1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
setup_el1_context(cpu_context_t * ctx,const struct entry_point_info * ep)42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
setup_secure_context(cpu_context_t * ctx,const struct entry_point_info * ep)103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
setup_realm_context(cpu_context_t * ctx,const struct entry_point_info * ep)164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
173 
174 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175 }
176 #endif /* ENABLE_RME */
177 
178 /******************************************************************************
179  * This function performs initializations that are specific to NON-SECURE state
180  * and updates the cpu context specified by 'ctx'.
181  *****************************************************************************/
setup_ns_context(cpu_context_t * ctx,const struct entry_point_info * ep)182 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
183 {
184 	u_register_t scr_el3;
185 	el3_state_t *state;
186 
187 	state = get_el3state_ctx(ctx);
188 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
189 
190 	/* SCR_NS: Set the NS bit */
191 	scr_el3 |= SCR_NS_BIT;
192 
193 #if !CTX_INCLUDE_PAUTH_REGS
194 	/*
195 	 * If the pointer authentication registers aren't saved during world
196 	 * switches the value of the registers can be leaked from the Secure to
197 	 * the Non-secure world. To prevent this, rather than enabling pointer
198 	 * authentication everywhere, we only enable it in the Non-secure world.
199 	 *
200 	 * If the Secure world wants to use pointer authentication,
201 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
202 	 */
203 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
204 #endif /* !CTX_INCLUDE_PAUTH_REGS */
205 
206 	/* Allow access to Allocation Tags when MTE is implemented. */
207 	scr_el3 |= SCR_ATA_BIT;
208 
209 #if HANDLE_EA_EL3_FIRST_NS
210 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
211 	scr_el3 |= SCR_EA_BIT;
212 #endif
213 
214 #if RAS_TRAP_NS_ERR_REC_ACCESS
215 	/*
216 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
217 	 * and RAS ERX registers from EL1 and EL2(from any security state)
218 	 * are trapped to EL3.
219 	 * Set here to trap only for NS EL1/EL2
220 	 *
221 	 */
222 	scr_el3 |= SCR_TERR_BIT;
223 #endif
224 
225 #ifdef IMAGE_BL31
226 	/*
227 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
228 	 *  indicated by the interrupt routing model for BL31.
229 	 */
230 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
231 #endif
232 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
233 
234 	/* Initialize EL1 context registers */
235 	setup_el1_context(ctx, ep);
236 
237 	/* Initialize EL2 context registers */
238 #if CTX_INCLUDE_EL2_REGS
239 
240 	/*
241 	 * Initialize SCTLR_EL2 context register using Endianness value
242 	 * taken from the entrypoint attribute.
243 	 */
244 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
245 	sctlr_el2 |= SCTLR_EL2_RES1;
246 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
247 			sctlr_el2);
248 
249 	/*
250 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
251 	 * when restoring NS context.
252 	 */
253 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
254 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
255 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
256 			icc_sre_el2);
257 
258 	/*
259 	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
260 	 * throw anyone off who expects this to be sensible.
261 	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
262 	 * unified with the proper PMU implementation
263 	 */
264 	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
265 			PMCR_EL0_N_MASK);
266 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
267 #endif /* CTX_INCLUDE_EL2_REGS */
268 }
269 
270 /*******************************************************************************
271  * The following function performs initialization of the cpu_context 'ctx'
272  * for first use that is common to all security states, and sets the
273  * initial entrypoint state as specified by the entry_point_info structure.
274  *
275  * The EE and ST attributes are used to configure the endianness and secure
276  * timer availability for the new execution context.
277  ******************************************************************************/
setup_context_common(cpu_context_t * ctx,const entry_point_info_t * ep)278 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
279 {
280 	u_register_t scr_el3;
281 	el3_state_t *state;
282 	gp_regs_t *gp_regs;
283 
284 	/* Clear any residual register values from the context */
285 	zeromem(ctx, sizeof(*ctx));
286 
287 	/*
288 	 * SCR_EL3 was initialised during reset sequence in macro
289 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
290 	 * affect the next EL.
291 	 *
292 	 * The following fields are initially set to zero and then updated to
293 	 * the required value depending on the state of the SPSR_EL3 and the
294 	 * Security state and entrypoint attributes of the next EL.
295 	 */
296 	scr_el3 = read_scr();
297 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
298 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
299 
300 	/*
301 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
302 	 *  Exception level as specified by SPSR.
303 	 */
304 	if (GET_RW(ep->spsr) == MODE_RW_64) {
305 		scr_el3 |= SCR_RW_BIT;
306 	}
307 
308 	/*
309 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
310 	 * Secure timer registers to EL3, from AArch64 state only, if specified
311 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
312 	 * bit always behaves as 1 (i.e. secure physical timer register access
313 	 * is not trapped)
314 	 */
315 	if (EP_GET_ST(ep->h.attr) != 0U) {
316 		scr_el3 |= SCR_ST_BIT;
317 	}
318 
319 	/*
320 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
321 	 * SCR_EL3.HXEn.
322 	 */
323 #if ENABLE_FEAT_HCX
324 	scr_el3 |= SCR_HXEn_BIT;
325 #endif
326 
327 	/*
328 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
329 	 * registers are trapped to EL3.
330 	 */
331 #if ENABLE_FEAT_RNG_TRAP
332 	scr_el3 |= SCR_TRNDR_BIT;
333 #endif
334 
335 #if FAULT_INJECTION_SUPPORT
336 	/* Enable fault injection from lower ELs */
337 	scr_el3 |= SCR_FIEN_BIT;
338 #endif
339 
340 	/*
341 	 * CPTR_EL3 was initialized out of reset, copy that value to the
342 	 * context register.
343 	 */
344 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
345 
346 	/*
347 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
348 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
349 	 * next mode is Hyp.
350 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
351 	 * same conditions as HVC instructions and when the processor supports
352 	 * ARMv8.6-FGT.
353 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
354 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
355 	 * and when the processor supports ECV.
356 	 */
357 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
358 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
359 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
360 		scr_el3 |= SCR_HCE_BIT;
361 
362 		if (is_armv8_6_fgt_present()) {
363 			scr_el3 |= SCR_FGTEN_BIT;
364 		}
365 
366 		if (get_armv8_6_ecv_support()
367 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
368 			scr_el3 |= SCR_ECVEN_BIT;
369 		}
370 	}
371 
372 #if ENABLE_FEAT_TWED
373 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
374 	/* Set delay in SCR_EL3 */
375 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
376 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
377 			<< SCR_TWEDEL_SHIFT);
378 
379 	/* Enable WFE delay */
380 	scr_el3 |= SCR_TWEDEn_BIT;
381 #endif /* ENABLE_FEAT_TWED */
382 
383 	/*
384 	 * Populate EL3 state so that we've the right context
385 	 * before doing ERET
386 	 */
387 	state = get_el3state_ctx(ctx);
388 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
389 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
390 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
391 
392 	/*
393 	 * Store the X0-X7 value from the entrypoint into the context
394 	 * Use memcpy as we are in control of the layout of the structures
395 	 */
396 	gp_regs = get_gpregs_ctx(ctx);
397 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
398 }
399 
400 /*******************************************************************************
401  * Context management library initialization routine. This library is used by
402  * runtime services to share pointers to 'cpu_context' structures for secure
403  * non-secure and realm states. Management of the structures and their associated
404  * memory is not done by the context management library e.g. the PSCI service
405  * manages the cpu context used for entry from and exit to the non-secure state.
406  * The Secure payload dispatcher service manages the context(s) corresponding to
407  * the secure state. It also uses this library to get access to the non-secure
408  * state cpu context pointers.
409  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
410  * which will be used for programming an entry into a lower EL. The same context
411  * will be used to save state upon exception entry from that EL.
412  ******************************************************************************/
cm_init(void)413 void __init cm_init(void)
414 {
415 	/*
416 	 * The context management library has only global data to intialize, but
417 	 * that will be done when the BSS is zeroed out.
418 	 */
419 }
420 
421 /*******************************************************************************
422  * This is the high-level function used to initialize the cpu_context 'ctx' for
423  * first use. It performs initializations that are common to all security states
424  * and initializations specific to the security state specified in 'ep'
425  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)426 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
427 {
428 	unsigned int security_state;
429 
430 	assert(ctx != NULL);
431 
432 	/*
433 	 * Perform initializations that are common
434 	 * to all security states
435 	 */
436 	setup_context_common(ctx, ep);
437 
438 	security_state = GET_SECURITY_STATE(ep->h.attr);
439 
440 	/* Perform security state specific initializations */
441 	switch (security_state) {
442 	case SECURE:
443 		setup_secure_context(ctx, ep);
444 		break;
445 #if ENABLE_RME
446 	case REALM:
447 		setup_realm_context(ctx, ep);
448 		break;
449 #endif
450 	case NON_SECURE:
451 		setup_ns_context(ctx, ep);
452 		break;
453 	default:
454 		ERROR("Invalid security state\n");
455 		panic();
456 		break;
457 	}
458 }
459 
460 /*******************************************************************************
461  * Enable architecture extensions on first entry to Non-secure world.
462  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
463  * it is zero.
464  ******************************************************************************/
manage_extensions_nonsecure(bool el2_unused,cpu_context_t * ctx)465 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
466 {
467 #if IMAGE_BL31
468 #if ENABLE_SPE_FOR_LOWER_ELS
469 	spe_enable(el2_unused);
470 #endif
471 
472 #if ENABLE_AMU
473 	amu_enable(el2_unused, ctx);
474 #endif
475 
476 #if ENABLE_SME_FOR_NS
477 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
478 	sme_enable(ctx);
479 #elif ENABLE_SVE_FOR_NS
480 	/* Enable SVE and FPU/SIMD for non-secure world. */
481 	sve_enable(ctx);
482 #endif
483 
484 #if ENABLE_MPAM_FOR_LOWER_ELS
485 	mpam_enable(el2_unused);
486 #endif
487 
488 #if ENABLE_TRBE_FOR_NS
489 	trbe_enable();
490 #endif /* ENABLE_TRBE_FOR_NS */
491 
492 #if ENABLE_BRBE_FOR_NS
493 	brbe_enable();
494 #endif /* ENABLE_BRBE_FOR_NS */
495 
496 #if ENABLE_SYS_REG_TRACE_FOR_NS
497 	sys_reg_trace_enable(ctx);
498 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
499 
500 #if ENABLE_TRF_FOR_NS
501 	trf_enable();
502 #endif /* ENABLE_TRF_FOR_NS */
503 #endif
504 }
505 
506 /*******************************************************************************
507  * Enable architecture extensions on first entry to Secure world.
508  ******************************************************************************/
manage_extensions_secure(cpu_context_t * ctx)509 static void manage_extensions_secure(cpu_context_t *ctx)
510 {
511 #if IMAGE_BL31
512  #if ENABLE_SME_FOR_NS
513   #if ENABLE_SME_FOR_SWD
514 	/*
515 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
516 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
517 	 */
518 	sme_enable(ctx);
519   #else /* ENABLE_SME_FOR_SWD */
520 	/*
521 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
522 	 * safely use the associated registers.
523 	 */
524 	sme_disable(ctx);
525   #endif /* ENABLE_SME_FOR_SWD */
526  #elif ENABLE_SVE_FOR_NS
527   #if ENABLE_SVE_FOR_SWD
528 	/*
529 	 * Enable SVE and FPU in secure context, secure manager must ensure that
530 	 * the SVE and FPU register contexts are properly managed.
531 	 */
532 	sve_enable(ctx);
533  #else /* ENABLE_SVE_FOR_SWD */
534 	/*
535 	 * Disable SVE and FPU in secure context so non-secure world can safely
536 	 * use them.
537 	 */
538 	sve_disable(ctx);
539   #endif /* ENABLE_SVE_FOR_SWD */
540  #endif /* ENABLE_SVE_FOR_NS */
541 #endif /* IMAGE_BL31 */
542 }
543 
544 /*******************************************************************************
545  * The following function initializes the cpu_context for a CPU specified by
546  * its `cpu_idx` for first use, and sets the initial entrypoint state as
547  * specified by the entry_point_info structure.
548  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)549 void cm_init_context_by_index(unsigned int cpu_idx,
550 			      const entry_point_info_t *ep)
551 {
552 	cpu_context_t *ctx;
553 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
554 	cm_setup_context(ctx, ep);
555 }
556 
557 /*******************************************************************************
558  * The following function initializes the cpu_context for the current CPU
559  * for first use, and sets the initial entrypoint state as specified by the
560  * entry_point_info structure.
561  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)562 void cm_init_my_context(const entry_point_info_t *ep)
563 {
564 	cpu_context_t *ctx;
565 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
566 	cm_setup_context(ctx, ep);
567 }
568 
569 /*******************************************************************************
570  * Prepare the CPU system registers for first entry into realm, secure, or
571  * normal world.
572  *
573  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
574  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
575  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
576  * For all entries, the EL1 registers are initialized from the cpu_context
577  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)578 void cm_prepare_el3_exit(uint32_t security_state)
579 {
580 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
581 	cpu_context_t *ctx = cm_get_context(security_state);
582 	bool el2_unused = false;
583 	uint64_t hcr_el2 = 0U;
584 
585 	assert(ctx != NULL);
586 
587 	if (security_state == NON_SECURE) {
588 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
589 						 CTX_SCR_EL3);
590 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
591 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
592 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
593 							   CTX_SCTLR_EL1);
594 			sctlr_elx &= SCTLR_EE_BIT;
595 			sctlr_elx |= SCTLR_EL2_RES1;
596 #if ERRATA_A75_764081
597 			/*
598 			 * If workaround of errata 764081 for Cortex-A75 is used
599 			 * then set SCTLR_EL2.IESB to enable Implicit Error
600 			 * Synchronization Barrier.
601 			 */
602 			sctlr_elx |= SCTLR_IESB_BIT;
603 #endif
604 			write_sctlr_el2(sctlr_elx);
605 		} else if (el_implemented(2) != EL_IMPL_NONE) {
606 			el2_unused = true;
607 
608 			/*
609 			 * EL2 present but unused, need to disable safely.
610 			 * SCTLR_EL2 can be ignored in this case.
611 			 *
612 			 * Set EL2 register width appropriately: Set HCR_EL2
613 			 * field to match SCR_EL3.RW.
614 			 */
615 			if ((scr_el3 & SCR_RW_BIT) != 0U)
616 				hcr_el2 |= HCR_RW_BIT;
617 
618 			/*
619 			 * For Armv8.3 pointer authentication feature, disable
620 			 * traps to EL2 when accessing key registers or using
621 			 * pointer authentication instructions from lower ELs.
622 			 */
623 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
624 
625 			write_hcr_el2(hcr_el2);
626 
627 			/*
628 			 * Initialise CPTR_EL2 setting all fields rather than
629 			 * relying on the hw. All fields have architecturally
630 			 * UNKNOWN reset values.
631 			 *
632 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
633 			 *  accesses to the CPACR_EL1 or CPACR from both
634 			 *  Execution states do not trap to EL2.
635 			 *
636 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
637 			 *  register accesses to the trace registers from both
638 			 *  Execution states do not trap to EL2.
639 			 *  If PE trace unit System registers are not implemented
640 			 *  then this bit is reserved, and must be set to zero.
641 			 *
642 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
643 			 *  to SIMD and floating-point functionality from both
644 			 *  Execution states do not trap to EL2.
645 			 */
646 			write_cptr_el2(CPTR_EL2_RESET_VAL &
647 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
648 					| CPTR_EL2_TFP_BIT));
649 
650 			/*
651 			 * Initialise CNTHCTL_EL2. All fields are
652 			 * architecturally UNKNOWN on reset and are set to zero
653 			 * except for field(s) listed below.
654 			 *
655 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
656 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
657 			 *  physical timer registers.
658 			 *
659 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
660 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
661 			 *  physical counter registers.
662 			 */
663 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
664 						EL1PCEN_BIT | EL1PCTEN_BIT);
665 
666 			/*
667 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
668 			 * architecturally UNKNOWN value.
669 			 */
670 			write_cntvoff_el2(0);
671 
672 			/*
673 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
674 			 * MPIDR_EL1 respectively.
675 			 */
676 			write_vpidr_el2(read_midr_el1());
677 			write_vmpidr_el2(read_mpidr_el1());
678 
679 			/*
680 			 * Initialise VTTBR_EL2. All fields are architecturally
681 			 * UNKNOWN on reset.
682 			 *
683 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
684 			 *  2 address translation is disabled, cache maintenance
685 			 *  operations depend on the VMID.
686 			 *
687 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
688 			 *  translation is disabled.
689 			 */
690 			write_vttbr_el2(VTTBR_RESET_VAL &
691 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
692 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
693 
694 			/*
695 			 * Initialise MDCR_EL2, setting all fields rather than
696 			 * relying on hw. Some fields are architecturally
697 			 * UNKNOWN on reset.
698 			 *
699 			 * MDCR_EL2.HLP: Set to one so that event counter
700 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
701 			 *  occurs on the increment that changes
702 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
703 			 *  implemented. This bit is RES0 in versions of the
704 			 *  architecture earlier than ARMv8.5, setting it to 1
705 			 *  doesn't have any effect on them.
706 			 *
707 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
708 			 *  Filter Control register TRFCR_EL1 at EL1 is not
709 			 *  trapped to EL2. This bit is RES0 in versions of
710 			 *  the architecture earlier than ARMv8.4.
711 			 *
712 			 * MDCR_EL2.HPMD: Set to one so that event counting is
713 			 *  prohibited at EL2. This bit is RES0 in versions of
714 			 *  the architecture earlier than ARMv8.1, setting it
715 			 *  to 1 doesn't have any effect on them.
716 			 *
717 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
718 			 *  Statistical Profiling control registers from EL1
719 			 *  do not trap to EL2. This bit is RES0 when SPE is
720 			 *  not implemented.
721 			 *
722 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
723 			 *  EL1 System register accesses to the Debug ROM
724 			 *  registers are not trapped to EL2.
725 			 *
726 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
727 			 *  System register accesses to the powerdown debug
728 			 *  registers are not trapped to EL2.
729 			 *
730 			 * MDCR_EL2.TDA: Set to zero so that System register
731 			 *  accesses to the debug registers do not trap to EL2.
732 			 *
733 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
734 			 *  are not routed to EL2.
735 			 *
736 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
737 			 *  Monitors.
738 			 *
739 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
740 			 *  EL1 accesses to all Performance Monitors registers
741 			 *  are not trapped to EL2.
742 			 *
743 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
744 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
745 			 *  trapped to EL2.
746 			 *
747 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
748 			 *  architecturally-defined reset value.
749 			 *
750 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
751 			 *  owning exception level is NS-EL1 and, tracing is
752 			 *  prohibited at NS-EL2. These bits are RES0 when
753 			 *  FEAT_TRBE is not implemented.
754 			 */
755 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
756 				     MDCR_EL2_HPMD) |
757 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
758 				   >> PMCR_EL0_N_SHIFT)) &
759 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
760 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
761 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
762 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
763 				     MDCR_EL2_TPMCR_BIT |
764 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
765 
766 			write_mdcr_el2(mdcr_el2);
767 
768 			/*
769 			 * Initialise HSTR_EL2. All fields are architecturally
770 			 * UNKNOWN on reset.
771 			 *
772 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
773 			 *  Non-secure EL0 or EL1 accesses to System registers
774 			 *  do not trap to EL2.
775 			 */
776 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
777 			/*
778 			 * Initialise CNTHP_CTL_EL2. All fields are
779 			 * architecturally UNKNOWN on reset.
780 			 *
781 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
782 			 *  physical timer and prevent timer interrupts.
783 			 */
784 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
785 						~(CNTHP_CTL_ENABLE_BIT));
786 		}
787 		manage_extensions_nonsecure(el2_unused, ctx);
788 	}
789 
790 	cm_el1_sysregs_context_restore(security_state);
791 	cm_set_next_eret_context(security_state);
792 }
793 
794 #if CTX_INCLUDE_EL2_REGS
795 /*******************************************************************************
796  * Save EL2 sysreg context
797  ******************************************************************************/
cm_el2_sysregs_context_save(uint32_t security_state)798 void cm_el2_sysregs_context_save(uint32_t security_state)
799 {
800 	u_register_t scr_el3 = read_scr();
801 
802 	/*
803 	 * Always save the non-secure and realm EL2 context, only save the
804 	 * S-EL2 context if S-EL2 is enabled.
805 	 */
806 	if ((security_state != SECURE) ||
807 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
808 		cpu_context_t *ctx;
809 		el2_sysregs_t *el2_sysregs_ctx;
810 
811 		ctx = cm_get_context(security_state);
812 		assert(ctx != NULL);
813 
814 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
815 
816 		el2_sysregs_context_save_common(el2_sysregs_ctx);
817 #if ENABLE_SPE_FOR_LOWER_ELS
818 		el2_sysregs_context_save_spe(el2_sysregs_ctx);
819 #endif
820 #if CTX_INCLUDE_MTE_REGS
821 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
822 #endif
823 #if ENABLE_MPAM_FOR_LOWER_ELS
824 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
825 #endif
826 #if ENABLE_FEAT_FGT
827 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
828 #endif
829 #if ENABLE_FEAT_ECV
830 		el2_sysregs_context_save_ecv(el2_sysregs_ctx);
831 #endif
832 #if ENABLE_FEAT_VHE
833 		el2_sysregs_context_save_vhe(el2_sysregs_ctx);
834 #endif
835 #if RAS_EXTENSION
836 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
837 #endif
838 #if CTX_INCLUDE_NEVE_REGS
839 		el2_sysregs_context_save_nv2(el2_sysregs_ctx);
840 #endif
841 #if ENABLE_TRF_FOR_NS
842 		el2_sysregs_context_save_trf(el2_sysregs_ctx);
843 #endif
844 #if ENABLE_FEAT_CSV2_2
845 		el2_sysregs_context_save_csv2(el2_sysregs_ctx);
846 #endif
847 #if ENABLE_FEAT_HCX
848 		el2_sysregs_context_save_hcx(el2_sysregs_ctx);
849 #endif
850 	}
851 }
852 
853 /*******************************************************************************
854  * Restore EL2 sysreg context
855  ******************************************************************************/
cm_el2_sysregs_context_restore(uint32_t security_state)856 void cm_el2_sysregs_context_restore(uint32_t security_state)
857 {
858 	u_register_t scr_el3 = read_scr();
859 
860 	/*
861 	 * Always restore the non-secure and realm EL2 context, only restore the
862 	 * S-EL2 context if S-EL2 is enabled.
863 	 */
864 	if ((security_state != SECURE) ||
865 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
866 		cpu_context_t *ctx;
867 		el2_sysregs_t *el2_sysregs_ctx;
868 
869 		ctx = cm_get_context(security_state);
870 		assert(ctx != NULL);
871 
872 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
873 
874 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
875 #if ENABLE_SPE_FOR_LOWER_ELS
876 		el2_sysregs_context_restore_spe(el2_sysregs_ctx);
877 #endif
878 #if CTX_INCLUDE_MTE_REGS
879 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
880 #endif
881 #if ENABLE_MPAM_FOR_LOWER_ELS
882 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
883 #endif
884 #if ENABLE_FEAT_FGT
885 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
886 #endif
887 #if ENABLE_FEAT_ECV
888 		el2_sysregs_context_restore_ecv(el2_sysregs_ctx);
889 #endif
890 #if ENABLE_FEAT_VHE
891 		el2_sysregs_context_restore_vhe(el2_sysregs_ctx);
892 #endif
893 #if RAS_EXTENSION
894 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
895 #endif
896 #if CTX_INCLUDE_NEVE_REGS
897 		el2_sysregs_context_restore_nv2(el2_sysregs_ctx);
898 #endif
899 #if ENABLE_TRF_FOR_NS
900 		el2_sysregs_context_restore_trf(el2_sysregs_ctx);
901 #endif
902 #if ENABLE_FEAT_CSV2_2
903 		el2_sysregs_context_restore_csv2(el2_sysregs_ctx);
904 #endif
905 #if ENABLE_FEAT_HCX
906 		el2_sysregs_context_restore_hcx(el2_sysregs_ctx);
907 #endif
908 	}
909 }
910 #endif /* CTX_INCLUDE_EL2_REGS */
911 
912 /*******************************************************************************
913  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
914  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
915  * updating EL1 and EL2 registers. Otherwise, it calls the generic
916  * cm_prepare_el3_exit function.
917  ******************************************************************************/
cm_prepare_el3_exit_ns(void)918 void cm_prepare_el3_exit_ns(void)
919 {
920 #if CTX_INCLUDE_EL2_REGS
921 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
922 	assert(ctx != NULL);
923 
924 	/* Assert that EL2 is used. */
925 #if ENABLE_ASSERTIONS
926 	el3_state_t *state = get_el3state_ctx(ctx);
927 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
928 #endif
929 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
930 			(el_implemented(2U) != EL_IMPL_NONE));
931 
932 	/*
933 	 * Currently some extensions are configured using
934 	 * direct register updates. Therefore, do this here
935 	 * instead of when setting up context.
936 	 */
937 	manage_extensions_nonsecure(0, ctx);
938 
939 	/*
940 	 * Set the NS bit to be able to access the ICC_SRE_EL2
941 	 * register when restoring context.
942 	 */
943 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
944 
945 	/*
946 	 * Ensure the NS bit change is committed before the EL2/EL1
947 	 * state restoration.
948 	 */
949 	isb();
950 
951 	/* Restore EL2 and EL1 sysreg contexts */
952 	cm_el2_sysregs_context_restore(NON_SECURE);
953 	cm_el1_sysregs_context_restore(NON_SECURE);
954 	cm_set_next_eret_context(NON_SECURE);
955 #else
956 	cm_prepare_el3_exit(NON_SECURE);
957 #endif /* CTX_INCLUDE_EL2_REGS */
958 }
959 
960 /*******************************************************************************
961  * The next four functions are used by runtime services to save and restore
962  * EL1 context on the 'cpu_context' structure for the specified security
963  * state.
964  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)965 void cm_el1_sysregs_context_save(uint32_t security_state)
966 {
967 	cpu_context_t *ctx;
968 
969 	ctx = cm_get_context(security_state);
970 	assert(ctx != NULL);
971 
972 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
973 
974 #if IMAGE_BL31
975 	if (security_state == SECURE)
976 		PUBLISH_EVENT(cm_exited_secure_world);
977 	else
978 		PUBLISH_EVENT(cm_exited_normal_world);
979 #endif
980 }
981 
cm_el1_sysregs_context_restore(uint32_t security_state)982 void cm_el1_sysregs_context_restore(uint32_t security_state)
983 {
984 	cpu_context_t *ctx;
985 
986 	ctx = cm_get_context(security_state);
987 	assert(ctx != NULL);
988 
989 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
990 
991 #if IMAGE_BL31
992 	if (security_state == SECURE)
993 		PUBLISH_EVENT(cm_entering_secure_world);
994 	else
995 		PUBLISH_EVENT(cm_entering_normal_world);
996 #endif
997 }
998 
999 /*******************************************************************************
1000  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1001  * given security state with the given entrypoint
1002  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)1003 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1004 {
1005 	cpu_context_t *ctx;
1006 	el3_state_t *state;
1007 
1008 	ctx = cm_get_context(security_state);
1009 	assert(ctx != NULL);
1010 
1011 	/* Populate EL3 state so that ERET jumps to the correct entry */
1012 	state = get_el3state_ctx(ctx);
1013 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1014 }
1015 
1016 /*******************************************************************************
1017  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1018  * pertaining to the given security state
1019  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)1020 void cm_set_elr_spsr_el3(uint32_t security_state,
1021 			uintptr_t entrypoint, uint32_t spsr)
1022 {
1023 	cpu_context_t *ctx;
1024 	el3_state_t *state;
1025 
1026 	ctx = cm_get_context(security_state);
1027 	assert(ctx != NULL);
1028 
1029 	/* Populate EL3 state so that ERET jumps to the correct entry */
1030 	state = get_el3state_ctx(ctx);
1031 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1032 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1033 }
1034 
1035 /*******************************************************************************
1036  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1037  * pertaining to the given security state using the value and bit position
1038  * specified in the parameters. It preserves all other bits.
1039  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)1040 void cm_write_scr_el3_bit(uint32_t security_state,
1041 			  uint32_t bit_pos,
1042 			  uint32_t value)
1043 {
1044 	cpu_context_t *ctx;
1045 	el3_state_t *state;
1046 	u_register_t scr_el3;
1047 
1048 	ctx = cm_get_context(security_state);
1049 	assert(ctx != NULL);
1050 
1051 	/* Ensure that the bit position is a valid one */
1052 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1053 
1054 	/* Ensure that the 'value' is only a bit wide */
1055 	assert(value <= 1U);
1056 
1057 	/*
1058 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1059 	 * and set it to its new value.
1060 	 */
1061 	state = get_el3state_ctx(ctx);
1062 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1063 	scr_el3 &= ~(1UL << bit_pos);
1064 	scr_el3 |= (u_register_t)value << bit_pos;
1065 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1066 }
1067 
1068 /*******************************************************************************
1069  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1070  * given security state.
1071  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)1072 u_register_t cm_get_scr_el3(uint32_t security_state)
1073 {
1074 	cpu_context_t *ctx;
1075 	el3_state_t *state;
1076 
1077 	ctx = cm_get_context(security_state);
1078 	assert(ctx != NULL);
1079 
1080 	/* Populate EL3 state so that ERET jumps to the correct entry */
1081 	state = get_el3state_ctx(ctx);
1082 	return read_ctx_reg(state, CTX_SCR_EL3);
1083 }
1084 
1085 /*******************************************************************************
1086  * This function is used to program the context that's used for exception
1087  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1088  * the required security state
1089  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)1090 void cm_set_next_eret_context(uint32_t security_state)
1091 {
1092 	cpu_context_t *ctx;
1093 
1094 	ctx = cm_get_context(security_state);
1095 	assert(ctx != NULL);
1096 
1097 	cm_set_next_context(ctx);
1098 }
1099