1 /*
2 * Copyright © 2014-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "i915_reg.h"
25 #include "intel_ddi.h"
26 #include "intel_ddi_buf_trans.h"
27 #include "intel_de.h"
28 #include "intel_display_power_well.h"
29 #include "intel_display_types.h"
30 #include "intel_dp.h"
31 #include "intel_dpio_phy.h"
32 #include "vlv_sideband.h"
33
34 /**
35 * DOC: DPIO
36 *
37 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
38 * ports. DPIO is the name given to such a display PHY. These PHYs
39 * don't follow the standard programming model using direct MMIO
40 * registers, and instead their registers must be accessed trough IOSF
41 * sideband. VLV has one such PHY for driving ports B and C, and CHV
42 * adds another PHY for driving port D. Each PHY responds to specific
43 * IOSF-SB port.
44 *
45 * Each display PHY is made up of one or two channels. Each channel
46 * houses a common lane part which contains the PLL and other common
47 * logic. CH0 common lane also contains the IOSF-SB logic for the
48 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
49 * must be running when any DPIO registers are accessed.
50 *
51 * In addition to having their own registers, the PHYs are also
52 * controlled through some dedicated signals from the display
53 * controller. These include PLL reference clock enable, PLL enable,
54 * and CRI clock selection, for example.
55 *
56 * Eeach channel also has two splines (also called data lanes), and
57 * each spline is made up of one Physical Access Coding Sub-Layer
58 * (PCS) block and two TX lanes. So each channel has two PCS blocks
59 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
60 * data/clock pairs depending on the output type.
61 *
62 * Additionally the PHY also contains an AUX lane with AUX blocks
63 * for each channel. This is used for DP AUX communication, but
64 * this fact isn't really relevant for the driver since AUX is
65 * controlled from the display controller side. No DPIO registers
66 * need to be accessed during AUX communication,
67 *
68 * Generally on VLV/CHV the common lane corresponds to the pipe and
69 * the spline (PCS/TX) corresponds to the port.
70 *
71 * For dual channel PHY (VLV/CHV):
72 *
73 * pipe A == CMN/PLL/REF CH0
74 *
75 * pipe B == CMN/PLL/REF CH1
76 *
77 * port B == PCS/TX CH0
78 *
79 * port C == PCS/TX CH1
80 *
81 * This is especially important when we cross the streams
82 * ie. drive port B with pipe B, or port C with pipe A.
83 *
84 * For single channel PHY (CHV):
85 *
86 * pipe C == CMN/PLL/REF CH0
87 *
88 * port D == PCS/TX CH0
89 *
90 * On BXT the entire PHY channel corresponds to the port. That means
91 * the PLL is also now associated with the port rather than the pipe,
92 * and so the clock needs to be routed to the appropriate transcoder.
93 * Port A PLL is directly connected to transcoder EDP and port B/C
94 * PLLs can be routed to any transcoder A/B/C.
95 *
96 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
97 * digital port D (CHV) or port A (BXT). ::
98 *
99 *
100 * Dual channel PHY (VLV/CHV/BXT)
101 * ---------------------------------
102 * | CH0 | CH1 |
103 * | CMN/PLL/REF | CMN/PLL/REF |
104 * |---------------|---------------| Display PHY
105 * | PCS01 | PCS23 | PCS01 | PCS23 |
106 * |-------|-------|-------|-------|
107 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
108 * ---------------------------------
109 * | DDI0 | DDI1 | DP/HDMI ports
110 * ---------------------------------
111 *
112 * Single channel PHY (CHV/BXT)
113 * -----------------
114 * | CH0 |
115 * | CMN/PLL/REF |
116 * |---------------| Display PHY
117 * | PCS01 | PCS23 |
118 * |-------|-------|
119 * |TX0|TX1|TX2|TX3|
120 * -----------------
121 * | DDI2 | DP/HDMI port
122 * -----------------
123 */
124
125 /**
126 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
127 */
128 struct bxt_ddi_phy_info {
129 /**
130 * @dual_channel: true if this phy has a second channel.
131 */
132 bool dual_channel;
133
134 /**
135 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
136 * Otherwise the GRC value will be copied from the phy indicated by
137 * this field.
138 */
139 enum dpio_phy rcomp_phy;
140
141 /**
142 * @reset_delay: delay in us to wait before setting the common reset
143 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
144 */
145 int reset_delay;
146
147 /**
148 * @pwron_mask: Mask with the appropriate bit set that would cause the
149 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
150 */
151 u32 pwron_mask;
152
153 /**
154 * @channel: struct containing per channel information.
155 */
156 struct {
157 /**
158 * @channel.port: which port maps to this channel.
159 */
160 enum port port;
161 } channel[2];
162 };
163
164 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
165 [DPIO_PHY0] = {
166 .dual_channel = true,
167 .rcomp_phy = DPIO_PHY1,
168 .pwron_mask = BIT(0),
169
170 .channel = {
171 [DPIO_CH0] = { .port = PORT_B },
172 [DPIO_CH1] = { .port = PORT_C },
173 }
174 },
175 [DPIO_PHY1] = {
176 .dual_channel = false,
177 .rcomp_phy = -1,
178 .pwron_mask = BIT(1),
179
180 .channel = {
181 [DPIO_CH0] = { .port = PORT_A },
182 }
183 },
184 };
185
186 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
187 [DPIO_PHY0] = {
188 .dual_channel = false,
189 .rcomp_phy = DPIO_PHY1,
190 .pwron_mask = BIT(0),
191 .reset_delay = 20,
192
193 .channel = {
194 [DPIO_CH0] = { .port = PORT_B },
195 }
196 },
197 [DPIO_PHY1] = {
198 .dual_channel = false,
199 .rcomp_phy = -1,
200 .pwron_mask = BIT(3),
201 .reset_delay = 20,
202
203 .channel = {
204 [DPIO_CH0] = { .port = PORT_A },
205 }
206 },
207 [DPIO_PHY2] = {
208 .dual_channel = false,
209 .rcomp_phy = DPIO_PHY1,
210 .pwron_mask = BIT(1),
211 .reset_delay = 20,
212
213 .channel = {
214 [DPIO_CH0] = { .port = PORT_C },
215 }
216 },
217 };
218
219 static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private * dev_priv,int * count)220 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
221 {
222 if (IS_GEMINILAKE(dev_priv)) {
223 *count = ARRAY_SIZE(glk_ddi_phy_info);
224 return glk_ddi_phy_info;
225 } else {
226 *count = ARRAY_SIZE(bxt_ddi_phy_info);
227 return bxt_ddi_phy_info;
228 }
229 }
230
231 static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private * dev_priv,enum dpio_phy phy)232 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
233 {
234 int count;
235 const struct bxt_ddi_phy_info *phy_list =
236 bxt_get_phy_list(dev_priv, &count);
237
238 return &phy_list[phy];
239 }
240
bxt_port_to_phy_channel(struct drm_i915_private * dev_priv,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)241 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
242 enum dpio_phy *phy, enum dpio_channel *ch)
243 {
244 const struct bxt_ddi_phy_info *phy_info, *phys;
245 int i, count;
246
247 phys = bxt_get_phy_list(dev_priv, &count);
248
249 for (i = 0; i < count; i++) {
250 phy_info = &phys[i];
251
252 if (port == phy_info->channel[DPIO_CH0].port) {
253 *phy = i;
254 *ch = DPIO_CH0;
255 return;
256 }
257
258 if (phy_info->dual_channel &&
259 port == phy_info->channel[DPIO_CH1].port) {
260 *phy = i;
261 *ch = DPIO_CH1;
262 return;
263 }
264 }
265
266 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
267 port_name(port));
268 *phy = DPIO_PHY0;
269 *ch = DPIO_CH0;
270 }
271
bxt_ddi_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)272 void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder,
273 const struct intel_crtc_state *crtc_state)
274 {
275 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
276 int level = intel_ddi_level(encoder, crtc_state, 0);
277 const struct intel_ddi_buf_trans *trans;
278 enum dpio_channel ch;
279 enum dpio_phy phy;
280 int n_entries;
281 u32 val;
282
283 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
284 if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
285 return;
286
287 bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);
288
289 /*
290 * While we write to the group register to program all lanes at once we
291 * can read only lane registers and we pick lanes 0/1 for that.
292 */
293 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
294 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
295 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
296
297 val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
298 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
299 val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT |
300 trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT;
301 intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
302
303 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
304 val &= ~SCALE_DCOMP_METHOD;
305 if (trans->entries[level].bxt.enable)
306 val |= SCALE_DCOMP_METHOD;
307
308 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
309 drm_err(&dev_priv->drm,
310 "Disabled scaling while ouniqetrangenmethod was set");
311
312 intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
313
314 val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
315 val &= ~DE_EMPHASIS;
316 val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT;
317 intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
318
319 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
320 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
321 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
322 }
323
bxt_ddi_phy_is_enabled(struct drm_i915_private * dev_priv,enum dpio_phy phy)324 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
325 enum dpio_phy phy)
326 {
327 const struct bxt_ddi_phy_info *phy_info;
328
329 phy_info = bxt_get_phy_info(dev_priv, phy);
330
331 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
332 return false;
333
334 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
335 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
336 drm_dbg(&dev_priv->drm,
337 "DDI PHY %d powered, but power hasn't settled\n", phy);
338
339 return false;
340 }
341
342 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
343 drm_dbg(&dev_priv->drm,
344 "DDI PHY %d powered, but still in reset\n", phy);
345
346 return false;
347 }
348
349 return true;
350 }
351
bxt_get_grc(struct drm_i915_private * dev_priv,enum dpio_phy phy)352 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
353 {
354 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
355
356 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
357 }
358
bxt_phy_wait_grc_done(struct drm_i915_private * dev_priv,enum dpio_phy phy)359 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
360 enum dpio_phy phy)
361 {
362 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
363 GRC_DONE, 10))
364 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
365 phy);
366 }
367
_bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)368 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
369 enum dpio_phy phy)
370 {
371 const struct bxt_ddi_phy_info *phy_info;
372 u32 val;
373
374 phy_info = bxt_get_phy_info(dev_priv, phy);
375
376 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
377 /* Still read out the GRC value for state verification */
378 if (phy_info->rcomp_phy != -1)
379 dev_priv->display.state.bxt_phy_grc = bxt_get_grc(dev_priv, phy);
380
381 if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
382 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
383 "won't reprogram it\n", phy);
384 return;
385 }
386
387 drm_dbg(&dev_priv->drm,
388 "DDI PHY %d enabled with invalid state, "
389 "force reprogramming it\n", phy);
390 }
391
392 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
393 val |= phy_info->pwron_mask;
394 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
395
396 /*
397 * The PHY registers start out inaccessible and respond to reads with
398 * all 1s. Eventually they become accessible as they power up, then
399 * the reserved bit will give the default 0. Poll on the reserved bit
400 * becoming 0 to find when the PHY is accessible.
401 * The flag should get set in 100us according to the HW team, but
402 * use 1ms due to occasional timeouts observed with that.
403 */
404 if (intel_wait_for_register_fw(&dev_priv->uncore,
405 BXT_PORT_CL1CM_DW0(phy),
406 PHY_RESERVED | PHY_POWER_GOOD,
407 PHY_POWER_GOOD,
408 1))
409 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
410 phy);
411
412 /* Program PLL Rcomp code offset */
413 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
414 val &= ~IREF0RC_OFFSET_MASK;
415 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
416 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
417
418 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
419 val &= ~IREF1RC_OFFSET_MASK;
420 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
421 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
422
423 /* Program power gating */
424 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
425 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
426 SUS_CLK_CONFIG;
427 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
428
429 if (phy_info->dual_channel) {
430 val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
431 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
432 intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
433 }
434
435 if (phy_info->rcomp_phy != -1) {
436 u32 grc_code;
437
438 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
439
440 /*
441 * PHY0 isn't connected to an RCOMP resistor so copy over
442 * the corresponding calibrated value from PHY1, and disable
443 * the automatic calibration on PHY0.
444 */
445 val = bxt_get_grc(dev_priv, phy_info->rcomp_phy);
446 dev_priv->display.state.bxt_phy_grc = val;
447
448 grc_code = val << GRC_CODE_FAST_SHIFT |
449 val << GRC_CODE_SLOW_SHIFT |
450 val;
451 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
452
453 val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
454 val |= GRC_DIS | GRC_RDY_OVRD;
455 intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
456 }
457
458 if (phy_info->reset_delay)
459 udelay(phy_info->reset_delay);
460
461 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
462 val |= COMMON_RESET_DIS;
463 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
464 }
465
bxt_ddi_phy_uninit(struct drm_i915_private * dev_priv,enum dpio_phy phy)466 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
467 {
468 const struct bxt_ddi_phy_info *phy_info;
469 u32 val;
470
471 phy_info = bxt_get_phy_info(dev_priv, phy);
472
473 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
474 val &= ~COMMON_RESET_DIS;
475 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
476
477 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
478 val &= ~phy_info->pwron_mask;
479 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
480 }
481
bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)482 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
483 {
484 const struct bxt_ddi_phy_info *phy_info =
485 bxt_get_phy_info(dev_priv, phy);
486 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
487 bool was_enabled;
488
489 lockdep_assert_held(&dev_priv->display.power.domains.lock);
490
491 was_enabled = true;
492 if (rcomp_phy != -1)
493 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
494
495 /*
496 * We need to copy the GRC calibration value from rcomp_phy,
497 * so make sure it's powered up.
498 */
499 if (!was_enabled)
500 _bxt_ddi_phy_init(dev_priv, rcomp_phy);
501
502 _bxt_ddi_phy_init(dev_priv, phy);
503
504 if (!was_enabled)
505 bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
506 }
507
508 static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)509 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
510 i915_reg_t reg, u32 mask, u32 expected,
511 const char *reg_fmt, ...)
512 {
513 struct va_format vaf;
514 va_list args;
515 u32 val;
516
517 val = intel_de_read(dev_priv, reg);
518 if ((val & mask) == expected)
519 return true;
520
521 va_start(args, reg_fmt);
522 vaf.fmt = reg_fmt;
523 vaf.va = &args;
524
525 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
526 "current %08x, expected %08x (mask %08x)\n",
527 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
528 mask);
529
530 va_end(args);
531
532 return false;
533 }
534
bxt_ddi_phy_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy)535 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
536 enum dpio_phy phy)
537 {
538 const struct bxt_ddi_phy_info *phy_info;
539 u32 mask;
540 bool ok;
541
542 phy_info = bxt_get_phy_info(dev_priv, phy);
543
544 #define _CHK(reg, mask, exp, fmt, ...) \
545 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
546 ## __VA_ARGS__)
547
548 if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
549 return false;
550
551 ok = true;
552
553 /* PLL Rcomp code offset */
554 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
555 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
556 "BXT_PORT_CL1CM_DW9(%d)", phy);
557 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
558 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
559 "BXT_PORT_CL1CM_DW10(%d)", phy);
560
561 /* Power gating */
562 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
563 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
564 "BXT_PORT_CL1CM_DW28(%d)", phy);
565
566 if (phy_info->dual_channel)
567 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
568 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
569 "BXT_PORT_CL2CM_DW6(%d)", phy);
570
571 if (phy_info->rcomp_phy != -1) {
572 u32 grc_code = dev_priv->display.state.bxt_phy_grc;
573
574 grc_code = grc_code << GRC_CODE_FAST_SHIFT |
575 grc_code << GRC_CODE_SLOW_SHIFT |
576 grc_code;
577 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
578 GRC_CODE_NOM_MASK;
579 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
580 "BXT_PORT_REF_DW6(%d)", phy);
581
582 mask = GRC_DIS | GRC_RDY_OVRD;
583 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
584 "BXT_PORT_REF_DW8(%d)", phy);
585 }
586
587 return ok;
588 #undef _CHK
589 }
590
591 u8
bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)592 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
593 {
594 switch (lane_count) {
595 case 1:
596 return 0;
597 case 2:
598 return BIT(2) | BIT(0);
599 case 4:
600 return BIT(3) | BIT(2) | BIT(0);
601 default:
602 MISSING_CASE(lane_count);
603
604 return 0;
605 }
606 }
607
bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder * encoder,u8 lane_lat_optim_mask)608 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
609 u8 lane_lat_optim_mask)
610 {
611 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
612 enum port port = encoder->port;
613 enum dpio_phy phy;
614 enum dpio_channel ch;
615 int lane;
616
617 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
618
619 for (lane = 0; lane < 4; lane++) {
620 u32 val = intel_de_read(dev_priv,
621 BXT_PORT_TX_DW14_LN(phy, ch, lane));
622
623 /*
624 * Note that on CHV this flag is called UPAR, but has
625 * the same function.
626 */
627 val &= ~LATENCY_OPTIM;
628 if (lane_lat_optim_mask & BIT(lane))
629 val |= LATENCY_OPTIM;
630
631 intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
632 val);
633 }
634 }
635
636 u8
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)637 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
638 {
639 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
640 enum port port = encoder->port;
641 enum dpio_phy phy;
642 enum dpio_channel ch;
643 int lane;
644 u8 mask;
645
646 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
647
648 mask = 0;
649 for (lane = 0; lane < 4; lane++) {
650 u32 val = intel_de_read(dev_priv,
651 BXT_PORT_TX_DW14_LN(phy, ch, lane));
652
653 if (val & LATENCY_OPTIM)
654 mask |= BIT(lane);
655 }
656
657 return mask;
658 }
659
vlv_dig_port_to_channel(struct intel_digital_port * dig_port)660 enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
661 {
662 switch (dig_port->base.port) {
663 default:
664 MISSING_CASE(dig_port->base.port);
665 fallthrough;
666 case PORT_B:
667 case PORT_D:
668 return DPIO_CH0;
669 case PORT_C:
670 return DPIO_CH1;
671 }
672 }
673
vlv_dig_port_to_phy(struct intel_digital_port * dig_port)674 enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
675 {
676 switch (dig_port->base.port) {
677 default:
678 MISSING_CASE(dig_port->base.port);
679 fallthrough;
680 case PORT_B:
681 case PORT_C:
682 return DPIO_PHY0;
683 case PORT_D:
684 return DPIO_PHY1;
685 }
686 }
687
vlv_pipe_to_channel(enum pipe pipe)688 enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
689 {
690 switch (pipe) {
691 default:
692 MISSING_CASE(pipe);
693 fallthrough;
694 case PIPE_A:
695 case PIPE_C:
696 return DPIO_CH0;
697 case PIPE_B:
698 return DPIO_CH1;
699 }
700 }
701
chv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)702 void chv_set_phy_signal_level(struct intel_encoder *encoder,
703 const struct intel_crtc_state *crtc_state,
704 u32 deemph_reg_value, u32 margin_reg_value,
705 bool uniq_trans_scale)
706 {
707 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
708 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
709 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
710 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
711 enum pipe pipe = crtc->pipe;
712 u32 val;
713 int i;
714
715 vlv_dpio_get(dev_priv);
716
717 /* Clear calc init */
718 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
719 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
720 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
721 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
722 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
723
724 if (crtc_state->lane_count > 2) {
725 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
726 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
727 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
728 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
729 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
730 }
731
732 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
733 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
734 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
735 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
736
737 if (crtc_state->lane_count > 2) {
738 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
739 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
740 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
741 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
742 }
743
744 /* Program swing deemph */
745 for (i = 0; i < crtc_state->lane_count; i++) {
746 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
747 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
748 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
749 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
750 }
751
752 /* Program swing margin */
753 for (i = 0; i < crtc_state->lane_count; i++) {
754 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
755
756 val &= ~DPIO_SWING_MARGIN000_MASK;
757 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
758
759 /*
760 * Supposedly this value shouldn't matter when unique transition
761 * scale is disabled, but in fact it does matter. Let's just
762 * always program the same value and hope it's OK.
763 */
764 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
765 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
766
767 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
768 }
769
770 /*
771 * The document said it needs to set bit 27 for ch0 and bit 26
772 * for ch1. Might be a typo in the doc.
773 * For now, for this unique transition scale selection, set bit
774 * 27 for ch0 and ch1.
775 */
776 for (i = 0; i < crtc_state->lane_count; i++) {
777 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
778 if (uniq_trans_scale)
779 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
780 else
781 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
782 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
783 }
784
785 /* Start swing calculation */
786 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
787 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
788 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
789
790 if (crtc_state->lane_count > 2) {
791 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
792 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
793 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
794 }
795
796 vlv_dpio_put(dev_priv);
797 }
798
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)799 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
800 const struct intel_crtc_state *crtc_state,
801 bool reset)
802 {
803 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
804 enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
805 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
806 enum pipe pipe = crtc->pipe;
807 u32 val;
808
809 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
810 if (reset)
811 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
812 else
813 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
814 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
815
816 if (crtc_state->lane_count > 2) {
817 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
818 if (reset)
819 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
820 else
821 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
822 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
823 }
824
825 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
826 val |= CHV_PCS_REQ_SOFTRESET_EN;
827 if (reset)
828 val &= ~DPIO_PCS_CLK_SOFT_RESET;
829 else
830 val |= DPIO_PCS_CLK_SOFT_RESET;
831 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
832
833 if (crtc_state->lane_count > 2) {
834 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
835 val |= CHV_PCS_REQ_SOFTRESET_EN;
836 if (reset)
837 val &= ~DPIO_PCS_CLK_SOFT_RESET;
838 else
839 val |= DPIO_PCS_CLK_SOFT_RESET;
840 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
841 }
842 }
843
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)844 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
845 const struct intel_crtc_state *crtc_state)
846 {
847 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
848 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
849 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
850 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
851 enum pipe pipe = crtc->pipe;
852 unsigned int lane_mask =
853 intel_dp_unused_lane_mask(crtc_state->lane_count);
854 u32 val;
855
856 /*
857 * Must trick the second common lane into life.
858 * Otherwise we can't even access the PLL.
859 */
860 if (ch == DPIO_CH0 && pipe == PIPE_B)
861 dig_port->release_cl2_override =
862 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
863
864 chv_phy_powergate_lanes(encoder, true, lane_mask);
865
866 vlv_dpio_get(dev_priv);
867
868 /* Assert data lane reset */
869 chv_data_lane_soft_reset(encoder, crtc_state, true);
870
871 /* program left/right clock distribution */
872 if (pipe != PIPE_B) {
873 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
874 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
875 if (ch == DPIO_CH0)
876 val |= CHV_BUFLEFTENA1_FORCE;
877 if (ch == DPIO_CH1)
878 val |= CHV_BUFRIGHTENA1_FORCE;
879 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
880 } else {
881 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
882 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
883 if (ch == DPIO_CH0)
884 val |= CHV_BUFLEFTENA2_FORCE;
885 if (ch == DPIO_CH1)
886 val |= CHV_BUFRIGHTENA2_FORCE;
887 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
888 }
889
890 /* program clock channel usage */
891 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
892 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
893 if (pipe != PIPE_B)
894 val &= ~CHV_PCS_USEDCLKCHANNEL;
895 else
896 val |= CHV_PCS_USEDCLKCHANNEL;
897 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
898
899 if (crtc_state->lane_count > 2) {
900 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
901 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
902 if (pipe != PIPE_B)
903 val &= ~CHV_PCS_USEDCLKCHANNEL;
904 else
905 val |= CHV_PCS_USEDCLKCHANNEL;
906 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
907 }
908
909 /*
910 * This a a bit weird since generally CL
911 * matches the pipe, but here we need to
912 * pick the CL based on the port.
913 */
914 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
915 if (pipe != PIPE_B)
916 val &= ~CHV_CMN_USEDCLKCHANNEL;
917 else
918 val |= CHV_CMN_USEDCLKCHANNEL;
919 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
920
921 vlv_dpio_put(dev_priv);
922 }
923
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)924 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
925 const struct intel_crtc_state *crtc_state)
926 {
927 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
928 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
929 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
930 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
931 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
932 enum pipe pipe = crtc->pipe;
933 int data, i, stagger;
934 u32 val;
935
936 vlv_dpio_get(dev_priv);
937
938 /* allow hardware to manage TX FIFO reset source */
939 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
940 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
941 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
942
943 if (crtc_state->lane_count > 2) {
944 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
945 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
946 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
947 }
948
949 /* Program Tx lane latency optimal setting*/
950 for (i = 0; i < crtc_state->lane_count; i++) {
951 /* Set the upar bit */
952 if (crtc_state->lane_count == 1)
953 data = 0x0;
954 else
955 data = (i == 1) ? 0x0 : 0x1;
956 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
957 data << DPIO_UPAR_SHIFT);
958 }
959
960 /* Data lane stagger programming */
961 if (crtc_state->port_clock > 270000)
962 stagger = 0x18;
963 else if (crtc_state->port_clock > 135000)
964 stagger = 0xd;
965 else if (crtc_state->port_clock > 67500)
966 stagger = 0x7;
967 else if (crtc_state->port_clock > 33750)
968 stagger = 0x4;
969 else
970 stagger = 0x2;
971
972 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
973 val |= DPIO_TX2_STAGGER_MASK(0x1f);
974 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
975
976 if (crtc_state->lane_count > 2) {
977 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
978 val |= DPIO_TX2_STAGGER_MASK(0x1f);
979 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
980 }
981
982 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
983 DPIO_LANESTAGGER_STRAP(stagger) |
984 DPIO_LANESTAGGER_STRAP_OVRD |
985 DPIO_TX1_STAGGER_MASK(0x1f) |
986 DPIO_TX1_STAGGER_MULT(6) |
987 DPIO_TX2_STAGGER_MULT(0));
988
989 if (crtc_state->lane_count > 2) {
990 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
991 DPIO_LANESTAGGER_STRAP(stagger) |
992 DPIO_LANESTAGGER_STRAP_OVRD |
993 DPIO_TX1_STAGGER_MASK(0x1f) |
994 DPIO_TX1_STAGGER_MULT(7) |
995 DPIO_TX2_STAGGER_MULT(5));
996 }
997
998 /* Deassert data lane reset */
999 chv_data_lane_soft_reset(encoder, crtc_state, false);
1000
1001 vlv_dpio_put(dev_priv);
1002 }
1003
chv_phy_release_cl2_override(struct intel_encoder * encoder)1004 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1005 {
1006 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1007 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1008
1009 if (dig_port->release_cl2_override) {
1010 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1011 dig_port->release_cl2_override = false;
1012 }
1013 }
1014
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1015 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1016 const struct intel_crtc_state *old_crtc_state)
1017 {
1018 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1019 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1020 u32 val;
1021
1022 vlv_dpio_get(dev_priv);
1023
1024 /* disable left/right clock distribution */
1025 if (pipe != PIPE_B) {
1026 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1027 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1028 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1029 } else {
1030 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1031 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1032 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1033 }
1034
1035 vlv_dpio_put(dev_priv);
1036
1037 /*
1038 * Leave the power down bit cleared for at least one
1039 * lane so that chv_powergate_phy_ch() will power
1040 * on something when the channel is otherwise unused.
1041 * When the port is off and the override is removed
1042 * the lanes power down anyway, so otherwise it doesn't
1043 * really matter what the state of power down bits is
1044 * after this.
1045 */
1046 chv_phy_powergate_lanes(encoder, false, 0x0);
1047 }
1048
vlv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)1049 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1050 const struct intel_crtc_state *crtc_state,
1051 u32 demph_reg_value, u32 preemph_reg_value,
1052 u32 uniqtranscale_reg_value, u32 tx3_demph)
1053 {
1054 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1055 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1056 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1057 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1058 enum pipe pipe = crtc->pipe;
1059
1060 vlv_dpio_get(dev_priv);
1061
1062 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1063 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1064 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1065 uniqtranscale_reg_value);
1066 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1067
1068 if (tx3_demph)
1069 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1070
1071 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1072 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1073 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1074
1075 vlv_dpio_put(dev_priv);
1076 }
1077
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1078 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1079 const struct intel_crtc_state *crtc_state)
1080 {
1081 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1082 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1083 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1084 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1085 enum pipe pipe = crtc->pipe;
1086
1087 /* Program Tx lane resets to default */
1088 vlv_dpio_get(dev_priv);
1089
1090 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1091 DPIO_PCS_TX_LANE2_RESET |
1092 DPIO_PCS_TX_LANE1_RESET);
1093 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1094 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1095 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1096 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1097 DPIO_PCS_CLK_SOFT_RESET);
1098
1099 /* Fix up inter-pair skew failure */
1100 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1101 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1102 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1103
1104 vlv_dpio_put(dev_priv);
1105 }
1106
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1107 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1108 const struct intel_crtc_state *crtc_state)
1109 {
1110 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1111 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1112 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1113 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1114 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1115 enum pipe pipe = crtc->pipe;
1116 u32 val;
1117
1118 vlv_dpio_get(dev_priv);
1119
1120 /* Enable clock channels for this port */
1121 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1122 val = 0;
1123 if (pipe)
1124 val |= (1<<21);
1125 else
1126 val &= ~(1<<21);
1127 val |= 0x001000c4;
1128 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1129
1130 /* Program lane clock */
1131 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1132 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1133
1134 vlv_dpio_put(dev_priv);
1135 }
1136
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1137 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1138 const struct intel_crtc_state *old_crtc_state)
1139 {
1140 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1141 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1142 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1143 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1144 enum pipe pipe = crtc->pipe;
1145
1146 vlv_dpio_get(dev_priv);
1147 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1148 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1149 vlv_dpio_put(dev_priv);
1150 }
1151