1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57
58 union tod_clock tod_clock_base __section(".data");
59 EXPORT_SYMBOL_GPL(tod_clock_base);
60
61 u64 clock_comparator_max = -1ULL;
62 EXPORT_SYMBOL_GPL(clock_comparator_max);
63
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65
66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67 EXPORT_SYMBOL(s390_epoch_delta_notifier);
68
69 unsigned char ptff_function_mask[16];
70
71 static unsigned long lpar_offset;
72 static unsigned long initial_leap_seconds;
73 static unsigned long tod_steering_end;
74 static long tod_steering_delta;
75
76 /*
77 * Get time offsets with PTFF
78 */
time_early_init(void)79 void __init time_early_init(void)
80 {
81 struct ptff_qto qto;
82 struct ptff_qui qui;
83 int cs;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = tod_clock_base.tod;
87 for (cs = 0; cs < CS_BASES; cs++)
88 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
89
90 if (!test_facility(28))
91 return;
92
93 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
94
95 /* get LPAR offset */
96 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
97 lpar_offset = qto.tod_epoch_difference;
98
99 /* get initial leap seconds */
100 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101 initial_leap_seconds = (unsigned long)
102 ((long) qui.old_leap * 4096000000L);
103 }
104
105 /*
106 * Scheduler clock - returns current time in nanosec units.
107 */
sched_clock(void)108 unsigned long long notrace sched_clock(void)
109 {
110 return tod_to_ns(get_tod_clock_monotonic());
111 }
112 NOKPROBE_SYMBOL(sched_clock);
113
ext_to_timespec64(union tod_clock * clk,struct timespec64 * xt)114 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
115 {
116 unsigned long rem, sec, nsec;
117
118 sec = clk->us;
119 rem = do_div(sec, 1000000);
120 nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
121 xt->tv_sec = sec;
122 xt->tv_nsec = nsec;
123 }
124
clock_comparator_work(void)125 void clock_comparator_work(void)
126 {
127 struct clock_event_device *cd;
128
129 S390_lowcore.clock_comparator = clock_comparator_max;
130 cd = this_cpu_ptr(&comparators);
131 cd->event_handler(cd);
132 }
133
s390_next_event(unsigned long delta,struct clock_event_device * evt)134 static int s390_next_event(unsigned long delta,
135 struct clock_event_device *evt)
136 {
137 S390_lowcore.clock_comparator = get_tod_clock() + delta;
138 set_clock_comparator(S390_lowcore.clock_comparator);
139 return 0;
140 }
141
142 /*
143 * Set up lowcore and control register of the current cpu to
144 * enable TOD clock and clock comparator interrupts.
145 */
init_cpu_timer(void)146 void init_cpu_timer(void)
147 {
148 struct clock_event_device *cd;
149 int cpu;
150
151 S390_lowcore.clock_comparator = clock_comparator_max;
152 set_clock_comparator(S390_lowcore.clock_comparator);
153
154 cpu = smp_processor_id();
155 cd = &per_cpu(comparators, cpu);
156 cd->name = "comparator";
157 cd->features = CLOCK_EVT_FEAT_ONESHOT;
158 cd->mult = 16777;
159 cd->shift = 12;
160 cd->min_delta_ns = 1;
161 cd->min_delta_ticks = 1;
162 cd->max_delta_ns = LONG_MAX;
163 cd->max_delta_ticks = ULONG_MAX;
164 cd->rating = 400;
165 cd->cpumask = cpumask_of(cpu);
166 cd->set_next_event = s390_next_event;
167
168 clockevents_register_device(cd);
169
170 /* Enable clock comparator timer interrupt. */
171 __ctl_set_bit(0,11);
172
173 /* Always allow the timing alert external interrupt. */
174 __ctl_set_bit(0, 4);
175 }
176
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)177 static void clock_comparator_interrupt(struct ext_code ext_code,
178 unsigned int param32,
179 unsigned long param64)
180 {
181 inc_irq_stat(IRQEXT_CLK);
182 if (S390_lowcore.clock_comparator == clock_comparator_max)
183 set_clock_comparator(S390_lowcore.clock_comparator);
184 }
185
186 static void stp_timing_alert(struct stp_irq_parm *);
187
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)188 static void timing_alert_interrupt(struct ext_code ext_code,
189 unsigned int param32, unsigned long param64)
190 {
191 inc_irq_stat(IRQEXT_TLA);
192 if (param32 & 0x00038000)
193 stp_timing_alert((struct stp_irq_parm *) ¶m32);
194 }
195
196 static void stp_reset(void);
197
read_persistent_clock64(struct timespec64 * ts)198 void read_persistent_clock64(struct timespec64 *ts)
199 {
200 union tod_clock clk;
201 u64 delta;
202
203 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
204 store_tod_clock_ext(&clk);
205 clk.eitod -= delta;
206 ext_to_timespec64(&clk, ts);
207 }
208
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)209 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
210 struct timespec64 *boot_offset)
211 {
212 struct timespec64 boot_time;
213 union tod_clock clk;
214 u64 delta;
215
216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 clk = tod_clock_base;
218 clk.eitod -= delta;
219 ext_to_timespec64(&clk, &boot_time);
220
221 read_persistent_clock64(wall_time);
222 *boot_offset = timespec64_sub(*wall_time, boot_time);
223 }
224
read_tod_clock(struct clocksource * cs)225 static u64 read_tod_clock(struct clocksource *cs)
226 {
227 unsigned long now, adj;
228
229 preempt_disable(); /* protect from changes to steering parameters */
230 now = get_tod_clock();
231 adj = tod_steering_end - now;
232 if (unlikely((s64) adj > 0))
233 /*
234 * manually steer by 1 cycle every 2^16 cycles. This
235 * corresponds to shifting the tod delta by 15. 1s is
236 * therefore steered in ~9h. The adjust will decrease
237 * over time, until it finally reaches 0.
238 */
239 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
240 preempt_enable();
241 return now;
242 }
243
244 static struct clocksource clocksource_tod = {
245 .name = "tod",
246 .rating = 400,
247 .read = read_tod_clock,
248 .mask = CLOCKSOURCE_MASK(64),
249 .mult = 1000,
250 .shift = 12,
251 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
252 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
253 };
254
clocksource_default_clock(void)255 struct clocksource * __init clocksource_default_clock(void)
256 {
257 return &clocksource_tod;
258 }
259
260 /*
261 * Initialize the TOD clock and the CPU timer of
262 * the boot cpu.
263 */
time_init(void)264 void __init time_init(void)
265 {
266 /* Reset time synchronization interfaces. */
267 stp_reset();
268
269 /* request the clock comparator external interrupt */
270 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
271 panic("Couldn't request external interrupt 0x1004");
272
273 /* request the timing alert external interrupt */
274 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
275 panic("Couldn't request external interrupt 0x1406");
276
277 if (__clocksource_register(&clocksource_tod) != 0)
278 panic("Could not register TOD clock source");
279
280 /* Enable TOD clock interrupts on the boot cpu. */
281 init_cpu_timer();
282
283 /* Enable cpu timer interrupts on the boot cpu. */
284 vtime_init();
285 }
286
287 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
288 static DEFINE_MUTEX(stp_mutex);
289 static unsigned long clock_sync_flags;
290
291 #define CLOCK_SYNC_HAS_STP 0
292 #define CLOCK_SYNC_STP 1
293 #define CLOCK_SYNC_STPINFO_VALID 2
294
295 /*
296 * The get_clock function for the physical clock. It will get the current
297 * TOD clock, subtract the LPAR offset and write the result to *clock.
298 * The function returns 0 if the clock is in sync with the external time
299 * source. If the clock mode is local it will return -EOPNOTSUPP and
300 * -EAGAIN if the clock is not in sync with the external reference.
301 */
get_phys_clock(unsigned long * clock)302 int get_phys_clock(unsigned long *clock)
303 {
304 atomic_t *sw_ptr;
305 unsigned int sw0, sw1;
306
307 sw_ptr = &get_cpu_var(clock_sync_word);
308 sw0 = atomic_read(sw_ptr);
309 *clock = get_tod_clock() - lpar_offset;
310 sw1 = atomic_read(sw_ptr);
311 put_cpu_var(clock_sync_word);
312 if (sw0 == sw1 && (sw0 & 0x80000000U))
313 /* Success: time is in sync. */
314 return 0;
315 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
316 return -EOPNOTSUPP;
317 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
318 return -EACCES;
319 return -EAGAIN;
320 }
321 EXPORT_SYMBOL(get_phys_clock);
322
323 /*
324 * Make get_phys_clock() return -EAGAIN.
325 */
disable_sync_clock(void * dummy)326 static void disable_sync_clock(void *dummy)
327 {
328 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
329 /*
330 * Clear the in-sync bit 2^31. All get_phys_clock calls will
331 * fail until the sync bit is turned back on. In addition
332 * increase the "sequence" counter to avoid the race of an
333 * stp event and the complete recovery against get_phys_clock.
334 */
335 atomic_andnot(0x80000000, sw_ptr);
336 atomic_inc(sw_ptr);
337 }
338
339 /*
340 * Make get_phys_clock() return 0 again.
341 * Needs to be called from a context disabled for preemption.
342 */
enable_sync_clock(void)343 static void enable_sync_clock(void)
344 {
345 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
346 atomic_or(0x80000000, sw_ptr);
347 }
348
349 /*
350 * Function to check if the clock is in sync.
351 */
check_sync_clock(void)352 static inline int check_sync_clock(void)
353 {
354 atomic_t *sw_ptr;
355 int rc;
356
357 sw_ptr = &get_cpu_var(clock_sync_word);
358 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
359 put_cpu_var(clock_sync_word);
360 return rc;
361 }
362
363 /*
364 * Apply clock delta to the global data structures.
365 * This is called once on the CPU that performed the clock sync.
366 */
clock_sync_global(long delta)367 static void clock_sync_global(long delta)
368 {
369 unsigned long now, adj;
370 struct ptff_qto qto;
371 int cs;
372
373 /* Fixup the monotonic sched clock. */
374 tod_clock_base.eitod += delta;
375 /* Adjust TOD steering parameters. */
376 now = get_tod_clock();
377 adj = tod_steering_end - now;
378 if (unlikely((s64) adj >= 0))
379 /* Calculate how much of the old adjustment is left. */
380 tod_steering_delta = (tod_steering_delta < 0) ?
381 -(adj >> 15) : (adj >> 15);
382 tod_steering_delta += delta;
383 if ((abs(tod_steering_delta) >> 48) != 0)
384 panic("TOD clock sync offset %li is too large to drift\n",
385 tod_steering_delta);
386 tod_steering_end = now + (abs(tod_steering_delta) << 15);
387 for (cs = 0; cs < CS_BASES; cs++) {
388 vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
389 vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
390 }
391
392 /* Update LPAR offset. */
393 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
394 lpar_offset = qto.tod_epoch_difference;
395 /* Call the TOD clock change notifier. */
396 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
397 }
398
399 /*
400 * Apply clock delta to the per-CPU data structures of this CPU.
401 * This is called for each online CPU after the call to clock_sync_global.
402 */
clock_sync_local(long delta)403 static void clock_sync_local(long delta)
404 {
405 /* Add the delta to the clock comparator. */
406 if (S390_lowcore.clock_comparator != clock_comparator_max) {
407 S390_lowcore.clock_comparator += delta;
408 set_clock_comparator(S390_lowcore.clock_comparator);
409 }
410 /* Adjust the last_update_clock time-stamp. */
411 S390_lowcore.last_update_clock += delta;
412 }
413
414 /* Single threaded workqueue used for stp sync events */
415 static struct workqueue_struct *time_sync_wq;
416
time_init_wq(void)417 static void __init time_init_wq(void)
418 {
419 if (time_sync_wq)
420 return;
421 time_sync_wq = create_singlethread_workqueue("timesync");
422 }
423
424 struct clock_sync_data {
425 atomic_t cpus;
426 int in_sync;
427 long clock_delta;
428 };
429
430 /*
431 * Server Time Protocol (STP) code.
432 */
433 static bool stp_online;
434 static struct stp_sstpi stp_info;
435 static void *stp_page;
436
437 static void stp_work_fn(struct work_struct *work);
438 static DECLARE_WORK(stp_work, stp_work_fn);
439 static struct timer_list stp_timer;
440
early_parse_stp(char * p)441 static int __init early_parse_stp(char *p)
442 {
443 return kstrtobool(p, &stp_online);
444 }
445 early_param("stp", early_parse_stp);
446
447 /*
448 * Reset STP attachment.
449 */
stp_reset(void)450 static void __init stp_reset(void)
451 {
452 int rc;
453
454 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
455 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
456 if (rc == 0)
457 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
458 else if (stp_online) {
459 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
460 free_page((unsigned long) stp_page);
461 stp_page = NULL;
462 stp_online = false;
463 }
464 }
465
stp_timeout(struct timer_list * unused)466 static void stp_timeout(struct timer_list *unused)
467 {
468 queue_work(time_sync_wq, &stp_work);
469 }
470
stp_init(void)471 static int __init stp_init(void)
472 {
473 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
474 return 0;
475 timer_setup(&stp_timer, stp_timeout, 0);
476 time_init_wq();
477 if (!stp_online)
478 return 0;
479 queue_work(time_sync_wq, &stp_work);
480 return 0;
481 }
482
483 arch_initcall(stp_init);
484
485 /*
486 * STP timing alert. There are three causes:
487 * 1) timing status change
488 * 2) link availability change
489 * 3) time control parameter change
490 * In all three cases we are only interested in the clock source state.
491 * If a STP clock source is now available use it.
492 */
stp_timing_alert(struct stp_irq_parm * intparm)493 static void stp_timing_alert(struct stp_irq_parm *intparm)
494 {
495 if (intparm->tsc || intparm->lac || intparm->tcpc)
496 queue_work(time_sync_wq, &stp_work);
497 }
498
499 /*
500 * STP sync check machine check. This is called when the timing state
501 * changes from the synchronized state to the unsynchronized state.
502 * After a STP sync check the clock is not in sync. The machine check
503 * is broadcasted to all cpus at the same time.
504 */
stp_sync_check(void)505 int stp_sync_check(void)
506 {
507 disable_sync_clock(NULL);
508 return 1;
509 }
510
511 /*
512 * STP island condition machine check. This is called when an attached
513 * server attempts to communicate over an STP link and the servers
514 * have matching CTN ids and have a valid stratum-1 configuration
515 * but the configurations do not match.
516 */
stp_island_check(void)517 int stp_island_check(void)
518 {
519 disable_sync_clock(NULL);
520 return 1;
521 }
522
stp_queue_work(void)523 void stp_queue_work(void)
524 {
525 queue_work(time_sync_wq, &stp_work);
526 }
527
__store_stpinfo(void)528 static int __store_stpinfo(void)
529 {
530 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
531
532 if (rc)
533 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
534 else
535 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
536 return rc;
537 }
538
stpinfo_valid(void)539 static int stpinfo_valid(void)
540 {
541 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
542 }
543
stp_sync_clock(void * data)544 static int stp_sync_clock(void *data)
545 {
546 struct clock_sync_data *sync = data;
547 long clock_delta, flags;
548 static int first;
549 int rc;
550
551 enable_sync_clock();
552 if (xchg(&first, 1) == 0) {
553 /* Wait until all other cpus entered the sync function. */
554 while (atomic_read(&sync->cpus) != 0)
555 cpu_relax();
556 rc = 0;
557 if (stp_info.todoff || stp_info.tmd != 2) {
558 flags = vdso_update_begin();
559 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
560 &clock_delta);
561 if (rc == 0) {
562 sync->clock_delta = clock_delta;
563 clock_sync_global(clock_delta);
564 rc = __store_stpinfo();
565 if (rc == 0 && stp_info.tmd != 2)
566 rc = -EAGAIN;
567 }
568 vdso_update_end(flags);
569 }
570 sync->in_sync = rc ? -EAGAIN : 1;
571 xchg(&first, 0);
572 } else {
573 /* Slave */
574 atomic_dec(&sync->cpus);
575 /* Wait for in_sync to be set. */
576 while (READ_ONCE(sync->in_sync) == 0)
577 __udelay(1);
578 }
579 if (sync->in_sync != 1)
580 /* Didn't work. Clear per-cpu in sync bit again. */
581 disable_sync_clock(NULL);
582 /* Apply clock delta to per-CPU fields of this CPU. */
583 clock_sync_local(sync->clock_delta);
584
585 return 0;
586 }
587
stp_clear_leap(void)588 static int stp_clear_leap(void)
589 {
590 struct __kernel_timex txc;
591 int ret;
592
593 memset(&txc, 0, sizeof(txc));
594
595 ret = do_adjtimex(&txc);
596 if (ret < 0)
597 return ret;
598
599 txc.modes = ADJ_STATUS;
600 txc.status &= ~(STA_INS|STA_DEL);
601 return do_adjtimex(&txc);
602 }
603
stp_check_leap(void)604 static void stp_check_leap(void)
605 {
606 struct stp_stzi stzi;
607 struct stp_lsoib *lsoib = &stzi.lsoib;
608 struct __kernel_timex txc;
609 int64_t timediff;
610 int leapdiff, ret;
611
612 if (!stp_info.lu || !check_sync_clock()) {
613 /*
614 * Either a scheduled leap second was removed by the operator,
615 * or STP is out of sync. In both cases, clear the leap second
616 * kernel flags.
617 */
618 if (stp_clear_leap() < 0)
619 pr_err("failed to clear leap second flags\n");
620 return;
621 }
622
623 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
624 pr_err("stzi failed\n");
625 return;
626 }
627
628 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
629 leapdiff = lsoib->nlso - lsoib->also;
630
631 if (leapdiff != 1 && leapdiff != -1) {
632 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
633 return;
634 }
635
636 if (timediff < 0) {
637 if (stp_clear_leap() < 0)
638 pr_err("failed to clear leap second flags\n");
639 } else if (timediff < 7200) {
640 memset(&txc, 0, sizeof(txc));
641 ret = do_adjtimex(&txc);
642 if (ret < 0)
643 return;
644
645 txc.modes = ADJ_STATUS;
646 if (leapdiff > 0)
647 txc.status |= STA_INS;
648 else
649 txc.status |= STA_DEL;
650 ret = do_adjtimex(&txc);
651 if (ret < 0)
652 pr_err("failed to set leap second flags\n");
653 /* arm Timer to clear leap second flags */
654 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
655 } else {
656 /* The day the leap second is scheduled for hasn't been reached. Retry
657 * in one hour.
658 */
659 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
660 }
661 }
662
663 /*
664 * STP work. Check for the STP state and take over the clock
665 * synchronization if the STP clock source is usable.
666 */
stp_work_fn(struct work_struct * work)667 static void stp_work_fn(struct work_struct *work)
668 {
669 struct clock_sync_data stp_sync;
670 int rc;
671
672 /* prevent multiple execution. */
673 mutex_lock(&stp_mutex);
674
675 if (!stp_online) {
676 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
677 del_timer_sync(&stp_timer);
678 goto out_unlock;
679 }
680
681 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
682 if (rc)
683 goto out_unlock;
684
685 rc = __store_stpinfo();
686 if (rc || stp_info.c == 0)
687 goto out_unlock;
688
689 /* Skip synchronization if the clock is already in sync. */
690 if (!check_sync_clock()) {
691 memset(&stp_sync, 0, sizeof(stp_sync));
692 cpus_read_lock();
693 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
694 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
695 cpus_read_unlock();
696 }
697
698 if (!check_sync_clock())
699 /*
700 * There is a usable clock but the synchonization failed.
701 * Retry after a second.
702 */
703 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
704 else if (stp_info.lu)
705 stp_check_leap();
706
707 out_unlock:
708 mutex_unlock(&stp_mutex);
709 }
710
711 /*
712 * STP subsys sysfs interface functions
713 */
714 static struct bus_type stp_subsys = {
715 .name = "stp",
716 .dev_name = "stp",
717 };
718
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)719 static ssize_t ctn_id_show(struct device *dev,
720 struct device_attribute *attr,
721 char *buf)
722 {
723 ssize_t ret = -ENODATA;
724
725 mutex_lock(&stp_mutex);
726 if (stpinfo_valid())
727 ret = sprintf(buf, "%016lx\n",
728 *(unsigned long *) stp_info.ctnid);
729 mutex_unlock(&stp_mutex);
730 return ret;
731 }
732
733 static DEVICE_ATTR_RO(ctn_id);
734
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)735 static ssize_t ctn_type_show(struct device *dev,
736 struct device_attribute *attr,
737 char *buf)
738 {
739 ssize_t ret = -ENODATA;
740
741 mutex_lock(&stp_mutex);
742 if (stpinfo_valid())
743 ret = sprintf(buf, "%i\n", stp_info.ctn);
744 mutex_unlock(&stp_mutex);
745 return ret;
746 }
747
748 static DEVICE_ATTR_RO(ctn_type);
749
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)750 static ssize_t dst_offset_show(struct device *dev,
751 struct device_attribute *attr,
752 char *buf)
753 {
754 ssize_t ret = -ENODATA;
755
756 mutex_lock(&stp_mutex);
757 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
758 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
759 mutex_unlock(&stp_mutex);
760 return ret;
761 }
762
763 static DEVICE_ATTR_RO(dst_offset);
764
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)765 static ssize_t leap_seconds_show(struct device *dev,
766 struct device_attribute *attr,
767 char *buf)
768 {
769 ssize_t ret = -ENODATA;
770
771 mutex_lock(&stp_mutex);
772 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
773 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
774 mutex_unlock(&stp_mutex);
775 return ret;
776 }
777
778 static DEVICE_ATTR_RO(leap_seconds);
779
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)780 static ssize_t leap_seconds_scheduled_show(struct device *dev,
781 struct device_attribute *attr,
782 char *buf)
783 {
784 struct stp_stzi stzi;
785 ssize_t ret;
786
787 mutex_lock(&stp_mutex);
788 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
789 mutex_unlock(&stp_mutex);
790 return -ENODATA;
791 }
792
793 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
794 mutex_unlock(&stp_mutex);
795 if (ret < 0)
796 return ret;
797
798 if (!stzi.lsoib.p)
799 return sprintf(buf, "0,0\n");
800
801 return sprintf(buf, "%lu,%d\n",
802 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
803 stzi.lsoib.nlso - stzi.lsoib.also);
804 }
805
806 static DEVICE_ATTR_RO(leap_seconds_scheduled);
807
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)808 static ssize_t stratum_show(struct device *dev,
809 struct device_attribute *attr,
810 char *buf)
811 {
812 ssize_t ret = -ENODATA;
813
814 mutex_lock(&stp_mutex);
815 if (stpinfo_valid())
816 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
817 mutex_unlock(&stp_mutex);
818 return ret;
819 }
820
821 static DEVICE_ATTR_RO(stratum);
822
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)823 static ssize_t time_offset_show(struct device *dev,
824 struct device_attribute *attr,
825 char *buf)
826 {
827 ssize_t ret = -ENODATA;
828
829 mutex_lock(&stp_mutex);
830 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
831 ret = sprintf(buf, "%i\n", (int) stp_info.tto);
832 mutex_unlock(&stp_mutex);
833 return ret;
834 }
835
836 static DEVICE_ATTR_RO(time_offset);
837
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)838 static ssize_t time_zone_offset_show(struct device *dev,
839 struct device_attribute *attr,
840 char *buf)
841 {
842 ssize_t ret = -ENODATA;
843
844 mutex_lock(&stp_mutex);
845 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
846 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
847 mutex_unlock(&stp_mutex);
848 return ret;
849 }
850
851 static DEVICE_ATTR_RO(time_zone_offset);
852
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)853 static ssize_t timing_mode_show(struct device *dev,
854 struct device_attribute *attr,
855 char *buf)
856 {
857 ssize_t ret = -ENODATA;
858
859 mutex_lock(&stp_mutex);
860 if (stpinfo_valid())
861 ret = sprintf(buf, "%i\n", stp_info.tmd);
862 mutex_unlock(&stp_mutex);
863 return ret;
864 }
865
866 static DEVICE_ATTR_RO(timing_mode);
867
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)868 static ssize_t timing_state_show(struct device *dev,
869 struct device_attribute *attr,
870 char *buf)
871 {
872 ssize_t ret = -ENODATA;
873
874 mutex_lock(&stp_mutex);
875 if (stpinfo_valid())
876 ret = sprintf(buf, "%i\n", stp_info.tst);
877 mutex_unlock(&stp_mutex);
878 return ret;
879 }
880
881 static DEVICE_ATTR_RO(timing_state);
882
online_show(struct device * dev,struct device_attribute * attr,char * buf)883 static ssize_t online_show(struct device *dev,
884 struct device_attribute *attr,
885 char *buf)
886 {
887 return sprintf(buf, "%i\n", stp_online);
888 }
889
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)890 static ssize_t online_store(struct device *dev,
891 struct device_attribute *attr,
892 const char *buf, size_t count)
893 {
894 unsigned int value;
895
896 value = simple_strtoul(buf, NULL, 0);
897 if (value != 0 && value != 1)
898 return -EINVAL;
899 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
900 return -EOPNOTSUPP;
901 mutex_lock(&stp_mutex);
902 stp_online = value;
903 if (stp_online)
904 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
905 else
906 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
907 queue_work(time_sync_wq, &stp_work);
908 mutex_unlock(&stp_mutex);
909 return count;
910 }
911
912 /*
913 * Can't use DEVICE_ATTR because the attribute should be named
914 * stp/online but dev_attr_online already exists in this file ..
915 */
916 static DEVICE_ATTR_RW(online);
917
918 static struct attribute *stp_dev_attrs[] = {
919 &dev_attr_ctn_id.attr,
920 &dev_attr_ctn_type.attr,
921 &dev_attr_dst_offset.attr,
922 &dev_attr_leap_seconds.attr,
923 &dev_attr_online.attr,
924 &dev_attr_leap_seconds_scheduled.attr,
925 &dev_attr_stratum.attr,
926 &dev_attr_time_offset.attr,
927 &dev_attr_time_zone_offset.attr,
928 &dev_attr_timing_mode.attr,
929 &dev_attr_timing_state.attr,
930 NULL
931 };
932 ATTRIBUTE_GROUPS(stp_dev);
933
stp_init_sysfs(void)934 static int __init stp_init_sysfs(void)
935 {
936 return subsys_system_register(&stp_subsys, stp_dev_groups);
937 }
938
939 device_initcall(stp_init_sysfs);
940