1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/spinlock.h>
9 #include <linux/page-flags.h>
10 #include <asm/bug.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "extent_io.h"
14 #include "locking.h"
15 #include "accessors.h"
16
17 /*
18 * Lockdep class keys for extent_buffer->lock's in this root. For a given
19 * eb, the lockdep key is determined by the btrfs_root it belongs to and
20 * the level the eb occupies in the tree.
21 *
22 * Different roots are used for different purposes and may nest inside each
23 * other and they require separate keysets. As lockdep keys should be
24 * static, assign keysets according to the purpose of the root as indicated
25 * by btrfs_root->root_key.objectid. This ensures that all special purpose
26 * roots have separate keysets.
27 *
28 * Lock-nesting across peer nodes is always done with the immediate parent
29 * node locked thus preventing deadlock. As lockdep doesn't know this, use
30 * subclass to avoid triggering lockdep warning in such cases.
31 *
32 * The key is set by the readpage_end_io_hook after the buffer has passed
33 * csum validation but before the pages are unlocked. It is also set by
34 * btrfs_init_new_buffer on freshly allocated blocks.
35 *
36 * We also add a check to make sure the highest level of the tree is the
37 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
38 * needs update as well.
39 */
40 #ifdef CONFIG_DEBUG_LOCK_ALLOC
41 #if BTRFS_MAX_LEVEL != 8
42 #error
43 #endif
44
45 #define DEFINE_LEVEL(stem, level) \
46 .names[level] = "btrfs-" stem "-0" #level,
47
48 #define DEFINE_NAME(stem) \
49 DEFINE_LEVEL(stem, 0) \
50 DEFINE_LEVEL(stem, 1) \
51 DEFINE_LEVEL(stem, 2) \
52 DEFINE_LEVEL(stem, 3) \
53 DEFINE_LEVEL(stem, 4) \
54 DEFINE_LEVEL(stem, 5) \
55 DEFINE_LEVEL(stem, 6) \
56 DEFINE_LEVEL(stem, 7)
57
58 static struct btrfs_lockdep_keyset {
59 u64 id; /* root objectid */
60 /* Longest entry: btrfs-free-space-00 */
61 char names[BTRFS_MAX_LEVEL][20];
62 struct lock_class_key keys[BTRFS_MAX_LEVEL];
63 } btrfs_lockdep_keysets[] = {
64 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
65 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
66 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
67 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
68 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
69 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
70 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
71 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
72 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
73 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
74 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
75 { .id = 0, DEFINE_NAME("tree") },
76 };
77
78 #undef DEFINE_LEVEL
79 #undef DEFINE_NAME
80
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)81 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
82 {
83 struct btrfs_lockdep_keyset *ks;
84
85 BUG_ON(level >= ARRAY_SIZE(ks->keys));
86
87 /* Find the matching keyset, id 0 is the default entry */
88 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
89 if (ks->id == objectid)
90 break;
91
92 lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
93 }
94
btrfs_maybe_reset_lockdep_class(struct btrfs_root * root,struct extent_buffer * eb)95 void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
96 {
97 if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
98 btrfs_set_buffer_lockdep_class(root->root_key.objectid,
99 eb, btrfs_header_level(eb));
100 }
101
102 #endif
103
104 /*
105 * Extent buffer locking
106 * =====================
107 *
108 * We use a rw_semaphore for tree locking, and the semantics are exactly the
109 * same:
110 *
111 * - reader/writer exclusion
112 * - writer/writer exclusion
113 * - reader/reader sharing
114 * - try-lock semantics for readers and writers
115 *
116 * The rwsem implementation does opportunistic spinning which reduces number of
117 * times the locking task needs to sleep.
118 */
119
120 /*
121 * __btrfs_tree_read_lock - lock extent buffer for read
122 * @eb: the eb to be locked
123 * @nest: the nesting level to be used for lockdep
124 *
125 * This takes the read lock on the extent buffer, using the specified nesting
126 * level for lockdep purposes.
127 */
__btrfs_tree_read_lock(struct extent_buffer * eb,enum btrfs_lock_nesting nest)128 void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
129 {
130 u64 start_ns = 0;
131
132 if (trace_btrfs_tree_read_lock_enabled())
133 start_ns = ktime_get_ns();
134
135 down_read_nested(&eb->lock, nest);
136 trace_btrfs_tree_read_lock(eb, start_ns);
137 }
138
btrfs_tree_read_lock(struct extent_buffer * eb)139 void btrfs_tree_read_lock(struct extent_buffer *eb)
140 {
141 __btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
142 }
143
144 /*
145 * Try-lock for read.
146 *
147 * Return 1 if the rwlock has been taken, 0 otherwise
148 */
btrfs_try_tree_read_lock(struct extent_buffer * eb)149 int btrfs_try_tree_read_lock(struct extent_buffer *eb)
150 {
151 if (down_read_trylock(&eb->lock)) {
152 trace_btrfs_try_tree_read_lock(eb);
153 return 1;
154 }
155 return 0;
156 }
157
158 /*
159 * Try-lock for write.
160 *
161 * Return 1 if the rwlock has been taken, 0 otherwise
162 */
btrfs_try_tree_write_lock(struct extent_buffer * eb)163 int btrfs_try_tree_write_lock(struct extent_buffer *eb)
164 {
165 if (down_write_trylock(&eb->lock)) {
166 eb->lock_owner = current->pid;
167 trace_btrfs_try_tree_write_lock(eb);
168 return 1;
169 }
170 return 0;
171 }
172
173 /*
174 * Release read lock.
175 */
btrfs_tree_read_unlock(struct extent_buffer * eb)176 void btrfs_tree_read_unlock(struct extent_buffer *eb)
177 {
178 trace_btrfs_tree_read_unlock(eb);
179 up_read(&eb->lock);
180 }
181
182 /*
183 * __btrfs_tree_lock - lock eb for write
184 * @eb: the eb to lock
185 * @nest: the nesting to use for the lock
186 *
187 * Returns with the eb->lock write locked.
188 */
__btrfs_tree_lock(struct extent_buffer * eb,enum btrfs_lock_nesting nest)189 void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
190 __acquires(&eb->lock)
191 {
192 u64 start_ns = 0;
193
194 if (trace_btrfs_tree_lock_enabled())
195 start_ns = ktime_get_ns();
196
197 down_write_nested(&eb->lock, nest);
198 eb->lock_owner = current->pid;
199 trace_btrfs_tree_lock(eb, start_ns);
200 }
201
btrfs_tree_lock(struct extent_buffer * eb)202 void btrfs_tree_lock(struct extent_buffer *eb)
203 {
204 __btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
205 }
206
207 /*
208 * Release the write lock.
209 */
btrfs_tree_unlock(struct extent_buffer * eb)210 void btrfs_tree_unlock(struct extent_buffer *eb)
211 {
212 trace_btrfs_tree_unlock(eb);
213 eb->lock_owner = 0;
214 up_write(&eb->lock);
215 }
216
217 /*
218 * This releases any locks held in the path starting at level and going all the
219 * way up to the root.
220 *
221 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
222 * cases, such as COW of the block at slot zero in the node. This ignores
223 * those rules, and it should only be called when there are no more updates to
224 * be done higher up in the tree.
225 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)226 void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
227 {
228 int i;
229
230 if (path->keep_locks)
231 return;
232
233 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
234 if (!path->nodes[i])
235 continue;
236 if (!path->locks[i])
237 continue;
238 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
239 path->locks[i] = 0;
240 }
241 }
242
243 /*
244 * Loop around taking references on and locking the root node of the tree until
245 * we end up with a lock on the root node.
246 *
247 * Return: root extent buffer with write lock held
248 */
btrfs_lock_root_node(struct btrfs_root * root)249 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
250 {
251 struct extent_buffer *eb;
252
253 while (1) {
254 eb = btrfs_root_node(root);
255
256 btrfs_maybe_reset_lockdep_class(root, eb);
257 btrfs_tree_lock(eb);
258 if (eb == root->node)
259 break;
260 btrfs_tree_unlock(eb);
261 free_extent_buffer(eb);
262 }
263 return eb;
264 }
265
266 /*
267 * Loop around taking references on and locking the root node of the tree until
268 * we end up with a lock on the root node.
269 *
270 * Return: root extent buffer with read lock held
271 */
btrfs_read_lock_root_node(struct btrfs_root * root)272 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
273 {
274 struct extent_buffer *eb;
275
276 while (1) {
277 eb = btrfs_root_node(root);
278
279 btrfs_maybe_reset_lockdep_class(root, eb);
280 btrfs_tree_read_lock(eb);
281 if (eb == root->node)
282 break;
283 btrfs_tree_read_unlock(eb);
284 free_extent_buffer(eb);
285 }
286 return eb;
287 }
288
289 /*
290 * Loop around taking references on and locking the root node of the tree in
291 * nowait mode until we end up with a lock on the root node or returning to
292 * avoid blocking.
293 *
294 * Return: root extent buffer with read lock held or -EAGAIN.
295 */
btrfs_try_read_lock_root_node(struct btrfs_root * root)296 struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
297 {
298 struct extent_buffer *eb;
299
300 while (1) {
301 eb = btrfs_root_node(root);
302 if (!btrfs_try_tree_read_lock(eb)) {
303 free_extent_buffer(eb);
304 return ERR_PTR(-EAGAIN);
305 }
306 if (eb == root->node)
307 break;
308 btrfs_tree_read_unlock(eb);
309 free_extent_buffer(eb);
310 }
311 return eb;
312 }
313
314 /*
315 * DREW locks
316 * ==========
317 *
318 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
319 * where you want to provide A-B exclusion but not AA or BB.
320 *
321 * Currently implementation gives more priority to reader. If a reader and a
322 * writer both race to acquire their respective sides of the lock the writer
323 * would yield its lock as soon as it detects a concurrent reader. Additionally
324 * if there are pending readers no new writers would be allowed to come in and
325 * acquire the lock.
326 */
327
btrfs_drew_lock_init(struct btrfs_drew_lock * lock)328 int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
329 {
330 int ret;
331
332 ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
333 if (ret)
334 return ret;
335
336 atomic_set(&lock->readers, 0);
337 init_waitqueue_head(&lock->pending_readers);
338 init_waitqueue_head(&lock->pending_writers);
339
340 return 0;
341 }
342
btrfs_drew_lock_destroy(struct btrfs_drew_lock * lock)343 void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
344 {
345 percpu_counter_destroy(&lock->writers);
346 }
347
348 /* Return true if acquisition is successful, false otherwise */
btrfs_drew_try_write_lock(struct btrfs_drew_lock * lock)349 bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
350 {
351 if (atomic_read(&lock->readers))
352 return false;
353
354 percpu_counter_inc(&lock->writers);
355
356 /* Ensure writers count is updated before we check for pending readers */
357 smp_mb();
358 if (atomic_read(&lock->readers)) {
359 btrfs_drew_write_unlock(lock);
360 return false;
361 }
362
363 return true;
364 }
365
btrfs_drew_write_lock(struct btrfs_drew_lock * lock)366 void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
367 {
368 while (true) {
369 if (btrfs_drew_try_write_lock(lock))
370 return;
371 wait_event(lock->pending_writers, !atomic_read(&lock->readers));
372 }
373 }
374
btrfs_drew_write_unlock(struct btrfs_drew_lock * lock)375 void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
376 {
377 percpu_counter_dec(&lock->writers);
378 cond_wake_up(&lock->pending_readers);
379 }
380
btrfs_drew_read_lock(struct btrfs_drew_lock * lock)381 void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
382 {
383 atomic_inc(&lock->readers);
384
385 /*
386 * Ensure the pending reader count is perceieved BEFORE this reader
387 * goes to sleep in case of active writers. This guarantees new writers
388 * won't be allowed and that the current reader will be woken up when
389 * the last active writer finishes its jobs.
390 */
391 smp_mb__after_atomic();
392
393 wait_event(lock->pending_readers,
394 percpu_counter_sum(&lock->writers) == 0);
395 }
396
btrfs_drew_read_unlock(struct btrfs_drew_lock * lock)397 void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
398 {
399 /*
400 * atomic_dec_and_test implies a full barrier, so woken up writers
401 * are guaranteed to see the decrement
402 */
403 if (atomic_dec_and_test(&lock->readers))
404 wake_up(&lock->pending_writers);
405 }
406