 container_of(link, struct bpf_shim_tramp_link, link.link);
626
627 /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */
628 if (!shim_link->trampoline)
629 return;
630
631 WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline));
632 bpf_trampoline_put(shim_link->trampoline);
633 }
634
bpf_shim_tramp_link_dealloc(struct bpf_link * link)635 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link)
636 {
637 struct bpf_shim_tramp_link *shim_link =
638 container_of(link, struct bpf_shim_tramp_link, link.link);
639
640 kfree(shim_link);
641 }
642
643 static const struct bpf_link_ops bpf_shim_tramp_link_lops = {
644 .release = bpf_shim_tramp_link_release,
645 .dealloc = bpf_shim_tramp_link_dealloc,
646 };
647
cgroup_shim_alloc(const struct bpf_prog * prog,bpf_func_t bpf_func,int cgroup_atype)648 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog,
649 bpf_func_t bpf_func,
650 int cgroup_atype)
651 {
652 struct bpf_shim_tramp_link *shim_link = NULL;
653 struct bpf_prog *p;
654
655 shim_link = kzalloc(sizeof(*shim_link), GFP_USER);
656 if (!shim_link)
657 return NULL;
658
659 p = bpf_prog_alloc(1, 0);
660 if (!p) {
661 kfree(shim_link);
662 return NULL;
663 }
664
665 p->jited = false;
666 p->bpf_func = bpf_func;
667
668 p->aux->cgroup_atype = cgroup_atype;
669 p->aux->attach_func_proto = prog->aux->attach_func_proto;
670 p->aux->attach_btf_id = prog->aux->attach_btf_id;
671 p->aux->attach_btf = prog->aux->attach_btf;
672 btf_get(p->aux->attach_btf);
673 p->type = BPF_PROG_TYPE_LSM;
674 p->expected_attach_type = BPF_LSM_MAC;
675 bpf_prog_inc(p);
676 bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC,
677 &bpf_shim_tramp_link_lops, p);
678 bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype);
679
680 return shim_link;
681 }
682
cgroup_shim_find(struct bpf_trampoline * tr,bpf_func_t bpf_func)683 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr,
684 bpf_func_t bpf_func)
685 {
686 struct bpf_tramp_link *link;
687 int kind;
688
689 for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
690 hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
691 struct bpf_prog *p = link->link.prog;
692
693 if (p->bpf_func == bpf_func)
694 return container_of(link, struct bpf_shim_tramp_link, link);
695 }
696 }
697
698 return NULL;
699 }
700
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)701 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
702 int cgroup_atype)
703 {
704 struct bpf_shim_tramp_link *shim_link = NULL;
705 struct bpf_attach_target_info tgt_info = {};
706 struct bpf_trampoline *tr;
707 bpf_func_t bpf_func;
708 u64 key;
709 int err;
710
711 err = bpf_check_attach_target(NULL, prog, NULL,
712 prog->aux->attach_btf_id,
713 &tgt_info);
714 if (err)
715 return err;
716
717 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
718 prog->aux->attach_btf_id);
719
720 bpf_lsm_find_cgroup_shim(prog, &bpf_func);
721 tr = bpf_trampoline_get(key, &tgt_info);
722 if (!tr)
723 return -ENOMEM;
724
725 mutex_lock(&tr->mutex);
726
727 shim_link = cgroup_shim_find(tr, bpf_func);
728 if (shim_link) {
729 /* Reusing existing shim attached by the other program. */
730 bpf_link_inc(&shim_link->link.link);
731
732 mutex_unlock(&tr->mutex);
733 bpf_trampoline_put(tr); /* bpf_trampoline_get above */
734 return 0;
735 }
736
737 /* Allocate and install new shim. */
738
739 shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype);
740 if (!shim_link) {
741 err = -ENOMEM;
742 goto err;
743 }
744
745 err = __bpf_trampoline_link_prog(&shim_link->link, tr);
746 if (err)
747 goto err;
748
749 shim_link->trampoline = tr;
750 /* note, we're still holding tr refcnt from above */
751
752 mutex_unlock(&tr->mutex);
753
754 return 0;
755 err:
756 mutex_unlock(&tr->mutex);
757
758 if (shim_link)
759 bpf_link_put(&shim_link->link.link);
760
761 /* have to release tr while _not_ holding its mutex */
762 bpf_trampoline_put(tr); /* bpf_trampoline_get above */
763
764 return err;
765 }
766
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)767 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
768 {
769 struct bpf_shim_tramp_link *shim_link = NULL;
770 struct bpf_trampoline *tr;
771 bpf_func_t bpf_func;
772 u64 key;
773
774 key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
775 prog->aux->attach_btf_id);
776
777 bpf_lsm_find_cgroup_shim(prog, &bpf_func);
778 tr = bpf_trampoline_lookup(key);
779 if (WARN_ON_ONCE(!tr))
780 return;
781
782 mutex_lock(&tr->mutex);
783 shim_link = cgroup_shim_find(tr, bpf_func);
784 mutex_unlock(&tr->mutex);
785
786 if (shim_link)
787 bpf_link_put(&shim_link->link.link);
788
789 bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */
790 }
791 #endif
792
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)793 struct bpf_trampoline *bpf_trampoline_get(u64 key,
794 struct bpf_attach_target_info *tgt_info)
795 {
796 struct bpf_trampoline *tr;
797
798 tr = bpf_trampoline_lookup(key);
799 if (!tr)
800 return NULL;
801
802 mutex_lock(&tr->mutex);
803 if (tr->func.addr)
804 goto out;
805
806 memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
807 tr->func.addr = (void *)tgt_info->tgt_addr;
808 out:
809 mutex_unlock(&tr->mutex);
810 return tr;
811 }
812
bpf_trampoline_put(struct bpf_trampoline * tr)813 void bpf_trampoline_put(struct bpf_trampoline *tr)
814 {
815 int i;
816
817 if (!tr)
818 return;
819 mutex_lock(&trampoline_mutex);
820 if (!refcount_dec_and_test(&tr->refcnt))
821 goto out;
822 WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
823
824 for (i = 0; i < BPF_TRAMP_MAX; i++)
825 if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i])))
826 goto out;
827
828 /* This code will be executed even when the last bpf_tramp_image
829 * is alive. All progs are detached from the trampoline and the
830 * trampoline image is patched with jmp into epilogue to skip
831 * fexit progs. The fentry-only trampoline will be freed via
832 * multiple rcu callbacks.
833 */
834 hlist_del(&tr->hlist);
835 if (tr->fops) {
836 ftrace_free_filter(tr->fops);
837 kfree(tr->fops);
838 }
839 kfree(tr);
840 out:
841 mutex_unlock(&trampoline_mutex);
842 }
843
844 #define NO_START_TIME 1
bpf_prog_start_time(void)845 static __always_inline u64 notrace bpf_prog_start_time(void)
846 {
847 u64 start = NO_START_TIME;
848
849 if (static_branch_unlikely(&bpf_stats_enabled_key)) {
850 start = sched_clock();
851 if (unlikely(!start))
852 start = NO_START_TIME;
853 }
854 return start;
855 }
856
857 /* The logic is similar to bpf_prog_run(), but with an explicit
858 * rcu_read_lock() and migrate_disable() which are required
859 * for the trampoline. The macro is split into
860 * call __bpf_prog_enter
861 * call prog->bpf_func
862 * call __bpf_prog_exit
863 *
864 * __bpf_prog_enter returns:
865 * 0 - skip execution of the bpf prog
866 * 1 - execute bpf prog
867 * [2..MAX_U64] - execute bpf prog and record execution time.
868 * This is start time.
869 */
__bpf_prog_enter_recur(struct bpf_prog * prog,struct bpf_tramp_run_ctx * run_ctx)870 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx)
871 __acquires(RCU)
872 {
873 rcu_read_lock();
874 migrate_disable();
875
876 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
877
878 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
879 bpf_prog_inc_misses_counter(prog);
880 return 0;
881 }
882 return bpf_prog_start_time();
883 }
884
update_prog_stats(struct bpf_prog * prog,u64 start)885 static void notrace update_prog_stats(struct bpf_prog *prog,
886 u64 start)
887 {
888 struct bpf_prog_stats *stats;
889
890 if (static_branch_unlikely(&bpf_stats_enabled_key) &&
891 /* static_key could be enabled in __bpf_prog_enter*
892 * and disabled in __bpf_prog_exit*.
893 * And vice versa.
894 * Hence check that 'start' is valid.
895 */
896 start > NO_START_TIME) {
897 unsigned long flags;
898
899 stats = this_cpu_ptr(prog->stats);
900 flags = u64_stats_update_begin_irqsave(&stats->syncp);
901 u64_stats_inc(&stats->cnt);
902 u64_stats_add(&stats->nsecs, sched_clock() - start);
903 u64_stats_update_end_irqrestore(&stats->syncp, flags);
904 }
905 }
906
__bpf_prog_exit_recur(struct bpf_prog * prog,u64 start,struct bpf_tramp_run_ctx * run_ctx)907 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start,
908 struct bpf_tramp_run_ctx *run_ctx)
909 __releases(RCU)
910 {
911 bpf_reset_run_ctx(run_ctx->saved_run_ctx);
912
913 update_prog_stats(prog, start);
914 this_cpu_dec(*(prog->active));
915 migrate_enable();
916 rcu_read_unlock();
917 }
918
__bpf_prog_enter_lsm_cgroup(struct bpf_prog * prog,struct bpf_tramp_run_ctx * run_ctx)919 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog,
920 struct bpf_tramp_run_ctx *run_ctx)
921 __acquires(RCU)
922 {
923 /* Runtime stats are exported via actual BPF_LSM_CGROUP
924 * programs, not the shims.
925 */
926 rcu_read_lock();
927 migrate_disable();
928
929 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
930
931 return NO_START_TIME;
932 }
933
__bpf_prog_exit_lsm_cgroup(struct bpf_prog * prog,u64 start,struct bpf_tramp_run_ctx * run_ctx)934 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start,
935 struct bpf_tramp_run_ctx *run_ctx)
936 __releases(RCU)
937 {
938 bpf_reset_run_ctx(run_ctx->saved_run_ctx);
939
940 migrate_enable();
941 rcu_read_unlock();
942 }
943
__bpf_prog_enter_sleepable_recur(struct bpf_prog * prog,struct bpf_tramp_run_ctx * run_ctx)944 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
945 struct bpf_tramp_run_ctx *run_ctx)
946 {
947 rcu_read_lock_trace();
948 migrate_disable();
949 might_fault();
950
951 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
952 bpf_prog_inc_misses_counter(prog);
953 return 0;
954 }
955
956 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
957
958 return bpf_prog_start_time();
959 }
960
__bpf_prog_exit_sleepable_recur(struct bpf_prog * prog,u64 start,struct bpf_tramp_run_ctx * run_ctx)961 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
962 struct bpf_tramp_run_ctx *run_ctx)
963 {
964 bpf_reset_run_ctx(run_ctx->saved_run_ctx);
965
966 update_prog_stats(prog, start);
967 this_cpu_dec(*(prog->active));
968 migrate_enable();
969 rcu_read_unlock_trace();
970 }
971
__bpf_prog_enter_sleepable(struct bpf_prog * prog,struct bpf_tramp_run_ctx * run_ctx)972 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog,
973 struct bpf_tramp_run_ctx *run_ctx)
974 {
975 rcu_read_lock_trace();
976 migrate_disable();
977 might_fault();
978
979 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
980
981 return bpf_prog_start_time();
982 }
983
__bpf_prog_exit_sleepable(struct bpf_prog * prog,u64 start,struct bpf_tramp_run_ctx * run_ctx)984 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start,
985 struct bpf_tramp_run_ctx *run_ctx)
986 {
987 bpf_reset_run_ctx(run_ctx->saved_run_ctx);
988
989 update_prog_stats(prog, start);
990 migrate_enable();
991 rcu_read_unlock_trace();
992 }
993
__bpf_prog_enter(struct bpf_prog * prog,struct bpf_tramp_run_ctx * run_ctx)994 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog,
995 struct bpf_tramp_run_ctx *run_ctx)
996 __acquires(RCU)
997 {
998 rcu_read_lock();
999 migrate_disable();
1000
1001 run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
1002
1003 return bpf_prog_start_time();
1004 }
1005
__bpf_prog_exit(struct bpf_prog * prog,u64 start,struct bpf_tramp_run_ctx * run_ctx)1006 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start,
1007 struct bpf_tramp_run_ctx *run_ctx)
1008 __releases(RCU)
1009 {
1010 bpf_reset_run_ctx(run_ctx->saved_run_ctx);
1011
1012 update_prog_stats(prog, start);
1013 migrate_enable();
1014 rcu_read_unlock();
1015 }
1016
__bpf_tramp_enter(struct bpf_tramp_image * tr)1017 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
1018 {
1019 percpu_ref_get(&tr->pcref);
1020 }
1021
__bpf_tramp_exit(struct bpf_tramp_image * tr)1022 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
1023 {
1024 percpu_ref_put(&tr->pcref);
1025 }
1026
bpf_trampoline_enter(const struct bpf_prog * prog)1027 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog)
1028 {
1029 bool sleepable = prog->aux->sleepable;
1030
1031 if (bpf_prog_check_recur(prog))
1032 return sleepable ? __bpf_prog_enter_sleepable_recur :
1033 __bpf_prog_enter_recur;
1034
1035 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1036 prog->expected_attach_type == BPF_LSM_CGROUP)
1037 return __bpf_prog_enter_lsm_cgroup;
1038
1039 return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter;
1040 }
1041
bpf_trampoline_exit(const struct bpf_prog * prog)1042 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog)
1043 {
1044 bool sleepable = prog->aux->sleepable;
1045
1046 if (bpf_prog_check_recur(prog))
1047 return sleepable ? __bpf_prog_exit_sleepable_recur :
1048 __bpf_prog_exit_recur;
1049
1050 if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1051 prog->expected_attach_type == BPF_LSM_CGROUP)
1052 return __bpf_prog_exit_lsm_cgroup;
1053
1054 return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit;
1055 }
1056
1057 int __weak
arch_prepare_bpf_trampoline(struct bpf_tramp_image * tr,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * orig_call)1058 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1059 const struct btf_func_model *m, u32 flags,
1060 struct bpf_tramp_links *tlinks,
1061 void *orig_call)
1062 {
1063 return -ENOTSUPP;
1064 }
1065
init_trampolines(void)1066 static int __init init_trampolines(void)
1067 {
1068 int i;
1069
1070 for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
1071 INIT_HLIST_HEAD(&trampoline_table[i]);
1072 return 0;
1073 }
1074 late_initcall(init_trampolines);
1075