1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3 *
4 * Copyright (C) International Business Machines Corp., 2002,2008
5 * Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #endif
26 #include "fs_context.h"
27 #include "cached_dir.h"
28
29 extern mempool_t *cifs_sm_req_poolp;
30 extern mempool_t *cifs_req_poolp;
31
32 /* The xid serves as a useful identifier for each incoming vfs request,
33 in a similar way to the mid which is useful to track each sent smb,
34 and CurrentXid can also provide a running counter (although it
35 will eventually wrap past zero) of the total vfs operations handled
36 since the cifs fs was mounted */
37
38 unsigned int
_get_xid(void)39 _get_xid(void)
40 {
41 unsigned int xid;
42
43 spin_lock(&GlobalMid_Lock);
44 GlobalTotalActiveXid++;
45
46 /* keep high water mark for number of simultaneous ops in filesystem */
47 if (GlobalTotalActiveXid > GlobalMaxActiveXid)
48 GlobalMaxActiveXid = GlobalTotalActiveXid;
49 if (GlobalTotalActiveXid > 65000)
50 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
51 xid = GlobalCurrentXid++;
52 spin_unlock(&GlobalMid_Lock);
53 return xid;
54 }
55
56 void
_free_xid(unsigned int xid)57 _free_xid(unsigned int xid)
58 {
59 spin_lock(&GlobalMid_Lock);
60 /* if (GlobalTotalActiveXid == 0)
61 BUG(); */
62 GlobalTotalActiveXid--;
63 spin_unlock(&GlobalMid_Lock);
64 }
65
66 struct cifs_ses *
sesInfoAlloc(void)67 sesInfoAlloc(void)
68 {
69 struct cifs_ses *ret_buf;
70
71 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
72 if (ret_buf) {
73 atomic_inc(&sesInfoAllocCount);
74 spin_lock_init(&ret_buf->ses_lock);
75 ret_buf->ses_status = SES_NEW;
76 ++ret_buf->ses_count;
77 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
78 INIT_LIST_HEAD(&ret_buf->tcon_list);
79 mutex_init(&ret_buf->session_mutex);
80 spin_lock_init(&ret_buf->iface_lock);
81 INIT_LIST_HEAD(&ret_buf->iface_list);
82 spin_lock_init(&ret_buf->chan_lock);
83 }
84 return ret_buf;
85 }
86
87 void
sesInfoFree(struct cifs_ses * buf_to_free)88 sesInfoFree(struct cifs_ses *buf_to_free)
89 {
90 struct cifs_server_iface *iface = NULL, *niface = NULL;
91
92 if (buf_to_free == NULL) {
93 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
94 return;
95 }
96
97 atomic_dec(&sesInfoAllocCount);
98 kfree(buf_to_free->serverOS);
99 kfree(buf_to_free->serverDomain);
100 kfree(buf_to_free->serverNOS);
101 kfree_sensitive(buf_to_free->password);
102 kfree(buf_to_free->user_name);
103 kfree(buf_to_free->domainName);
104 kfree_sensitive(buf_to_free->auth_key.response);
105 spin_lock(&buf_to_free->iface_lock);
106 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
107 iface_head)
108 kref_put(&iface->refcount, release_iface);
109 spin_unlock(&buf_to_free->iface_lock);
110 kfree_sensitive(buf_to_free);
111 }
112
113 struct cifs_tcon *
tconInfoAlloc(void)114 tconInfoAlloc(void)
115 {
116 struct cifs_tcon *ret_buf;
117
118 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
119 if (!ret_buf)
120 return NULL;
121 ret_buf->cfids = init_cached_dirs();
122 if (!ret_buf->cfids) {
123 kfree(ret_buf);
124 return NULL;
125 }
126
127 atomic_inc(&tconInfoAllocCount);
128 ret_buf->status = TID_NEW;
129 ++ret_buf->tc_count;
130 spin_lock_init(&ret_buf->tc_lock);
131 INIT_LIST_HEAD(&ret_buf->openFileList);
132 INIT_LIST_HEAD(&ret_buf->tcon_list);
133 spin_lock_init(&ret_buf->open_file_lock);
134 spin_lock_init(&ret_buf->stat_lock);
135 atomic_set(&ret_buf->num_local_opens, 0);
136 atomic_set(&ret_buf->num_remote_opens, 0);
137
138 return ret_buf;
139 }
140
141 void
tconInfoFree(struct cifs_tcon * tcon)142 tconInfoFree(struct cifs_tcon *tcon)
143 {
144 if (tcon == NULL) {
145 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
146 return;
147 }
148 free_cached_dirs(tcon->cfids);
149 atomic_dec(&tconInfoAllocCount);
150 kfree(tcon->nativeFileSystem);
151 kfree_sensitive(tcon->password);
152 kfree(tcon);
153 }
154
155 struct smb_hdr *
cifs_buf_get(void)156 cifs_buf_get(void)
157 {
158 struct smb_hdr *ret_buf = NULL;
159 /*
160 * SMB2 header is bigger than CIFS one - no problems to clean some
161 * more bytes for CIFS.
162 */
163 size_t buf_size = sizeof(struct smb2_hdr);
164
165 /*
166 * We could use negotiated size instead of max_msgsize -
167 * but it may be more efficient to always alloc same size
168 * albeit slightly larger than necessary and maxbuffersize
169 * defaults to this and can not be bigger.
170 */
171 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
172
173 /* clear the first few header bytes */
174 /* for most paths, more is cleared in header_assemble */
175 memset(ret_buf, 0, buf_size + 3);
176 atomic_inc(&buf_alloc_count);
177 #ifdef CONFIG_CIFS_STATS2
178 atomic_inc(&total_buf_alloc_count);
179 #endif /* CONFIG_CIFS_STATS2 */
180
181 return ret_buf;
182 }
183
184 void
cifs_buf_release(void * buf_to_free)185 cifs_buf_release(void *buf_to_free)
186 {
187 if (buf_to_free == NULL) {
188 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
189 return;
190 }
191 mempool_free(buf_to_free, cifs_req_poolp);
192
193 atomic_dec(&buf_alloc_count);
194 return;
195 }
196
197 struct smb_hdr *
cifs_small_buf_get(void)198 cifs_small_buf_get(void)
199 {
200 struct smb_hdr *ret_buf = NULL;
201
202 /* We could use negotiated size instead of max_msgsize -
203 but it may be more efficient to always alloc same size
204 albeit slightly larger than necessary and maxbuffersize
205 defaults to this and can not be bigger */
206 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
207 /* No need to clear memory here, cleared in header assemble */
208 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
209 atomic_inc(&small_buf_alloc_count);
210 #ifdef CONFIG_CIFS_STATS2
211 atomic_inc(&total_small_buf_alloc_count);
212 #endif /* CONFIG_CIFS_STATS2 */
213
214 return ret_buf;
215 }
216
217 void
cifs_small_buf_release(void * buf_to_free)218 cifs_small_buf_release(void *buf_to_free)
219 {
220
221 if (buf_to_free == NULL) {
222 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
223 return;
224 }
225 mempool_free(buf_to_free, cifs_sm_req_poolp);
226
227 atomic_dec(&small_buf_alloc_count);
228 return;
229 }
230
231 void
free_rsp_buf(int resp_buftype,void * rsp)232 free_rsp_buf(int resp_buftype, void *rsp)
233 {
234 if (resp_buftype == CIFS_SMALL_BUFFER)
235 cifs_small_buf_release(rsp);
236 else if (resp_buftype == CIFS_LARGE_BUFFER)
237 cifs_buf_release(rsp);
238 }
239
240 /* NB: MID can not be set if treeCon not passed in, in that
241 case it is responsbility of caller to set the mid */
242 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)243 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
244 const struct cifs_tcon *treeCon, int word_count
245 /* length of fixed section (word count) in two byte units */)
246 {
247 char *temp = (char *) buffer;
248
249 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
250
251 buffer->smb_buf_length = cpu_to_be32(
252 (2 * word_count) + sizeof(struct smb_hdr) -
253 4 /* RFC 1001 length field does not count */ +
254 2 /* for bcc field itself */) ;
255
256 buffer->Protocol[0] = 0xFF;
257 buffer->Protocol[1] = 'S';
258 buffer->Protocol[2] = 'M';
259 buffer->Protocol[3] = 'B';
260 buffer->Command = smb_command;
261 buffer->Flags = 0x00; /* case sensitive */
262 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
263 buffer->Pid = cpu_to_le16((__u16)current->tgid);
264 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
265 if (treeCon) {
266 buffer->Tid = treeCon->tid;
267 if (treeCon->ses) {
268 if (treeCon->ses->capabilities & CAP_UNICODE)
269 buffer->Flags2 |= SMBFLG2_UNICODE;
270 if (treeCon->ses->capabilities & CAP_STATUS32)
271 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
272
273 /* Uid is not converted */
274 buffer->Uid = treeCon->ses->Suid;
275 if (treeCon->ses->server)
276 buffer->Mid = get_next_mid(treeCon->ses->server);
277 }
278 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
279 buffer->Flags2 |= SMBFLG2_DFS;
280 if (treeCon->nocase)
281 buffer->Flags |= SMBFLG_CASELESS;
282 if ((treeCon->ses) && (treeCon->ses->server))
283 if (treeCon->ses->server->sign)
284 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
285 }
286
287 /* endian conversion of flags is now done just before sending */
288 buffer->WordCount = (char) word_count;
289 return;
290 }
291
292 static int
check_smb_hdr(struct smb_hdr * smb)293 check_smb_hdr(struct smb_hdr *smb)
294 {
295 /* does it have the right SMB "signature" ? */
296 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
297 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
298 *(unsigned int *)smb->Protocol);
299 return 1;
300 }
301
302 /* if it's a response then accept */
303 if (smb->Flags & SMBFLG_RESPONSE)
304 return 0;
305
306 /* only one valid case where server sends us request */
307 if (smb->Command == SMB_COM_LOCKING_ANDX)
308 return 0;
309
310 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
311 get_mid(smb));
312 return 1;
313 }
314
315 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)316 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
317 {
318 struct smb_hdr *smb = (struct smb_hdr *)buf;
319 __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
320 __u32 clc_len; /* calculated length */
321 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
322 total_read, rfclen);
323
324 /* is this frame too small to even get to a BCC? */
325 if (total_read < 2 + sizeof(struct smb_hdr)) {
326 if ((total_read >= sizeof(struct smb_hdr) - 1)
327 && (smb->Status.CifsError != 0)) {
328 /* it's an error return */
329 smb->WordCount = 0;
330 /* some error cases do not return wct and bcc */
331 return 0;
332 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
333 (smb->WordCount == 0)) {
334 char *tmp = (char *)smb;
335 /* Need to work around a bug in two servers here */
336 /* First, check if the part of bcc they sent was zero */
337 if (tmp[sizeof(struct smb_hdr)] == 0) {
338 /* some servers return only half of bcc
339 * on simple responses (wct, bcc both zero)
340 * in particular have seen this on
341 * ulogoffX and FindClose. This leaves
342 * one byte of bcc potentially unitialized
343 */
344 /* zero rest of bcc */
345 tmp[sizeof(struct smb_hdr)+1] = 0;
346 return 0;
347 }
348 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
349 } else {
350 cifs_dbg(VFS, "Length less than smb header size\n");
351 }
352 return -EIO;
353 }
354
355 /* otherwise, there is enough to get to the BCC */
356 if (check_smb_hdr(smb))
357 return -EIO;
358 clc_len = smbCalcSize(smb);
359
360 if (4 + rfclen != total_read) {
361 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
362 rfclen);
363 return -EIO;
364 }
365
366 if (4 + rfclen != clc_len) {
367 __u16 mid = get_mid(smb);
368 /* check if bcc wrapped around for large read responses */
369 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
370 /* check if lengths match mod 64K */
371 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
372 return 0; /* bcc wrapped */
373 }
374 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
375 clc_len, 4 + rfclen, mid);
376
377 if (4 + rfclen < clc_len) {
378 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
379 rfclen, mid);
380 return -EIO;
381 } else if (rfclen > clc_len + 512) {
382 /*
383 * Some servers (Windows XP in particular) send more
384 * data than the lengths in the SMB packet would
385 * indicate on certain calls (byte range locks and
386 * trans2 find first calls in particular). While the
387 * client can handle such a frame by ignoring the
388 * trailing data, we choose limit the amount of extra
389 * data to 512 bytes.
390 */
391 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
392 rfclen, mid);
393 return -EIO;
394 }
395 }
396 return 0;
397 }
398
399 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)400 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
401 {
402 struct smb_hdr *buf = (struct smb_hdr *)buffer;
403 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
404 struct TCP_Server_Info *pserver;
405 struct cifs_ses *ses;
406 struct cifs_tcon *tcon;
407 struct cifsInodeInfo *pCifsInode;
408 struct cifsFileInfo *netfile;
409
410 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
411 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
412 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
413 struct smb_com_transaction_change_notify_rsp *pSMBr =
414 (struct smb_com_transaction_change_notify_rsp *)buf;
415 struct file_notify_information *pnotify;
416 __u32 data_offset = 0;
417 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
418
419 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
420 data_offset = le32_to_cpu(pSMBr->DataOffset);
421
422 if (data_offset >
423 len - sizeof(struct file_notify_information)) {
424 cifs_dbg(FYI, "Invalid data_offset %u\n",
425 data_offset);
426 return true;
427 }
428 pnotify = (struct file_notify_information *)
429 ((char *)&pSMBr->hdr.Protocol + data_offset);
430 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
431 pnotify->FileName, pnotify->Action);
432 /* cifs_dump_mem("Rcvd notify Data: ",buf,
433 sizeof(struct smb_hdr)+60); */
434 return true;
435 }
436 if (pSMBr->hdr.Status.CifsError) {
437 cifs_dbg(FYI, "notify err 0x%x\n",
438 pSMBr->hdr.Status.CifsError);
439 return true;
440 }
441 return false;
442 }
443 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
444 return false;
445 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
446 /* no sense logging error on invalid handle on oplock
447 break - harmless race between close request and oplock
448 break response is expected from time to time writing out
449 large dirty files cached on the client */
450 if ((NT_STATUS_INVALID_HANDLE) ==
451 le32_to_cpu(pSMB->hdr.Status.CifsError)) {
452 cifs_dbg(FYI, "Invalid handle on oplock break\n");
453 return true;
454 } else if (ERRbadfid ==
455 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
456 return true;
457 } else {
458 return false; /* on valid oplock brk we get "request" */
459 }
460 }
461 if (pSMB->hdr.WordCount != 8)
462 return false;
463
464 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
465 pSMB->LockType, pSMB->OplockLevel);
466 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
467 return false;
468
469 /* If server is a channel, select the primary channel */
470 pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
471
472 /* look up tcon based on tid & uid */
473 spin_lock(&cifs_tcp_ses_lock);
474 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
475 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
476 if (tcon->tid != buf->Tid)
477 continue;
478
479 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
480 spin_lock(&tcon->open_file_lock);
481 list_for_each_entry(netfile, &tcon->openFileList, tlist) {
482 if (pSMB->Fid != netfile->fid.netfid)
483 continue;
484
485 cifs_dbg(FYI, "file id match, oplock break\n");
486 pCifsInode = CIFS_I(d_inode(netfile->dentry));
487
488 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
489 &pCifsInode->flags);
490
491 netfile->oplock_epoch = 0;
492 netfile->oplock_level = pSMB->OplockLevel;
493 netfile->oplock_break_cancelled = false;
494 cifs_queue_oplock_break(netfile);
495
496 spin_unlock(&tcon->open_file_lock);
497 spin_unlock(&cifs_tcp_ses_lock);
498 return true;
499 }
500 spin_unlock(&tcon->open_file_lock);
501 spin_unlock(&cifs_tcp_ses_lock);
502 cifs_dbg(FYI, "No matching file for oplock break\n");
503 return true;
504 }
505 }
506 spin_unlock(&cifs_tcp_ses_lock);
507 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
508 return true;
509 }
510
511 void
dump_smb(void * buf,int smb_buf_length)512 dump_smb(void *buf, int smb_buf_length)
513 {
514 if (traceSMB == 0)
515 return;
516
517 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
518 smb_buf_length, true);
519 }
520
521 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)522 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
523 {
524 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
525 struct cifs_tcon *tcon = NULL;
526
527 if (cifs_sb->master_tlink)
528 tcon = cifs_sb_master_tcon(cifs_sb);
529
530 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
531 cifs_sb->mnt_cifs_serverino_autodisabled = true;
532 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
533 tcon ? tcon->tree_name : "new server");
534 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
535 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
536
537 }
538 }
539
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)540 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
541 {
542 oplock &= 0xF;
543
544 if (oplock == OPLOCK_EXCLUSIVE) {
545 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
546 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
547 &cinode->netfs.inode);
548 } else if (oplock == OPLOCK_READ) {
549 cinode->oplock = CIFS_CACHE_READ_FLG;
550 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
551 &cinode->netfs.inode);
552 } else
553 cinode->oplock = 0;
554 }
555
556 /*
557 * We wait for oplock breaks to be processed before we attempt to perform
558 * writes.
559 */
cifs_get_writer(struct cifsInodeInfo * cinode)560 int cifs_get_writer(struct cifsInodeInfo *cinode)
561 {
562 int rc;
563
564 start:
565 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
566 TASK_KILLABLE);
567 if (rc)
568 return rc;
569
570 spin_lock(&cinode->writers_lock);
571 if (!cinode->writers)
572 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
573 cinode->writers++;
574 /* Check to see if we have started servicing an oplock break */
575 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
576 cinode->writers--;
577 if (cinode->writers == 0) {
578 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
579 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
580 }
581 spin_unlock(&cinode->writers_lock);
582 goto start;
583 }
584 spin_unlock(&cinode->writers_lock);
585 return 0;
586 }
587
cifs_put_writer(struct cifsInodeInfo * cinode)588 void cifs_put_writer(struct cifsInodeInfo *cinode)
589 {
590 spin_lock(&cinode->writers_lock);
591 cinode->writers--;
592 if (cinode->writers == 0) {
593 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
594 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
595 }
596 spin_unlock(&cinode->writers_lock);
597 }
598
599 /**
600 * cifs_queue_oplock_break - queue the oplock break handler for cfile
601 * @cfile: The file to break the oplock on
602 *
603 * This function is called from the demultiplex thread when it
604 * receives an oplock break for @cfile.
605 *
606 * Assumes the tcon->open_file_lock is held.
607 * Assumes cfile->file_info_lock is NOT held.
608 */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)609 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
610 {
611 /*
612 * Bump the handle refcount now while we hold the
613 * open_file_lock to enforce the validity of it for the oplock
614 * break handler. The matching put is done at the end of the
615 * handler.
616 */
617 cifsFileInfo_get(cfile);
618
619 queue_work(cifsoplockd_wq, &cfile->oplock_break);
620 }
621
cifs_done_oplock_break(struct cifsInodeInfo * cinode)622 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
623 {
624 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
625 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
626 }
627
628 bool
backup_cred(struct cifs_sb_info * cifs_sb)629 backup_cred(struct cifs_sb_info *cifs_sb)
630 {
631 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
632 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
633 return true;
634 }
635 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
636 if (in_group_p(cifs_sb->ctx->backupgid))
637 return true;
638 }
639
640 return false;
641 }
642
643 void
cifs_del_pending_open(struct cifs_pending_open * open)644 cifs_del_pending_open(struct cifs_pending_open *open)
645 {
646 spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
647 list_del(&open->olist);
648 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
649 }
650
651 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)652 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
653 struct cifs_pending_open *open)
654 {
655 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
656 open->oplock = CIFS_OPLOCK_NO_CHANGE;
657 open->tlink = tlink;
658 fid->pending_open = open;
659 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
660 }
661
662 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)663 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
664 struct cifs_pending_open *open)
665 {
666 spin_lock(&tlink_tcon(tlink)->open_file_lock);
667 cifs_add_pending_open_locked(fid, tlink, open);
668 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
669 }
670
671 /*
672 * Critical section which runs after acquiring deferred_lock.
673 * As there is no reference count on cifs_deferred_close, pdclose
674 * should not be used outside deferred_lock.
675 */
676 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)677 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
678 {
679 struct cifs_deferred_close *dclose;
680
681 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
682 if ((dclose->netfid == cfile->fid.netfid) &&
683 (dclose->persistent_fid == cfile->fid.persistent_fid) &&
684 (dclose->volatile_fid == cfile->fid.volatile_fid)) {
685 *pdclose = dclose;
686 return true;
687 }
688 }
689 return false;
690 }
691
692 /*
693 * Critical section which runs after acquiring deferred_lock.
694 */
695 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)696 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
697 {
698 bool is_deferred = false;
699 struct cifs_deferred_close *pdclose;
700
701 is_deferred = cifs_is_deferred_close(cfile, &pdclose);
702 if (is_deferred) {
703 kfree(dclose);
704 return;
705 }
706
707 dclose->tlink = cfile->tlink;
708 dclose->netfid = cfile->fid.netfid;
709 dclose->persistent_fid = cfile->fid.persistent_fid;
710 dclose->volatile_fid = cfile->fid.volatile_fid;
711 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
712 }
713
714 /*
715 * Critical section which runs after acquiring deferred_lock.
716 */
717 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)718 cifs_del_deferred_close(struct cifsFileInfo *cfile)
719 {
720 bool is_deferred = false;
721 struct cifs_deferred_close *dclose;
722
723 is_deferred = cifs_is_deferred_close(cfile, &dclose);
724 if (!is_deferred)
725 return;
726 list_del(&dclose->dlist);
727 kfree(dclose);
728 }
729
730 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)731 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
732 {
733 struct cifsFileInfo *cfile = NULL;
734 struct file_list *tmp_list, *tmp_next_list;
735 struct list_head file_head;
736
737 if (cifs_inode == NULL)
738 return;
739
740 INIT_LIST_HEAD(&file_head);
741 spin_lock(&cifs_inode->open_file_lock);
742 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
743 if (delayed_work_pending(&cfile->deferred)) {
744 if (cancel_delayed_work(&cfile->deferred)) {
745 cifs_del_deferred_close(cfile);
746
747 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
748 if (tmp_list == NULL)
749 break;
750 tmp_list->cfile = cfile;
751 list_add_tail(&tmp_list->list, &file_head);
752 }
753 }
754 }
755 spin_unlock(&cifs_inode->open_file_lock);
756
757 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
758 _cifsFileInfo_put(tmp_list->cfile, true, false);
759 list_del(&tmp_list->list);
760 kfree(tmp_list);
761 }
762 }
763
764 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)765 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
766 {
767 struct cifsFileInfo *cfile;
768 struct file_list *tmp_list, *tmp_next_list;
769 struct list_head file_head;
770
771 INIT_LIST_HEAD(&file_head);
772 spin_lock(&tcon->open_file_lock);
773 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
774 if (delayed_work_pending(&cfile->deferred)) {
775 if (cancel_delayed_work(&cfile->deferred)) {
776 cifs_del_deferred_close(cfile);
777
778 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
779 if (tmp_list == NULL)
780 break;
781 tmp_list->cfile = cfile;
782 list_add_tail(&tmp_list->list, &file_head);
783 }
784 }
785 }
786 spin_unlock(&tcon->open_file_lock);
787
788 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
789 _cifsFileInfo_put(tmp_list->cfile, true, false);
790 list_del(&tmp_list->list);
791 kfree(tmp_list);
792 }
793 }
794 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)795 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
796 {
797 struct cifsFileInfo *cfile;
798 struct file_list *tmp_list, *tmp_next_list;
799 struct list_head file_head;
800 void *page;
801 const char *full_path;
802
803 INIT_LIST_HEAD(&file_head);
804 page = alloc_dentry_path();
805 spin_lock(&tcon->open_file_lock);
806 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
807 full_path = build_path_from_dentry(cfile->dentry, page);
808 if (strstr(full_path, path)) {
809 if (delayed_work_pending(&cfile->deferred)) {
810 if (cancel_delayed_work(&cfile->deferred)) {
811 cifs_del_deferred_close(cfile);
812
813 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
814 if (tmp_list == NULL)
815 break;
816 tmp_list->cfile = cfile;
817 list_add_tail(&tmp_list->list, &file_head);
818 }
819 }
820 }
821 }
822 spin_unlock(&tcon->open_file_lock);
823
824 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
825 _cifsFileInfo_put(tmp_list->cfile, true, false);
826 list_del(&tmp_list->list);
827 kfree(tmp_list);
828 }
829 free_dentry_path(page);
830 }
831
832 /* parses DFS referral V3 structure
833 * caller is responsible for freeing target_nodes
834 * returns:
835 * - on success - 0
836 * - on failure - errno
837 */
838 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)839 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
840 unsigned int *num_of_nodes,
841 struct dfs_info3_param **target_nodes,
842 const struct nls_table *nls_codepage, int remap,
843 const char *searchName, bool is_unicode)
844 {
845 int i, rc = 0;
846 char *data_end;
847 struct dfs_referral_level_3 *ref;
848
849 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
850
851 if (*num_of_nodes < 1) {
852 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
853 *num_of_nodes);
854 rc = -EINVAL;
855 goto parse_DFS_referrals_exit;
856 }
857
858 ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
859 if (ref->VersionNumber != cpu_to_le16(3)) {
860 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
861 le16_to_cpu(ref->VersionNumber));
862 rc = -EINVAL;
863 goto parse_DFS_referrals_exit;
864 }
865
866 /* get the upper boundary of the resp buffer */
867 data_end = (char *)rsp + rsp_size;
868
869 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
870 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
871
872 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
873 GFP_KERNEL);
874 if (*target_nodes == NULL) {
875 rc = -ENOMEM;
876 goto parse_DFS_referrals_exit;
877 }
878
879 /* collect necessary data from referrals */
880 for (i = 0; i < *num_of_nodes; i++) {
881 char *temp;
882 int max_len;
883 struct dfs_info3_param *node = (*target_nodes)+i;
884
885 node->flags = le32_to_cpu(rsp->DFSFlags);
886 if (is_unicode) {
887 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
888 GFP_KERNEL);
889 if (tmp == NULL) {
890 rc = -ENOMEM;
891 goto parse_DFS_referrals_exit;
892 }
893 cifsConvertToUTF16((__le16 *) tmp, searchName,
894 PATH_MAX, nls_codepage, remap);
895 node->path_consumed = cifs_utf16_bytes(tmp,
896 le16_to_cpu(rsp->PathConsumed),
897 nls_codepage);
898 kfree(tmp);
899 } else
900 node->path_consumed = le16_to_cpu(rsp->PathConsumed);
901
902 node->server_type = le16_to_cpu(ref->ServerType);
903 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
904
905 /* copy DfsPath */
906 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
907 max_len = data_end - temp;
908 node->path_name = cifs_strndup_from_utf16(temp, max_len,
909 is_unicode, nls_codepage);
910 if (!node->path_name) {
911 rc = -ENOMEM;
912 goto parse_DFS_referrals_exit;
913 }
914
915 /* copy link target UNC */
916 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
917 max_len = data_end - temp;
918 node->node_name = cifs_strndup_from_utf16(temp, max_len,
919 is_unicode, nls_codepage);
920 if (!node->node_name) {
921 rc = -ENOMEM;
922 goto parse_DFS_referrals_exit;
923 }
924
925 node->ttl = le32_to_cpu(ref->TimeToLive);
926
927 ref++;
928 }
929
930 parse_DFS_referrals_exit:
931 if (rc) {
932 free_dfs_info_array(*target_nodes, *num_of_nodes);
933 *target_nodes = NULL;
934 *num_of_nodes = 0;
935 }
936 return rc;
937 }
938
939 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)940 cifs_aio_ctx_alloc(void)
941 {
942 struct cifs_aio_ctx *ctx;
943
944 /*
945 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
946 * to false so that we know when we have to unreference pages within
947 * cifs_aio_ctx_release()
948 */
949 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
950 if (!ctx)
951 return NULL;
952
953 INIT_LIST_HEAD(&ctx->list);
954 mutex_init(&ctx->aio_mutex);
955 init_completion(&ctx->done);
956 kref_init(&ctx->refcount);
957 return ctx;
958 }
959
960 void
cifs_aio_ctx_release(struct kref * refcount)961 cifs_aio_ctx_release(struct kref *refcount)
962 {
963 struct cifs_aio_ctx *ctx = container_of(refcount,
964 struct cifs_aio_ctx, refcount);
965
966 cifsFileInfo_put(ctx->cfile);
967
968 /*
969 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
970 * which means that iov_iter_extract_pages() was a success and thus
971 * that we may have references or pins on pages that we need to
972 * release.
973 */
974 if (ctx->bv) {
975 if (ctx->should_dirty || ctx->bv_need_unpin) {
976 unsigned int i;
977
978 for (i = 0; i < ctx->nr_pinned_pages; i++) {
979 struct page *page = ctx->bv[i].bv_page;
980
981 if (ctx->should_dirty)
982 set_page_dirty(page);
983 if (ctx->bv_need_unpin)
984 unpin_user_page(page);
985 }
986 }
987 kvfree(ctx->bv);
988 }
989
990 kfree(ctx);
991 }
992
993 /**
994 * cifs_alloc_hash - allocate hash and hash context together
995 * @name: The name of the crypto hash algo
996 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
997 *
998 * The caller has to make sure @sdesc is initialized to either NULL or
999 * a valid context. It can be freed via cifs_free_hash().
1000 */
1001 int
cifs_alloc_hash(const char * name,struct shash_desc ** sdesc)1002 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1003 {
1004 int rc = 0;
1005 struct crypto_shash *alg = NULL;
1006
1007 if (*sdesc)
1008 return 0;
1009
1010 alg = crypto_alloc_shash(name, 0, 0);
1011 if (IS_ERR(alg)) {
1012 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1013 rc = PTR_ERR(alg);
1014 *sdesc = NULL;
1015 return rc;
1016 }
1017
1018 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1019 if (*sdesc == NULL) {
1020 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1021 crypto_free_shash(alg);
1022 return -ENOMEM;
1023 }
1024
1025 (*sdesc)->tfm = alg;
1026 return 0;
1027 }
1028
1029 /**
1030 * cifs_free_hash - free hash and hash context together
1031 * @sdesc: Where to find the pointer to the hash TFM
1032 *
1033 * Freeing a NULL descriptor is safe.
1034 */
1035 void
cifs_free_hash(struct shash_desc ** sdesc)1036 cifs_free_hash(struct shash_desc **sdesc)
1037 {
1038 if (unlikely(!sdesc) || !*sdesc)
1039 return;
1040
1041 if ((*sdesc)->tfm) {
1042 crypto_free_shash((*sdesc)->tfm);
1043 (*sdesc)->tfm = NULL;
1044 }
1045
1046 kfree_sensitive(*sdesc);
1047 *sdesc = NULL;
1048 }
1049
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1050 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1051 {
1052 const char *end;
1053
1054 /* skip initial slashes */
1055 while (*unc && (*unc == '\\' || *unc == '/'))
1056 unc++;
1057
1058 end = unc;
1059
1060 while (*end && !(*end == '\\' || *end == '/'))
1061 end++;
1062
1063 *h = unc;
1064 *len = end - unc;
1065 }
1066
1067 /**
1068 * copy_path_name - copy src path to dst, possibly truncating
1069 * @dst: The destination buffer
1070 * @src: The source name
1071 *
1072 * returns number of bytes written (including trailing nul)
1073 */
copy_path_name(char * dst,const char * src)1074 int copy_path_name(char *dst, const char *src)
1075 {
1076 int name_len;
1077
1078 /*
1079 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1080 * will truncate and strlen(dst) will be PATH_MAX-1
1081 */
1082 name_len = strscpy(dst, src, PATH_MAX);
1083 if (WARN_ON_ONCE(name_len < 0))
1084 name_len = PATH_MAX-1;
1085
1086 /* we count the trailing nul */
1087 name_len++;
1088 return name_len;
1089 }
1090
1091 struct super_cb_data {
1092 void *data;
1093 struct super_block *sb;
1094 };
1095
tcp_super_cb(struct super_block * sb,void * arg)1096 static void tcp_super_cb(struct super_block *sb, void *arg)
1097 {
1098 struct super_cb_data *sd = arg;
1099 struct TCP_Server_Info *server = sd->data;
1100 struct cifs_sb_info *cifs_sb;
1101 struct cifs_tcon *tcon;
1102
1103 if (sd->sb)
1104 return;
1105
1106 cifs_sb = CIFS_SB(sb);
1107 tcon = cifs_sb_master_tcon(cifs_sb);
1108 if (tcon->ses->server == server)
1109 sd->sb = sb;
1110 }
1111
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1112 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1113 void *data)
1114 {
1115 struct super_cb_data sd = {
1116 .data = data,
1117 .sb = NULL,
1118 };
1119 struct file_system_type **fs_type = (struct file_system_type *[]) {
1120 &cifs_fs_type, &smb3_fs_type, NULL,
1121 };
1122
1123 for (; *fs_type; fs_type++) {
1124 iterate_supers_type(*fs_type, f, &sd);
1125 if (sd.sb) {
1126 /*
1127 * Grab an active reference in order to prevent automounts (DFS links)
1128 * of expiring and then freeing up our cifs superblock pointer while
1129 * we're doing failover.
1130 */
1131 cifs_sb_active(sd.sb);
1132 return sd.sb;
1133 }
1134 }
1135 return ERR_PTR(-EINVAL);
1136 }
1137
__cifs_put_super(struct super_block * sb)1138 static void __cifs_put_super(struct super_block *sb)
1139 {
1140 if (!IS_ERR_OR_NULL(sb))
1141 cifs_sb_deactive(sb);
1142 }
1143
cifs_get_tcp_super(struct TCP_Server_Info * server)1144 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1145 {
1146 return __cifs_get_super(tcp_super_cb, server);
1147 }
1148
cifs_put_tcp_super(struct super_block * sb)1149 void cifs_put_tcp_super(struct super_block *sb)
1150 {
1151 __cifs_put_super(sb);
1152 }
1153
1154 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1155 int match_target_ip(struct TCP_Server_Info *server,
1156 const char *share, size_t share_len,
1157 bool *result)
1158 {
1159 int rc;
1160 char *target;
1161 struct sockaddr_storage ss;
1162
1163 *result = false;
1164
1165 target = kzalloc(share_len + 3, GFP_KERNEL);
1166 if (!target)
1167 return -ENOMEM;
1168
1169 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1170
1171 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1172
1173 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1174 kfree(target);
1175
1176 if (rc < 0)
1177 return rc;
1178
1179 spin_lock(&server->srv_lock);
1180 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1181 spin_unlock(&server->srv_lock);
1182 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1183 return 0;
1184 }
1185
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1186 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1187 {
1188 kfree(cifs_sb->prepath);
1189
1190 if (prefix && *prefix) {
1191 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1192 if (!cifs_sb->prepath)
1193 return -ENOMEM;
1194
1195 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1196 } else
1197 cifs_sb->prepath = NULL;
1198
1199 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1200 return 0;
1201 }
1202
1203 /*
1204 * Handle weird Windows SMB server behaviour. It responds with
1205 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1206 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1207 * non-ASCII unicode symbols.
1208 */
cifs_inval_name_dfs_link_error(const unsigned int xid,struct cifs_tcon * tcon,struct cifs_sb_info * cifs_sb,const char * full_path,bool * islink)1209 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1210 struct cifs_tcon *tcon,
1211 struct cifs_sb_info *cifs_sb,
1212 const char *full_path,
1213 bool *islink)
1214 {
1215 struct cifs_ses *ses = tcon->ses;
1216 size_t len;
1217 char *path;
1218 char *ref_path;
1219
1220 *islink = false;
1221
1222 /*
1223 * Fast path - skip check when @full_path doesn't have a prefix path to
1224 * look up or tcon is not DFS.
1225 */
1226 if (strlen(full_path) < 2 || !cifs_sb ||
1227 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1228 !is_tcon_dfs(tcon) || !ses->server->origin_fullpath)
1229 return 0;
1230
1231 /*
1232 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1233 * to get a referral to figure out whether it is an DFS link.
1234 */
1235 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1236 path = kmalloc(len, GFP_KERNEL);
1237 if (!path)
1238 return -ENOMEM;
1239
1240 scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1241 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1242 cifs_remap(cifs_sb));
1243 kfree(path);
1244
1245 if (IS_ERR(ref_path)) {
1246 if (PTR_ERR(ref_path) != -EINVAL)
1247 return PTR_ERR(ref_path);
1248 } else {
1249 struct dfs_info3_param *refs = NULL;
1250 int num_refs = 0;
1251
1252 /*
1253 * XXX: we are not using dfs_cache_find() here because we might
1254 * end filling all the DFS cache and thus potentially
1255 * removing cached DFS targets that the client would eventually
1256 * need during failover.
1257 */
1258 if (ses->server->ops->get_dfs_refer &&
1259 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1260 &num_refs, cifs_sb->local_nls,
1261 cifs_remap(cifs_sb)))
1262 *islink = refs[0].server_type == DFS_TYPE_LINK;
1263 free_dfs_info_array(refs, num_refs);
1264 kfree(ref_path);
1265 }
1266 return 0;
1267 }
1268 #endif
1269
cifs_wait_for_server_reconnect(struct TCP_Server_Info * server,bool retry)1270 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1271 {
1272 int timeout = 10;
1273 int rc;
1274
1275 spin_lock(&server->srv_lock);
1276 if (server->tcpStatus != CifsNeedReconnect) {
1277 spin_unlock(&server->srv_lock);
1278 return 0;
1279 }
1280 timeout *= server->nr_targets;
1281 spin_unlock(&server->srv_lock);
1282
1283 /*
1284 * Give demultiplex thread up to 10 seconds to each target available for
1285 * reconnect -- should be greater than cifs socket timeout which is 7
1286 * seconds.
1287 *
1288 * On "soft" mounts we wait once. Hard mounts keep retrying until
1289 * process is killed or server comes back on-line.
1290 */
1291 do {
1292 rc = wait_event_interruptible_timeout(server->response_q,
1293 (server->tcpStatus != CifsNeedReconnect),
1294 timeout * HZ);
1295 if (rc < 0) {
1296 cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1297 __func__);
1298 return -ERESTARTSYS;
1299 }
1300
1301 /* are we still trying to reconnect? */
1302 spin_lock(&server->srv_lock);
1303 if (server->tcpStatus != CifsNeedReconnect) {
1304 spin_unlock(&server->srv_lock);
1305 return 0;
1306 }
1307 spin_unlock(&server->srv_lock);
1308 } while (retry);
1309
1310 cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1311 return -EHOSTDOWN;
1312 }
1313