1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "bio.h"
18 #include "print-tree.h"
19 #include "compression.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "file-item.h"
23 #include "super.h"
24
25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26 sizeof(struct btrfs_item) * 2) / \
27 size) - 1))
28
29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 PAGE_SIZE))
31
32 /*
33 * Set inode's size according to filesystem options.
34 *
35 * @inode: inode we want to update the disk_i_size for
36 * @new_i_size: i_size we want to set to, 0 if we use i_size
37 *
38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39 * returns as it is perfectly fine with a file that has holes without hole file
40 * extent items.
41 *
42 * However without NO_HOLES we need to only return the area that is contiguous
43 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
44 * to an extent that has a gap in between.
45 *
46 * Finally new_i_size should only be set in the case of truncate where we're not
47 * ready to use i_size_read() as the limiter yet.
48 */
btrfs_inode_safe_disk_i_size_write(struct btrfs_inode * inode,u64 new_i_size)49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50 {
51 struct btrfs_fs_info *fs_info = inode->root->fs_info;
52 u64 start, end, i_size;
53 int ret;
54
55 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
56 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
57 inode->disk_i_size = i_size;
58 return;
59 }
60
61 spin_lock(&inode->lock);
62 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63 &end, EXTENT_DIRTY);
64 if (!ret && start == 0)
65 i_size = min(i_size, end + 1);
66 else
67 i_size = 0;
68 inode->disk_i_size = i_size;
69 spin_unlock(&inode->lock);
70 }
71
72 /*
73 * Mark range within a file as having a new extent inserted.
74 *
75 * @inode: inode being modified
76 * @start: start file offset of the file extent we've inserted
77 * @len: logical length of the file extent item
78 *
79 * Call when we are inserting a new file extent where there was none before.
80 * Does not need to call this in the case where we're replacing an existing file
81 * extent, however if not sure it's fine to call this multiple times.
82 *
83 * The start and len must match the file extent item, so thus must be sectorsize
84 * aligned.
85 */
btrfs_inode_set_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)86 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
87 u64 len)
88 {
89 if (len == 0)
90 return 0;
91
92 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93
94 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
95 return 0;
96 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
97 EXTENT_DIRTY);
98 }
99
100 /*
101 * Mark an inode range as not having a backing extent.
102 *
103 * @inode: inode being modified
104 * @start: start file offset of the file extent we've inserted
105 * @len: logical length of the file extent item
106 *
107 * Called when we drop a file extent, for example when we truncate. Doesn't
108 * need to be called for cases where we're replacing a file extent, like when
109 * we've COWed a file extent.
110 *
111 * The start and len must match the file extent item, so thus must be sectorsize
112 * aligned.
113 */
btrfs_inode_clear_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)114 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
115 u64 len)
116 {
117 if (len == 0)
118 return 0;
119
120 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
121 len == (u64)-1);
122
123 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
124 return 0;
125 return clear_extent_bit(&inode->file_extent_tree, start,
126 start + len - 1, EXTENT_DIRTY, NULL);
127 }
128
bytes_to_csum_size(const struct btrfs_fs_info * fs_info,u32 bytes)129 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
130 {
131 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
132
133 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
134 }
135
csum_size_to_bytes(const struct btrfs_fs_info * fs_info,u32 csum_size)136 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
137 {
138 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
139
140 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
141 }
142
max_ordered_sum_bytes(const struct btrfs_fs_info * fs_info)143 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
144 {
145 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
146 fs_info->csum_size);
147
148 return csum_size_to_bytes(fs_info, max_csum_size);
149 }
150
151 /*
152 * Calculate the total size needed to allocate for an ordered sum structure
153 * spanning @bytes in the file.
154 */
btrfs_ordered_sum_size(struct btrfs_fs_info * fs_info,unsigned long bytes)155 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
156 {
157 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
158 }
159
btrfs_insert_hole_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 pos,u64 num_bytes)160 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
161 struct btrfs_root *root,
162 u64 objectid, u64 pos, u64 num_bytes)
163 {
164 int ret = 0;
165 struct btrfs_file_extent_item *item;
166 struct btrfs_key file_key;
167 struct btrfs_path *path;
168 struct extent_buffer *leaf;
169
170 path = btrfs_alloc_path();
171 if (!path)
172 return -ENOMEM;
173 file_key.objectid = objectid;
174 file_key.offset = pos;
175 file_key.type = BTRFS_EXTENT_DATA_KEY;
176
177 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
178 sizeof(*item));
179 if (ret < 0)
180 goto out;
181 BUG_ON(ret); /* Can't happen */
182 leaf = path->nodes[0];
183 item = btrfs_item_ptr(leaf, path->slots[0],
184 struct btrfs_file_extent_item);
185 btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
186 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
187 btrfs_set_file_extent_offset(leaf, item, 0);
188 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
189 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
190 btrfs_set_file_extent_generation(leaf, item, trans->transid);
191 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
192 btrfs_set_file_extent_compression(leaf, item, 0);
193 btrfs_set_file_extent_encryption(leaf, item, 0);
194 btrfs_set_file_extent_other_encoding(leaf, item, 0);
195
196 btrfs_mark_buffer_dirty(leaf);
197 out:
198 btrfs_free_path(path);
199 return ret;
200 }
201
202 static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,int cow)203 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
204 struct btrfs_root *root,
205 struct btrfs_path *path,
206 u64 bytenr, int cow)
207 {
208 struct btrfs_fs_info *fs_info = root->fs_info;
209 int ret;
210 struct btrfs_key file_key;
211 struct btrfs_key found_key;
212 struct btrfs_csum_item *item;
213 struct extent_buffer *leaf;
214 u64 csum_offset = 0;
215 const u32 csum_size = fs_info->csum_size;
216 int csums_in_item;
217
218 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
219 file_key.offset = bytenr;
220 file_key.type = BTRFS_EXTENT_CSUM_KEY;
221 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
222 if (ret < 0)
223 goto fail;
224 leaf = path->nodes[0];
225 if (ret > 0) {
226 ret = 1;
227 if (path->slots[0] == 0)
228 goto fail;
229 path->slots[0]--;
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
232 goto fail;
233
234 csum_offset = (bytenr - found_key.offset) >>
235 fs_info->sectorsize_bits;
236 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
237 csums_in_item /= csum_size;
238
239 if (csum_offset == csums_in_item) {
240 ret = -EFBIG;
241 goto fail;
242 } else if (csum_offset > csums_in_item) {
243 goto fail;
244 }
245 }
246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
247 item = (struct btrfs_csum_item *)((unsigned char *)item +
248 csum_offset * csum_size);
249 return item;
250 fail:
251 if (ret > 0)
252 ret = -ENOENT;
253 return ERR_PTR(ret);
254 }
255
btrfs_lookup_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,int mod)256 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
257 struct btrfs_root *root,
258 struct btrfs_path *path, u64 objectid,
259 u64 offset, int mod)
260 {
261 struct btrfs_key file_key;
262 int ins_len = mod < 0 ? -1 : 0;
263 int cow = mod != 0;
264
265 file_key.objectid = objectid;
266 file_key.offset = offset;
267 file_key.type = BTRFS_EXTENT_DATA_KEY;
268
269 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
270 }
271
272 /*
273 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
274 * store the result to @dst.
275 *
276 * Return >0 for the number of sectors we found.
277 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
278 * for it. Caller may want to try next sector until one range is hit.
279 * Return <0 for fatal error.
280 */
search_csum_tree(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 disk_bytenr,u64 len,u8 * dst)281 static int search_csum_tree(struct btrfs_fs_info *fs_info,
282 struct btrfs_path *path, u64 disk_bytenr,
283 u64 len, u8 *dst)
284 {
285 struct btrfs_root *csum_root;
286 struct btrfs_csum_item *item = NULL;
287 struct btrfs_key key;
288 const u32 sectorsize = fs_info->sectorsize;
289 const u32 csum_size = fs_info->csum_size;
290 u32 itemsize;
291 int ret;
292 u64 csum_start;
293 u64 csum_len;
294
295 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
296 IS_ALIGNED(len, sectorsize));
297
298 /* Check if the current csum item covers disk_bytenr */
299 if (path->nodes[0]) {
300 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
301 struct btrfs_csum_item);
302 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
303 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
304
305 csum_start = key.offset;
306 csum_len = (itemsize / csum_size) * sectorsize;
307
308 if (in_range(disk_bytenr, csum_start, csum_len))
309 goto found;
310 }
311
312 /* Current item doesn't contain the desired range, search again */
313 btrfs_release_path(path);
314 csum_root = btrfs_csum_root(fs_info, disk_bytenr);
315 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
316 if (IS_ERR(item)) {
317 ret = PTR_ERR(item);
318 goto out;
319 }
320 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
321 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
322
323 csum_start = key.offset;
324 csum_len = (itemsize / csum_size) * sectorsize;
325 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
326
327 found:
328 ret = (min(csum_start + csum_len, disk_bytenr + len) -
329 disk_bytenr) >> fs_info->sectorsize_bits;
330 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
331 ret * csum_size);
332 out:
333 if (ret == -ENOENT || ret == -EFBIG)
334 ret = 0;
335 return ret;
336 }
337
338 /*
339 * Locate the file_offset of @cur_disk_bytenr of a @bio.
340 *
341 * Bio of btrfs represents read range of
342 * [bi_sector << 9, bi_sector << 9 + bi_size).
343 * Knowing this, we can iterate through each bvec to locate the page belong to
344 * @cur_disk_bytenr and get the file offset.
345 *
346 * @inode is used to determine if the bvec page really belongs to @inode.
347 *
348 * Return 0 if we can't find the file offset
349 * Return >0 if we find the file offset and restore it to @file_offset_ret
350 */
search_file_offset_in_bio(struct bio * bio,struct inode * inode,u64 disk_bytenr,u64 * file_offset_ret)351 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
352 u64 disk_bytenr, u64 *file_offset_ret)
353 {
354 struct bvec_iter iter;
355 struct bio_vec bvec;
356 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
357 int ret = 0;
358
359 bio_for_each_segment(bvec, bio, iter) {
360 struct page *page = bvec.bv_page;
361
362 if (cur > disk_bytenr)
363 break;
364 if (cur + bvec.bv_len <= disk_bytenr) {
365 cur += bvec.bv_len;
366 continue;
367 }
368 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
369 if (page->mapping && page->mapping->host &&
370 page->mapping->host == inode) {
371 ret = 1;
372 *file_offset_ret = page_offset(page) + bvec.bv_offset +
373 disk_bytenr - cur;
374 break;
375 }
376 }
377 return ret;
378 }
379
380 /*
381 * Lookup the checksum for the read bio in csum tree.
382 *
383 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
384 */
btrfs_lookup_bio_sums(struct btrfs_bio * bbio)385 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
386 {
387 struct btrfs_inode *inode = bbio->inode;
388 struct btrfs_fs_info *fs_info = inode->root->fs_info;
389 struct extent_io_tree *io_tree = &inode->io_tree;
390 struct bio *bio = &bbio->bio;
391 struct btrfs_path *path;
392 const u32 sectorsize = fs_info->sectorsize;
393 const u32 csum_size = fs_info->csum_size;
394 u32 orig_len = bio->bi_iter.bi_size;
395 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
396 u64 cur_disk_bytenr;
397 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
398 int count = 0;
399 blk_status_t ret = BLK_STS_OK;
400
401 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
402 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
403 return BLK_STS_OK;
404
405 /*
406 * This function is only called for read bio.
407 *
408 * This means two things:
409 * - All our csums should only be in csum tree
410 * No ordered extents csums, as ordered extents are only for write
411 * path.
412 * - No need to bother any other info from bvec
413 * Since we're looking up csums, the only important info is the
414 * disk_bytenr and the length, which can be extracted from bi_iter
415 * directly.
416 */
417 ASSERT(bio_op(bio) == REQ_OP_READ);
418 path = btrfs_alloc_path();
419 if (!path)
420 return BLK_STS_RESOURCE;
421
422 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
423 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
424 if (!bbio->csum) {
425 btrfs_free_path(path);
426 return BLK_STS_RESOURCE;
427 }
428 } else {
429 bbio->csum = bbio->csum_inline;
430 }
431
432 /*
433 * If requested number of sectors is larger than one leaf can contain,
434 * kick the readahead for csum tree.
435 */
436 if (nblocks > fs_info->csums_per_leaf)
437 path->reada = READA_FORWARD;
438
439 /*
440 * the free space stuff is only read when it hasn't been
441 * updated in the current transaction. So, we can safely
442 * read from the commit root and sidestep a nasty deadlock
443 * between reading the free space cache and updating the csum tree.
444 */
445 if (btrfs_is_free_space_inode(inode)) {
446 path->search_commit_root = 1;
447 path->skip_locking = 1;
448 }
449
450 for (cur_disk_bytenr = orig_disk_bytenr;
451 cur_disk_bytenr < orig_disk_bytenr + orig_len;
452 cur_disk_bytenr += (count * sectorsize)) {
453 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
454 unsigned int sector_offset;
455 u8 *csum_dst;
456
457 /*
458 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
459 * we're calculating the offset to the bio start.
460 *
461 * Bio size is limited to UINT_MAX, thus unsigned int is large
462 * enough to contain the raw result, not to mention the right
463 * shifted result.
464 */
465 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
466 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
467 fs_info->sectorsize_bits;
468 csum_dst = bbio->csum + sector_offset * csum_size;
469
470 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
471 search_len, csum_dst);
472 if (count < 0) {
473 ret = errno_to_blk_status(count);
474 if (bbio->csum != bbio->csum_inline)
475 kfree(bbio->csum);
476 bbio->csum = NULL;
477 break;
478 }
479
480 /*
481 * We didn't find a csum for this range. We need to make sure
482 * we complain loudly about this, because we are not NODATASUM.
483 *
484 * However for the DATA_RELOC inode we could potentially be
485 * relocating data extents for a NODATASUM inode, so the inode
486 * itself won't be marked with NODATASUM, but the extent we're
487 * copying is in fact NODATASUM. If we don't find a csum we
488 * assume this is the case.
489 */
490 if (count == 0) {
491 memset(csum_dst, 0, csum_size);
492 count = 1;
493
494 if (inode->root->root_key.objectid ==
495 BTRFS_DATA_RELOC_TREE_OBJECTID) {
496 u64 file_offset;
497 int ret;
498
499 ret = search_file_offset_in_bio(bio,
500 &inode->vfs_inode,
501 cur_disk_bytenr, &file_offset);
502 if (ret)
503 set_extent_bits(io_tree, file_offset,
504 file_offset + sectorsize - 1,
505 EXTENT_NODATASUM);
506 } else {
507 btrfs_warn_rl(fs_info,
508 "csum hole found for disk bytenr range [%llu, %llu)",
509 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
510 }
511 }
512 }
513
514 btrfs_free_path(path);
515 return ret;
516 }
517
btrfs_lookup_csums_list(struct btrfs_root * root,u64 start,u64 end,struct list_head * list,int search_commit,bool nowait)518 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
519 struct list_head *list, int search_commit,
520 bool nowait)
521 {
522 struct btrfs_fs_info *fs_info = root->fs_info;
523 struct btrfs_key key;
524 struct btrfs_path *path;
525 struct extent_buffer *leaf;
526 struct btrfs_ordered_sum *sums;
527 struct btrfs_csum_item *item;
528 LIST_HEAD(tmplist);
529 int ret;
530
531 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
532 IS_ALIGNED(end + 1, fs_info->sectorsize));
533
534 path = btrfs_alloc_path();
535 if (!path)
536 return -ENOMEM;
537
538 path->nowait = nowait;
539 if (search_commit) {
540 path->skip_locking = 1;
541 path->reada = READA_FORWARD;
542 path->search_commit_root = 1;
543 }
544
545 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
546 key.offset = start;
547 key.type = BTRFS_EXTENT_CSUM_KEY;
548
549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
550 if (ret < 0)
551 goto fail;
552 if (ret > 0 && path->slots[0] > 0) {
553 leaf = path->nodes[0];
554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
555
556 /*
557 * There are two cases we can hit here for the previous csum
558 * item:
559 *
560 * |<- search range ->|
561 * |<- csum item ->|
562 *
563 * Or
564 * |<- search range ->|
565 * |<- csum item ->|
566 *
567 * Check if the previous csum item covers the leading part of
568 * the search range. If so we have to start from previous csum
569 * item.
570 */
571 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
572 key.type == BTRFS_EXTENT_CSUM_KEY) {
573 if (bytes_to_csum_size(fs_info, start - key.offset) <
574 btrfs_item_size(leaf, path->slots[0] - 1))
575 path->slots[0]--;
576 }
577 }
578
579 while (start <= end) {
580 u64 csum_end;
581
582 leaf = path->nodes[0];
583 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
584 ret = btrfs_next_leaf(root, path);
585 if (ret < 0)
586 goto fail;
587 if (ret > 0)
588 break;
589 leaf = path->nodes[0];
590 }
591
592 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
593 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
594 key.type != BTRFS_EXTENT_CSUM_KEY ||
595 key.offset > end)
596 break;
597
598 if (key.offset > start)
599 start = key.offset;
600
601 csum_end = key.offset + csum_size_to_bytes(fs_info,
602 btrfs_item_size(leaf, path->slots[0]));
603 if (csum_end <= start) {
604 path->slots[0]++;
605 continue;
606 }
607
608 csum_end = min(csum_end, end + 1);
609 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
610 struct btrfs_csum_item);
611 while (start < csum_end) {
612 unsigned long offset;
613 size_t size;
614
615 size = min_t(size_t, csum_end - start,
616 max_ordered_sum_bytes(fs_info));
617 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
618 GFP_NOFS);
619 if (!sums) {
620 ret = -ENOMEM;
621 goto fail;
622 }
623
624 sums->bytenr = start;
625 sums->len = (int)size;
626
627 offset = bytes_to_csum_size(fs_info, start - key.offset);
628
629 read_extent_buffer(path->nodes[0],
630 sums->sums,
631 ((unsigned long)item) + offset,
632 bytes_to_csum_size(fs_info, size));
633
634 start += size;
635 list_add_tail(&sums->list, &tmplist);
636 }
637 path->slots[0]++;
638 }
639 ret = 0;
640 fail:
641 while (ret < 0 && !list_empty(&tmplist)) {
642 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
643 list_del(&sums->list);
644 kfree(sums);
645 }
646 list_splice_tail(&tmplist, list);
647
648 btrfs_free_path(path);
649 return ret;
650 }
651
652 /*
653 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
654 * we return the result.
655 *
656 * This version will set the corresponding bits in @csum_bitmap to represent
657 * that there is a csum found.
658 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
659 * in is large enough to contain all csums.
660 */
btrfs_lookup_csums_bitmap(struct btrfs_root * root,u64 start,u64 end,u8 * csum_buf,unsigned long * csum_bitmap)661 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
662 u8 *csum_buf, unsigned long *csum_bitmap)
663 {
664 struct btrfs_fs_info *fs_info = root->fs_info;
665 struct btrfs_key key;
666 struct btrfs_path *path;
667 struct extent_buffer *leaf;
668 struct btrfs_csum_item *item;
669 const u64 orig_start = start;
670 int ret;
671
672 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
673 IS_ALIGNED(end + 1, fs_info->sectorsize));
674
675 path = btrfs_alloc_path();
676 if (!path)
677 return -ENOMEM;
678
679 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
680 key.type = BTRFS_EXTENT_CSUM_KEY;
681 key.offset = start;
682
683 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
684 if (ret < 0)
685 goto fail;
686 if (ret > 0 && path->slots[0] > 0) {
687 leaf = path->nodes[0];
688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
689
690 /*
691 * There are two cases we can hit here for the previous csum
692 * item:
693 *
694 * |<- search range ->|
695 * |<- csum item ->|
696 *
697 * Or
698 * |<- search range ->|
699 * |<- csum item ->|
700 *
701 * Check if the previous csum item covers the leading part of
702 * the search range. If so we have to start from previous csum
703 * item.
704 */
705 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
706 key.type == BTRFS_EXTENT_CSUM_KEY) {
707 if (bytes_to_csum_size(fs_info, start - key.offset) <
708 btrfs_item_size(leaf, path->slots[0] - 1))
709 path->slots[0]--;
710 }
711 }
712
713 while (start <= end) {
714 u64 csum_end;
715
716 leaf = path->nodes[0];
717 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
718 ret = btrfs_next_leaf(root, path);
719 if (ret < 0)
720 goto fail;
721 if (ret > 0)
722 break;
723 leaf = path->nodes[0];
724 }
725
726 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
727 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
728 key.type != BTRFS_EXTENT_CSUM_KEY ||
729 key.offset > end)
730 break;
731
732 if (key.offset > start)
733 start = key.offset;
734
735 csum_end = key.offset + csum_size_to_bytes(fs_info,
736 btrfs_item_size(leaf, path->slots[0]));
737 if (csum_end <= start) {
738 path->slots[0]++;
739 continue;
740 }
741
742 csum_end = min(csum_end, end + 1);
743 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
744 struct btrfs_csum_item);
745 while (start < csum_end) {
746 unsigned long offset;
747 size_t size;
748 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
749 start - orig_start);
750
751 size = min_t(size_t, csum_end - start, end + 1 - start);
752
753 offset = bytes_to_csum_size(fs_info, start - key.offset);
754
755 read_extent_buffer(path->nodes[0], csum_dest,
756 ((unsigned long)item) + offset,
757 bytes_to_csum_size(fs_info, size));
758
759 bitmap_set(csum_bitmap,
760 (start - orig_start) >> fs_info->sectorsize_bits,
761 size >> fs_info->sectorsize_bits);
762
763 start += size;
764 }
765 path->slots[0]++;
766 }
767 ret = 0;
768 fail:
769 btrfs_free_path(path);
770 return ret;
771 }
772
773 /*
774 * Calculate checksums of the data contained inside a bio.
775 */
btrfs_csum_one_bio(struct btrfs_bio * bbio)776 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
777 {
778 struct btrfs_inode *inode = bbio->inode;
779 struct btrfs_fs_info *fs_info = inode->root->fs_info;
780 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
781 struct bio *bio = &bbio->bio;
782 u64 offset = bbio->file_offset;
783 struct btrfs_ordered_sum *sums;
784 struct btrfs_ordered_extent *ordered = NULL;
785 char *data;
786 struct bvec_iter iter;
787 struct bio_vec bvec;
788 int index;
789 unsigned int blockcount;
790 unsigned long total_bytes = 0;
791 unsigned long this_sum_bytes = 0;
792 int i;
793 unsigned nofs_flag;
794
795 nofs_flag = memalloc_nofs_save();
796 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
797 GFP_KERNEL);
798 memalloc_nofs_restore(nofs_flag);
799
800 if (!sums)
801 return BLK_STS_RESOURCE;
802
803 sums->len = bio->bi_iter.bi_size;
804 INIT_LIST_HEAD(&sums->list);
805
806 sums->bytenr = bio->bi_iter.bi_sector << 9;
807 index = 0;
808
809 shash->tfm = fs_info->csum_shash;
810
811 bio_for_each_segment(bvec, bio, iter) {
812 if (!ordered) {
813 ordered = btrfs_lookup_ordered_extent(inode, offset);
814 /*
815 * The bio range is not covered by any ordered extent,
816 * must be a code logic error.
817 */
818 if (unlikely(!ordered)) {
819 WARN(1, KERN_WARNING
820 "no ordered extent for root %llu ino %llu offset %llu\n",
821 inode->root->root_key.objectid,
822 btrfs_ino(inode), offset);
823 kvfree(sums);
824 return BLK_STS_IOERR;
825 }
826 }
827
828 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
829 bvec.bv_len + fs_info->sectorsize
830 - 1);
831
832 for (i = 0; i < blockcount; i++) {
833 if (!(bio->bi_opf & REQ_BTRFS_ONE_ORDERED) &&
834 !in_range(offset, ordered->file_offset,
835 ordered->num_bytes)) {
836 unsigned long bytes_left;
837
838 sums->len = this_sum_bytes;
839 this_sum_bytes = 0;
840 btrfs_add_ordered_sum(ordered, sums);
841 btrfs_put_ordered_extent(ordered);
842
843 bytes_left = bio->bi_iter.bi_size - total_bytes;
844
845 nofs_flag = memalloc_nofs_save();
846 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
847 bytes_left), GFP_KERNEL);
848 memalloc_nofs_restore(nofs_flag);
849 BUG_ON(!sums); /* -ENOMEM */
850 sums->len = bytes_left;
851 ordered = btrfs_lookup_ordered_extent(inode,
852 offset);
853 ASSERT(ordered); /* Logic error */
854 sums->bytenr = (bio->bi_iter.bi_sector << 9)
855 + total_bytes;
856 index = 0;
857 }
858
859 data = bvec_kmap_local(&bvec);
860 crypto_shash_digest(shash,
861 data + (i * fs_info->sectorsize),
862 fs_info->sectorsize,
863 sums->sums + index);
864 kunmap_local(data);
865 index += fs_info->csum_size;
866 offset += fs_info->sectorsize;
867 this_sum_bytes += fs_info->sectorsize;
868 total_bytes += fs_info->sectorsize;
869 }
870
871 }
872 this_sum_bytes = 0;
873 btrfs_add_ordered_sum(ordered, sums);
874 btrfs_put_ordered_extent(ordered);
875 return 0;
876 }
877
878 /*
879 * Remove one checksum overlapping a range.
880 *
881 * This expects the key to describe the csum pointed to by the path, and it
882 * expects the csum to overlap the range [bytenr, len]
883 *
884 * The csum should not be entirely contained in the range and the range should
885 * not be entirely contained in the csum.
886 *
887 * This calls btrfs_truncate_item with the correct args based on the overlap,
888 * and fixes up the key as required.
889 */
truncate_one_csum(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,u64 bytenr,u64 len)890 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
891 struct btrfs_path *path,
892 struct btrfs_key *key,
893 u64 bytenr, u64 len)
894 {
895 struct extent_buffer *leaf;
896 const u32 csum_size = fs_info->csum_size;
897 u64 csum_end;
898 u64 end_byte = bytenr + len;
899 u32 blocksize_bits = fs_info->sectorsize_bits;
900
901 leaf = path->nodes[0];
902 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
903 csum_end <<= blocksize_bits;
904 csum_end += key->offset;
905
906 if (key->offset < bytenr && csum_end <= end_byte) {
907 /*
908 * [ bytenr - len ]
909 * [ ]
910 * [csum ]
911 * A simple truncate off the end of the item
912 */
913 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
914 new_size *= csum_size;
915 btrfs_truncate_item(path, new_size, 1);
916 } else if (key->offset >= bytenr && csum_end > end_byte &&
917 end_byte > key->offset) {
918 /*
919 * [ bytenr - len ]
920 * [ ]
921 * [csum ]
922 * we need to truncate from the beginning of the csum
923 */
924 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
925 new_size *= csum_size;
926
927 btrfs_truncate_item(path, new_size, 0);
928
929 key->offset = end_byte;
930 btrfs_set_item_key_safe(fs_info, path, key);
931 } else {
932 BUG();
933 }
934 }
935
936 /*
937 * Delete the csum items from the csum tree for a given range of bytes.
938 */
btrfs_del_csums(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 len)939 int btrfs_del_csums(struct btrfs_trans_handle *trans,
940 struct btrfs_root *root, u64 bytenr, u64 len)
941 {
942 struct btrfs_fs_info *fs_info = trans->fs_info;
943 struct btrfs_path *path;
944 struct btrfs_key key;
945 u64 end_byte = bytenr + len;
946 u64 csum_end;
947 struct extent_buffer *leaf;
948 int ret = 0;
949 const u32 csum_size = fs_info->csum_size;
950 u32 blocksize_bits = fs_info->sectorsize_bits;
951
952 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
953 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
954
955 path = btrfs_alloc_path();
956 if (!path)
957 return -ENOMEM;
958
959 while (1) {
960 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
961 key.offset = end_byte - 1;
962 key.type = BTRFS_EXTENT_CSUM_KEY;
963
964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
965 if (ret > 0) {
966 ret = 0;
967 if (path->slots[0] == 0)
968 break;
969 path->slots[0]--;
970 } else if (ret < 0) {
971 break;
972 }
973
974 leaf = path->nodes[0];
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976
977 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
978 key.type != BTRFS_EXTENT_CSUM_KEY) {
979 break;
980 }
981
982 if (key.offset >= end_byte)
983 break;
984
985 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
986 csum_end <<= blocksize_bits;
987 csum_end += key.offset;
988
989 /* this csum ends before we start, we're done */
990 if (csum_end <= bytenr)
991 break;
992
993 /* delete the entire item, it is inside our range */
994 if (key.offset >= bytenr && csum_end <= end_byte) {
995 int del_nr = 1;
996
997 /*
998 * Check how many csum items preceding this one in this
999 * leaf correspond to our range and then delete them all
1000 * at once.
1001 */
1002 if (key.offset > bytenr && path->slots[0] > 0) {
1003 int slot = path->slots[0] - 1;
1004
1005 while (slot >= 0) {
1006 struct btrfs_key pk;
1007
1008 btrfs_item_key_to_cpu(leaf, &pk, slot);
1009 if (pk.offset < bytenr ||
1010 pk.type != BTRFS_EXTENT_CSUM_KEY ||
1011 pk.objectid !=
1012 BTRFS_EXTENT_CSUM_OBJECTID)
1013 break;
1014 path->slots[0] = slot;
1015 del_nr++;
1016 key.offset = pk.offset;
1017 slot--;
1018 }
1019 }
1020 ret = btrfs_del_items(trans, root, path,
1021 path->slots[0], del_nr);
1022 if (ret)
1023 break;
1024 if (key.offset == bytenr)
1025 break;
1026 } else if (key.offset < bytenr && csum_end > end_byte) {
1027 unsigned long offset;
1028 unsigned long shift_len;
1029 unsigned long item_offset;
1030 /*
1031 * [ bytenr - len ]
1032 * [csum ]
1033 *
1034 * Our bytes are in the middle of the csum,
1035 * we need to split this item and insert a new one.
1036 *
1037 * But we can't drop the path because the
1038 * csum could change, get removed, extended etc.
1039 *
1040 * The trick here is the max size of a csum item leaves
1041 * enough room in the tree block for a single
1042 * item header. So, we split the item in place,
1043 * adding a new header pointing to the existing
1044 * bytes. Then we loop around again and we have
1045 * a nicely formed csum item that we can neatly
1046 * truncate.
1047 */
1048 offset = (bytenr - key.offset) >> blocksize_bits;
1049 offset *= csum_size;
1050
1051 shift_len = (len >> blocksize_bits) * csum_size;
1052
1053 item_offset = btrfs_item_ptr_offset(leaf,
1054 path->slots[0]);
1055
1056 memzero_extent_buffer(leaf, item_offset + offset,
1057 shift_len);
1058 key.offset = bytenr;
1059
1060 /*
1061 * btrfs_split_item returns -EAGAIN when the
1062 * item changed size or key
1063 */
1064 ret = btrfs_split_item(trans, root, path, &key, offset);
1065 if (ret && ret != -EAGAIN) {
1066 btrfs_abort_transaction(trans, ret);
1067 break;
1068 }
1069 ret = 0;
1070
1071 key.offset = end_byte - 1;
1072 } else {
1073 truncate_one_csum(fs_info, path, &key, bytenr, len);
1074 if (key.offset < bytenr)
1075 break;
1076 }
1077 btrfs_release_path(path);
1078 }
1079 btrfs_free_path(path);
1080 return ret;
1081 }
1082
find_next_csum_offset(struct btrfs_root * root,struct btrfs_path * path,u64 * next_offset)1083 static int find_next_csum_offset(struct btrfs_root *root,
1084 struct btrfs_path *path,
1085 u64 *next_offset)
1086 {
1087 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1088 struct btrfs_key found_key;
1089 int slot = path->slots[0] + 1;
1090 int ret;
1091
1092 if (nritems == 0 || slot >= nritems) {
1093 ret = btrfs_next_leaf(root, path);
1094 if (ret < 0) {
1095 return ret;
1096 } else if (ret > 0) {
1097 *next_offset = (u64)-1;
1098 return 0;
1099 }
1100 slot = path->slots[0];
1101 }
1102
1103 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1104
1105 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1106 found_key.type != BTRFS_EXTENT_CSUM_KEY)
1107 *next_offset = (u64)-1;
1108 else
1109 *next_offset = found_key.offset;
1110
1111 return 0;
1112 }
1113
btrfs_csum_file_blocks(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_ordered_sum * sums)1114 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1115 struct btrfs_root *root,
1116 struct btrfs_ordered_sum *sums)
1117 {
1118 struct btrfs_fs_info *fs_info = root->fs_info;
1119 struct btrfs_key file_key;
1120 struct btrfs_key found_key;
1121 struct btrfs_path *path;
1122 struct btrfs_csum_item *item;
1123 struct btrfs_csum_item *item_end;
1124 struct extent_buffer *leaf = NULL;
1125 u64 next_offset;
1126 u64 total_bytes = 0;
1127 u64 csum_offset;
1128 u64 bytenr;
1129 u32 ins_size;
1130 int index = 0;
1131 int found_next;
1132 int ret;
1133 const u32 csum_size = fs_info->csum_size;
1134
1135 path = btrfs_alloc_path();
1136 if (!path)
1137 return -ENOMEM;
1138 again:
1139 next_offset = (u64)-1;
1140 found_next = 0;
1141 bytenr = sums->bytenr + total_bytes;
1142 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1143 file_key.offset = bytenr;
1144 file_key.type = BTRFS_EXTENT_CSUM_KEY;
1145
1146 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1147 if (!IS_ERR(item)) {
1148 ret = 0;
1149 leaf = path->nodes[0];
1150 item_end = btrfs_item_ptr(leaf, path->slots[0],
1151 struct btrfs_csum_item);
1152 item_end = (struct btrfs_csum_item *)((char *)item_end +
1153 btrfs_item_size(leaf, path->slots[0]));
1154 goto found;
1155 }
1156 ret = PTR_ERR(item);
1157 if (ret != -EFBIG && ret != -ENOENT)
1158 goto out;
1159
1160 if (ret == -EFBIG) {
1161 u32 item_size;
1162 /* we found one, but it isn't big enough yet */
1163 leaf = path->nodes[0];
1164 item_size = btrfs_item_size(leaf, path->slots[0]);
1165 if ((item_size / csum_size) >=
1166 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1167 /* already at max size, make a new one */
1168 goto insert;
1169 }
1170 } else {
1171 /* We didn't find a csum item, insert one. */
1172 ret = find_next_csum_offset(root, path, &next_offset);
1173 if (ret < 0)
1174 goto out;
1175 found_next = 1;
1176 goto insert;
1177 }
1178
1179 /*
1180 * At this point, we know the tree has a checksum item that ends at an
1181 * offset matching the start of the checksum range we want to insert.
1182 * We try to extend that item as much as possible and then add as many
1183 * checksums to it as they fit.
1184 *
1185 * First check if the leaf has enough free space for at least one
1186 * checksum. If it has go directly to the item extension code, otherwise
1187 * release the path and do a search for insertion before the extension.
1188 */
1189 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1190 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1191 csum_offset = (bytenr - found_key.offset) >>
1192 fs_info->sectorsize_bits;
1193 goto extend_csum;
1194 }
1195
1196 btrfs_release_path(path);
1197 path->search_for_extension = 1;
1198 ret = btrfs_search_slot(trans, root, &file_key, path,
1199 csum_size, 1);
1200 path->search_for_extension = 0;
1201 if (ret < 0)
1202 goto out;
1203
1204 if (ret > 0) {
1205 if (path->slots[0] == 0)
1206 goto insert;
1207 path->slots[0]--;
1208 }
1209
1210 leaf = path->nodes[0];
1211 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1212 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1213
1214 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1215 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1216 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1217 goto insert;
1218 }
1219
1220 extend_csum:
1221 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1222 csum_size) {
1223 int extend_nr;
1224 u64 tmp;
1225 u32 diff;
1226
1227 tmp = sums->len - total_bytes;
1228 tmp >>= fs_info->sectorsize_bits;
1229 WARN_ON(tmp < 1);
1230 extend_nr = max_t(int, 1, tmp);
1231
1232 /*
1233 * A log tree can already have checksum items with a subset of
1234 * the checksums we are trying to log. This can happen after
1235 * doing a sequence of partial writes into prealloc extents and
1236 * fsyncs in between, with a full fsync logging a larger subrange
1237 * of an extent for which a previous fast fsync logged a smaller
1238 * subrange. And this happens in particular due to merging file
1239 * extent items when we complete an ordered extent for a range
1240 * covered by a prealloc extent - this is done at
1241 * btrfs_mark_extent_written().
1242 *
1243 * So if we try to extend the previous checksum item, which has
1244 * a range that ends at the start of the range we want to insert,
1245 * make sure we don't extend beyond the start offset of the next
1246 * checksum item. If we are at the last item in the leaf, then
1247 * forget the optimization of extending and add a new checksum
1248 * item - it is not worth the complexity of releasing the path,
1249 * getting the first key for the next leaf, repeat the btree
1250 * search, etc, because log trees are temporary anyway and it
1251 * would only save a few bytes of leaf space.
1252 */
1253 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1254 if (path->slots[0] + 1 >=
1255 btrfs_header_nritems(path->nodes[0])) {
1256 ret = find_next_csum_offset(root, path, &next_offset);
1257 if (ret < 0)
1258 goto out;
1259 found_next = 1;
1260 goto insert;
1261 }
1262
1263 ret = find_next_csum_offset(root, path, &next_offset);
1264 if (ret < 0)
1265 goto out;
1266
1267 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1268 if (tmp <= INT_MAX)
1269 extend_nr = min_t(int, extend_nr, tmp);
1270 }
1271
1272 diff = (csum_offset + extend_nr) * csum_size;
1273 diff = min(diff,
1274 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1275
1276 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1277 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1278 diff /= csum_size;
1279 diff *= csum_size;
1280
1281 btrfs_extend_item(path, diff);
1282 ret = 0;
1283 goto csum;
1284 }
1285
1286 insert:
1287 btrfs_release_path(path);
1288 csum_offset = 0;
1289 if (found_next) {
1290 u64 tmp;
1291
1292 tmp = sums->len - total_bytes;
1293 tmp >>= fs_info->sectorsize_bits;
1294 tmp = min(tmp, (next_offset - file_key.offset) >>
1295 fs_info->sectorsize_bits);
1296
1297 tmp = max_t(u64, 1, tmp);
1298 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1299 ins_size = csum_size * tmp;
1300 } else {
1301 ins_size = csum_size;
1302 }
1303 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1304 ins_size);
1305 if (ret < 0)
1306 goto out;
1307 if (WARN_ON(ret != 0))
1308 goto out;
1309 leaf = path->nodes[0];
1310 csum:
1311 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1312 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1313 btrfs_item_size(leaf, path->slots[0]));
1314 item = (struct btrfs_csum_item *)((unsigned char *)item +
1315 csum_offset * csum_size);
1316 found:
1317 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1318 ins_size *= csum_size;
1319 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1320 ins_size);
1321 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1322 ins_size);
1323
1324 index += ins_size;
1325 ins_size /= csum_size;
1326 total_bytes += ins_size * fs_info->sectorsize;
1327
1328 btrfs_mark_buffer_dirty(path->nodes[0]);
1329 if (total_bytes < sums->len) {
1330 btrfs_release_path(path);
1331 cond_resched();
1332 goto again;
1333 }
1334 out:
1335 btrfs_free_path(path);
1336 return ret;
1337 }
1338
btrfs_extent_item_to_extent_map(struct btrfs_inode * inode,const struct btrfs_path * path,struct btrfs_file_extent_item * fi,struct extent_map * em)1339 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1340 const struct btrfs_path *path,
1341 struct btrfs_file_extent_item *fi,
1342 struct extent_map *em)
1343 {
1344 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1345 struct btrfs_root *root = inode->root;
1346 struct extent_buffer *leaf = path->nodes[0];
1347 const int slot = path->slots[0];
1348 struct btrfs_key key;
1349 u64 extent_start, extent_end;
1350 u64 bytenr;
1351 u8 type = btrfs_file_extent_type(leaf, fi);
1352 int compress_type = btrfs_file_extent_compression(leaf, fi);
1353
1354 btrfs_item_key_to_cpu(leaf, &key, slot);
1355 extent_start = key.offset;
1356 extent_end = btrfs_file_extent_end(path);
1357 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1358 em->generation = btrfs_file_extent_generation(leaf, fi);
1359 if (type == BTRFS_FILE_EXTENT_REG ||
1360 type == BTRFS_FILE_EXTENT_PREALLOC) {
1361 em->start = extent_start;
1362 em->len = extent_end - extent_start;
1363 em->orig_start = extent_start -
1364 btrfs_file_extent_offset(leaf, fi);
1365 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1366 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1367 if (bytenr == 0) {
1368 em->block_start = EXTENT_MAP_HOLE;
1369 return;
1370 }
1371 if (compress_type != BTRFS_COMPRESS_NONE) {
1372 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1373 em->compress_type = compress_type;
1374 em->block_start = bytenr;
1375 em->block_len = em->orig_block_len;
1376 } else {
1377 bytenr += btrfs_file_extent_offset(leaf, fi);
1378 em->block_start = bytenr;
1379 em->block_len = em->len;
1380 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1381 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1382 }
1383 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1384 em->block_start = EXTENT_MAP_INLINE;
1385 em->start = extent_start;
1386 em->len = extent_end - extent_start;
1387 /*
1388 * Initialize orig_start and block_len with the same values
1389 * as in inode.c:btrfs_get_extent().
1390 */
1391 em->orig_start = EXTENT_MAP_HOLE;
1392 em->block_len = (u64)-1;
1393 em->compress_type = compress_type;
1394 if (compress_type != BTRFS_COMPRESS_NONE)
1395 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1396 } else {
1397 btrfs_err(fs_info,
1398 "unknown file extent item type %d, inode %llu, offset %llu, "
1399 "root %llu", type, btrfs_ino(inode), extent_start,
1400 root->root_key.objectid);
1401 }
1402 }
1403
1404 /*
1405 * Returns the end offset (non inclusive) of the file extent item the given path
1406 * points to. If it points to an inline extent, the returned offset is rounded
1407 * up to the sector size.
1408 */
btrfs_file_extent_end(const struct btrfs_path * path)1409 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1410 {
1411 const struct extent_buffer *leaf = path->nodes[0];
1412 const int slot = path->slots[0];
1413 struct btrfs_file_extent_item *fi;
1414 struct btrfs_key key;
1415 u64 end;
1416
1417 btrfs_item_key_to_cpu(leaf, &key, slot);
1418 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1419 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1420
1421 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1422 end = btrfs_file_extent_ram_bytes(leaf, fi);
1423 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1424 } else {
1425 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1426 }
1427
1428 return end;
1429 }
1430