1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014 Intel Corporation
4 *
5 * Adjustable fractional divider clock implementation.
6 * Uses rational best approximation algorithm.
7 *
8 * Output is calculated as
9 *
10 * rate = (m / n) * parent_rate (1)
11 *
12 * This is useful when we have a prescaler block which asks for
13 * m (numerator) and n (denominator) values to be provided to satisfy
14 * the (1) as much as possible.
15 *
16 * Since m and n have the limitation by a range, e.g.
17 *
18 * n >= 1, n < N_width, where N_width = 2^nwidth (2)
19 *
20 * for some cases the output may be saturated. Hence, from (1) and (2),
21 * assuming the worst case when m = 1, the inequality
22 *
23 * floor(log2(parent_rate / rate)) <= nwidth (3)
24 *
25 * may be derived. Thus, in cases when
26 *
27 * (parent_rate / rate) >> N_width (4)
28 *
29 * we might scale up the rate by 2^scale (see the description of
30 * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
31 *
32 * scale = floor(log2(parent_rate / rate)) - nwidth (5)
33 *
34 * and assume that the IP, that needs m and n, has also its own
35 * prescaler, which is capable to divide by 2^scale. In this way
36 * we get the denominator to satisfy the desired range (2) and
37 * at the same time a much better result of m and n than simple
38 * saturated values.
39 */
40
41 #include <linux/debugfs.h>
42 #include <linux/device.h>
43 #include <linux/io.h>
44 #include <linux/math.h>
45 #include <linux/module.h>
46 #include <linux/rational.h>
47 #include <linux/slab.h>
48
49 #include <linux/clk-provider.h>
50
51 #include "clk-fractional-divider.h"
52
clk_fd_readl(struct clk_fractional_divider * fd)53 static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
54 {
55 if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
56 return ioread32be(fd->reg);
57
58 return readl(fd->reg);
59 }
60
clk_fd_writel(struct clk_fractional_divider * fd,u32 val)61 static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
62 {
63 if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
64 iowrite32be(val, fd->reg);
65 else
66 writel(val, fd->reg);
67 }
68
clk_fd_get_div(struct clk_hw * hw,struct u32_fract * fract)69 static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract)
70 {
71 struct clk_fractional_divider *fd = to_clk_fd(hw);
72 unsigned long flags = 0;
73 unsigned long m, n;
74 u32 val;
75
76 if (fd->lock)
77 spin_lock_irqsave(fd->lock, flags);
78 else
79 __acquire(fd->lock);
80
81 val = clk_fd_readl(fd);
82
83 if (fd->lock)
84 spin_unlock_irqrestore(fd->lock, flags);
85 else
86 __release(fd->lock);
87
88 m = (val & fd->mmask) >> fd->mshift;
89 n = (val & fd->nmask) >> fd->nshift;
90
91 if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
92 m++;
93 n++;
94 }
95
96 fract->numerator = m;
97 fract->denominator = n;
98 }
99
clk_fd_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)100 static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
101 {
102 struct u32_fract fract;
103 u64 ret;
104
105 clk_fd_get_div(hw, &fract);
106
107 if (!fract.numerator || !fract.denominator)
108 return parent_rate;
109
110 ret = (u64)parent_rate * fract.numerator;
111 do_div(ret, fract.denominator);
112
113 return ret;
114 }
115
clk_fractional_divider_general_approximation(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate,unsigned long * m,unsigned long * n)116 void clk_fractional_divider_general_approximation(struct clk_hw *hw,
117 unsigned long rate,
118 unsigned long *parent_rate,
119 unsigned long *m, unsigned long *n)
120 {
121 struct clk_fractional_divider *fd = to_clk_fd(hw);
122
123 /*
124 * Get rate closer to *parent_rate to guarantee there is no overflow
125 * for m and n. In the result it will be the nearest rate left shifted
126 * by (scale - fd->nwidth) bits.
127 *
128 * For the detailed explanation see the top comment in this file.
129 */
130 if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
131 unsigned long scale = fls_long(*parent_rate / rate - 1);
132
133 if (scale > fd->nwidth)
134 rate <<= scale - fd->nwidth;
135 }
136
137 rational_best_approximation(rate, *parent_rate,
138 GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0),
139 m, n);
140 }
141
clk_fd_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)142 static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate,
143 unsigned long *parent_rate)
144 {
145 struct clk_fractional_divider *fd = to_clk_fd(hw);
146 unsigned long m, n;
147 u64 ret;
148
149 if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate))
150 return *parent_rate;
151
152 if (fd->approximation)
153 fd->approximation(hw, rate, parent_rate, &m, &n);
154 else
155 clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n);
156
157 ret = (u64)*parent_rate * m;
158 do_div(ret, n);
159
160 return ret;
161 }
162
clk_fd_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)163 static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
164 unsigned long parent_rate)
165 {
166 struct clk_fractional_divider *fd = to_clk_fd(hw);
167 unsigned long flags = 0;
168 unsigned long m, n;
169 u32 val;
170
171 rational_best_approximation(rate, parent_rate,
172 GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0),
173 &m, &n);
174
175 if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
176 m--;
177 n--;
178 }
179
180 if (fd->lock)
181 spin_lock_irqsave(fd->lock, flags);
182 else
183 __acquire(fd->lock);
184
185 val = clk_fd_readl(fd);
186 val &= ~(fd->mmask | fd->nmask);
187 val |= (m << fd->mshift) | (n << fd->nshift);
188 clk_fd_writel(fd, val);
189
190 if (fd->lock)
191 spin_unlock_irqrestore(fd->lock, flags);
192 else
193 __release(fd->lock);
194
195 return 0;
196 }
197
198 #ifdef CONFIG_DEBUG_FS
clk_fd_numerator_get(void * hw,u64 * val)199 static int clk_fd_numerator_get(void *hw, u64 *val)
200 {
201 struct u32_fract fract;
202
203 clk_fd_get_div(hw, &fract);
204
205 *val = fract.numerator;
206
207 return 0;
208 }
209 DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n");
210
clk_fd_denominator_get(void * hw,u64 * val)211 static int clk_fd_denominator_get(void *hw, u64 *val)
212 {
213 struct u32_fract fract;
214
215 clk_fd_get_div(hw, &fract);
216
217 *val = fract.denominator;
218
219 return 0;
220 }
221 DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n");
222
clk_fd_debug_init(struct clk_hw * hw,struct dentry * dentry)223 static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry)
224 {
225 debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops);
226 debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops);
227 }
228 #endif
229
230 const struct clk_ops clk_fractional_divider_ops = {
231 .recalc_rate = clk_fd_recalc_rate,
232 .round_rate = clk_fd_round_rate,
233 .set_rate = clk_fd_set_rate,
234 #ifdef CONFIG_DEBUG_FS
235 .debug_init = clk_fd_debug_init,
236 #endif
237 };
238 EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);
239
clk_hw_register_fractional_divider(struct device * dev,const char * name,const char * parent_name,unsigned long flags,void __iomem * reg,u8 mshift,u8 mwidth,u8 nshift,u8 nwidth,u8 clk_divider_flags,spinlock_t * lock)240 struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
241 const char *name, const char *parent_name, unsigned long flags,
242 void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
243 u8 clk_divider_flags, spinlock_t *lock)
244 {
245 struct clk_fractional_divider *fd;
246 struct clk_init_data init;
247 struct clk_hw *hw;
248 int ret;
249
250 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
251 if (!fd)
252 return ERR_PTR(-ENOMEM);
253
254 init.name = name;
255 init.ops = &clk_fractional_divider_ops;
256 init.flags = flags;
257 init.parent_names = parent_name ? &parent_name : NULL;
258 init.num_parents = parent_name ? 1 : 0;
259
260 fd->reg = reg;
261 fd->mshift = mshift;
262 fd->mwidth = mwidth;
263 fd->mmask = GENMASK(mwidth - 1, 0) << mshift;
264 fd->nshift = nshift;
265 fd->nwidth = nwidth;
266 fd->nmask = GENMASK(nwidth - 1, 0) << nshift;
267 fd->flags = clk_divider_flags;
268 fd->lock = lock;
269 fd->hw.init = &init;
270
271 hw = &fd->hw;
272 ret = clk_hw_register(dev, hw);
273 if (ret) {
274 kfree(fd);
275 hw = ERR_PTR(ret);
276 }
277
278 return hw;
279 }
280 EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);
281
clk_register_fractional_divider(struct device * dev,const char * name,const char * parent_name,unsigned long flags,void __iomem * reg,u8 mshift,u8 mwidth,u8 nshift,u8 nwidth,u8 clk_divider_flags,spinlock_t * lock)282 struct clk *clk_register_fractional_divider(struct device *dev,
283 const char *name, const char *parent_name, unsigned long flags,
284 void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
285 u8 clk_divider_flags, spinlock_t *lock)
286 {
287 struct clk_hw *hw;
288
289 hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
290 reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
291 lock);
292 if (IS_ERR(hw))
293 return ERR_CAST(hw);
294 return hw->clk;
295 }
296 EXPORT_SYMBOL_GPL(clk_register_fractional_divider);
297
clk_hw_unregister_fractional_divider(struct clk_hw * hw)298 void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
299 {
300 struct clk_fractional_divider *fd;
301
302 fd = to_clk_fd(hw);
303
304 clk_hw_unregister(hw);
305 kfree(fd);
306 }
307