1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 #include <trace/events/sock.h>
21
22 #include <linux/ceph/ceph_features.h>
23 #include <linux/ceph/libceph.h>
24 #include <linux/ceph/messenger.h>
25 #include <linux/ceph/decode.h>
26 #include <linux/ceph/pagelist.h>
27 #include <linux/export.h>
28
29 /*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38 /*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
con_flag_valid(unsigned long con_flag)86 static bool con_flag_valid(unsigned long con_flag)
87 {
88 switch (con_flag) {
89 case CEPH_CON_F_LOSSYTX:
90 case CEPH_CON_F_KEEPALIVE_PENDING:
91 case CEPH_CON_F_WRITE_PENDING:
92 case CEPH_CON_F_SOCK_CLOSED:
93 case CEPH_CON_F_BACKOFF:
94 return true;
95 default:
96 return false;
97 }
98 }
99
ceph_con_flag_clear(struct ceph_connection * con,unsigned long con_flag)100 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101 {
102 BUG_ON(!con_flag_valid(con_flag));
103
104 clear_bit(con_flag, &con->flags);
105 }
106
ceph_con_flag_set(struct ceph_connection * con,unsigned long con_flag)107 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108 {
109 BUG_ON(!con_flag_valid(con_flag));
110
111 set_bit(con_flag, &con->flags);
112 }
113
ceph_con_flag_test(struct ceph_connection * con,unsigned long con_flag)114 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115 {
116 BUG_ON(!con_flag_valid(con_flag));
117
118 return test_bit(con_flag, &con->flags);
119 }
120
ceph_con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)121 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122 unsigned long con_flag)
123 {
124 BUG_ON(!con_flag_valid(con_flag));
125
126 return test_and_clear_bit(con_flag, &con->flags);
127 }
128
ceph_con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)129 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130 unsigned long con_flag)
131 {
132 BUG_ON(!con_flag_valid(con_flag));
133
134 return test_and_set_bit(con_flag, &con->flags);
135 }
136
137 /* Slab caches for frequently-allocated structures */
138
139 static struct kmem_cache *ceph_msg_cache;
140
141 #ifdef CONFIG_LOCKDEP
142 static struct lock_class_key socket_class;
143 #endif
144
145 static void queue_con(struct ceph_connection *con);
146 static void cancel_con(struct ceph_connection *con);
147 static void ceph_con_workfn(struct work_struct *);
148 static void con_fault(struct ceph_connection *con);
149
150 /*
151 * Nicely render a sockaddr as a string. An array of formatted
152 * strings is used, to approximate reentrancy.
153 */
154 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
155 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
156 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
157 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158
159 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160 static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162 struct page *ceph_zero_page; /* used in certain error cases */
163
ceph_pr_addr(const struct ceph_entity_addr * addr)164 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165 {
166 int i;
167 char *s;
168 struct sockaddr_storage ss = addr->in_addr; /* align */
169 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173 s = addr_str[i];
174
175 switch (ss.ss_family) {
176 case AF_INET:
177 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178 le32_to_cpu(addr->type), &in4->sin_addr,
179 ntohs(in4->sin_port));
180 break;
181
182 case AF_INET6:
183 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184 le32_to_cpu(addr->type), &in6->sin6_addr,
185 ntohs(in6->sin6_port));
186 break;
187
188 default:
189 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190 ss.ss_family);
191 }
192
193 return s;
194 }
195 EXPORT_SYMBOL(ceph_pr_addr);
196
ceph_encode_my_addr(struct ceph_messenger * msgr)197 void ceph_encode_my_addr(struct ceph_messenger *msgr)
198 {
199 if (!ceph_msgr2(from_msgr(msgr))) {
200 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201 sizeof(msgr->my_enc_addr));
202 ceph_encode_banner_addr(&msgr->my_enc_addr);
203 }
204 }
205
206 /*
207 * work queue for all reading and writing to/from the socket.
208 */
209 static struct workqueue_struct *ceph_msgr_wq;
210
ceph_msgr_slab_init(void)211 static int ceph_msgr_slab_init(void)
212 {
213 BUG_ON(ceph_msg_cache);
214 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215 if (!ceph_msg_cache)
216 return -ENOMEM;
217
218 return 0;
219 }
220
ceph_msgr_slab_exit(void)221 static void ceph_msgr_slab_exit(void)
222 {
223 BUG_ON(!ceph_msg_cache);
224 kmem_cache_destroy(ceph_msg_cache);
225 ceph_msg_cache = NULL;
226 }
227
_ceph_msgr_exit(void)228 static void _ceph_msgr_exit(void)
229 {
230 if (ceph_msgr_wq) {
231 destroy_workqueue(ceph_msgr_wq);
232 ceph_msgr_wq = NULL;
233 }
234
235 BUG_ON(!ceph_zero_page);
236 put_page(ceph_zero_page);
237 ceph_zero_page = NULL;
238
239 ceph_msgr_slab_exit();
240 }
241
ceph_msgr_init(void)242 int __init ceph_msgr_init(void)
243 {
244 if (ceph_msgr_slab_init())
245 return -ENOMEM;
246
247 BUG_ON(ceph_zero_page);
248 ceph_zero_page = ZERO_PAGE(0);
249 get_page(ceph_zero_page);
250
251 /*
252 * The number of active work items is limited by the number of
253 * connections, so leave @max_active at default.
254 */
255 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
256 if (ceph_msgr_wq)
257 return 0;
258
259 pr_err("msgr_init failed to create workqueue\n");
260 _ceph_msgr_exit();
261
262 return -ENOMEM;
263 }
264
ceph_msgr_exit(void)265 void ceph_msgr_exit(void)
266 {
267 BUG_ON(ceph_msgr_wq == NULL);
268
269 _ceph_msgr_exit();
270 }
271
ceph_msgr_flush(void)272 void ceph_msgr_flush(void)
273 {
274 flush_workqueue(ceph_msgr_wq);
275 }
276 EXPORT_SYMBOL(ceph_msgr_flush);
277
278 /* Connection socket state transition functions */
279
con_sock_state_init(struct ceph_connection * con)280 static void con_sock_state_init(struct ceph_connection *con)
281 {
282 int old_state;
283
284 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
285 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
286 printk("%s: unexpected old state %d\n", __func__, old_state);
287 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
288 CON_SOCK_STATE_CLOSED);
289 }
290
con_sock_state_connecting(struct ceph_connection * con)291 static void con_sock_state_connecting(struct ceph_connection *con)
292 {
293 int old_state;
294
295 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
296 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
297 printk("%s: unexpected old state %d\n", __func__, old_state);
298 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
299 CON_SOCK_STATE_CONNECTING);
300 }
301
con_sock_state_connected(struct ceph_connection * con)302 static void con_sock_state_connected(struct ceph_connection *con)
303 {
304 int old_state;
305
306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
307 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
308 printk("%s: unexpected old state %d\n", __func__, old_state);
309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310 CON_SOCK_STATE_CONNECTED);
311 }
312
con_sock_state_closing(struct ceph_connection * con)313 static void con_sock_state_closing(struct ceph_connection *con)
314 {
315 int old_state;
316
317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
318 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
319 old_state != CON_SOCK_STATE_CONNECTED &&
320 old_state != CON_SOCK_STATE_CLOSING))
321 printk("%s: unexpected old state %d\n", __func__, old_state);
322 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
323 CON_SOCK_STATE_CLOSING);
324 }
325
con_sock_state_closed(struct ceph_connection * con)326 static void con_sock_state_closed(struct ceph_connection *con)
327 {
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
332 old_state != CON_SOCK_STATE_CLOSING &&
333 old_state != CON_SOCK_STATE_CONNECTING &&
334 old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CLOSED);
338 }
339
340 /*
341 * socket callback functions
342 */
343
344 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)345 static void ceph_sock_data_ready(struct sock *sk)
346 {
347 struct ceph_connection *con = sk->sk_user_data;
348
349 trace_sk_data_ready(sk);
350
351 if (atomic_read(&con->msgr->stopping)) {
352 return;
353 }
354
355 if (sk->sk_state != TCP_CLOSE_WAIT) {
356 dout("%s %p state = %d, queueing work\n", __func__,
357 con, con->state);
358 queue_con(con);
359 }
360 }
361
362 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)363 static void ceph_sock_write_space(struct sock *sk)
364 {
365 struct ceph_connection *con = sk->sk_user_data;
366
367 /* only queue to workqueue if there is data we want to write,
368 * and there is sufficient space in the socket buffer to accept
369 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
370 * doesn't get called again until try_write() fills the socket
371 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372 * and net/core/stream.c:sk_stream_write_space().
373 */
374 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
375 if (sk_stream_is_writeable(sk)) {
376 dout("%s %p queueing write work\n", __func__, con);
377 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
378 queue_con(con);
379 }
380 } else {
381 dout("%s %p nothing to write\n", __func__, con);
382 }
383 }
384
385 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)386 static void ceph_sock_state_change(struct sock *sk)
387 {
388 struct ceph_connection *con = sk->sk_user_data;
389
390 dout("%s %p state = %d sk_state = %u\n", __func__,
391 con, con->state, sk->sk_state);
392
393 switch (sk->sk_state) {
394 case TCP_CLOSE:
395 dout("%s TCP_CLOSE\n", __func__);
396 fallthrough;
397 case TCP_CLOSE_WAIT:
398 dout("%s TCP_CLOSE_WAIT\n", __func__);
399 con_sock_state_closing(con);
400 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
401 queue_con(con);
402 break;
403 case TCP_ESTABLISHED:
404 dout("%s TCP_ESTABLISHED\n", __func__);
405 con_sock_state_connected(con);
406 queue_con(con);
407 break;
408 default: /* Everything else is uninteresting */
409 break;
410 }
411 }
412
413 /*
414 * set up socket callbacks
415 */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)416 static void set_sock_callbacks(struct socket *sock,
417 struct ceph_connection *con)
418 {
419 struct sock *sk = sock->sk;
420 sk->sk_user_data = con;
421 sk->sk_data_ready = ceph_sock_data_ready;
422 sk->sk_write_space = ceph_sock_write_space;
423 sk->sk_state_change = ceph_sock_state_change;
424 }
425
426
427 /*
428 * socket helpers
429 */
430
431 /*
432 * initiate connection to a remote socket.
433 */
ceph_tcp_connect(struct ceph_connection * con)434 int ceph_tcp_connect(struct ceph_connection *con)
435 {
436 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
437 struct socket *sock;
438 unsigned int noio_flag;
439 int ret;
440
441 dout("%s con %p peer_addr %s\n", __func__, con,
442 ceph_pr_addr(&con->peer_addr));
443 BUG_ON(con->sock);
444
445 /* sock_create_kern() allocates with GFP_KERNEL */
446 noio_flag = memalloc_noio_save();
447 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
448 SOCK_STREAM, IPPROTO_TCP, &sock);
449 memalloc_noio_restore(noio_flag);
450 if (ret)
451 return ret;
452 sock->sk->sk_allocation = GFP_NOFS;
453 sock->sk->sk_use_task_frag = false;
454
455 #ifdef CONFIG_LOCKDEP
456 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
457 #endif
458
459 set_sock_callbacks(sock, con);
460
461 con_sock_state_connecting(con);
462 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
463 O_NONBLOCK);
464 if (ret == -EINPROGRESS) {
465 dout("connect %s EINPROGRESS sk_state = %u\n",
466 ceph_pr_addr(&con->peer_addr),
467 sock->sk->sk_state);
468 } else if (ret < 0) {
469 pr_err("connect %s error %d\n",
470 ceph_pr_addr(&con->peer_addr), ret);
471 sock_release(sock);
472 return ret;
473 }
474
475 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
476 tcp_sock_set_nodelay(sock->sk);
477
478 con->sock = sock;
479 return 0;
480 }
481
482 /*
483 * Shutdown/close the socket for the given connection.
484 */
ceph_con_close_socket(struct ceph_connection * con)485 int ceph_con_close_socket(struct ceph_connection *con)
486 {
487 int rc = 0;
488
489 dout("%s con %p sock %p\n", __func__, con, con->sock);
490 if (con->sock) {
491 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
492 sock_release(con->sock);
493 con->sock = NULL;
494 }
495
496 /*
497 * Forcibly clear the SOCK_CLOSED flag. It gets set
498 * independent of the connection mutex, and we could have
499 * received a socket close event before we had the chance to
500 * shut the socket down.
501 */
502 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
503
504 con_sock_state_closed(con);
505 return rc;
506 }
507
ceph_con_reset_protocol(struct ceph_connection * con)508 static void ceph_con_reset_protocol(struct ceph_connection *con)
509 {
510 dout("%s con %p\n", __func__, con);
511
512 ceph_con_close_socket(con);
513 if (con->in_msg) {
514 WARN_ON(con->in_msg->con != con);
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 }
518 if (con->out_msg) {
519 WARN_ON(con->out_msg->con != con);
520 ceph_msg_put(con->out_msg);
521 con->out_msg = NULL;
522 }
523 if (con->bounce_page) {
524 __free_page(con->bounce_page);
525 con->bounce_page = NULL;
526 }
527
528 if (ceph_msgr2(from_msgr(con->msgr)))
529 ceph_con_v2_reset_protocol(con);
530 else
531 ceph_con_v1_reset_protocol(con);
532 }
533
534 /*
535 * Reset a connection. Discard all incoming and outgoing messages
536 * and clear *_seq state.
537 */
ceph_msg_remove(struct ceph_msg * msg)538 static void ceph_msg_remove(struct ceph_msg *msg)
539 {
540 list_del_init(&msg->list_head);
541
542 ceph_msg_put(msg);
543 }
544
ceph_msg_remove_list(struct list_head * head)545 static void ceph_msg_remove_list(struct list_head *head)
546 {
547 while (!list_empty(head)) {
548 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
549 list_head);
550 ceph_msg_remove(msg);
551 }
552 }
553
ceph_con_reset_session(struct ceph_connection * con)554 void ceph_con_reset_session(struct ceph_connection *con)
555 {
556 dout("%s con %p\n", __func__, con);
557
558 WARN_ON(con->in_msg);
559 WARN_ON(con->out_msg);
560 ceph_msg_remove_list(&con->out_queue);
561 ceph_msg_remove_list(&con->out_sent);
562 con->out_seq = 0;
563 con->in_seq = 0;
564 con->in_seq_acked = 0;
565
566 if (ceph_msgr2(from_msgr(con->msgr)))
567 ceph_con_v2_reset_session(con);
568 else
569 ceph_con_v1_reset_session(con);
570 }
571
572 /*
573 * mark a peer down. drop any open connections.
574 */
ceph_con_close(struct ceph_connection * con)575 void ceph_con_close(struct ceph_connection *con)
576 {
577 mutex_lock(&con->mutex);
578 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
579 con->state = CEPH_CON_S_CLOSED;
580
581 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
582 connect */
583 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
584 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
585 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
586
587 ceph_con_reset_protocol(con);
588 ceph_con_reset_session(con);
589 cancel_con(con);
590 mutex_unlock(&con->mutex);
591 }
592 EXPORT_SYMBOL(ceph_con_close);
593
594 /*
595 * Reopen a closed connection, with a new peer address.
596 */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)597 void ceph_con_open(struct ceph_connection *con,
598 __u8 entity_type, __u64 entity_num,
599 struct ceph_entity_addr *addr)
600 {
601 mutex_lock(&con->mutex);
602 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
603
604 WARN_ON(con->state != CEPH_CON_S_CLOSED);
605 con->state = CEPH_CON_S_PREOPEN;
606
607 con->peer_name.type = (__u8) entity_type;
608 con->peer_name.num = cpu_to_le64(entity_num);
609
610 memcpy(&con->peer_addr, addr, sizeof(*addr));
611 con->delay = 0; /* reset backoff memory */
612 mutex_unlock(&con->mutex);
613 queue_con(con);
614 }
615 EXPORT_SYMBOL(ceph_con_open);
616
617 /*
618 * return true if this connection ever successfully opened
619 */
ceph_con_opened(struct ceph_connection * con)620 bool ceph_con_opened(struct ceph_connection *con)
621 {
622 if (ceph_msgr2(from_msgr(con->msgr)))
623 return ceph_con_v2_opened(con);
624
625 return ceph_con_v1_opened(con);
626 }
627
628 /*
629 * initialize a new connection.
630 */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)631 void ceph_con_init(struct ceph_connection *con, void *private,
632 const struct ceph_connection_operations *ops,
633 struct ceph_messenger *msgr)
634 {
635 dout("con_init %p\n", con);
636 memset(con, 0, sizeof(*con));
637 con->private = private;
638 con->ops = ops;
639 con->msgr = msgr;
640
641 con_sock_state_init(con);
642
643 mutex_init(&con->mutex);
644 INIT_LIST_HEAD(&con->out_queue);
645 INIT_LIST_HEAD(&con->out_sent);
646 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
647
648 con->state = CEPH_CON_S_CLOSED;
649 }
650 EXPORT_SYMBOL(ceph_con_init);
651
652 /*
653 * We maintain a global counter to order connection attempts. Get
654 * a unique seq greater than @gt.
655 */
ceph_get_global_seq(struct ceph_messenger * msgr,u32 gt)656 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
657 {
658 u32 ret;
659
660 spin_lock(&msgr->global_seq_lock);
661 if (msgr->global_seq < gt)
662 msgr->global_seq = gt;
663 ret = ++msgr->global_seq;
664 spin_unlock(&msgr->global_seq_lock);
665 return ret;
666 }
667
668 /*
669 * Discard messages that have been acked by the server.
670 */
ceph_con_discard_sent(struct ceph_connection * con,u64 ack_seq)671 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
672 {
673 struct ceph_msg *msg;
674 u64 seq;
675
676 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
677 while (!list_empty(&con->out_sent)) {
678 msg = list_first_entry(&con->out_sent, struct ceph_msg,
679 list_head);
680 WARN_ON(msg->needs_out_seq);
681 seq = le64_to_cpu(msg->hdr.seq);
682 if (seq > ack_seq)
683 break;
684
685 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
686 msg, seq);
687 ceph_msg_remove(msg);
688 }
689 }
690
691 /*
692 * Discard messages that have been requeued in con_fault(), up to
693 * reconnect_seq. This avoids gratuitously resending messages that
694 * the server had received and handled prior to reconnect.
695 */
ceph_con_discard_requeued(struct ceph_connection * con,u64 reconnect_seq)696 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
697 {
698 struct ceph_msg *msg;
699 u64 seq;
700
701 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
702 while (!list_empty(&con->out_queue)) {
703 msg = list_first_entry(&con->out_queue, struct ceph_msg,
704 list_head);
705 if (msg->needs_out_seq)
706 break;
707 seq = le64_to_cpu(msg->hdr.seq);
708 if (seq > reconnect_seq)
709 break;
710
711 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
712 msg, seq);
713 ceph_msg_remove(msg);
714 }
715 }
716
717 #ifdef CONFIG_BLOCK
718
719 /*
720 * For a bio data item, a piece is whatever remains of the next
721 * entry in the current bio iovec, or the first entry in the next
722 * bio in the list.
723 */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)724 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
725 size_t length)
726 {
727 struct ceph_msg_data *data = cursor->data;
728 struct ceph_bio_iter *it = &cursor->bio_iter;
729
730 cursor->resid = min_t(size_t, length, data->bio_length);
731 *it = data->bio_pos;
732 if (cursor->resid < it->iter.bi_size)
733 it->iter.bi_size = cursor->resid;
734
735 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
736 }
737
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)738 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
739 size_t *page_offset,
740 size_t *length)
741 {
742 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
743 cursor->bio_iter.iter);
744
745 *page_offset = bv.bv_offset;
746 *length = bv.bv_len;
747 return bv.bv_page;
748 }
749
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)750 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
751 size_t bytes)
752 {
753 struct ceph_bio_iter *it = &cursor->bio_iter;
754 struct page *page = bio_iter_page(it->bio, it->iter);
755
756 BUG_ON(bytes > cursor->resid);
757 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
758 cursor->resid -= bytes;
759 bio_advance_iter(it->bio, &it->iter, bytes);
760
761 if (!cursor->resid)
762 return false; /* no more data */
763
764 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
765 page == bio_iter_page(it->bio, it->iter)))
766 return false; /* more bytes to process in this segment */
767
768 if (!it->iter.bi_size) {
769 it->bio = it->bio->bi_next;
770 it->iter = it->bio->bi_iter;
771 if (cursor->resid < it->iter.bi_size)
772 it->iter.bi_size = cursor->resid;
773 }
774
775 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
776 return true;
777 }
778 #endif /* CONFIG_BLOCK */
779
ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)780 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
781 size_t length)
782 {
783 struct ceph_msg_data *data = cursor->data;
784 struct bio_vec *bvecs = data->bvec_pos.bvecs;
785
786 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787 cursor->bvec_iter = data->bvec_pos.iter;
788 cursor->bvec_iter.bi_size = cursor->resid;
789
790 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
791 }
792
ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)793 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
794 size_t *page_offset,
795 size_t *length)
796 {
797 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
798 cursor->bvec_iter);
799
800 *page_offset = bv.bv_offset;
801 *length = bv.bv_len;
802 return bv.bv_page;
803 }
804
ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)805 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
806 size_t bytes)
807 {
808 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
809 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
810
811 BUG_ON(bytes > cursor->resid);
812 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
813 cursor->resid -= bytes;
814 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
815
816 if (!cursor->resid)
817 return false; /* no more data */
818
819 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 return false; /* more bytes to process in this segment */
822
823 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
824 return true;
825 }
826
827 /*
828 * For a page array, a piece comes from the first page in the array
829 * that has not already been fully consumed.
830 */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)831 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
832 size_t length)
833 {
834 struct ceph_msg_data *data = cursor->data;
835 int page_count;
836
837 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
838
839 BUG_ON(!data->pages);
840 BUG_ON(!data->length);
841
842 cursor->resid = min(length, data->length);
843 page_count = calc_pages_for(data->alignment, (u64)data->length);
844 cursor->page_offset = data->alignment & ~PAGE_MASK;
845 cursor->page_index = 0;
846 BUG_ON(page_count > (int)USHRT_MAX);
847 cursor->page_count = (unsigned short)page_count;
848 BUG_ON(length > SIZE_MAX - cursor->page_offset);
849 }
850
851 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)852 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
853 size_t *page_offset, size_t *length)
854 {
855 struct ceph_msg_data *data = cursor->data;
856
857 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
858
859 BUG_ON(cursor->page_index >= cursor->page_count);
860 BUG_ON(cursor->page_offset >= PAGE_SIZE);
861
862 *page_offset = cursor->page_offset;
863 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
864 return data->pages[cursor->page_index];
865 }
866
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
868 size_t bytes)
869 {
870 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
871
872 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
873
874 /* Advance the cursor page offset */
875
876 cursor->resid -= bytes;
877 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
878 if (!bytes || cursor->page_offset)
879 return false; /* more bytes to process in the current page */
880
881 if (!cursor->resid)
882 return false; /* no more data */
883
884 /* Move on to the next page; offset is already at 0 */
885
886 BUG_ON(cursor->page_index >= cursor->page_count);
887 cursor->page_index++;
888 return true;
889 }
890
891 /*
892 * For a pagelist, a piece is whatever remains to be consumed in the
893 * first page in the list, or the front of the next page.
894 */
895 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)896 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
897 size_t length)
898 {
899 struct ceph_msg_data *data = cursor->data;
900 struct ceph_pagelist *pagelist;
901 struct page *page;
902
903 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
904
905 pagelist = data->pagelist;
906 BUG_ON(!pagelist);
907
908 if (!length)
909 return; /* pagelist can be assigned but empty */
910
911 BUG_ON(list_empty(&pagelist->head));
912 page = list_first_entry(&pagelist->head, struct page, lru);
913
914 cursor->resid = min(length, pagelist->length);
915 cursor->page = page;
916 cursor->offset = 0;
917 }
918
919 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)920 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
921 size_t *page_offset, size_t *length)
922 {
923 struct ceph_msg_data *data = cursor->data;
924 struct ceph_pagelist *pagelist;
925
926 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
927
928 pagelist = data->pagelist;
929 BUG_ON(!pagelist);
930
931 BUG_ON(!cursor->page);
932 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
933
934 /* offset of first page in pagelist is always 0 */
935 *page_offset = cursor->offset & ~PAGE_MASK;
936 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
937 return cursor->page;
938 }
939
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)940 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
941 size_t bytes)
942 {
943 struct ceph_msg_data *data = cursor->data;
944 struct ceph_pagelist *pagelist;
945
946 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948 pagelist = data->pagelist;
949 BUG_ON(!pagelist);
950
951 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
952 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
953
954 /* Advance the cursor offset */
955
956 cursor->resid -= bytes;
957 cursor->offset += bytes;
958 /* offset of first page in pagelist is always 0 */
959 if (!bytes || cursor->offset & ~PAGE_MASK)
960 return false; /* more bytes to process in the current page */
961
962 if (!cursor->resid)
963 return false; /* no more data */
964
965 /* Move on to the next page */
966
967 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
968 cursor->page = list_next_entry(cursor->page, lru);
969 return true;
970 }
971
972 /*
973 * Message data is handled (sent or received) in pieces, where each
974 * piece resides on a single page. The network layer might not
975 * consume an entire piece at once. A data item's cursor keeps
976 * track of which piece is next to process and how much remains to
977 * be processed in that piece. It also tracks whether the current
978 * piece is the last one in the data item.
979 */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)980 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
981 {
982 size_t length = cursor->total_resid;
983
984 switch (cursor->data->type) {
985 case CEPH_MSG_DATA_PAGELIST:
986 ceph_msg_data_pagelist_cursor_init(cursor, length);
987 break;
988 case CEPH_MSG_DATA_PAGES:
989 ceph_msg_data_pages_cursor_init(cursor, length);
990 break;
991 #ifdef CONFIG_BLOCK
992 case CEPH_MSG_DATA_BIO:
993 ceph_msg_data_bio_cursor_init(cursor, length);
994 break;
995 #endif /* CONFIG_BLOCK */
996 case CEPH_MSG_DATA_BVECS:
997 ceph_msg_data_bvecs_cursor_init(cursor, length);
998 break;
999 case CEPH_MSG_DATA_NONE:
1000 default:
1001 /* BUG(); */
1002 break;
1003 }
1004 cursor->need_crc = true;
1005 }
1006
ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor,struct ceph_msg * msg,size_t length)1007 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1008 struct ceph_msg *msg, size_t length)
1009 {
1010 BUG_ON(!length);
1011 BUG_ON(length > msg->data_length);
1012 BUG_ON(!msg->num_data_items);
1013
1014 cursor->total_resid = length;
1015 cursor->data = msg->data;
1016
1017 __ceph_msg_data_cursor_init(cursor);
1018 }
1019
1020 /*
1021 * Return the page containing the next piece to process for a given
1022 * data item, and supply the page offset and length of that piece.
1023 * Indicate whether this is the last piece in this data item.
1024 */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)1025 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1026 size_t *page_offset, size_t *length)
1027 {
1028 struct page *page;
1029
1030 switch (cursor->data->type) {
1031 case CEPH_MSG_DATA_PAGELIST:
1032 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1033 break;
1034 case CEPH_MSG_DATA_PAGES:
1035 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1036 break;
1037 #ifdef CONFIG_BLOCK
1038 case CEPH_MSG_DATA_BIO:
1039 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1040 break;
1041 #endif /* CONFIG_BLOCK */
1042 case CEPH_MSG_DATA_BVECS:
1043 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1044 break;
1045 case CEPH_MSG_DATA_NONE:
1046 default:
1047 page = NULL;
1048 break;
1049 }
1050
1051 BUG_ON(!page);
1052 BUG_ON(*page_offset + *length > PAGE_SIZE);
1053 BUG_ON(!*length);
1054 BUG_ON(*length > cursor->resid);
1055
1056 return page;
1057 }
1058
1059 /*
1060 * Returns true if the result moves the cursor on to the next piece
1061 * of the data item.
1062 */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1063 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1064 {
1065 bool new_piece;
1066
1067 BUG_ON(bytes > cursor->resid);
1068 switch (cursor->data->type) {
1069 case CEPH_MSG_DATA_PAGELIST:
1070 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1071 break;
1072 case CEPH_MSG_DATA_PAGES:
1073 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1074 break;
1075 #ifdef CONFIG_BLOCK
1076 case CEPH_MSG_DATA_BIO:
1077 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1078 break;
1079 #endif /* CONFIG_BLOCK */
1080 case CEPH_MSG_DATA_BVECS:
1081 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1082 break;
1083 case CEPH_MSG_DATA_NONE:
1084 default:
1085 BUG();
1086 break;
1087 }
1088 cursor->total_resid -= bytes;
1089
1090 if (!cursor->resid && cursor->total_resid) {
1091 cursor->data++;
1092 __ceph_msg_data_cursor_init(cursor);
1093 new_piece = true;
1094 }
1095 cursor->need_crc = new_piece;
1096 }
1097
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1098 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1099 unsigned int length)
1100 {
1101 char *kaddr;
1102
1103 kaddr = kmap(page);
1104 BUG_ON(kaddr == NULL);
1105 crc = crc32c(crc, kaddr + page_offset, length);
1106 kunmap(page);
1107
1108 return crc;
1109 }
1110
ceph_addr_is_blank(const struct ceph_entity_addr * addr)1111 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1112 {
1113 struct sockaddr_storage ss = addr->in_addr; /* align */
1114 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1115 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1116
1117 switch (ss.ss_family) {
1118 case AF_INET:
1119 return addr4->s_addr == htonl(INADDR_ANY);
1120 case AF_INET6:
1121 return ipv6_addr_any(addr6);
1122 default:
1123 return true;
1124 }
1125 }
1126
ceph_addr_port(const struct ceph_entity_addr * addr)1127 int ceph_addr_port(const struct ceph_entity_addr *addr)
1128 {
1129 switch (get_unaligned(&addr->in_addr.ss_family)) {
1130 case AF_INET:
1131 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1132 case AF_INET6:
1133 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1134 }
1135 return 0;
1136 }
1137
ceph_addr_set_port(struct ceph_entity_addr * addr,int p)1138 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1139 {
1140 switch (get_unaligned(&addr->in_addr.ss_family)) {
1141 case AF_INET:
1142 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1143 break;
1144 case AF_INET6:
1145 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1146 break;
1147 }
1148 }
1149
1150 /*
1151 * Unlike other *_pton function semantics, zero indicates success.
1152 */
ceph_pton(const char * str,size_t len,struct ceph_entity_addr * addr,char delim,const char ** ipend)1153 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1154 char delim, const char **ipend)
1155 {
1156 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1157
1158 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1159 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1160 return 0;
1161 }
1162
1163 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1164 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1165 return 0;
1166 }
1167
1168 return -EINVAL;
1169 }
1170
1171 /*
1172 * Extract hostname string and resolve using kernel DNS facility.
1173 */
1174 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1175 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1176 struct ceph_entity_addr *addr, char delim, const char **ipend)
1177 {
1178 const char *end, *delim_p;
1179 char *colon_p, *ip_addr = NULL;
1180 int ip_len, ret;
1181
1182 /*
1183 * The end of the hostname occurs immediately preceding the delimiter or
1184 * the port marker (':') where the delimiter takes precedence.
1185 */
1186 delim_p = memchr(name, delim, namelen);
1187 colon_p = memchr(name, ':', namelen);
1188
1189 if (delim_p && colon_p)
1190 end = delim_p < colon_p ? delim_p : colon_p;
1191 else if (!delim_p && colon_p)
1192 end = colon_p;
1193 else {
1194 end = delim_p;
1195 if (!end) /* case: hostname:/ */
1196 end = name + namelen;
1197 }
1198
1199 if (end <= name)
1200 return -EINVAL;
1201
1202 /* do dns_resolve upcall */
1203 ip_len = dns_query(current->nsproxy->net_ns,
1204 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1205 if (ip_len > 0)
1206 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1207 else
1208 ret = -ESRCH;
1209
1210 kfree(ip_addr);
1211
1212 *ipend = end;
1213
1214 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1215 ret, ret ? "failed" : ceph_pr_addr(addr));
1216
1217 return ret;
1218 }
1219 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1220 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1221 struct ceph_entity_addr *addr, char delim, const char **ipend)
1222 {
1223 return -EINVAL;
1224 }
1225 #endif
1226
1227 /*
1228 * Parse a server name (IP or hostname). If a valid IP address is not found
1229 * then try to extract a hostname to resolve using userspace DNS upcall.
1230 */
ceph_parse_server_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1231 static int ceph_parse_server_name(const char *name, size_t namelen,
1232 struct ceph_entity_addr *addr, char delim, const char **ipend)
1233 {
1234 int ret;
1235
1236 ret = ceph_pton(name, namelen, addr, delim, ipend);
1237 if (ret)
1238 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1239
1240 return ret;
1241 }
1242
1243 /*
1244 * Parse an ip[:port] list into an addr array. Use the default
1245 * monitor port if a port isn't specified.
1246 */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count,char delim)1247 int ceph_parse_ips(const char *c, const char *end,
1248 struct ceph_entity_addr *addr,
1249 int max_count, int *count, char delim)
1250 {
1251 int i, ret = -EINVAL;
1252 const char *p = c;
1253
1254 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1255 for (i = 0; i < max_count; i++) {
1256 char cur_delim = delim;
1257 const char *ipend;
1258 int port;
1259
1260 if (*p == '[') {
1261 cur_delim = ']';
1262 p++;
1263 }
1264
1265 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1266 &ipend);
1267 if (ret)
1268 goto bad;
1269 ret = -EINVAL;
1270
1271 p = ipend;
1272
1273 if (cur_delim == ']') {
1274 if (*p != ']') {
1275 dout("missing matching ']'\n");
1276 goto bad;
1277 }
1278 p++;
1279 }
1280
1281 /* port? */
1282 if (p < end && *p == ':') {
1283 port = 0;
1284 p++;
1285 while (p < end && *p >= '0' && *p <= '9') {
1286 port = (port * 10) + (*p - '0');
1287 p++;
1288 }
1289 if (port == 0)
1290 port = CEPH_MON_PORT;
1291 else if (port > 65535)
1292 goto bad;
1293 } else {
1294 port = CEPH_MON_PORT;
1295 }
1296
1297 ceph_addr_set_port(&addr[i], port);
1298 /*
1299 * We want the type to be set according to ms_mode
1300 * option, but options are normally parsed after mon
1301 * addresses. Rather than complicating parsing, set
1302 * to LEGACY and override in build_initial_monmap()
1303 * for mon addresses and ceph_messenger_init() for
1304 * ip option.
1305 */
1306 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1307 addr[i].nonce = 0;
1308
1309 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1310
1311 if (p == end)
1312 break;
1313 if (*p != delim)
1314 goto bad;
1315 p++;
1316 }
1317
1318 if (p != end)
1319 goto bad;
1320
1321 if (count)
1322 *count = i + 1;
1323 return 0;
1324
1325 bad:
1326 return ret;
1327 }
1328
1329 /*
1330 * Process message. This happens in the worker thread. The callback should
1331 * be careful not to do anything that waits on other incoming messages or it
1332 * may deadlock.
1333 */
ceph_con_process_message(struct ceph_connection * con)1334 void ceph_con_process_message(struct ceph_connection *con)
1335 {
1336 struct ceph_msg *msg = con->in_msg;
1337
1338 BUG_ON(con->in_msg->con != con);
1339 con->in_msg = NULL;
1340
1341 /* if first message, set peer_name */
1342 if (con->peer_name.type == 0)
1343 con->peer_name = msg->hdr.src;
1344
1345 con->in_seq++;
1346 mutex_unlock(&con->mutex);
1347
1348 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1349 msg, le64_to_cpu(msg->hdr.seq),
1350 ENTITY_NAME(msg->hdr.src),
1351 le16_to_cpu(msg->hdr.type),
1352 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1353 le32_to_cpu(msg->hdr.front_len),
1354 le32_to_cpu(msg->hdr.middle_len),
1355 le32_to_cpu(msg->hdr.data_len),
1356 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1357 con->ops->dispatch(con, msg);
1358
1359 mutex_lock(&con->mutex);
1360 }
1361
1362 /*
1363 * Atomically queue work on a connection after the specified delay.
1364 * Bump @con reference to avoid races with connection teardown.
1365 * Returns 0 if work was queued, or an error code otherwise.
1366 */
queue_con_delay(struct ceph_connection * con,unsigned long delay)1367 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1368 {
1369 if (!con->ops->get(con)) {
1370 dout("%s %p ref count 0\n", __func__, con);
1371 return -ENOENT;
1372 }
1373
1374 if (delay >= HZ)
1375 delay = round_jiffies_relative(delay);
1376
1377 dout("%s %p %lu\n", __func__, con, delay);
1378 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1379 dout("%s %p - already queued\n", __func__, con);
1380 con->ops->put(con);
1381 return -EBUSY;
1382 }
1383
1384 return 0;
1385 }
1386
queue_con(struct ceph_connection * con)1387 static void queue_con(struct ceph_connection *con)
1388 {
1389 (void) queue_con_delay(con, 0);
1390 }
1391
cancel_con(struct ceph_connection * con)1392 static void cancel_con(struct ceph_connection *con)
1393 {
1394 if (cancel_delayed_work(&con->work)) {
1395 dout("%s %p\n", __func__, con);
1396 con->ops->put(con);
1397 }
1398 }
1399
con_sock_closed(struct ceph_connection * con)1400 static bool con_sock_closed(struct ceph_connection *con)
1401 {
1402 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1403 return false;
1404
1405 #define CASE(x) \
1406 case CEPH_CON_S_ ## x: \
1407 con->error_msg = "socket closed (con state " #x ")"; \
1408 break;
1409
1410 switch (con->state) {
1411 CASE(CLOSED);
1412 CASE(PREOPEN);
1413 CASE(V1_BANNER);
1414 CASE(V1_CONNECT_MSG);
1415 CASE(V2_BANNER_PREFIX);
1416 CASE(V2_BANNER_PAYLOAD);
1417 CASE(V2_HELLO);
1418 CASE(V2_AUTH);
1419 CASE(V2_AUTH_SIGNATURE);
1420 CASE(V2_SESSION_CONNECT);
1421 CASE(V2_SESSION_RECONNECT);
1422 CASE(OPEN);
1423 CASE(STANDBY);
1424 default:
1425 BUG();
1426 }
1427 #undef CASE
1428
1429 return true;
1430 }
1431
con_backoff(struct ceph_connection * con)1432 static bool con_backoff(struct ceph_connection *con)
1433 {
1434 int ret;
1435
1436 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1437 return false;
1438
1439 ret = queue_con_delay(con, con->delay);
1440 if (ret) {
1441 dout("%s: con %p FAILED to back off %lu\n", __func__,
1442 con, con->delay);
1443 BUG_ON(ret == -ENOENT);
1444 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1445 }
1446
1447 return true;
1448 }
1449
1450 /* Finish fault handling; con->mutex must *not* be held here */
1451
con_fault_finish(struct ceph_connection * con)1452 static void con_fault_finish(struct ceph_connection *con)
1453 {
1454 dout("%s %p\n", __func__, con);
1455
1456 /*
1457 * in case we faulted due to authentication, invalidate our
1458 * current tickets so that we can get new ones.
1459 */
1460 if (con->v1.auth_retry) {
1461 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1462 if (con->ops->invalidate_authorizer)
1463 con->ops->invalidate_authorizer(con);
1464 con->v1.auth_retry = 0;
1465 }
1466
1467 if (con->ops->fault)
1468 con->ops->fault(con);
1469 }
1470
1471 /*
1472 * Do some work on a connection. Drop a connection ref when we're done.
1473 */
ceph_con_workfn(struct work_struct * work)1474 static void ceph_con_workfn(struct work_struct *work)
1475 {
1476 struct ceph_connection *con = container_of(work, struct ceph_connection,
1477 work.work);
1478 bool fault;
1479
1480 mutex_lock(&con->mutex);
1481 while (true) {
1482 int ret;
1483
1484 if ((fault = con_sock_closed(con))) {
1485 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1486 break;
1487 }
1488 if (con_backoff(con)) {
1489 dout("%s: con %p BACKOFF\n", __func__, con);
1490 break;
1491 }
1492 if (con->state == CEPH_CON_S_STANDBY) {
1493 dout("%s: con %p STANDBY\n", __func__, con);
1494 break;
1495 }
1496 if (con->state == CEPH_CON_S_CLOSED) {
1497 dout("%s: con %p CLOSED\n", __func__, con);
1498 BUG_ON(con->sock);
1499 break;
1500 }
1501 if (con->state == CEPH_CON_S_PREOPEN) {
1502 dout("%s: con %p PREOPEN\n", __func__, con);
1503 BUG_ON(con->sock);
1504 }
1505
1506 if (ceph_msgr2(from_msgr(con->msgr)))
1507 ret = ceph_con_v2_try_read(con);
1508 else
1509 ret = ceph_con_v1_try_read(con);
1510 if (ret < 0) {
1511 if (ret == -EAGAIN)
1512 continue;
1513 if (!con->error_msg)
1514 con->error_msg = "socket error on read";
1515 fault = true;
1516 break;
1517 }
1518
1519 if (ceph_msgr2(from_msgr(con->msgr)))
1520 ret = ceph_con_v2_try_write(con);
1521 else
1522 ret = ceph_con_v1_try_write(con);
1523 if (ret < 0) {
1524 if (ret == -EAGAIN)
1525 continue;
1526 if (!con->error_msg)
1527 con->error_msg = "socket error on write";
1528 fault = true;
1529 }
1530
1531 break; /* If we make it to here, we're done */
1532 }
1533 if (fault)
1534 con_fault(con);
1535 mutex_unlock(&con->mutex);
1536
1537 if (fault)
1538 con_fault_finish(con);
1539
1540 con->ops->put(con);
1541 }
1542
1543 /*
1544 * Generic error/fault handler. A retry mechanism is used with
1545 * exponential backoff
1546 */
con_fault(struct ceph_connection * con)1547 static void con_fault(struct ceph_connection *con)
1548 {
1549 dout("fault %p state %d to peer %s\n",
1550 con, con->state, ceph_pr_addr(&con->peer_addr));
1551
1552 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1553 ceph_pr_addr(&con->peer_addr), con->error_msg);
1554 con->error_msg = NULL;
1555
1556 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1557 con->state == CEPH_CON_S_CLOSED);
1558
1559 ceph_con_reset_protocol(con);
1560
1561 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1562 dout("fault on LOSSYTX channel, marking CLOSED\n");
1563 con->state = CEPH_CON_S_CLOSED;
1564 return;
1565 }
1566
1567 /* Requeue anything that hasn't been acked */
1568 list_splice_init(&con->out_sent, &con->out_queue);
1569
1570 /* If there are no messages queued or keepalive pending, place
1571 * the connection in a STANDBY state */
1572 if (list_empty(&con->out_queue) &&
1573 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1574 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1575 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1576 con->state = CEPH_CON_S_STANDBY;
1577 } else {
1578 /* retry after a delay. */
1579 con->state = CEPH_CON_S_PREOPEN;
1580 if (!con->delay) {
1581 con->delay = BASE_DELAY_INTERVAL;
1582 } else if (con->delay < MAX_DELAY_INTERVAL) {
1583 con->delay *= 2;
1584 if (con->delay > MAX_DELAY_INTERVAL)
1585 con->delay = MAX_DELAY_INTERVAL;
1586 }
1587 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1588 queue_con(con);
1589 }
1590 }
1591
ceph_messenger_reset_nonce(struct ceph_messenger * msgr)1592 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1593 {
1594 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1595 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1596 ceph_encode_my_addr(msgr);
1597 }
1598
1599 /*
1600 * initialize a new messenger instance
1601 */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr)1602 void ceph_messenger_init(struct ceph_messenger *msgr,
1603 struct ceph_entity_addr *myaddr)
1604 {
1605 spin_lock_init(&msgr->global_seq_lock);
1606
1607 if (myaddr) {
1608 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1609 sizeof(msgr->inst.addr.in_addr));
1610 ceph_addr_set_port(&msgr->inst.addr, 0);
1611 }
1612
1613 /*
1614 * Since nautilus, clients are identified using type ANY.
1615 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1616 */
1617 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1618
1619 /* generate a random non-zero nonce */
1620 do {
1621 get_random_bytes(&msgr->inst.addr.nonce,
1622 sizeof(msgr->inst.addr.nonce));
1623 } while (!msgr->inst.addr.nonce);
1624 ceph_encode_my_addr(msgr);
1625
1626 atomic_set(&msgr->stopping, 0);
1627 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1628
1629 dout("%s %p\n", __func__, msgr);
1630 }
1631
ceph_messenger_fini(struct ceph_messenger * msgr)1632 void ceph_messenger_fini(struct ceph_messenger *msgr)
1633 {
1634 put_net(read_pnet(&msgr->net));
1635 }
1636
msg_con_set(struct ceph_msg * msg,struct ceph_connection * con)1637 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1638 {
1639 if (msg->con)
1640 msg->con->ops->put(msg->con);
1641
1642 msg->con = con ? con->ops->get(con) : NULL;
1643 BUG_ON(msg->con != con);
1644 }
1645
clear_standby(struct ceph_connection * con)1646 static void clear_standby(struct ceph_connection *con)
1647 {
1648 /* come back from STANDBY? */
1649 if (con->state == CEPH_CON_S_STANDBY) {
1650 dout("clear_standby %p and ++connect_seq\n", con);
1651 con->state = CEPH_CON_S_PREOPEN;
1652 con->v1.connect_seq++;
1653 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1654 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1655 }
1656 }
1657
1658 /*
1659 * Queue up an outgoing message on the given connection.
1660 *
1661 * Consumes a ref on @msg.
1662 */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)1663 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1664 {
1665 /* set src+dst */
1666 msg->hdr.src = con->msgr->inst.name;
1667 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1668 msg->needs_out_seq = true;
1669
1670 mutex_lock(&con->mutex);
1671
1672 if (con->state == CEPH_CON_S_CLOSED) {
1673 dout("con_send %p closed, dropping %p\n", con, msg);
1674 ceph_msg_put(msg);
1675 mutex_unlock(&con->mutex);
1676 return;
1677 }
1678
1679 msg_con_set(msg, con);
1680
1681 BUG_ON(!list_empty(&msg->list_head));
1682 list_add_tail(&msg->list_head, &con->out_queue);
1683 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1684 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1685 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1686 le32_to_cpu(msg->hdr.front_len),
1687 le32_to_cpu(msg->hdr.middle_len),
1688 le32_to_cpu(msg->hdr.data_len));
1689
1690 clear_standby(con);
1691 mutex_unlock(&con->mutex);
1692
1693 /* if there wasn't anything waiting to send before, queue
1694 * new work */
1695 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1696 queue_con(con);
1697 }
1698 EXPORT_SYMBOL(ceph_con_send);
1699
1700 /*
1701 * Revoke a message that was previously queued for send
1702 */
ceph_msg_revoke(struct ceph_msg * msg)1703 void ceph_msg_revoke(struct ceph_msg *msg)
1704 {
1705 struct ceph_connection *con = msg->con;
1706
1707 if (!con) {
1708 dout("%s msg %p null con\n", __func__, msg);
1709 return; /* Message not in our possession */
1710 }
1711
1712 mutex_lock(&con->mutex);
1713 if (list_empty(&msg->list_head)) {
1714 WARN_ON(con->out_msg == msg);
1715 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1716 mutex_unlock(&con->mutex);
1717 return;
1718 }
1719
1720 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1721 msg->hdr.seq = 0;
1722 ceph_msg_remove(msg);
1723
1724 if (con->out_msg == msg) {
1725 WARN_ON(con->state != CEPH_CON_S_OPEN);
1726 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1727 if (ceph_msgr2(from_msgr(con->msgr)))
1728 ceph_con_v2_revoke(con);
1729 else
1730 ceph_con_v1_revoke(con);
1731 ceph_msg_put(con->out_msg);
1732 con->out_msg = NULL;
1733 } else {
1734 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1735 con, msg, con->out_msg);
1736 }
1737 mutex_unlock(&con->mutex);
1738 }
1739
1740 /*
1741 * Revoke a message that we may be reading data into
1742 */
ceph_msg_revoke_incoming(struct ceph_msg * msg)1743 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1744 {
1745 struct ceph_connection *con = msg->con;
1746
1747 if (!con) {
1748 dout("%s msg %p null con\n", __func__, msg);
1749 return; /* Message not in our possession */
1750 }
1751
1752 mutex_lock(&con->mutex);
1753 if (con->in_msg == msg) {
1754 WARN_ON(con->state != CEPH_CON_S_OPEN);
1755 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1756 if (ceph_msgr2(from_msgr(con->msgr)))
1757 ceph_con_v2_revoke_incoming(con);
1758 else
1759 ceph_con_v1_revoke_incoming(con);
1760 ceph_msg_put(con->in_msg);
1761 con->in_msg = NULL;
1762 } else {
1763 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1764 con, msg, con->in_msg);
1765 }
1766 mutex_unlock(&con->mutex);
1767 }
1768
1769 /*
1770 * Queue a keepalive byte to ensure the tcp connection is alive.
1771 */
ceph_con_keepalive(struct ceph_connection * con)1772 void ceph_con_keepalive(struct ceph_connection *con)
1773 {
1774 dout("con_keepalive %p\n", con);
1775 mutex_lock(&con->mutex);
1776 clear_standby(con);
1777 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1778 mutex_unlock(&con->mutex);
1779
1780 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1781 queue_con(con);
1782 }
1783 EXPORT_SYMBOL(ceph_con_keepalive);
1784
ceph_con_keepalive_expired(struct ceph_connection * con,unsigned long interval)1785 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1786 unsigned long interval)
1787 {
1788 if (interval > 0 &&
1789 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1790 struct timespec64 now;
1791 struct timespec64 ts;
1792 ktime_get_real_ts64(&now);
1793 jiffies_to_timespec64(interval, &ts);
1794 ts = timespec64_add(con->last_keepalive_ack, ts);
1795 return timespec64_compare(&now, &ts) >= 0;
1796 }
1797 return false;
1798 }
1799
ceph_msg_data_add(struct ceph_msg * msg)1800 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1801 {
1802 BUG_ON(msg->num_data_items >= msg->max_data_items);
1803 return &msg->data[msg->num_data_items++];
1804 }
1805
ceph_msg_data_destroy(struct ceph_msg_data * data)1806 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1807 {
1808 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1809 int num_pages = calc_pages_for(data->alignment, data->length);
1810 ceph_release_page_vector(data->pages, num_pages);
1811 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1812 ceph_pagelist_release(data->pagelist);
1813 }
1814 }
1815
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment,bool own_pages)1816 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1817 size_t length, size_t alignment, bool own_pages)
1818 {
1819 struct ceph_msg_data *data;
1820
1821 BUG_ON(!pages);
1822 BUG_ON(!length);
1823
1824 data = ceph_msg_data_add(msg);
1825 data->type = CEPH_MSG_DATA_PAGES;
1826 data->pages = pages;
1827 data->length = length;
1828 data->alignment = alignment & ~PAGE_MASK;
1829 data->own_pages = own_pages;
1830
1831 msg->data_length += length;
1832 }
1833 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1834
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)1835 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1836 struct ceph_pagelist *pagelist)
1837 {
1838 struct ceph_msg_data *data;
1839
1840 BUG_ON(!pagelist);
1841 BUG_ON(!pagelist->length);
1842
1843 data = ceph_msg_data_add(msg);
1844 data->type = CEPH_MSG_DATA_PAGELIST;
1845 refcount_inc(&pagelist->refcnt);
1846 data->pagelist = pagelist;
1847
1848 msg->data_length += pagelist->length;
1849 }
1850 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1851
1852 #ifdef CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct ceph_bio_iter * bio_pos,u32 length)1853 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1854 u32 length)
1855 {
1856 struct ceph_msg_data *data;
1857
1858 data = ceph_msg_data_add(msg);
1859 data->type = CEPH_MSG_DATA_BIO;
1860 data->bio_pos = *bio_pos;
1861 data->bio_length = length;
1862
1863 msg->data_length += length;
1864 }
1865 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1866 #endif /* CONFIG_BLOCK */
1867
ceph_msg_data_add_bvecs(struct ceph_msg * msg,struct ceph_bvec_iter * bvec_pos)1868 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1869 struct ceph_bvec_iter *bvec_pos)
1870 {
1871 struct ceph_msg_data *data;
1872
1873 data = ceph_msg_data_add(msg);
1874 data->type = CEPH_MSG_DATA_BVECS;
1875 data->bvec_pos = *bvec_pos;
1876
1877 msg->data_length += bvec_pos->iter.bi_size;
1878 }
1879 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1880
1881 /*
1882 * construct a new message with given type, size
1883 * the new msg has a ref count of 1.
1884 */
ceph_msg_new2(int type,int front_len,int max_data_items,gfp_t flags,bool can_fail)1885 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1886 gfp_t flags, bool can_fail)
1887 {
1888 struct ceph_msg *m;
1889
1890 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1891 if (m == NULL)
1892 goto out;
1893
1894 m->hdr.type = cpu_to_le16(type);
1895 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1896 m->hdr.front_len = cpu_to_le32(front_len);
1897
1898 INIT_LIST_HEAD(&m->list_head);
1899 kref_init(&m->kref);
1900
1901 /* front */
1902 if (front_len) {
1903 m->front.iov_base = kvmalloc(front_len, flags);
1904 if (m->front.iov_base == NULL) {
1905 dout("ceph_msg_new can't allocate %d bytes\n",
1906 front_len);
1907 goto out2;
1908 }
1909 } else {
1910 m->front.iov_base = NULL;
1911 }
1912 m->front_alloc_len = m->front.iov_len = front_len;
1913
1914 if (max_data_items) {
1915 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1916 flags);
1917 if (!m->data)
1918 goto out2;
1919
1920 m->max_data_items = max_data_items;
1921 }
1922
1923 dout("ceph_msg_new %p front %d\n", m, front_len);
1924 return m;
1925
1926 out2:
1927 ceph_msg_put(m);
1928 out:
1929 if (!can_fail) {
1930 pr_err("msg_new can't create type %d front %d\n", type,
1931 front_len);
1932 WARN_ON(1);
1933 } else {
1934 dout("msg_new can't create type %d front %d\n", type,
1935 front_len);
1936 }
1937 return NULL;
1938 }
1939 EXPORT_SYMBOL(ceph_msg_new2);
1940
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)1941 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1942 bool can_fail)
1943 {
1944 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1945 }
1946 EXPORT_SYMBOL(ceph_msg_new);
1947
1948 /*
1949 * Allocate "middle" portion of a message, if it is needed and wasn't
1950 * allocated by alloc_msg. This allows us to read a small fixed-size
1951 * per-type header in the front and then gracefully fail (i.e.,
1952 * propagate the error to the caller based on info in the front) when
1953 * the middle is too large.
1954 */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)1955 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1956 {
1957 int type = le16_to_cpu(msg->hdr.type);
1958 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1959
1960 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1961 ceph_msg_type_name(type), middle_len);
1962 BUG_ON(!middle_len);
1963 BUG_ON(msg->middle);
1964
1965 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1966 if (!msg->middle)
1967 return -ENOMEM;
1968 return 0;
1969 }
1970
1971 /*
1972 * Allocate a message for receiving an incoming message on a
1973 * connection, and save the result in con->in_msg. Uses the
1974 * connection's private alloc_msg op if available.
1975 *
1976 * Returns 0 on success, or a negative error code.
1977 *
1978 * On success, if we set *skip = 1:
1979 * - the next message should be skipped and ignored.
1980 * - con->in_msg == NULL
1981 * or if we set *skip = 0:
1982 * - con->in_msg is non-null.
1983 * On error (ENOMEM, EAGAIN, ...),
1984 * - con->in_msg == NULL
1985 */
ceph_con_in_msg_alloc(struct ceph_connection * con,struct ceph_msg_header * hdr,int * skip)1986 int ceph_con_in_msg_alloc(struct ceph_connection *con,
1987 struct ceph_msg_header *hdr, int *skip)
1988 {
1989 int middle_len = le32_to_cpu(hdr->middle_len);
1990 struct ceph_msg *msg;
1991 int ret = 0;
1992
1993 BUG_ON(con->in_msg != NULL);
1994 BUG_ON(!con->ops->alloc_msg);
1995
1996 mutex_unlock(&con->mutex);
1997 msg = con->ops->alloc_msg(con, hdr, skip);
1998 mutex_lock(&con->mutex);
1999 if (con->state != CEPH_CON_S_OPEN) {
2000 if (msg)
2001 ceph_msg_put(msg);
2002 return -EAGAIN;
2003 }
2004 if (msg) {
2005 BUG_ON(*skip);
2006 msg_con_set(msg, con);
2007 con->in_msg = msg;
2008 } else {
2009 /*
2010 * Null message pointer means either we should skip
2011 * this message or we couldn't allocate memory. The
2012 * former is not an error.
2013 */
2014 if (*skip)
2015 return 0;
2016
2017 con->error_msg = "error allocating memory for incoming message";
2018 return -ENOMEM;
2019 }
2020 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2021
2022 if (middle_len && !con->in_msg->middle) {
2023 ret = ceph_alloc_middle(con, con->in_msg);
2024 if (ret < 0) {
2025 ceph_msg_put(con->in_msg);
2026 con->in_msg = NULL;
2027 }
2028 }
2029
2030 return ret;
2031 }
2032
ceph_con_get_out_msg(struct ceph_connection * con)2033 void ceph_con_get_out_msg(struct ceph_connection *con)
2034 {
2035 struct ceph_msg *msg;
2036
2037 BUG_ON(list_empty(&con->out_queue));
2038 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2039 WARN_ON(msg->con != con);
2040
2041 /*
2042 * Put the message on "sent" list using a ref from ceph_con_send().
2043 * It is put when the message is acked or revoked.
2044 */
2045 list_move_tail(&msg->list_head, &con->out_sent);
2046
2047 /*
2048 * Only assign outgoing seq # if we haven't sent this message
2049 * yet. If it is requeued, resend with it's original seq.
2050 */
2051 if (msg->needs_out_seq) {
2052 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2053 msg->needs_out_seq = false;
2054
2055 if (con->ops->reencode_message)
2056 con->ops->reencode_message(msg);
2057 }
2058
2059 /*
2060 * Get a ref for out_msg. It is put when we are done sending the
2061 * message or in case of a fault.
2062 */
2063 WARN_ON(con->out_msg);
2064 con->out_msg = ceph_msg_get(msg);
2065 }
2066
2067 /*
2068 * Free a generically kmalloc'd message.
2069 */
ceph_msg_free(struct ceph_msg * m)2070 static void ceph_msg_free(struct ceph_msg *m)
2071 {
2072 dout("%s %p\n", __func__, m);
2073 kvfree(m->front.iov_base);
2074 kfree(m->data);
2075 kmem_cache_free(ceph_msg_cache, m);
2076 }
2077
ceph_msg_release(struct kref * kref)2078 static void ceph_msg_release(struct kref *kref)
2079 {
2080 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2081 int i;
2082
2083 dout("%s %p\n", __func__, m);
2084 WARN_ON(!list_empty(&m->list_head));
2085
2086 msg_con_set(m, NULL);
2087
2088 /* drop middle, data, if any */
2089 if (m->middle) {
2090 ceph_buffer_put(m->middle);
2091 m->middle = NULL;
2092 }
2093
2094 for (i = 0; i < m->num_data_items; i++)
2095 ceph_msg_data_destroy(&m->data[i]);
2096
2097 if (m->pool)
2098 ceph_msgpool_put(m->pool, m);
2099 else
2100 ceph_msg_free(m);
2101 }
2102
ceph_msg_get(struct ceph_msg * msg)2103 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2104 {
2105 dout("%s %p (was %d)\n", __func__, msg,
2106 kref_read(&msg->kref));
2107 kref_get(&msg->kref);
2108 return msg;
2109 }
2110 EXPORT_SYMBOL(ceph_msg_get);
2111
ceph_msg_put(struct ceph_msg * msg)2112 void ceph_msg_put(struct ceph_msg *msg)
2113 {
2114 dout("%s %p (was %d)\n", __func__, msg,
2115 kref_read(&msg->kref));
2116 kref_put(&msg->kref, ceph_msg_release);
2117 }
2118 EXPORT_SYMBOL(ceph_msg_put);
2119
ceph_msg_dump(struct ceph_msg * msg)2120 void ceph_msg_dump(struct ceph_msg *msg)
2121 {
2122 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2123 msg->front_alloc_len, msg->data_length);
2124 print_hex_dump(KERN_DEBUG, "header: ",
2125 DUMP_PREFIX_OFFSET, 16, 1,
2126 &msg->hdr, sizeof(msg->hdr), true);
2127 print_hex_dump(KERN_DEBUG, " front: ",
2128 DUMP_PREFIX_OFFSET, 16, 1,
2129 msg->front.iov_base, msg->front.iov_len, true);
2130 if (msg->middle)
2131 print_hex_dump(KERN_DEBUG, "middle: ",
2132 DUMP_PREFIX_OFFSET, 16, 1,
2133 msg->middle->vec.iov_base,
2134 msg->middle->vec.iov_len, true);
2135 print_hex_dump(KERN_DEBUG, "footer: ",
2136 DUMP_PREFIX_OFFSET, 16, 1,
2137 &msg->footer, sizeof(msg->footer), true);
2138 }
2139 EXPORT_SYMBOL(ceph_msg_dump);
2140