1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "messages.h"
10 #include "ctree.h"
11 #include "delayed-ref.h"
12 #include "transaction.h"
13 #include "qgroup.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
16 #include "fs.h"
17
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20 struct kmem_cache *btrfs_delayed_data_ref_cachep;
21 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 /*
23 * delayed back reference update tracking. For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing. This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
btrfs_check_space_for_delayed_refs(struct btrfs_fs_info * fs_info)31 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 {
33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 bool ret = false;
36 u64 reserved;
37
38 spin_lock(&global_rsv->lock);
39 reserved = global_rsv->reserved;
40 spin_unlock(&global_rsv->lock);
41
42 /*
43 * Since the global reserve is just kind of magic we don't really want
44 * to rely on it to save our bacon, so if our size is more than the
45 * delayed_refs_rsv and the global rsv then it's time to think about
46 * bailing.
47 */
48 spin_lock(&delayed_refs_rsv->lock);
49 reserved += delayed_refs_rsv->reserved;
50 if (delayed_refs_rsv->size >= reserved)
51 ret = true;
52 spin_unlock(&delayed_refs_rsv->lock);
53 return ret;
54 }
55
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans)56 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
57 {
58 u64 num_entries =
59 atomic_read(&trans->transaction->delayed_refs.num_entries);
60 u64 avg_runtime;
61 u64 val;
62
63 smp_mb();
64 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
65 val = num_entries * avg_runtime;
66 if (val >= NSEC_PER_SEC)
67 return 1;
68 if (val >= NSEC_PER_SEC / 2)
69 return 2;
70
71 return btrfs_check_space_for_delayed_refs(trans->fs_info);
72 }
73
74 /*
75 * Release a ref head's reservation.
76 *
77 * @fs_info: the filesystem
78 * @nr: number of items to drop
79 *
80 * Drops the delayed ref head's count from the delayed refs rsv and free any
81 * excess reservation we had.
82 */
btrfs_delayed_refs_rsv_release(struct btrfs_fs_info * fs_info,int nr)83 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
84 {
85 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
86 u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
87 u64 released = 0;
88
89 /*
90 * We have to check the mount option here because we could be enabling
91 * the free space tree for the first time and don't have the compat_ro
92 * option set yet.
93 *
94 * We need extra reservations if we have the free space tree because
95 * we'll have to modify that tree as well.
96 */
97 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
98 num_bytes *= 2;
99
100 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
101 if (released)
102 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
103 0, released, 0);
104 }
105
106 /*
107 * Adjust the size of the delayed refs rsv.
108 *
109 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
110 * it'll calculate the additional size and add it to the delayed_refs_rsv.
111 */
btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle * trans)112 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
113 {
114 struct btrfs_fs_info *fs_info = trans->fs_info;
115 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
116 u64 num_bytes;
117
118 if (!trans->delayed_ref_updates)
119 return;
120
121 num_bytes = btrfs_calc_insert_metadata_size(fs_info,
122 trans->delayed_ref_updates);
123 /*
124 * We have to check the mount option here because we could be enabling
125 * the free space tree for the first time and don't have the compat_ro
126 * option set yet.
127 *
128 * We need extra reservations if we have the free space tree because
129 * we'll have to modify that tree as well.
130 */
131 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
132 num_bytes *= 2;
133
134 spin_lock(&delayed_rsv->lock);
135 delayed_rsv->size += num_bytes;
136 delayed_rsv->full = false;
137 spin_unlock(&delayed_rsv->lock);
138 trans->delayed_ref_updates = 0;
139 }
140
141 /*
142 * Transfer bytes to our delayed refs rsv.
143 *
144 * @fs_info: the filesystem
145 * @src: source block rsv to transfer from
146 * @num_bytes: number of bytes to transfer
147 *
148 * This transfers up to the num_bytes amount from the src rsv to the
149 * delayed_refs_rsv. Any extra bytes are returned to the space info.
150 */
btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * src,u64 num_bytes)151 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
152 struct btrfs_block_rsv *src,
153 u64 num_bytes)
154 {
155 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
156 u64 to_free = 0;
157
158 spin_lock(&src->lock);
159 src->reserved -= num_bytes;
160 src->size -= num_bytes;
161 spin_unlock(&src->lock);
162
163 spin_lock(&delayed_refs_rsv->lock);
164 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
165 u64 delta = delayed_refs_rsv->size -
166 delayed_refs_rsv->reserved;
167 if (num_bytes > delta) {
168 to_free = num_bytes - delta;
169 num_bytes = delta;
170 }
171 } else {
172 to_free = num_bytes;
173 num_bytes = 0;
174 }
175
176 if (num_bytes)
177 delayed_refs_rsv->reserved += num_bytes;
178 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
179 delayed_refs_rsv->full = true;
180 spin_unlock(&delayed_refs_rsv->lock);
181
182 if (num_bytes)
183 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
184 0, num_bytes, 1);
185 if (to_free)
186 btrfs_space_info_free_bytes_may_use(fs_info,
187 delayed_refs_rsv->space_info, to_free);
188 }
189
190 /*
191 * Refill based on our delayed refs usage.
192 *
193 * @fs_info: the filesystem
194 * @flush: control how we can flush for this reservation.
195 *
196 * This will refill the delayed block_rsv up to 1 items size worth of space and
197 * will return -ENOSPC if we can't make the reservation.
198 */
btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush)199 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
200 enum btrfs_reserve_flush_enum flush)
201 {
202 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
203 u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
204 u64 num_bytes = 0;
205 int ret = -ENOSPC;
206
207 spin_lock(&block_rsv->lock);
208 if (block_rsv->reserved < block_rsv->size) {
209 num_bytes = block_rsv->size - block_rsv->reserved;
210 num_bytes = min(num_bytes, limit);
211 }
212 spin_unlock(&block_rsv->lock);
213
214 if (!num_bytes)
215 return 0;
216
217 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
218 if (ret)
219 return ret;
220 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
221 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
222 0, num_bytes, 1);
223 return 0;
224 }
225
226 /*
227 * compare two delayed tree backrefs with same bytenr and type
228 */
comp_tree_refs(struct btrfs_delayed_tree_ref * ref1,struct btrfs_delayed_tree_ref * ref2)229 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
230 struct btrfs_delayed_tree_ref *ref2)
231 {
232 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
233 if (ref1->root < ref2->root)
234 return -1;
235 if (ref1->root > ref2->root)
236 return 1;
237 } else {
238 if (ref1->parent < ref2->parent)
239 return -1;
240 if (ref1->parent > ref2->parent)
241 return 1;
242 }
243 return 0;
244 }
245
246 /*
247 * compare two delayed data backrefs with same bytenr and type
248 */
comp_data_refs(struct btrfs_delayed_data_ref * ref1,struct btrfs_delayed_data_ref * ref2)249 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
250 struct btrfs_delayed_data_ref *ref2)
251 {
252 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
253 if (ref1->root < ref2->root)
254 return -1;
255 if (ref1->root > ref2->root)
256 return 1;
257 if (ref1->objectid < ref2->objectid)
258 return -1;
259 if (ref1->objectid > ref2->objectid)
260 return 1;
261 if (ref1->offset < ref2->offset)
262 return -1;
263 if (ref1->offset > ref2->offset)
264 return 1;
265 } else {
266 if (ref1->parent < ref2->parent)
267 return -1;
268 if (ref1->parent > ref2->parent)
269 return 1;
270 }
271 return 0;
272 }
273
comp_refs(struct btrfs_delayed_ref_node * ref1,struct btrfs_delayed_ref_node * ref2,bool check_seq)274 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
275 struct btrfs_delayed_ref_node *ref2,
276 bool check_seq)
277 {
278 int ret = 0;
279
280 if (ref1->type < ref2->type)
281 return -1;
282 if (ref1->type > ref2->type)
283 return 1;
284 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
285 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
286 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
287 btrfs_delayed_node_to_tree_ref(ref2));
288 else
289 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
290 btrfs_delayed_node_to_data_ref(ref2));
291 if (ret)
292 return ret;
293 if (check_seq) {
294 if (ref1->seq < ref2->seq)
295 return -1;
296 if (ref1->seq > ref2->seq)
297 return 1;
298 }
299 return 0;
300 }
301
302 /* insert a new ref to head ref rbtree */
htree_insert(struct rb_root_cached * root,struct rb_node * node)303 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
304 struct rb_node *node)
305 {
306 struct rb_node **p = &root->rb_root.rb_node;
307 struct rb_node *parent_node = NULL;
308 struct btrfs_delayed_ref_head *entry;
309 struct btrfs_delayed_ref_head *ins;
310 u64 bytenr;
311 bool leftmost = true;
312
313 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
314 bytenr = ins->bytenr;
315 while (*p) {
316 parent_node = *p;
317 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
318 href_node);
319
320 if (bytenr < entry->bytenr) {
321 p = &(*p)->rb_left;
322 } else if (bytenr > entry->bytenr) {
323 p = &(*p)->rb_right;
324 leftmost = false;
325 } else {
326 return entry;
327 }
328 }
329
330 rb_link_node(node, parent_node, p);
331 rb_insert_color_cached(node, root, leftmost);
332 return NULL;
333 }
334
tree_insert(struct rb_root_cached * root,struct btrfs_delayed_ref_node * ins)335 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
336 struct btrfs_delayed_ref_node *ins)
337 {
338 struct rb_node **p = &root->rb_root.rb_node;
339 struct rb_node *node = &ins->ref_node;
340 struct rb_node *parent_node = NULL;
341 struct btrfs_delayed_ref_node *entry;
342 bool leftmost = true;
343
344 while (*p) {
345 int comp;
346
347 parent_node = *p;
348 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
349 ref_node);
350 comp = comp_refs(ins, entry, true);
351 if (comp < 0) {
352 p = &(*p)->rb_left;
353 } else if (comp > 0) {
354 p = &(*p)->rb_right;
355 leftmost = false;
356 } else {
357 return entry;
358 }
359 }
360
361 rb_link_node(node, parent_node, p);
362 rb_insert_color_cached(node, root, leftmost);
363 return NULL;
364 }
365
find_first_ref_head(struct btrfs_delayed_ref_root * dr)366 static struct btrfs_delayed_ref_head *find_first_ref_head(
367 struct btrfs_delayed_ref_root *dr)
368 {
369 struct rb_node *n;
370 struct btrfs_delayed_ref_head *entry;
371
372 n = rb_first_cached(&dr->href_root);
373 if (!n)
374 return NULL;
375
376 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
377
378 return entry;
379 }
380
381 /*
382 * Find a head entry based on bytenr. This returns the delayed ref head if it
383 * was able to find one, or NULL if nothing was in that spot. If return_bigger
384 * is given, the next bigger entry is returned if no exact match is found.
385 */
find_ref_head(struct btrfs_delayed_ref_root * dr,u64 bytenr,bool return_bigger)386 static struct btrfs_delayed_ref_head *find_ref_head(
387 struct btrfs_delayed_ref_root *dr, u64 bytenr,
388 bool return_bigger)
389 {
390 struct rb_root *root = &dr->href_root.rb_root;
391 struct rb_node *n;
392 struct btrfs_delayed_ref_head *entry;
393
394 n = root->rb_node;
395 entry = NULL;
396 while (n) {
397 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
398
399 if (bytenr < entry->bytenr)
400 n = n->rb_left;
401 else if (bytenr > entry->bytenr)
402 n = n->rb_right;
403 else
404 return entry;
405 }
406 if (entry && return_bigger) {
407 if (bytenr > entry->bytenr) {
408 n = rb_next(&entry->href_node);
409 if (!n)
410 return NULL;
411 entry = rb_entry(n, struct btrfs_delayed_ref_head,
412 href_node);
413 }
414 return entry;
415 }
416 return NULL;
417 }
418
btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)419 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
420 struct btrfs_delayed_ref_head *head)
421 {
422 lockdep_assert_held(&delayed_refs->lock);
423 if (mutex_trylock(&head->mutex))
424 return 0;
425
426 refcount_inc(&head->refs);
427 spin_unlock(&delayed_refs->lock);
428
429 mutex_lock(&head->mutex);
430 spin_lock(&delayed_refs->lock);
431 if (RB_EMPTY_NODE(&head->href_node)) {
432 mutex_unlock(&head->mutex);
433 btrfs_put_delayed_ref_head(head);
434 return -EAGAIN;
435 }
436 btrfs_put_delayed_ref_head(head);
437 return 0;
438 }
439
drop_delayed_ref(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref)440 static inline void drop_delayed_ref(struct btrfs_delayed_ref_root *delayed_refs,
441 struct btrfs_delayed_ref_head *head,
442 struct btrfs_delayed_ref_node *ref)
443 {
444 lockdep_assert_held(&head->lock);
445 rb_erase_cached(&ref->ref_node, &head->ref_tree);
446 RB_CLEAR_NODE(&ref->ref_node);
447 if (!list_empty(&ref->add_list))
448 list_del(&ref->add_list);
449 ref->in_tree = 0;
450 btrfs_put_delayed_ref(ref);
451 atomic_dec(&delayed_refs->num_entries);
452 }
453
merge_ref(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_ref_node * ref,u64 seq)454 static bool merge_ref(struct btrfs_delayed_ref_root *delayed_refs,
455 struct btrfs_delayed_ref_head *head,
456 struct btrfs_delayed_ref_node *ref,
457 u64 seq)
458 {
459 struct btrfs_delayed_ref_node *next;
460 struct rb_node *node = rb_next(&ref->ref_node);
461 bool done = false;
462
463 while (!done && node) {
464 int mod;
465
466 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
467 node = rb_next(node);
468 if (seq && next->seq >= seq)
469 break;
470 if (comp_refs(ref, next, false))
471 break;
472
473 if (ref->action == next->action) {
474 mod = next->ref_mod;
475 } else {
476 if (ref->ref_mod < next->ref_mod) {
477 swap(ref, next);
478 done = true;
479 }
480 mod = -next->ref_mod;
481 }
482
483 drop_delayed_ref(delayed_refs, head, next);
484 ref->ref_mod += mod;
485 if (ref->ref_mod == 0) {
486 drop_delayed_ref(delayed_refs, head, ref);
487 done = true;
488 } else {
489 /*
490 * Can't have multiples of the same ref on a tree block.
491 */
492 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
493 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
494 }
495 }
496
497 return done;
498 }
499
btrfs_merge_delayed_refs(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)500 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
501 struct btrfs_delayed_ref_root *delayed_refs,
502 struct btrfs_delayed_ref_head *head)
503 {
504 struct btrfs_delayed_ref_node *ref;
505 struct rb_node *node;
506 u64 seq = 0;
507
508 lockdep_assert_held(&head->lock);
509
510 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
511 return;
512
513 /* We don't have too many refs to merge for data. */
514 if (head->is_data)
515 return;
516
517 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
518 again:
519 for (node = rb_first_cached(&head->ref_tree); node;
520 node = rb_next(node)) {
521 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
522 if (seq && ref->seq >= seq)
523 continue;
524 if (merge_ref(delayed_refs, head, ref, seq))
525 goto again;
526 }
527 }
528
btrfs_check_delayed_seq(struct btrfs_fs_info * fs_info,u64 seq)529 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
530 {
531 int ret = 0;
532 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
533
534 if (min_seq != 0 && seq >= min_seq) {
535 btrfs_debug(fs_info,
536 "holding back delayed_ref %llu, lowest is %llu",
537 seq, min_seq);
538 ret = 1;
539 }
540
541 return ret;
542 }
543
btrfs_select_ref_head(struct btrfs_delayed_ref_root * delayed_refs)544 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
545 struct btrfs_delayed_ref_root *delayed_refs)
546 {
547 struct btrfs_delayed_ref_head *head;
548
549 again:
550 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
551 true);
552 if (!head && delayed_refs->run_delayed_start != 0) {
553 delayed_refs->run_delayed_start = 0;
554 head = find_first_ref_head(delayed_refs);
555 }
556 if (!head)
557 return NULL;
558
559 while (head->processing) {
560 struct rb_node *node;
561
562 node = rb_next(&head->href_node);
563 if (!node) {
564 if (delayed_refs->run_delayed_start == 0)
565 return NULL;
566 delayed_refs->run_delayed_start = 0;
567 goto again;
568 }
569 head = rb_entry(node, struct btrfs_delayed_ref_head,
570 href_node);
571 }
572
573 head->processing = 1;
574 WARN_ON(delayed_refs->num_heads_ready == 0);
575 delayed_refs->num_heads_ready--;
576 delayed_refs->run_delayed_start = head->bytenr +
577 head->num_bytes;
578 return head;
579 }
580
btrfs_delete_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)581 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
582 struct btrfs_delayed_ref_head *head)
583 {
584 lockdep_assert_held(&delayed_refs->lock);
585 lockdep_assert_held(&head->lock);
586
587 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
588 RB_CLEAR_NODE(&head->href_node);
589 atomic_dec(&delayed_refs->num_entries);
590 delayed_refs->num_heads--;
591 if (head->processing == 0)
592 delayed_refs->num_heads_ready--;
593 }
594
595 /*
596 * Helper to insert the ref_node to the tail or merge with tail.
597 *
598 * Return 0 for insert.
599 * Return >0 for merge.
600 */
insert_delayed_ref(struct btrfs_delayed_ref_root * root,struct btrfs_delayed_ref_head * href,struct btrfs_delayed_ref_node * ref)601 static int insert_delayed_ref(struct btrfs_delayed_ref_root *root,
602 struct btrfs_delayed_ref_head *href,
603 struct btrfs_delayed_ref_node *ref)
604 {
605 struct btrfs_delayed_ref_node *exist;
606 int mod;
607 int ret = 0;
608
609 spin_lock(&href->lock);
610 exist = tree_insert(&href->ref_tree, ref);
611 if (!exist)
612 goto inserted;
613
614 /* Now we are sure we can merge */
615 ret = 1;
616 if (exist->action == ref->action) {
617 mod = ref->ref_mod;
618 } else {
619 /* Need to change action */
620 if (exist->ref_mod < ref->ref_mod) {
621 exist->action = ref->action;
622 mod = -exist->ref_mod;
623 exist->ref_mod = ref->ref_mod;
624 if (ref->action == BTRFS_ADD_DELAYED_REF)
625 list_add_tail(&exist->add_list,
626 &href->ref_add_list);
627 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
628 ASSERT(!list_empty(&exist->add_list));
629 list_del(&exist->add_list);
630 } else {
631 ASSERT(0);
632 }
633 } else
634 mod = -ref->ref_mod;
635 }
636 exist->ref_mod += mod;
637
638 /* remove existing tail if its ref_mod is zero */
639 if (exist->ref_mod == 0)
640 drop_delayed_ref(root, href, exist);
641 spin_unlock(&href->lock);
642 return ret;
643 inserted:
644 if (ref->action == BTRFS_ADD_DELAYED_REF)
645 list_add_tail(&ref->add_list, &href->ref_add_list);
646 atomic_inc(&root->num_entries);
647 spin_unlock(&href->lock);
648 return ret;
649 }
650
651 /*
652 * helper function to update the accounting in the head ref
653 * existing and update must have the same bytenr
654 */
update_existing_head_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * existing,struct btrfs_delayed_ref_head * update)655 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
656 struct btrfs_delayed_ref_head *existing,
657 struct btrfs_delayed_ref_head *update)
658 {
659 struct btrfs_delayed_ref_root *delayed_refs =
660 &trans->transaction->delayed_refs;
661 struct btrfs_fs_info *fs_info = trans->fs_info;
662 int old_ref_mod;
663
664 BUG_ON(existing->is_data != update->is_data);
665
666 spin_lock(&existing->lock);
667 if (update->must_insert_reserved) {
668 /* if the extent was freed and then
669 * reallocated before the delayed ref
670 * entries were processed, we can end up
671 * with an existing head ref without
672 * the must_insert_reserved flag set.
673 * Set it again here
674 */
675 existing->must_insert_reserved = update->must_insert_reserved;
676
677 /*
678 * update the num_bytes so we make sure the accounting
679 * is done correctly
680 */
681 existing->num_bytes = update->num_bytes;
682
683 }
684
685 if (update->extent_op) {
686 if (!existing->extent_op) {
687 existing->extent_op = update->extent_op;
688 } else {
689 if (update->extent_op->update_key) {
690 memcpy(&existing->extent_op->key,
691 &update->extent_op->key,
692 sizeof(update->extent_op->key));
693 existing->extent_op->update_key = true;
694 }
695 if (update->extent_op->update_flags) {
696 existing->extent_op->flags_to_set |=
697 update->extent_op->flags_to_set;
698 existing->extent_op->update_flags = true;
699 }
700 btrfs_free_delayed_extent_op(update->extent_op);
701 }
702 }
703 /*
704 * update the reference mod on the head to reflect this new operation,
705 * only need the lock for this case cause we could be processing it
706 * currently, for refs we just added we know we're a-ok.
707 */
708 old_ref_mod = existing->total_ref_mod;
709 existing->ref_mod += update->ref_mod;
710 existing->total_ref_mod += update->ref_mod;
711
712 /*
713 * If we are going to from a positive ref mod to a negative or vice
714 * versa we need to make sure to adjust pending_csums accordingly.
715 */
716 if (existing->is_data) {
717 u64 csum_leaves =
718 btrfs_csum_bytes_to_leaves(fs_info,
719 existing->num_bytes);
720
721 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
722 delayed_refs->pending_csums -= existing->num_bytes;
723 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
724 }
725 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
726 delayed_refs->pending_csums += existing->num_bytes;
727 trans->delayed_ref_updates += csum_leaves;
728 }
729 }
730
731 spin_unlock(&existing->lock);
732 }
733
init_delayed_ref_head(struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,u64 bytenr,u64 num_bytes,u64 ref_root,u64 reserved,int action,bool is_data,bool is_system)734 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
735 struct btrfs_qgroup_extent_record *qrecord,
736 u64 bytenr, u64 num_bytes, u64 ref_root,
737 u64 reserved, int action, bool is_data,
738 bool is_system)
739 {
740 int count_mod = 1;
741 int must_insert_reserved = 0;
742
743 /* If reserved is provided, it must be a data extent. */
744 BUG_ON(!is_data && reserved);
745
746 /*
747 * The head node stores the sum of all the mods, so dropping a ref
748 * should drop the sum in the head node by one.
749 */
750 if (action == BTRFS_UPDATE_DELAYED_HEAD)
751 count_mod = 0;
752 else if (action == BTRFS_DROP_DELAYED_REF)
753 count_mod = -1;
754
755 /*
756 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
757 * accounting when the extent is finally added, or if a later
758 * modification deletes the delayed ref without ever inserting the
759 * extent into the extent allocation tree. ref->must_insert_reserved
760 * is the flag used to record that accounting mods are required.
761 *
762 * Once we record must_insert_reserved, switch the action to
763 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
764 */
765 if (action == BTRFS_ADD_DELAYED_EXTENT)
766 must_insert_reserved = 1;
767 else
768 must_insert_reserved = 0;
769
770 refcount_set(&head_ref->refs, 1);
771 head_ref->bytenr = bytenr;
772 head_ref->num_bytes = num_bytes;
773 head_ref->ref_mod = count_mod;
774 head_ref->must_insert_reserved = must_insert_reserved;
775 head_ref->is_data = is_data;
776 head_ref->is_system = is_system;
777 head_ref->ref_tree = RB_ROOT_CACHED;
778 INIT_LIST_HEAD(&head_ref->ref_add_list);
779 RB_CLEAR_NODE(&head_ref->href_node);
780 head_ref->processing = 0;
781 head_ref->total_ref_mod = count_mod;
782 spin_lock_init(&head_ref->lock);
783 mutex_init(&head_ref->mutex);
784
785 if (qrecord) {
786 if (ref_root && reserved) {
787 qrecord->data_rsv = reserved;
788 qrecord->data_rsv_refroot = ref_root;
789 }
790 qrecord->bytenr = bytenr;
791 qrecord->num_bytes = num_bytes;
792 qrecord->old_roots = NULL;
793 }
794 }
795
796 /*
797 * helper function to actually insert a head node into the rbtree.
798 * this does all the dirty work in terms of maintaining the correct
799 * overall modification count.
800 */
801 static noinline struct btrfs_delayed_ref_head *
add_delayed_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head_ref,struct btrfs_qgroup_extent_record * qrecord,int action,int * qrecord_inserted_ret)802 add_delayed_ref_head(struct btrfs_trans_handle *trans,
803 struct btrfs_delayed_ref_head *head_ref,
804 struct btrfs_qgroup_extent_record *qrecord,
805 int action, int *qrecord_inserted_ret)
806 {
807 struct btrfs_delayed_ref_head *existing;
808 struct btrfs_delayed_ref_root *delayed_refs;
809 int qrecord_inserted = 0;
810
811 delayed_refs = &trans->transaction->delayed_refs;
812
813 /* Record qgroup extent info if provided */
814 if (qrecord) {
815 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
816 delayed_refs, qrecord))
817 kfree(qrecord);
818 else
819 qrecord_inserted = 1;
820 }
821
822 trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
823
824 existing = htree_insert(&delayed_refs->href_root,
825 &head_ref->href_node);
826 if (existing) {
827 update_existing_head_ref(trans, existing, head_ref);
828 /*
829 * we've updated the existing ref, free the newly
830 * allocated ref
831 */
832 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
833 head_ref = existing;
834 } else {
835 if (head_ref->is_data && head_ref->ref_mod < 0) {
836 delayed_refs->pending_csums += head_ref->num_bytes;
837 trans->delayed_ref_updates +=
838 btrfs_csum_bytes_to_leaves(trans->fs_info,
839 head_ref->num_bytes);
840 }
841 delayed_refs->num_heads++;
842 delayed_refs->num_heads_ready++;
843 atomic_inc(&delayed_refs->num_entries);
844 trans->delayed_ref_updates++;
845 }
846 if (qrecord_inserted_ret)
847 *qrecord_inserted_ret = qrecord_inserted;
848
849 return head_ref;
850 }
851
852 /*
853 * init_delayed_ref_common - Initialize the structure which represents a
854 * modification to a an extent.
855 *
856 * @fs_info: Internal to the mounted filesystem mount structure.
857 *
858 * @ref: The structure which is going to be initialized.
859 *
860 * @bytenr: The logical address of the extent for which a modification is
861 * going to be recorded.
862 *
863 * @num_bytes: Size of the extent whose modification is being recorded.
864 *
865 * @ref_root: The id of the root where this modification has originated, this
866 * can be either one of the well-known metadata trees or the
867 * subvolume id which references this extent.
868 *
869 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
870 * BTRFS_ADD_DELAYED_EXTENT
871 *
872 * @ref_type: Holds the type of the extent which is being recorded, can be
873 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
874 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
875 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
876 */
init_delayed_ref_common(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_node * ref,u64 bytenr,u64 num_bytes,u64 ref_root,int action,u8 ref_type)877 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
878 struct btrfs_delayed_ref_node *ref,
879 u64 bytenr, u64 num_bytes, u64 ref_root,
880 int action, u8 ref_type)
881 {
882 u64 seq = 0;
883
884 if (action == BTRFS_ADD_DELAYED_EXTENT)
885 action = BTRFS_ADD_DELAYED_REF;
886
887 if (is_fstree(ref_root))
888 seq = atomic64_read(&fs_info->tree_mod_seq);
889
890 refcount_set(&ref->refs, 1);
891 ref->bytenr = bytenr;
892 ref->num_bytes = num_bytes;
893 ref->ref_mod = 1;
894 ref->action = action;
895 ref->is_head = 0;
896 ref->in_tree = 1;
897 ref->seq = seq;
898 ref->type = ref_type;
899 RB_CLEAR_NODE(&ref->ref_node);
900 INIT_LIST_HEAD(&ref->add_list);
901 }
902
903 /*
904 * add a delayed tree ref. This does all of the accounting required
905 * to make sure the delayed ref is eventually processed before this
906 * transaction commits.
907 */
btrfs_add_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,struct btrfs_delayed_extent_op * extent_op)908 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
909 struct btrfs_ref *generic_ref,
910 struct btrfs_delayed_extent_op *extent_op)
911 {
912 struct btrfs_fs_info *fs_info = trans->fs_info;
913 struct btrfs_delayed_tree_ref *ref;
914 struct btrfs_delayed_ref_head *head_ref;
915 struct btrfs_delayed_ref_root *delayed_refs;
916 struct btrfs_qgroup_extent_record *record = NULL;
917 int qrecord_inserted;
918 bool is_system;
919 int action = generic_ref->action;
920 int level = generic_ref->tree_ref.level;
921 int ret;
922 u64 bytenr = generic_ref->bytenr;
923 u64 num_bytes = generic_ref->len;
924 u64 parent = generic_ref->parent;
925 u8 ref_type;
926
927 is_system = (generic_ref->tree_ref.owning_root == BTRFS_CHUNK_TREE_OBJECTID);
928
929 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
930 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
931 if (!ref)
932 return -ENOMEM;
933
934 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
935 if (!head_ref) {
936 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
937 return -ENOMEM;
938 }
939
940 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
941 !generic_ref->skip_qgroup) {
942 record = kzalloc(sizeof(*record), GFP_NOFS);
943 if (!record) {
944 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
945 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
946 return -ENOMEM;
947 }
948 }
949
950 if (parent)
951 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
952 else
953 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
954
955 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
956 generic_ref->tree_ref.owning_root, action,
957 ref_type);
958 ref->root = generic_ref->tree_ref.owning_root;
959 ref->parent = parent;
960 ref->level = level;
961
962 init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
963 generic_ref->tree_ref.owning_root, 0, action,
964 false, is_system);
965 head_ref->extent_op = extent_op;
966
967 delayed_refs = &trans->transaction->delayed_refs;
968 spin_lock(&delayed_refs->lock);
969
970 /*
971 * insert both the head node and the new ref without dropping
972 * the spin lock
973 */
974 head_ref = add_delayed_ref_head(trans, head_ref, record,
975 action, &qrecord_inserted);
976
977 ret = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
978 spin_unlock(&delayed_refs->lock);
979
980 /*
981 * Need to update the delayed_refs_rsv with any changes we may have
982 * made.
983 */
984 btrfs_update_delayed_refs_rsv(trans);
985
986 trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
987 action == BTRFS_ADD_DELAYED_EXTENT ?
988 BTRFS_ADD_DELAYED_REF : action);
989 if (ret > 0)
990 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
991
992 if (qrecord_inserted)
993 btrfs_qgroup_trace_extent_post(trans, record);
994
995 return 0;
996 }
997
998 /*
999 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1000 */
btrfs_add_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref,u64 reserved)1001 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1002 struct btrfs_ref *generic_ref,
1003 u64 reserved)
1004 {
1005 struct btrfs_fs_info *fs_info = trans->fs_info;
1006 struct btrfs_delayed_data_ref *ref;
1007 struct btrfs_delayed_ref_head *head_ref;
1008 struct btrfs_delayed_ref_root *delayed_refs;
1009 struct btrfs_qgroup_extent_record *record = NULL;
1010 int qrecord_inserted;
1011 int action = generic_ref->action;
1012 int ret;
1013 u64 bytenr = generic_ref->bytenr;
1014 u64 num_bytes = generic_ref->len;
1015 u64 parent = generic_ref->parent;
1016 u64 ref_root = generic_ref->data_ref.owning_root;
1017 u64 owner = generic_ref->data_ref.ino;
1018 u64 offset = generic_ref->data_ref.offset;
1019 u8 ref_type;
1020
1021 ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1022 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1023 if (!ref)
1024 return -ENOMEM;
1025
1026 if (parent)
1027 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1028 else
1029 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1030 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1031 ref_root, action, ref_type);
1032 ref->root = ref_root;
1033 ref->parent = parent;
1034 ref->objectid = owner;
1035 ref->offset = offset;
1036
1037
1038 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1039 if (!head_ref) {
1040 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1041 return -ENOMEM;
1042 }
1043
1044 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1045 !generic_ref->skip_qgroup) {
1046 record = kzalloc(sizeof(*record), GFP_NOFS);
1047 if (!record) {
1048 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1049 kmem_cache_free(btrfs_delayed_ref_head_cachep,
1050 head_ref);
1051 return -ENOMEM;
1052 }
1053 }
1054
1055 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1056 reserved, action, true, false);
1057 head_ref->extent_op = NULL;
1058
1059 delayed_refs = &trans->transaction->delayed_refs;
1060 spin_lock(&delayed_refs->lock);
1061
1062 /*
1063 * insert both the head node and the new ref without dropping
1064 * the spin lock
1065 */
1066 head_ref = add_delayed_ref_head(trans, head_ref, record,
1067 action, &qrecord_inserted);
1068
1069 ret = insert_delayed_ref(delayed_refs, head_ref, &ref->node);
1070 spin_unlock(&delayed_refs->lock);
1071
1072 /*
1073 * Need to update the delayed_refs_rsv with any changes we may have
1074 * made.
1075 */
1076 btrfs_update_delayed_refs_rsv(trans);
1077
1078 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1079 action == BTRFS_ADD_DELAYED_EXTENT ?
1080 BTRFS_ADD_DELAYED_REF : action);
1081 if (ret > 0)
1082 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1083
1084
1085 if (qrecord_inserted)
1086 return btrfs_qgroup_trace_extent_post(trans, record);
1087 return 0;
1088 }
1089
btrfs_add_delayed_extent_op(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,struct btrfs_delayed_extent_op * extent_op)1090 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1091 u64 bytenr, u64 num_bytes,
1092 struct btrfs_delayed_extent_op *extent_op)
1093 {
1094 struct btrfs_delayed_ref_head *head_ref;
1095 struct btrfs_delayed_ref_root *delayed_refs;
1096
1097 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1098 if (!head_ref)
1099 return -ENOMEM;
1100
1101 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1102 BTRFS_UPDATE_DELAYED_HEAD, false, false);
1103 head_ref->extent_op = extent_op;
1104
1105 delayed_refs = &trans->transaction->delayed_refs;
1106 spin_lock(&delayed_refs->lock);
1107
1108 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1109 NULL);
1110
1111 spin_unlock(&delayed_refs->lock);
1112
1113 /*
1114 * Need to update the delayed_refs_rsv with any changes we may have
1115 * made.
1116 */
1117 btrfs_update_delayed_refs_rsv(trans);
1118 return 0;
1119 }
1120
1121 /*
1122 * This does a simple search for the head node for a given extent. Returns the
1123 * head node if found, or NULL if not.
1124 */
1125 struct btrfs_delayed_ref_head *
btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,u64 bytenr)1126 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1127 {
1128 lockdep_assert_held(&delayed_refs->lock);
1129
1130 return find_ref_head(delayed_refs, bytenr, false);
1131 }
1132
btrfs_delayed_ref_exit(void)1133 void __cold btrfs_delayed_ref_exit(void)
1134 {
1135 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1136 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1137 kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1138 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1139 }
1140
btrfs_delayed_ref_init(void)1141 int __init btrfs_delayed_ref_init(void)
1142 {
1143 btrfs_delayed_ref_head_cachep = kmem_cache_create(
1144 "btrfs_delayed_ref_head",
1145 sizeof(struct btrfs_delayed_ref_head), 0,
1146 SLAB_MEM_SPREAD, NULL);
1147 if (!btrfs_delayed_ref_head_cachep)
1148 goto fail;
1149
1150 btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1151 "btrfs_delayed_tree_ref",
1152 sizeof(struct btrfs_delayed_tree_ref), 0,
1153 SLAB_MEM_SPREAD, NULL);
1154 if (!btrfs_delayed_tree_ref_cachep)
1155 goto fail;
1156
1157 btrfs_delayed_data_ref_cachep = kmem_cache_create(
1158 "btrfs_delayed_data_ref",
1159 sizeof(struct btrfs_delayed_data_ref), 0,
1160 SLAB_MEM_SPREAD, NULL);
1161 if (!btrfs_delayed_data_ref_cachep)
1162 goto fail;
1163
1164 btrfs_delayed_extent_op_cachep = kmem_cache_create(
1165 "btrfs_delayed_extent_op",
1166 sizeof(struct btrfs_delayed_extent_op), 0,
1167 SLAB_MEM_SPREAD, NULL);
1168 if (!btrfs_delayed_extent_op_cachep)
1169 goto fail;
1170
1171 return 0;
1172 fail:
1173 btrfs_delayed_ref_exit();
1174 return -ENOMEM;
1175 }
1176