1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #endif
26 #include "fs_context.h"
27 #include "cached_dir.h"
28 
29 extern mempool_t *cifs_sm_req_poolp;
30 extern mempool_t *cifs_req_poolp;
31 
32 /* The xid serves as a useful identifier for each incoming vfs request,
33    in a similar way to the mid which is useful to track each sent smb,
34    and CurrentXid can also provide a running counter (although it
35    will eventually wrap past zero) of the total vfs operations handled
36    since the cifs fs was mounted */
37 
38 unsigned int
_get_xid(void)39 _get_xid(void)
40 {
41 	unsigned int xid;
42 
43 	spin_lock(&GlobalMid_Lock);
44 	GlobalTotalActiveXid++;
45 
46 	/* keep high water mark for number of simultaneous ops in filesystem */
47 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
48 		GlobalMaxActiveXid = GlobalTotalActiveXid;
49 	if (GlobalTotalActiveXid > 65000)
50 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
51 	xid = GlobalCurrentXid++;
52 	spin_unlock(&GlobalMid_Lock);
53 	return xid;
54 }
55 
56 void
_free_xid(unsigned int xid)57 _free_xid(unsigned int xid)
58 {
59 	spin_lock(&GlobalMid_Lock);
60 	/* if (GlobalTotalActiveXid == 0)
61 		BUG(); */
62 	GlobalTotalActiveXid--;
63 	spin_unlock(&GlobalMid_Lock);
64 }
65 
66 struct cifs_ses *
sesInfoAlloc(void)67 sesInfoAlloc(void)
68 {
69 	struct cifs_ses *ret_buf;
70 
71 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
72 	if (ret_buf) {
73 		atomic_inc(&sesInfoAllocCount);
74 		spin_lock_init(&ret_buf->ses_lock);
75 		ret_buf->ses_status = SES_NEW;
76 		++ret_buf->ses_count;
77 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
78 		INIT_LIST_HEAD(&ret_buf->tcon_list);
79 		mutex_init(&ret_buf->session_mutex);
80 		spin_lock_init(&ret_buf->iface_lock);
81 		INIT_LIST_HEAD(&ret_buf->iface_list);
82 		spin_lock_init(&ret_buf->chan_lock);
83 	}
84 	return ret_buf;
85 }
86 
87 void
sesInfoFree(struct cifs_ses * buf_to_free)88 sesInfoFree(struct cifs_ses *buf_to_free)
89 {
90 	struct cifs_server_iface *iface = NULL, *niface = NULL;
91 
92 	if (buf_to_free == NULL) {
93 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
94 		return;
95 	}
96 
97 	atomic_dec(&sesInfoAllocCount);
98 	kfree(buf_to_free->serverOS);
99 	kfree(buf_to_free->serverDomain);
100 	kfree(buf_to_free->serverNOS);
101 	kfree_sensitive(buf_to_free->password);
102 	kfree(buf_to_free->user_name);
103 	kfree(buf_to_free->domainName);
104 	kfree_sensitive(buf_to_free->auth_key.response);
105 	spin_lock(&buf_to_free->iface_lock);
106 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
107 				 iface_head)
108 		kref_put(&iface->refcount, release_iface);
109 	spin_unlock(&buf_to_free->iface_lock);
110 	kfree_sensitive(buf_to_free);
111 }
112 
113 struct cifs_tcon *
tconInfoAlloc(void)114 tconInfoAlloc(void)
115 {
116 	struct cifs_tcon *ret_buf;
117 
118 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
119 	if (!ret_buf)
120 		return NULL;
121 	ret_buf->cfids = init_cached_dirs();
122 	if (!ret_buf->cfids) {
123 		kfree(ret_buf);
124 		return NULL;
125 	}
126 
127 	atomic_inc(&tconInfoAllocCount);
128 	ret_buf->status = TID_NEW;
129 	++ret_buf->tc_count;
130 	spin_lock_init(&ret_buf->tc_lock);
131 	INIT_LIST_HEAD(&ret_buf->openFileList);
132 	INIT_LIST_HEAD(&ret_buf->tcon_list);
133 	spin_lock_init(&ret_buf->open_file_lock);
134 	spin_lock_init(&ret_buf->stat_lock);
135 	atomic_set(&ret_buf->num_local_opens, 0);
136 	atomic_set(&ret_buf->num_remote_opens, 0);
137 
138 	return ret_buf;
139 }
140 
141 void
tconInfoFree(struct cifs_tcon * tcon)142 tconInfoFree(struct cifs_tcon *tcon)
143 {
144 	if (tcon == NULL) {
145 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
146 		return;
147 	}
148 	free_cached_dirs(tcon->cfids);
149 	atomic_dec(&tconInfoAllocCount);
150 	kfree(tcon->nativeFileSystem);
151 	kfree_sensitive(tcon->password);
152 	kfree(tcon);
153 }
154 
155 struct smb_hdr *
cifs_buf_get(void)156 cifs_buf_get(void)
157 {
158 	struct smb_hdr *ret_buf = NULL;
159 	/*
160 	 * SMB2 header is bigger than CIFS one - no problems to clean some
161 	 * more bytes for CIFS.
162 	 */
163 	size_t buf_size = sizeof(struct smb2_hdr);
164 
165 	/*
166 	 * We could use negotiated size instead of max_msgsize -
167 	 * but it may be more efficient to always alloc same size
168 	 * albeit slightly larger than necessary and maxbuffersize
169 	 * defaults to this and can not be bigger.
170 	 */
171 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
172 
173 	/* clear the first few header bytes */
174 	/* for most paths, more is cleared in header_assemble */
175 	memset(ret_buf, 0, buf_size + 3);
176 	atomic_inc(&buf_alloc_count);
177 #ifdef CONFIG_CIFS_STATS2
178 	atomic_inc(&total_buf_alloc_count);
179 #endif /* CONFIG_CIFS_STATS2 */
180 
181 	return ret_buf;
182 }
183 
184 void
cifs_buf_release(void * buf_to_free)185 cifs_buf_release(void *buf_to_free)
186 {
187 	if (buf_to_free == NULL) {
188 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
189 		return;
190 	}
191 	mempool_free(buf_to_free, cifs_req_poolp);
192 
193 	atomic_dec(&buf_alloc_count);
194 	return;
195 }
196 
197 struct smb_hdr *
cifs_small_buf_get(void)198 cifs_small_buf_get(void)
199 {
200 	struct smb_hdr *ret_buf = NULL;
201 
202 /* We could use negotiated size instead of max_msgsize -
203    but it may be more efficient to always alloc same size
204    albeit slightly larger than necessary and maxbuffersize
205    defaults to this and can not be bigger */
206 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
207 	/* No need to clear memory here, cleared in header assemble */
208 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
209 	atomic_inc(&small_buf_alloc_count);
210 #ifdef CONFIG_CIFS_STATS2
211 	atomic_inc(&total_small_buf_alloc_count);
212 #endif /* CONFIG_CIFS_STATS2 */
213 
214 	return ret_buf;
215 }
216 
217 void
cifs_small_buf_release(void * buf_to_free)218 cifs_small_buf_release(void *buf_to_free)
219 {
220 
221 	if (buf_to_free == NULL) {
222 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
223 		return;
224 	}
225 	mempool_free(buf_to_free, cifs_sm_req_poolp);
226 
227 	atomic_dec(&small_buf_alloc_count);
228 	return;
229 }
230 
231 void
free_rsp_buf(int resp_buftype,void * rsp)232 free_rsp_buf(int resp_buftype, void *rsp)
233 {
234 	if (resp_buftype == CIFS_SMALL_BUFFER)
235 		cifs_small_buf_release(rsp);
236 	else if (resp_buftype == CIFS_LARGE_BUFFER)
237 		cifs_buf_release(rsp);
238 }
239 
240 /* NB: MID can not be set if treeCon not passed in, in that
241    case it is responsbility of caller to set the mid */
242 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)243 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
244 		const struct cifs_tcon *treeCon, int word_count
245 		/* length of fixed section (word count) in two byte units  */)
246 {
247 	char *temp = (char *) buffer;
248 
249 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
250 
251 	buffer->smb_buf_length = cpu_to_be32(
252 	    (2 * word_count) + sizeof(struct smb_hdr) -
253 	    4 /*  RFC 1001 length field does not count */  +
254 	    2 /* for bcc field itself */) ;
255 
256 	buffer->Protocol[0] = 0xFF;
257 	buffer->Protocol[1] = 'S';
258 	buffer->Protocol[2] = 'M';
259 	buffer->Protocol[3] = 'B';
260 	buffer->Command = smb_command;
261 	buffer->Flags = 0x00;	/* case sensitive */
262 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
263 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
264 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
265 	if (treeCon) {
266 		buffer->Tid = treeCon->tid;
267 		if (treeCon->ses) {
268 			if (treeCon->ses->capabilities & CAP_UNICODE)
269 				buffer->Flags2 |= SMBFLG2_UNICODE;
270 			if (treeCon->ses->capabilities & CAP_STATUS32)
271 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
272 
273 			/* Uid is not converted */
274 			buffer->Uid = treeCon->ses->Suid;
275 			if (treeCon->ses->server)
276 				buffer->Mid = get_next_mid(treeCon->ses->server);
277 		}
278 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
279 			buffer->Flags2 |= SMBFLG2_DFS;
280 		if (treeCon->nocase)
281 			buffer->Flags  |= SMBFLG_CASELESS;
282 		if ((treeCon->ses) && (treeCon->ses->server))
283 			if (treeCon->ses->server->sign)
284 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
285 	}
286 
287 /*  endian conversion of flags is now done just before sending */
288 	buffer->WordCount = (char) word_count;
289 	return;
290 }
291 
292 static int
check_smb_hdr(struct smb_hdr * smb)293 check_smb_hdr(struct smb_hdr *smb)
294 {
295 	/* does it have the right SMB "signature" ? */
296 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
297 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
298 			 *(unsigned int *)smb->Protocol);
299 		return 1;
300 	}
301 
302 	/* if it's a response then accept */
303 	if (smb->Flags & SMBFLG_RESPONSE)
304 		return 0;
305 
306 	/* only one valid case where server sends us request */
307 	if (smb->Command == SMB_COM_LOCKING_ANDX)
308 		return 0;
309 
310 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
311 		 get_mid(smb));
312 	return 1;
313 }
314 
315 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)316 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
317 {
318 	struct smb_hdr *smb = (struct smb_hdr *)buf;
319 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
320 	__u32 clc_len;  /* calculated length */
321 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
322 		 total_read, rfclen);
323 
324 	/* is this frame too small to even get to a BCC? */
325 	if (total_read < 2 + sizeof(struct smb_hdr)) {
326 		if ((total_read >= sizeof(struct smb_hdr) - 1)
327 			    && (smb->Status.CifsError != 0)) {
328 			/* it's an error return */
329 			smb->WordCount = 0;
330 			/* some error cases do not return wct and bcc */
331 			return 0;
332 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
333 				(smb->WordCount == 0)) {
334 			char *tmp = (char *)smb;
335 			/* Need to work around a bug in two servers here */
336 			/* First, check if the part of bcc they sent was zero */
337 			if (tmp[sizeof(struct smb_hdr)] == 0) {
338 				/* some servers return only half of bcc
339 				 * on simple responses (wct, bcc both zero)
340 				 * in particular have seen this on
341 				 * ulogoffX and FindClose. This leaves
342 				 * one byte of bcc potentially unitialized
343 				 */
344 				/* zero rest of bcc */
345 				tmp[sizeof(struct smb_hdr)+1] = 0;
346 				return 0;
347 			}
348 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
349 		} else {
350 			cifs_dbg(VFS, "Length less than smb header size\n");
351 		}
352 		return -EIO;
353 	}
354 
355 	/* otherwise, there is enough to get to the BCC */
356 	if (check_smb_hdr(smb))
357 		return -EIO;
358 	clc_len = smbCalcSize(smb);
359 
360 	if (4 + rfclen != total_read) {
361 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
362 			 rfclen);
363 		return -EIO;
364 	}
365 
366 	if (4 + rfclen != clc_len) {
367 		__u16 mid = get_mid(smb);
368 		/* check if bcc wrapped around for large read responses */
369 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
370 			/* check if lengths match mod 64K */
371 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
372 				return 0; /* bcc wrapped */
373 		}
374 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
375 			 clc_len, 4 + rfclen, mid);
376 
377 		if (4 + rfclen < clc_len) {
378 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
379 				 rfclen, mid);
380 			return -EIO;
381 		} else if (rfclen > clc_len + 512) {
382 			/*
383 			 * Some servers (Windows XP in particular) send more
384 			 * data than the lengths in the SMB packet would
385 			 * indicate on certain calls (byte range locks and
386 			 * trans2 find first calls in particular). While the
387 			 * client can handle such a frame by ignoring the
388 			 * trailing data, we choose limit the amount of extra
389 			 * data to 512 bytes.
390 			 */
391 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
392 				 rfclen, mid);
393 			return -EIO;
394 		}
395 	}
396 	return 0;
397 }
398 
399 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)400 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
401 {
402 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
403 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
404 	struct TCP_Server_Info *pserver;
405 	struct cifs_ses *ses;
406 	struct cifs_tcon *tcon;
407 	struct cifsInodeInfo *pCifsInode;
408 	struct cifsFileInfo *netfile;
409 
410 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
411 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
412 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
413 		struct smb_com_transaction_change_notify_rsp *pSMBr =
414 			(struct smb_com_transaction_change_notify_rsp *)buf;
415 		struct file_notify_information *pnotify;
416 		__u32 data_offset = 0;
417 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
418 
419 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
420 			data_offset = le32_to_cpu(pSMBr->DataOffset);
421 
422 			if (data_offset >
423 			    len - sizeof(struct file_notify_information)) {
424 				cifs_dbg(FYI, "Invalid data_offset %u\n",
425 					 data_offset);
426 				return true;
427 			}
428 			pnotify = (struct file_notify_information *)
429 				((char *)&pSMBr->hdr.Protocol + data_offset);
430 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
431 				 pnotify->FileName, pnotify->Action);
432 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
433 				sizeof(struct smb_hdr)+60); */
434 			return true;
435 		}
436 		if (pSMBr->hdr.Status.CifsError) {
437 			cifs_dbg(FYI, "notify err 0x%x\n",
438 				 pSMBr->hdr.Status.CifsError);
439 			return true;
440 		}
441 		return false;
442 	}
443 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
444 		return false;
445 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
446 		/* no sense logging error on invalid handle on oplock
447 		   break - harmless race between close request and oplock
448 		   break response is expected from time to time writing out
449 		   large dirty files cached on the client */
450 		if ((NT_STATUS_INVALID_HANDLE) ==
451 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
452 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
453 			return true;
454 		} else if (ERRbadfid ==
455 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
456 			return true;
457 		} else {
458 			return false; /* on valid oplock brk we get "request" */
459 		}
460 	}
461 	if (pSMB->hdr.WordCount != 8)
462 		return false;
463 
464 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
465 		 pSMB->LockType, pSMB->OplockLevel);
466 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
467 		return false;
468 
469 	/* If server is a channel, select the primary channel */
470 	pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
471 
472 	/* look up tcon based on tid & uid */
473 	spin_lock(&cifs_tcp_ses_lock);
474 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
475 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
476 			if (tcon->tid != buf->Tid)
477 				continue;
478 
479 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
480 			spin_lock(&tcon->open_file_lock);
481 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
482 				if (pSMB->Fid != netfile->fid.netfid)
483 					continue;
484 
485 				cifs_dbg(FYI, "file id match, oplock break\n");
486 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
487 
488 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
489 					&pCifsInode->flags);
490 
491 				netfile->oplock_epoch = 0;
492 				netfile->oplock_level = pSMB->OplockLevel;
493 				netfile->oplock_break_cancelled = false;
494 				cifs_queue_oplock_break(netfile);
495 
496 				spin_unlock(&tcon->open_file_lock);
497 				spin_unlock(&cifs_tcp_ses_lock);
498 				return true;
499 			}
500 			spin_unlock(&tcon->open_file_lock);
501 			spin_unlock(&cifs_tcp_ses_lock);
502 			cifs_dbg(FYI, "No matching file for oplock break\n");
503 			return true;
504 		}
505 	}
506 	spin_unlock(&cifs_tcp_ses_lock);
507 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
508 	return true;
509 }
510 
511 void
dump_smb(void * buf,int smb_buf_length)512 dump_smb(void *buf, int smb_buf_length)
513 {
514 	if (traceSMB == 0)
515 		return;
516 
517 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
518 		       smb_buf_length, true);
519 }
520 
521 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)522 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
523 {
524 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
525 		struct cifs_tcon *tcon = NULL;
526 
527 		if (cifs_sb->master_tlink)
528 			tcon = cifs_sb_master_tcon(cifs_sb);
529 
530 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
531 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
532 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
533 			 tcon ? tcon->tree_name : "new server");
534 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
535 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
536 
537 	}
538 }
539 
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)540 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
541 {
542 	oplock &= 0xF;
543 
544 	if (oplock == OPLOCK_EXCLUSIVE) {
545 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
546 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
547 			 &cinode->netfs.inode);
548 	} else if (oplock == OPLOCK_READ) {
549 		cinode->oplock = CIFS_CACHE_READ_FLG;
550 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
551 			 &cinode->netfs.inode);
552 	} else
553 		cinode->oplock = 0;
554 }
555 
556 /*
557  * We wait for oplock breaks to be processed before we attempt to perform
558  * writes.
559  */
cifs_get_writer(struct cifsInodeInfo * cinode)560 int cifs_get_writer(struct cifsInodeInfo *cinode)
561 {
562 	int rc;
563 
564 start:
565 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
566 			 TASK_KILLABLE);
567 	if (rc)
568 		return rc;
569 
570 	spin_lock(&cinode->writers_lock);
571 	if (!cinode->writers)
572 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
573 	cinode->writers++;
574 	/* Check to see if we have started servicing an oplock break */
575 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
576 		cinode->writers--;
577 		if (cinode->writers == 0) {
578 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
579 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
580 		}
581 		spin_unlock(&cinode->writers_lock);
582 		goto start;
583 	}
584 	spin_unlock(&cinode->writers_lock);
585 	return 0;
586 }
587 
cifs_put_writer(struct cifsInodeInfo * cinode)588 void cifs_put_writer(struct cifsInodeInfo *cinode)
589 {
590 	spin_lock(&cinode->writers_lock);
591 	cinode->writers--;
592 	if (cinode->writers == 0) {
593 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
594 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
595 	}
596 	spin_unlock(&cinode->writers_lock);
597 }
598 
599 /**
600  * cifs_queue_oplock_break - queue the oplock break handler for cfile
601  * @cfile: The file to break the oplock on
602  *
603  * This function is called from the demultiplex thread when it
604  * receives an oplock break for @cfile.
605  *
606  * Assumes the tcon->open_file_lock is held.
607  * Assumes cfile->file_info_lock is NOT held.
608  */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)609 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
610 {
611 	/*
612 	 * Bump the handle refcount now while we hold the
613 	 * open_file_lock to enforce the validity of it for the oplock
614 	 * break handler. The matching put is done at the end of the
615 	 * handler.
616 	 */
617 	cifsFileInfo_get(cfile);
618 
619 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
620 }
621 
cifs_done_oplock_break(struct cifsInodeInfo * cinode)622 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
623 {
624 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
625 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
626 }
627 
628 bool
backup_cred(struct cifs_sb_info * cifs_sb)629 backup_cred(struct cifs_sb_info *cifs_sb)
630 {
631 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
632 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
633 			return true;
634 	}
635 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
636 		if (in_group_p(cifs_sb->ctx->backupgid))
637 			return true;
638 	}
639 
640 	return false;
641 }
642 
643 void
cifs_del_pending_open(struct cifs_pending_open * open)644 cifs_del_pending_open(struct cifs_pending_open *open)
645 {
646 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
647 	list_del(&open->olist);
648 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
649 }
650 
651 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)652 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
653 			     struct cifs_pending_open *open)
654 {
655 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
656 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
657 	open->tlink = tlink;
658 	fid->pending_open = open;
659 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
660 }
661 
662 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)663 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
664 		      struct cifs_pending_open *open)
665 {
666 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
667 	cifs_add_pending_open_locked(fid, tlink, open);
668 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
669 }
670 
671 /*
672  * Critical section which runs after acquiring deferred_lock.
673  * As there is no reference count on cifs_deferred_close, pdclose
674  * should not be used outside deferred_lock.
675  */
676 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)677 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
678 {
679 	struct cifs_deferred_close *dclose;
680 
681 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
682 		if ((dclose->netfid == cfile->fid.netfid) &&
683 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
684 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
685 			*pdclose = dclose;
686 			return true;
687 		}
688 	}
689 	return false;
690 }
691 
692 /*
693  * Critical section which runs after acquiring deferred_lock.
694  */
695 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)696 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
697 {
698 	bool is_deferred = false;
699 	struct cifs_deferred_close *pdclose;
700 
701 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
702 	if (is_deferred) {
703 		kfree(dclose);
704 		return;
705 	}
706 
707 	dclose->tlink = cfile->tlink;
708 	dclose->netfid = cfile->fid.netfid;
709 	dclose->persistent_fid = cfile->fid.persistent_fid;
710 	dclose->volatile_fid = cfile->fid.volatile_fid;
711 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
712 }
713 
714 /*
715  * Critical section which runs after acquiring deferred_lock.
716  */
717 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)718 cifs_del_deferred_close(struct cifsFileInfo *cfile)
719 {
720 	bool is_deferred = false;
721 	struct cifs_deferred_close *dclose;
722 
723 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
724 	if (!is_deferred)
725 		return;
726 	list_del(&dclose->dlist);
727 	kfree(dclose);
728 }
729 
730 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)731 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
732 {
733 	struct cifsFileInfo *cfile = NULL;
734 	struct file_list *tmp_list, *tmp_next_list;
735 	struct list_head file_head;
736 
737 	if (cifs_inode == NULL)
738 		return;
739 
740 	INIT_LIST_HEAD(&file_head);
741 	spin_lock(&cifs_inode->open_file_lock);
742 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
743 		if (delayed_work_pending(&cfile->deferred)) {
744 			if (cancel_delayed_work(&cfile->deferred)) {
745 				cifs_del_deferred_close(cfile);
746 
747 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
748 				if (tmp_list == NULL)
749 					break;
750 				tmp_list->cfile = cfile;
751 				list_add_tail(&tmp_list->list, &file_head);
752 			}
753 		}
754 	}
755 	spin_unlock(&cifs_inode->open_file_lock);
756 
757 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
758 		_cifsFileInfo_put(tmp_list->cfile, true, false);
759 		list_del(&tmp_list->list);
760 		kfree(tmp_list);
761 	}
762 }
763 
764 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)765 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
766 {
767 	struct cifsFileInfo *cfile;
768 	struct file_list *tmp_list, *tmp_next_list;
769 	struct list_head file_head;
770 
771 	INIT_LIST_HEAD(&file_head);
772 	spin_lock(&tcon->open_file_lock);
773 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
774 		if (delayed_work_pending(&cfile->deferred)) {
775 			if (cancel_delayed_work(&cfile->deferred)) {
776 				cifs_del_deferred_close(cfile);
777 
778 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
779 				if (tmp_list == NULL)
780 					break;
781 				tmp_list->cfile = cfile;
782 				list_add_tail(&tmp_list->list, &file_head);
783 			}
784 		}
785 	}
786 	spin_unlock(&tcon->open_file_lock);
787 
788 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
789 		_cifsFileInfo_put(tmp_list->cfile, true, false);
790 		list_del(&tmp_list->list);
791 		kfree(tmp_list);
792 	}
793 }
794 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)795 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
796 {
797 	struct cifsFileInfo *cfile;
798 	struct file_list *tmp_list, *tmp_next_list;
799 	struct list_head file_head;
800 	void *page;
801 	const char *full_path;
802 
803 	INIT_LIST_HEAD(&file_head);
804 	page = alloc_dentry_path();
805 	spin_lock(&tcon->open_file_lock);
806 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
807 		full_path = build_path_from_dentry(cfile->dentry, page);
808 		if (strstr(full_path, path)) {
809 			if (delayed_work_pending(&cfile->deferred)) {
810 				if (cancel_delayed_work(&cfile->deferred)) {
811 					cifs_del_deferred_close(cfile);
812 
813 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
814 					if (tmp_list == NULL)
815 						break;
816 					tmp_list->cfile = cfile;
817 					list_add_tail(&tmp_list->list, &file_head);
818 				}
819 			}
820 		}
821 	}
822 	spin_unlock(&tcon->open_file_lock);
823 
824 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
825 		_cifsFileInfo_put(tmp_list->cfile, true, false);
826 		list_del(&tmp_list->list);
827 		kfree(tmp_list);
828 	}
829 	free_dentry_path(page);
830 }
831 
832 /* parses DFS referral V3 structure
833  * caller is responsible for freeing target_nodes
834  * returns:
835  * - on success - 0
836  * - on failure - errno
837  */
838 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)839 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
840 		    unsigned int *num_of_nodes,
841 		    struct dfs_info3_param **target_nodes,
842 		    const struct nls_table *nls_codepage, int remap,
843 		    const char *searchName, bool is_unicode)
844 {
845 	int i, rc = 0;
846 	char *data_end;
847 	struct dfs_referral_level_3 *ref;
848 
849 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
850 
851 	if (*num_of_nodes < 1) {
852 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
853 			 *num_of_nodes);
854 		rc = -EINVAL;
855 		goto parse_DFS_referrals_exit;
856 	}
857 
858 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
859 	if (ref->VersionNumber != cpu_to_le16(3)) {
860 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
861 			 le16_to_cpu(ref->VersionNumber));
862 		rc = -EINVAL;
863 		goto parse_DFS_referrals_exit;
864 	}
865 
866 	/* get the upper boundary of the resp buffer */
867 	data_end = (char *)rsp + rsp_size;
868 
869 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
870 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
871 
872 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
873 				GFP_KERNEL);
874 	if (*target_nodes == NULL) {
875 		rc = -ENOMEM;
876 		goto parse_DFS_referrals_exit;
877 	}
878 
879 	/* collect necessary data from referrals */
880 	for (i = 0; i < *num_of_nodes; i++) {
881 		char *temp;
882 		int max_len;
883 		struct dfs_info3_param *node = (*target_nodes)+i;
884 
885 		node->flags = le32_to_cpu(rsp->DFSFlags);
886 		if (is_unicode) {
887 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
888 						GFP_KERNEL);
889 			if (tmp == NULL) {
890 				rc = -ENOMEM;
891 				goto parse_DFS_referrals_exit;
892 			}
893 			cifsConvertToUTF16((__le16 *) tmp, searchName,
894 					   PATH_MAX, nls_codepage, remap);
895 			node->path_consumed = cifs_utf16_bytes(tmp,
896 					le16_to_cpu(rsp->PathConsumed),
897 					nls_codepage);
898 			kfree(tmp);
899 		} else
900 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
901 
902 		node->server_type = le16_to_cpu(ref->ServerType);
903 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
904 
905 		/* copy DfsPath */
906 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
907 		max_len = data_end - temp;
908 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
909 						is_unicode, nls_codepage);
910 		if (!node->path_name) {
911 			rc = -ENOMEM;
912 			goto parse_DFS_referrals_exit;
913 		}
914 
915 		/* copy link target UNC */
916 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
917 		max_len = data_end - temp;
918 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
919 						is_unicode, nls_codepage);
920 		if (!node->node_name) {
921 			rc = -ENOMEM;
922 			goto parse_DFS_referrals_exit;
923 		}
924 
925 		node->ttl = le32_to_cpu(ref->TimeToLive);
926 
927 		ref++;
928 	}
929 
930 parse_DFS_referrals_exit:
931 	if (rc) {
932 		free_dfs_info_array(*target_nodes, *num_of_nodes);
933 		*target_nodes = NULL;
934 		*num_of_nodes = 0;
935 	}
936 	return rc;
937 }
938 
939 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)940 cifs_aio_ctx_alloc(void)
941 {
942 	struct cifs_aio_ctx *ctx;
943 
944 	/*
945 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
946 	 * to false so that we know when we have to unreference pages within
947 	 * cifs_aio_ctx_release()
948 	 */
949 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
950 	if (!ctx)
951 		return NULL;
952 
953 	INIT_LIST_HEAD(&ctx->list);
954 	mutex_init(&ctx->aio_mutex);
955 	init_completion(&ctx->done);
956 	kref_init(&ctx->refcount);
957 	return ctx;
958 }
959 
960 void
cifs_aio_ctx_release(struct kref * refcount)961 cifs_aio_ctx_release(struct kref *refcount)
962 {
963 	struct cifs_aio_ctx *ctx = container_of(refcount,
964 					struct cifs_aio_ctx, refcount);
965 
966 	cifsFileInfo_put(ctx->cfile);
967 
968 	/*
969 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
970 	 * which means that iov_iter_extract_pages() was a success and thus
971 	 * that we may have references or pins on pages that we need to
972 	 * release.
973 	 */
974 	if (ctx->bv) {
975 		if (ctx->should_dirty || ctx->bv_need_unpin) {
976 			unsigned int i;
977 
978 			for (i = 0; i < ctx->nr_pinned_pages; i++) {
979 				struct page *page = ctx->bv[i].bv_page;
980 
981 				if (ctx->should_dirty)
982 					set_page_dirty(page);
983 				if (ctx->bv_need_unpin)
984 					unpin_user_page(page);
985 			}
986 		}
987 		kvfree(ctx->bv);
988 	}
989 
990 	kfree(ctx);
991 }
992 
993 /**
994  * cifs_alloc_hash - allocate hash and hash context together
995  * @name: The name of the crypto hash algo
996  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
997  *
998  * The caller has to make sure @sdesc is initialized to either NULL or
999  * a valid context. It can be freed via cifs_free_hash().
1000  */
1001 int
cifs_alloc_hash(const char * name,struct shash_desc ** sdesc)1002 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1003 {
1004 	int rc = 0;
1005 	struct crypto_shash *alg = NULL;
1006 
1007 	if (*sdesc)
1008 		return 0;
1009 
1010 	alg = crypto_alloc_shash(name, 0, 0);
1011 	if (IS_ERR(alg)) {
1012 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1013 		rc = PTR_ERR(alg);
1014 		*sdesc = NULL;
1015 		return rc;
1016 	}
1017 
1018 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1019 	if (*sdesc == NULL) {
1020 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1021 		crypto_free_shash(alg);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	(*sdesc)->tfm = alg;
1026 	return 0;
1027 }
1028 
1029 /**
1030  * cifs_free_hash - free hash and hash context together
1031  * @sdesc: Where to find the pointer to the hash TFM
1032  *
1033  * Freeing a NULL descriptor is safe.
1034  */
1035 void
cifs_free_hash(struct shash_desc ** sdesc)1036 cifs_free_hash(struct shash_desc **sdesc)
1037 {
1038 	if (unlikely(!sdesc) || !*sdesc)
1039 		return;
1040 
1041 	if ((*sdesc)->tfm) {
1042 		crypto_free_shash((*sdesc)->tfm);
1043 		(*sdesc)->tfm = NULL;
1044 	}
1045 
1046 	kfree_sensitive(*sdesc);
1047 	*sdesc = NULL;
1048 }
1049 
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1050 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1051 {
1052 	const char *end;
1053 
1054 	/* skip initial slashes */
1055 	while (*unc && (*unc == '\\' || *unc == '/'))
1056 		unc++;
1057 
1058 	end = unc;
1059 
1060 	while (*end && !(*end == '\\' || *end == '/'))
1061 		end++;
1062 
1063 	*h = unc;
1064 	*len = end - unc;
1065 }
1066 
1067 /**
1068  * copy_path_name - copy src path to dst, possibly truncating
1069  * @dst: The destination buffer
1070  * @src: The source name
1071  *
1072  * returns number of bytes written (including trailing nul)
1073  */
copy_path_name(char * dst,const char * src)1074 int copy_path_name(char *dst, const char *src)
1075 {
1076 	int name_len;
1077 
1078 	/*
1079 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1080 	 * will truncate and strlen(dst) will be PATH_MAX-1
1081 	 */
1082 	name_len = strscpy(dst, src, PATH_MAX);
1083 	if (WARN_ON_ONCE(name_len < 0))
1084 		name_len = PATH_MAX-1;
1085 
1086 	/* we count the trailing nul */
1087 	name_len++;
1088 	return name_len;
1089 }
1090 
1091 struct super_cb_data {
1092 	void *data;
1093 	struct super_block *sb;
1094 };
1095 
tcp_super_cb(struct super_block * sb,void * arg)1096 static void tcp_super_cb(struct super_block *sb, void *arg)
1097 {
1098 	struct super_cb_data *sd = arg;
1099 	struct TCP_Server_Info *server = sd->data;
1100 	struct cifs_sb_info *cifs_sb;
1101 	struct cifs_tcon *tcon;
1102 
1103 	if (sd->sb)
1104 		return;
1105 
1106 	cifs_sb = CIFS_SB(sb);
1107 	tcon = cifs_sb_master_tcon(cifs_sb);
1108 	if (tcon->ses->server == server)
1109 		sd->sb = sb;
1110 }
1111 
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1112 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1113 					    void *data)
1114 {
1115 	struct super_cb_data sd = {
1116 		.data = data,
1117 		.sb = NULL,
1118 	};
1119 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1120 		&cifs_fs_type, &smb3_fs_type, NULL,
1121 	};
1122 
1123 	for (; *fs_type; fs_type++) {
1124 		iterate_supers_type(*fs_type, f, &sd);
1125 		if (sd.sb) {
1126 			/*
1127 			 * Grab an active reference in order to prevent automounts (DFS links)
1128 			 * of expiring and then freeing up our cifs superblock pointer while
1129 			 * we're doing failover.
1130 			 */
1131 			cifs_sb_active(sd.sb);
1132 			return sd.sb;
1133 		}
1134 	}
1135 	return ERR_PTR(-EINVAL);
1136 }
1137 
__cifs_put_super(struct super_block * sb)1138 static void __cifs_put_super(struct super_block *sb)
1139 {
1140 	if (!IS_ERR_OR_NULL(sb))
1141 		cifs_sb_deactive(sb);
1142 }
1143 
cifs_get_tcp_super(struct TCP_Server_Info * server)1144 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1145 {
1146 	return __cifs_get_super(tcp_super_cb, server);
1147 }
1148 
cifs_put_tcp_super(struct super_block * sb)1149 void cifs_put_tcp_super(struct super_block *sb)
1150 {
1151 	__cifs_put_super(sb);
1152 }
1153 
1154 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1155 int match_target_ip(struct TCP_Server_Info *server,
1156 		    const char *share, size_t share_len,
1157 		    bool *result)
1158 {
1159 	int rc;
1160 	char *target;
1161 	struct sockaddr_storage ss;
1162 
1163 	*result = false;
1164 
1165 	target = kzalloc(share_len + 3, GFP_KERNEL);
1166 	if (!target)
1167 		return -ENOMEM;
1168 
1169 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1170 
1171 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1172 
1173 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1174 	kfree(target);
1175 
1176 	if (rc < 0)
1177 		return rc;
1178 
1179 	spin_lock(&server->srv_lock);
1180 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1181 	spin_unlock(&server->srv_lock);
1182 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1183 	return 0;
1184 }
1185 
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1186 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1187 {
1188 	kfree(cifs_sb->prepath);
1189 
1190 	if (prefix && *prefix) {
1191 		cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1192 		if (!cifs_sb->prepath)
1193 			return -ENOMEM;
1194 
1195 		convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1196 	} else
1197 		cifs_sb->prepath = NULL;
1198 
1199 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Handle weird Windows SMB server behaviour. It responds with
1205  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1206  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1207  * non-ASCII unicode symbols.
1208  */
cifs_inval_name_dfs_link_error(const unsigned int xid,struct cifs_tcon * tcon,struct cifs_sb_info * cifs_sb,const char * full_path,bool * islink)1209 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1210 				   struct cifs_tcon *tcon,
1211 				   struct cifs_sb_info *cifs_sb,
1212 				   const char *full_path,
1213 				   bool *islink)
1214 {
1215 	struct cifs_ses *ses = tcon->ses;
1216 	size_t len;
1217 	char *path;
1218 	char *ref_path;
1219 
1220 	*islink = false;
1221 
1222 	/*
1223 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1224 	 * look up or tcon is not DFS.
1225 	 */
1226 	if (strlen(full_path) < 2 || !cifs_sb ||
1227 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1228 	    !is_tcon_dfs(tcon) || !ses->server->origin_fullpath)
1229 		return 0;
1230 
1231 	/*
1232 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1233 	 * to get a referral to figure out whether it is an DFS link.
1234 	 */
1235 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1236 	path = kmalloc(len, GFP_KERNEL);
1237 	if (!path)
1238 		return -ENOMEM;
1239 
1240 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1241 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1242 					    cifs_remap(cifs_sb));
1243 	kfree(path);
1244 
1245 	if (IS_ERR(ref_path)) {
1246 		if (PTR_ERR(ref_path) != -EINVAL)
1247 			return PTR_ERR(ref_path);
1248 	} else {
1249 		struct dfs_info3_param *refs = NULL;
1250 		int num_refs = 0;
1251 
1252 		/*
1253 		 * XXX: we are not using dfs_cache_find() here because we might
1254 		 * end filling all the DFS cache and thus potentially
1255 		 * removing cached DFS targets that the client would eventually
1256 		 * need during failover.
1257 		 */
1258 		if (ses->server->ops->get_dfs_refer &&
1259 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1260 						     &num_refs, cifs_sb->local_nls,
1261 						     cifs_remap(cifs_sb)))
1262 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1263 		free_dfs_info_array(refs, num_refs);
1264 		kfree(ref_path);
1265 	}
1266 	return 0;
1267 }
1268 #endif
1269 
cifs_wait_for_server_reconnect(struct TCP_Server_Info * server,bool retry)1270 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1271 {
1272 	int timeout = 10;
1273 	int rc;
1274 
1275 	spin_lock(&server->srv_lock);
1276 	if (server->tcpStatus != CifsNeedReconnect) {
1277 		spin_unlock(&server->srv_lock);
1278 		return 0;
1279 	}
1280 	timeout *= server->nr_targets;
1281 	spin_unlock(&server->srv_lock);
1282 
1283 	/*
1284 	 * Give demultiplex thread up to 10 seconds to each target available for
1285 	 * reconnect -- should be greater than cifs socket timeout which is 7
1286 	 * seconds.
1287 	 *
1288 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1289 	 * process is killed or server comes back on-line.
1290 	 */
1291 	do {
1292 		rc = wait_event_interruptible_timeout(server->response_q,
1293 						      (server->tcpStatus != CifsNeedReconnect),
1294 						      timeout * HZ);
1295 		if (rc < 0) {
1296 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1297 				 __func__);
1298 			return -ERESTARTSYS;
1299 		}
1300 
1301 		/* are we still trying to reconnect? */
1302 		spin_lock(&server->srv_lock);
1303 		if (server->tcpStatus != CifsNeedReconnect) {
1304 			spin_unlock(&server->srv_lock);
1305 			return 0;
1306 		}
1307 		spin_unlock(&server->srv_lock);
1308 	} while (retry);
1309 
1310 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1311 	return -EHOSTDOWN;
1312 }
1313