1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 /*
39  * These variables are initialized before .bss is cleared. To avoid
40  * resetting them when .bss is cleared we're storing them in .data instead,
41  * even if they initially are zero.
42  */
43 
44 #ifdef CFG_CORE_RESERVED_SHM
45 /* Default NSec shared memory allocated from NSec world */
46 unsigned long default_nsec_shm_size __nex_bss;
47 unsigned long default_nsec_shm_paddr __nex_bss;
48 #endif
49 
50 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
51 #ifdef CFG_CORE_ASLR
52 						+ 1
53 #endif
54 						+ 1] __nex_bss;
55 
56 /* Define the platform's memory layout. */
57 struct memaccess_area {
58 	paddr_t paddr;
59 	size_t size;
60 };
61 
62 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
63 
64 static struct memaccess_area secure_only[] __nex_data = {
65 #ifdef TRUSTED_SRAM_BASE
66 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
67 #endif
68 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
69 };
70 
71 static struct memaccess_area nsec_shared[] __nex_data = {
72 #ifdef CFG_CORE_RESERVED_SHM
73 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
74 #endif
75 };
76 
77 #if defined(CFG_SECURE_DATA_PATH)
78 static const char *tz_sdp_match = "linaro,secure-heap";
79 static struct memaccess_area sec_sdp;
80 #ifdef CFG_TEE_SDP_MEM_BASE
81 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
82 #endif
83 #ifdef TEE_SDP_TEST_MEM_BASE
84 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
85 #endif
86 #endif
87 
88 #ifdef CFG_CORE_RWDATA_NOEXEC
89 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
90 		     VCORE_UNPG_RX_PA - TEE_RAM_START);
91 register_phys_mem_ul(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
92 		     VCORE_UNPG_RX_SZ_UNSAFE);
93 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
94 		     VCORE_UNPG_RO_SZ_UNSAFE);
95 
96 #ifdef CFG_VIRTUALIZATION
97 register_phys_mem_ul(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
98 		     VCORE_UNPG_RW_SZ_UNSAFE);
99 register_phys_mem_ul(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
100 		     VCORE_NEX_RW_SZ_UNSAFE);
101 #else
102 register_phys_mem_ul(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
103 		     VCORE_UNPG_RW_SZ_UNSAFE);
104 #endif
105 
106 #ifdef CFG_WITH_PAGER
107 register_phys_mem_ul(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
108 		     VCORE_INIT_RX_SZ_UNSAFE);
109 register_phys_mem_ul(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
110 		     VCORE_INIT_RO_SZ_UNSAFE);
111 #endif /*CFG_WITH_PAGER*/
112 #else /*!CFG_CORE_RWDATA_NOEXEC*/
113 register_phys_mem(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
114 #endif /*!CFG_CORE_RWDATA_NOEXEC*/
115 
116 #ifdef CFG_VIRTUALIZATION
117 register_phys_mem(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
118 		  TRUSTED_DRAM_SIZE);
119 #endif
120 
121 #if defined(CFG_CORE_SANITIZE_KADDRESS) && defined(CFG_WITH_PAGER)
122 /* Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is disabled */
123 register_phys_mem_ul(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
124 #endif
125 
126 #ifndef CFG_VIRTUALIZATION
127 /* Every guest will have own TA RAM if virtualization support is enabled */
128 register_phys_mem(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
129 #endif
130 #ifdef CFG_CORE_RESERVED_SHM
131 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
132 #endif
133 
134 static unsigned int mmu_spinlock;
135 
mmu_lock(void)136 static uint32_t mmu_lock(void)
137 {
138 	return cpu_spin_lock_xsave(&mmu_spinlock);
139 }
140 
mmu_unlock(uint32_t exceptions)141 static void mmu_unlock(uint32_t exceptions)
142 {
143 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
144 }
145 
get_memory_map(void)146 static struct tee_mmap_region *get_memory_map(void)
147 {
148 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
149 		struct tee_mmap_region *map = virt_get_memory_map();
150 
151 		if (map)
152 			return map;
153 	}
154 
155 	return static_memory_map;
156 }
157 
_pbuf_intersects(struct memaccess_area * a,size_t alen,paddr_t pa,size_t size)158 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
159 			     paddr_t pa, size_t size)
160 {
161 	size_t n;
162 
163 	for (n = 0; n < alen; n++)
164 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
165 			return true;
166 	return false;
167 }
168 
169 #define pbuf_intersects(a, pa, size) \
170 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
171 
_pbuf_is_inside(struct memaccess_area * a,size_t alen,paddr_t pa,size_t size)172 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
173 			    paddr_t pa, size_t size)
174 {
175 	size_t n;
176 
177 	for (n = 0; n < alen; n++)
178 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
179 			return true;
180 	return false;
181 }
182 
183 #define pbuf_is_inside(a, pa, size) \
184 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
185 
pa_is_in_map(struct tee_mmap_region * map,paddr_t pa,size_t len)186 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
187 {
188 	paddr_t end_pa = 0;
189 
190 	if (!map)
191 		return false;
192 
193 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
194 		return false;
195 
196 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
197 }
198 
va_is_in_map(struct tee_mmap_region * map,vaddr_t va)199 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
200 {
201 	if (!map)
202 		return false;
203 	return (va >= map->va && va <= (map->va + map->size - 1));
204 }
205 
206 /* check if target buffer fits in a core default map area */
pbuf_inside_map_area(unsigned long p,size_t l,struct tee_mmap_region * map)207 static bool pbuf_inside_map_area(unsigned long p, size_t l,
208 				 struct tee_mmap_region *map)
209 {
210 	return core_is_buffer_inside(p, l, map->pa, map->size);
211 }
212 
find_map_by_type(enum teecore_memtypes type)213 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
214 {
215 	struct tee_mmap_region *map;
216 
217 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
218 		if (map->type == type)
219 			return map;
220 	return NULL;
221 }
222 
223 static struct tee_mmap_region *
find_map_by_type_and_pa(enum teecore_memtypes type,paddr_t pa,size_t len)224 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
225 {
226 	struct tee_mmap_region *map;
227 
228 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
229 		if (map->type != type)
230 			continue;
231 		if (pa_is_in_map(map, pa, len))
232 			return map;
233 	}
234 	return NULL;
235 }
236 
find_map_by_va(void * va)237 static struct tee_mmap_region *find_map_by_va(void *va)
238 {
239 	struct tee_mmap_region *map = get_memory_map();
240 	unsigned long a = (unsigned long)va;
241 
242 	while (!core_mmap_is_end_of_table(map)) {
243 		if (a >= map->va && a <= (map->va - 1 + map->size))
244 			return map;
245 		map++;
246 	}
247 	return NULL;
248 }
249 
find_map_by_pa(unsigned long pa)250 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
251 {
252 	struct tee_mmap_region *map = get_memory_map();
253 
254 	while (!core_mmap_is_end_of_table(map)) {
255 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
256 			return map;
257 		map++;
258 	}
259 	return NULL;
260 }
261 
262 #if defined(CFG_SECURE_DATA_PATH)
dtb_get_sdp_region(void)263 static bool dtb_get_sdp_region(void)
264 {
265 	void *fdt = NULL;
266 	int node = 0;
267 	int tmp_node = 0;
268 	paddr_t tmp_addr = 0;
269 	size_t tmp_size = 0;
270 
271 	if (!IS_ENABLED(CFG_EMBED_DTB))
272 		return false;
273 
274 	fdt = get_embedded_dt();
275 	if (!fdt)
276 		panic("No DTB found");
277 
278 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
279 	if (node < 0) {
280 		DMSG("No %s compatible node found", tz_sdp_match);
281 		return false;
282 	}
283 	tmp_node = node;
284 	while (tmp_node >= 0) {
285 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
286 							 tz_sdp_match);
287 		if (tmp_node >= 0)
288 			DMSG("Ignore SDP pool node %s, supports only 1 node",
289 			     fdt_get_name(fdt, tmp_node, NULL));
290 	}
291 
292 	tmp_addr = _fdt_reg_base_address(fdt, node);
293 	if (tmp_addr == DT_INFO_INVALID_REG) {
294 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
295 		return false;
296 	}
297 
298 	tmp_size = _fdt_reg_size(fdt, node);
299 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
300 		EMSG("%s: Unable to get size of base addr from DT",
301 		     tz_sdp_match);
302 		return false;
303 	}
304 
305 	sec_sdp.paddr = tmp_addr;
306 	sec_sdp.size = tmp_size;
307 
308 	return true;
309 }
310 #endif
311 
312 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
pbuf_is_special_mem(paddr_t pbuf,size_t len,const struct core_mmu_phys_mem * start,const struct core_mmu_phys_mem * end)313 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
314 				const struct core_mmu_phys_mem *start,
315 				const struct core_mmu_phys_mem *end)
316 {
317 	const struct core_mmu_phys_mem *mem;
318 
319 	for (mem = start; mem < end; mem++) {
320 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
321 			return true;
322 	}
323 
324 	return false;
325 }
326 #endif
327 
328 #ifdef CFG_CORE_DYN_SHM
carve_out_phys_mem(struct core_mmu_phys_mem ** mem,size_t * nelems,paddr_t pa,size_t size)329 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
330 			       paddr_t pa, size_t size)
331 {
332 	struct core_mmu_phys_mem *m = *mem;
333 	size_t n = 0;
334 
335 	while (true) {
336 		if (n >= *nelems) {
337 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
338 			     pa, size);
339 			return;
340 		}
341 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
342 			break;
343 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
344 			panic();
345 		n++;
346 	}
347 
348 	if (pa == m[n].addr && size == m[n].size) {
349 		/* Remove this entry */
350 		(*nelems)--;
351 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
352 		m = nex_realloc(m, sizeof(*m) * *nelems);
353 		if (!m)
354 			panic();
355 		*mem = m;
356 	} else if (pa == m[n].addr) {
357 		m[n].addr += size;
358 		m[n].size -= size;
359 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
360 		m[n].size -= size;
361 	} else {
362 		/* Need to split the memory entry */
363 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
364 		if (!m)
365 			panic();
366 		*mem = m;
367 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
368 		(*nelems)++;
369 		m[n].size = pa - m[n].addr;
370 		m[n + 1].size -= size + m[n].size;
371 		m[n + 1].addr = pa + size;
372 	}
373 }
374 
check_phys_mem_is_outside(struct core_mmu_phys_mem * start,size_t nelems,struct tee_mmap_region * map)375 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
376 				      size_t nelems,
377 				      struct tee_mmap_region *map)
378 {
379 	size_t n;
380 
381 	for (n = 0; n < nelems; n++) {
382 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
383 					    map->pa, map->size)) {
384 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
385 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
386 			     start[n].addr, start[n].size,
387 			     map->type, map->pa, map->size);
388 			panic();
389 		}
390 	}
391 }
392 
393 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
394 static size_t discovered_nsec_ddr_nelems __nex_bss;
395 
cmp_pmem_by_addr(const void * a,const void * b)396 static int cmp_pmem_by_addr(const void *a, const void *b)
397 {
398 	const struct core_mmu_phys_mem *pmem_a = a;
399 	const struct core_mmu_phys_mem *pmem_b = b;
400 
401 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
402 }
403 
core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem * start,size_t nelems)404 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
405 				      size_t nelems)
406 {
407 	struct core_mmu_phys_mem *m = start;
408 	size_t num_elems = nelems;
409 	struct tee_mmap_region *map = static_memory_map;
410 	const struct core_mmu_phys_mem __maybe_unused *pmem;
411 
412 	assert(!discovered_nsec_ddr_start);
413 	assert(m && num_elems);
414 
415 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
416 
417 	/*
418 	 * Non-secure shared memory and also secure data
419 	 * path memory are supposed to reside inside
420 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
421 	 * are used for a specific purpose make holes for
422 	 * those memory in the normal non-secure memory.
423 	 *
424 	 * This has to be done since for instance QEMU
425 	 * isn't aware of which memory range in the
426 	 * non-secure memory is used for NSEC_SHM.
427 	 */
428 
429 #ifdef CFG_SECURE_DATA_PATH
430 	if (dtb_get_sdp_region())
431 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
432 
433 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
434 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
435 #endif
436 
437 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
438 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
439 
440 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
441 		switch (map->type) {
442 		case MEM_AREA_NSEC_SHM:
443 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
444 			break;
445 		case MEM_AREA_EXT_DT:
446 		case MEM_AREA_RES_VASPACE:
447 		case MEM_AREA_SHM_VASPACE:
448 		case MEM_AREA_TS_VASPACE:
449 		case MEM_AREA_PAGER_VASPACE:
450 			break;
451 		default:
452 			check_phys_mem_is_outside(m, num_elems, map);
453 		}
454 	}
455 
456 	discovered_nsec_ddr_start = m;
457 	discovered_nsec_ddr_nelems = num_elems;
458 
459 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
460 				   m[num_elems - 1].size))
461 		panic();
462 }
463 
get_discovered_nsec_ddr(const struct core_mmu_phys_mem ** start,const struct core_mmu_phys_mem ** end)464 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
465 				    const struct core_mmu_phys_mem **end)
466 {
467 	if (!discovered_nsec_ddr_start)
468 		return false;
469 
470 	*start = discovered_nsec_ddr_start;
471 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
472 
473 	return true;
474 }
475 
pbuf_is_nsec_ddr(paddr_t pbuf,size_t len)476 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
477 {
478 	const struct core_mmu_phys_mem *start;
479 	const struct core_mmu_phys_mem *end;
480 
481 	if (!get_discovered_nsec_ddr(&start, &end))
482 		return false;
483 
484 	return pbuf_is_special_mem(pbuf, len, start, end);
485 }
486 
core_mmu_nsec_ddr_is_defined(void)487 bool core_mmu_nsec_ddr_is_defined(void)
488 {
489 	const struct core_mmu_phys_mem *start;
490 	const struct core_mmu_phys_mem *end;
491 
492 	if (!get_discovered_nsec_ddr(&start, &end))
493 		return false;
494 
495 	return start != end;
496 }
497 #else
pbuf_is_nsec_ddr(paddr_t pbuf __unused,size_t len __unused)498 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
499 {
500 	return false;
501 }
502 #endif /*CFG_CORE_DYN_SHM*/
503 
504 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
505 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
506 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
507 
508 #ifdef CFG_SECURE_DATA_PATH
pbuf_is_sdp_mem(paddr_t pbuf,size_t len)509 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
510 {
511 	bool is_sdp_mem = false;
512 
513 	if (sec_sdp.size)
514 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
515 						   sec_sdp.size);
516 
517 	if (!is_sdp_mem)
518 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
519 						 phys_sdp_mem_end);
520 
521 	return is_sdp_mem;
522 }
523 
core_sdp_mem_alloc_mobj(paddr_t pa,size_t size)524 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
525 {
526 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
527 					    CORE_MEM_SDP_MEM);
528 
529 	if (!mobj)
530 		panic("can't create SDP physical memory object");
531 
532 	return mobj;
533 }
534 
core_sdp_mem_create_mobjs(void)535 struct mobj **core_sdp_mem_create_mobjs(void)
536 {
537 	const struct core_mmu_phys_mem *mem = NULL;
538 	struct mobj **mobj_base = NULL;
539 	struct mobj **mobj = NULL;
540 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
541 
542 	if (sec_sdp.size)
543 		cnt++;
544 
545 	/* SDP mobjs table must end with a NULL entry */
546 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
547 	if (!mobj_base)
548 		panic("Out of memory");
549 
550 	mobj = mobj_base;
551 
552 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
553 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
554 
555 	if (sec_sdp.size)
556 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
557 
558 	return mobj_base;
559 }
560 
561 #else /* CFG_SECURE_DATA_PATH */
pbuf_is_sdp_mem(paddr_t pbuf __unused,size_t len __unused)562 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
563 {
564 	return false;
565 }
566 
567 #endif /* CFG_SECURE_DATA_PATH */
568 
569 /* Check special memories comply with registered memories */
verify_special_mem_areas(struct tee_mmap_region * mem_map,size_t len,const struct core_mmu_phys_mem * start,const struct core_mmu_phys_mem * end,const char * area_name __maybe_unused)570 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
571 				     size_t len,
572 				     const struct core_mmu_phys_mem *start,
573 				     const struct core_mmu_phys_mem *end,
574 				     const char *area_name __maybe_unused)
575 {
576 	const struct core_mmu_phys_mem *mem;
577 	const struct core_mmu_phys_mem *mem2;
578 	struct tee_mmap_region *mmap;
579 	size_t n;
580 
581 	if (start == end) {
582 		DMSG("No %s memory area defined", area_name);
583 		return;
584 	}
585 
586 	for (mem = start; mem < end; mem++)
587 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
588 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
589 
590 	/* Check memories do not intersect each other */
591 	for (mem = start; mem + 1 < end; mem++) {
592 		for (mem2 = mem + 1; mem2 < end; mem2++) {
593 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
594 						     mem->addr, mem->size)) {
595 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
596 						   mem->addr, mem->size);
597 				panic("Special memory intersection");
598 			}
599 		}
600 	}
601 
602 	/*
603 	 * Check memories do not intersect any mapped memory.
604 	 * This is called before reserved VA space is loaded in mem_map.
605 	 */
606 	for (mem = start; mem < end; mem++) {
607 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
608 			if (core_is_buffer_intersect(mem->addr, mem->size,
609 						     mmap->pa, mmap->size)) {
610 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
611 						   mmap->pa, mmap->size);
612 				panic("Special memory intersection");
613 			}
614 		}
615 	}
616 }
617 
add_phys_mem(struct tee_mmap_region * memory_map,size_t num_elems,const struct core_mmu_phys_mem * mem,size_t * last)618 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
619 			 const struct core_mmu_phys_mem *mem, size_t *last)
620 {
621 	size_t n = 0;
622 	paddr_t pa;
623 	paddr_size_t size;
624 
625 	/*
626 	 * If some ranges of memory of the same type do overlap
627 	 * each others they are coalesced into one entry. To help this
628 	 * added entries are sorted by increasing physical.
629 	 *
630 	 * Note that it's valid to have the same physical memory as several
631 	 * different memory types, for instance the same device memory
632 	 * mapped as both secure and non-secure. This will probably not
633 	 * happen often in practice.
634 	 */
635 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
636 	     mem->name, teecore_memtype_name(mem->type), mem->addr, mem->size);
637 	while (true) {
638 		if (n >= (num_elems - 1)) {
639 			EMSG("Out of entries (%zu) in memory_map", num_elems);
640 			panic();
641 		}
642 		if (n == *last)
643 			break;
644 		pa = memory_map[n].pa;
645 		size = memory_map[n].size;
646 		if (mem->type == memory_map[n].type &&
647 		    ((pa <= (mem->addr + (mem->size - 1))) &&
648 		    (mem->addr <= (pa + (size - 1))))) {
649 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem->addr);
650 			memory_map[n].pa = MIN(pa, mem->addr);
651 			memory_map[n].size = MAX(size, mem->size) +
652 					     (pa - memory_map[n].pa);
653 			return;
654 		}
655 		if (mem->type < memory_map[n].type ||
656 		    (mem->type == memory_map[n].type && mem->addr < pa))
657 			break; /* found the spot where to insert this memory */
658 		n++;
659 	}
660 
661 	memmove(memory_map + n + 1, memory_map + n,
662 		sizeof(struct tee_mmap_region) * (*last - n));
663 	(*last)++;
664 	memset(memory_map + n, 0, sizeof(memory_map[0]));
665 	memory_map[n].type = mem->type;
666 	memory_map[n].pa = mem->addr;
667 	memory_map[n].size = mem->size;
668 }
669 
add_va_space(struct tee_mmap_region * memory_map,size_t num_elems,enum teecore_memtypes type,size_t size,size_t * last)670 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
671 			 enum teecore_memtypes type, size_t size, size_t *last)
672 {
673 	size_t n = 0;
674 
675 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
676 	while (true) {
677 		if (n >= (num_elems - 1)) {
678 			EMSG("Out of entries (%zu) in memory_map", num_elems);
679 			panic();
680 		}
681 		if (n == *last)
682 			break;
683 		if (type < memory_map[n].type)
684 			break;
685 		n++;
686 	}
687 
688 	memmove(memory_map + n + 1, memory_map + n,
689 		sizeof(struct tee_mmap_region) * (*last - n));
690 	(*last)++;
691 	memset(memory_map + n, 0, sizeof(memory_map[0]));
692 	memory_map[n].type = type;
693 	memory_map[n].size = size;
694 }
695 
core_mmu_type_to_attr(enum teecore_memtypes t)696 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
697 {
698 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
699 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
700 				TEE_MATTR_MEM_TYPE_SHIFT;
701 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
702 				TEE_MATTR_MEM_TYPE_SHIFT;
703 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
704 				  TEE_MATTR_MEM_TYPE_SHIFT;
705 
706 	switch (t) {
707 	case MEM_AREA_TEE_RAM:
708 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
709 	case MEM_AREA_TEE_RAM_RX:
710 	case MEM_AREA_INIT_RAM_RX:
711 	case MEM_AREA_IDENTITY_MAP_RX:
712 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
713 	case MEM_AREA_TEE_RAM_RO:
714 	case MEM_AREA_INIT_RAM_RO:
715 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
716 	case MEM_AREA_TEE_RAM_RW:
717 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
718 	case MEM_AREA_NEX_RAM_RW:
719 	case MEM_AREA_TEE_ASAN:
720 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
721 	case MEM_AREA_TEE_COHERENT:
722 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
723 	case MEM_AREA_TA_RAM:
724 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
725 	case MEM_AREA_NSEC_SHM:
726 		return attr | TEE_MATTR_PRW | cached;
727 	case MEM_AREA_EXT_DT:
728 		/*
729 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
730 		 * tree as secure non-cached memory, otherwise, fall back to
731 		 * non-secure mapping.
732 		 */
733 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
734 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
735 			       noncache;
736 		fallthrough;
737 	case MEM_AREA_IO_NSEC:
738 		return attr | TEE_MATTR_PRW | noncache;
739 	case MEM_AREA_IO_SEC:
740 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
741 	case MEM_AREA_RAM_NSEC:
742 		return attr | TEE_MATTR_PRW | cached;
743 	case MEM_AREA_RAM_SEC:
744 	case MEM_AREA_SEC_RAM_OVERALL:
745 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
746 	case MEM_AREA_RES_VASPACE:
747 	case MEM_AREA_SHM_VASPACE:
748 		return 0;
749 	case MEM_AREA_PAGER_VASPACE:
750 		return TEE_MATTR_SECURE;
751 	default:
752 		panic("invalid type");
753 	}
754 }
755 
map_is_tee_ram(const struct tee_mmap_region * mm)756 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
757 {
758 	switch (mm->type) {
759 	case MEM_AREA_TEE_RAM:
760 	case MEM_AREA_TEE_RAM_RX:
761 	case MEM_AREA_TEE_RAM_RO:
762 	case MEM_AREA_TEE_RAM_RW:
763 	case MEM_AREA_INIT_RAM_RX:
764 	case MEM_AREA_INIT_RAM_RO:
765 	case MEM_AREA_NEX_RAM_RW:
766 	case MEM_AREA_NEX_RAM_RO:
767 	case MEM_AREA_TEE_ASAN:
768 		return true;
769 	default:
770 		return false;
771 	}
772 }
773 
map_is_secure(const struct tee_mmap_region * mm)774 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
775 {
776 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
777 }
778 
map_is_pgdir(const struct tee_mmap_region * mm)779 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
780 {
781 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
782 }
783 
cmp_mmap_by_lower_va(const void * a,const void * b)784 static int cmp_mmap_by_lower_va(const void *a, const void *b)
785 {
786 	const struct tee_mmap_region *mm_a = a;
787 	const struct tee_mmap_region *mm_b = b;
788 
789 	return CMP_TRILEAN(mm_a->va, mm_b->va);
790 }
791 
dump_mmap_table(struct tee_mmap_region * memory_map)792 static void dump_mmap_table(struct tee_mmap_region *memory_map)
793 {
794 	struct tee_mmap_region *map;
795 
796 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
797 		vaddr_t __maybe_unused vstart;
798 
799 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
800 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
801 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
802 		     teecore_memtype_name(map->type), vstart,
803 		     vstart + map->size - 1, map->pa,
804 		     (paddr_t)(map->pa + map->size - 1), map->size,
805 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
806 	}
807 }
808 
809 #if DEBUG_XLAT_TABLE
810 
dump_xlat_table(vaddr_t va,unsigned int level)811 static void dump_xlat_table(vaddr_t va, unsigned int level)
812 {
813 	struct core_mmu_table_info tbl_info;
814 	unsigned int idx = 0;
815 	paddr_t pa;
816 	uint32_t attr;
817 
818 	core_mmu_find_table(NULL, va, level, &tbl_info);
819 	va = tbl_info.va_base;
820 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
821 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
822 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
823 			const char *security_bit = "";
824 
825 			if (core_mmu_entry_have_security_bit(attr)) {
826 				if (attr & TEE_MATTR_SECURE)
827 					security_bit = "S";
828 				else
829 					security_bit = "NS";
830 			}
831 
832 			if (attr & TEE_MATTR_TABLE) {
833 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
834 					" TBL:0x%010" PRIxPA " %s",
835 					level * 2, "", level, va, pa,
836 					security_bit);
837 				dump_xlat_table(va, level + 1);
838 			} else if (attr) {
839 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
840 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
841 					level * 2, "", level, va, pa,
842 					mattr_is_cached(attr) ? "MEM" :
843 					"DEV",
844 					attr & TEE_MATTR_PW ? "RW" : "RO",
845 					attr & TEE_MATTR_PX ? "X " : "XN",
846 					security_bit);
847 			} else {
848 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
849 					    " INVALID\n",
850 					    level * 2, "", level, va);
851 			}
852 		}
853 		va += BIT64(tbl_info.shift);
854 	}
855 }
856 
857 #else
858 
dump_xlat_table(vaddr_t va __unused,int level __unused)859 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
860 {
861 }
862 
863 #endif
864 
865 /*
866  * Reserves virtual memory space for pager usage.
867  *
868  * From the start of the first memory used by the link script +
869  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
870  * mapping for pager usage. This adds translation tables as needed for the
871  * pager to operate.
872  */
add_pager_vaspace(struct tee_mmap_region * mmap,size_t num_elems,size_t * last)873 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
874 			      size_t *last)
875 {
876 	paddr_t begin = 0;
877 	paddr_t end = 0;
878 	size_t size = 0;
879 	size_t pos = 0;
880 	size_t n = 0;
881 
882 	if (*last >= (num_elems - 1)) {
883 		EMSG("Out of entries (%zu) in memory map", num_elems);
884 		panic();
885 	}
886 
887 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
888 		if (map_is_tee_ram(mmap + n)) {
889 			if (!begin)
890 				begin = mmap[n].pa;
891 			pos = n + 1;
892 		}
893 	}
894 
895 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
896 	size = TEE_RAM_VA_SIZE - (end - begin);
897 	if (!size)
898 		return;
899 
900 	assert(pos <= *last);
901 	memmove(mmap + pos + 1, mmap + pos,
902 		sizeof(struct tee_mmap_region) * (*last - pos));
903 	(*last)++;
904 	memset(mmap + pos, 0, sizeof(mmap[0]));
905 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
906 	mmap[pos].va = 0;
907 	mmap[pos].size = size;
908 	mmap[pos].region_size = SMALL_PAGE_SIZE;
909 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
910 }
911 
check_sec_nsec_mem_config(void)912 static void check_sec_nsec_mem_config(void)
913 {
914 	size_t n = 0;
915 
916 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
917 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
918 				    secure_only[n].size))
919 			panic("Invalid memory access config: sec/nsec");
920 	}
921 }
922 
collect_mem_ranges(struct tee_mmap_region * memory_map,size_t num_elems)923 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
924 				 size_t num_elems)
925 {
926 	const struct core_mmu_phys_mem *mem = NULL;
927 	size_t last = 0;
928 
929 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
930 		struct core_mmu_phys_mem m = *mem;
931 
932 		/* Discard null size entries */
933 		if (!m.size)
934 			continue;
935 
936 		/* Only unmapped virtual range may have a null phys addr */
937 		assert(m.addr || !core_mmu_type_to_attr(m.type));
938 
939 		add_phys_mem(memory_map, num_elems, &m, &last);
940 	}
941 
942 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
943 		verify_special_mem_areas(memory_map, num_elems,
944 					 phys_sdp_mem_begin,
945 					 phys_sdp_mem_end, "SDP");
946 
947 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
948 		     CFG_RESERVED_VASPACE_SIZE, &last);
949 
950 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
951 		     SHM_VASPACE_SIZE, &last);
952 
953 	memory_map[last].type = MEM_AREA_END;
954 
955 	return last;
956 }
957 
assign_mem_granularity(struct tee_mmap_region * memory_map)958 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
959 {
960 	struct tee_mmap_region *map = NULL;
961 
962 	/*
963 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
964 	 * SMALL_PAGE_SIZE.
965 	 */
966 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
967 		paddr_t mask = map->pa | map->size;
968 
969 		if (!(mask & CORE_MMU_PGDIR_MASK))
970 			map->region_size = CORE_MMU_PGDIR_SIZE;
971 		else if (!(mask & SMALL_PAGE_MASK))
972 			map->region_size = SMALL_PAGE_SIZE;
973 		else
974 			panic("Impossible memory alignment");
975 
976 		if (map_is_tee_ram(map))
977 			map->region_size = SMALL_PAGE_SIZE;
978 	}
979 }
980 
place_tee_ram_at_top(paddr_t paddr)981 static bool place_tee_ram_at_top(paddr_t paddr)
982 {
983 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
984 }
985 
986 /*
987  * MMU arch driver shall override this function if it helps
988  * optimizing the memory footprint of the address translation tables.
989  */
core_mmu_prefer_tee_ram_at_top(paddr_t paddr)990 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
991 {
992 	return place_tee_ram_at_top(paddr);
993 }
994 
assign_mem_va_dir(vaddr_t tee_ram_va,struct tee_mmap_region * memory_map,bool tee_ram_at_top)995 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
996 			      struct tee_mmap_region *memory_map,
997 			      bool tee_ram_at_top)
998 {
999 	struct tee_mmap_region *map = NULL;
1000 	vaddr_t va = 0;
1001 	bool va_is_secure = true;
1002 
1003 	/*
1004 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1005 	 * 0 is by design an invalid va, so return false directly.
1006 	 */
1007 	if (!tee_ram_va)
1008 		return false;
1009 
1010 	/* Clear eventual previous assignments */
1011 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1012 		map->va = 0;
1013 
1014 	/*
1015 	 * TEE RAM regions are always aligned with region_size.
1016 	 *
1017 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1018 	 * since it handles virtual memory which covers the part of the ELF
1019 	 * that cannot fit directly into memory.
1020 	 */
1021 	va = tee_ram_va;
1022 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1023 		if (map_is_tee_ram(map) ||
1024 		    map->type == MEM_AREA_PAGER_VASPACE) {
1025 			assert(!(va & (map->region_size - 1)));
1026 			assert(!(map->size & (map->region_size - 1)));
1027 			map->va = va;
1028 			if (ADD_OVERFLOW(va, map->size, &va))
1029 				return false;
1030 			if (va >= BIT64(core_mmu_get_va_width()))
1031 				return false;
1032 		}
1033 	}
1034 
1035 	if (tee_ram_at_top) {
1036 		/*
1037 		 * Map non-tee ram regions at addresses lower than the tee
1038 		 * ram region.
1039 		 */
1040 		va = tee_ram_va;
1041 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1042 			map->attr = core_mmu_type_to_attr(map->type);
1043 			if (map->va)
1044 				continue;
1045 
1046 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1047 			    va_is_secure != map_is_secure(map)) {
1048 				va_is_secure = !va_is_secure;
1049 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1050 			}
1051 
1052 			if (SUB_OVERFLOW(va, map->size, &va))
1053 				return false;
1054 			va = ROUNDDOWN(va, map->region_size);
1055 			/*
1056 			 * Make sure that va is aligned with pa for
1057 			 * efficient pgdir mapping. Basically pa &
1058 			 * pgdir_mask should be == va & pgdir_mask
1059 			 */
1060 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1061 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1062 					return false;
1063 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1064 			}
1065 			map->va = va;
1066 		}
1067 	} else {
1068 		/*
1069 		 * Map non-tee ram regions at addresses higher than the tee
1070 		 * ram region.
1071 		 */
1072 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1073 			map->attr = core_mmu_type_to_attr(map->type);
1074 			if (map->va)
1075 				continue;
1076 
1077 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1078 			    va_is_secure != map_is_secure(map)) {
1079 				va_is_secure = !va_is_secure;
1080 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1081 						     &va))
1082 					return false;
1083 			}
1084 
1085 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1086 				return false;
1087 			/*
1088 			 * Make sure that va is aligned with pa for
1089 			 * efficient pgdir mapping. Basically pa &
1090 			 * pgdir_mask should be == va & pgdir_mask
1091 			 */
1092 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1093 				vaddr_t offs = (map->pa - va) &
1094 					       CORE_MMU_PGDIR_MASK;
1095 
1096 				if (ADD_OVERFLOW(va, offs, &va))
1097 					return false;
1098 			}
1099 
1100 			map->va = va;
1101 			if (ADD_OVERFLOW(va, map->size, &va))
1102 				return false;
1103 			if (va >= BIT64(core_mmu_get_va_width()))
1104 				return false;
1105 		}
1106 	}
1107 
1108 	return true;
1109 }
1110 
assign_mem_va(vaddr_t tee_ram_va,struct tee_mmap_region * memory_map)1111 static bool assign_mem_va(vaddr_t tee_ram_va,
1112 			  struct tee_mmap_region *memory_map)
1113 {
1114 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1115 
1116 	/*
1117 	 * Check that we're not overlapping with the user VA range.
1118 	 */
1119 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1120 		/*
1121 		 * User VA range is supposed to be defined after these
1122 		 * mappings have been established.
1123 		 */
1124 		assert(!core_mmu_user_va_range_is_defined());
1125 	} else {
1126 		vaddr_t user_va_base = 0;
1127 		size_t user_va_size = 0;
1128 
1129 		assert(core_mmu_user_va_range_is_defined());
1130 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1131 		if (tee_ram_va < (user_va_base + user_va_size))
1132 			return false;
1133 	}
1134 
1135 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1136 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1137 
1138 		/* Try whole mapping covered by a single base xlat entry */
1139 		if (prefered_dir != tee_ram_at_top &&
1140 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1141 			return true;
1142 	}
1143 
1144 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1145 }
1146 
cmp_init_mem_map(const void * a,const void * b)1147 static int cmp_init_mem_map(const void *a, const void *b)
1148 {
1149 	const struct tee_mmap_region *mm_a = a;
1150 	const struct tee_mmap_region *mm_b = b;
1151 	int rc = 0;
1152 
1153 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1154 	if (!rc)
1155 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1156 	/*
1157 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1158 	 * the same level2 table. Hence sort secure mapping from non-secure
1159 	 * mapping.
1160 	 */
1161 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1162 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1163 
1164 	return rc;
1165 }
1166 
mem_map_add_id_map(struct tee_mmap_region * memory_map,size_t num_elems,size_t * last,vaddr_t id_map_start,vaddr_t id_map_end)1167 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1168 			       size_t num_elems, size_t *last,
1169 			       vaddr_t id_map_start, vaddr_t id_map_end)
1170 {
1171 	struct tee_mmap_region *map = NULL;
1172 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1173 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1174 	size_t len = end - start;
1175 
1176 	if (*last >= num_elems - 1) {
1177 		EMSG("Out of entries (%zu) in memory map", num_elems);
1178 		panic();
1179 	}
1180 
1181 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1182 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1183 			return false;
1184 
1185 	*map = (struct tee_mmap_region){
1186 		.type = MEM_AREA_IDENTITY_MAP_RX,
1187 		/*
1188 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1189 		 * translation table, at the increased risk of clashes with
1190 		 * the rest of the memory map.
1191 		 */
1192 		.region_size = SMALL_PAGE_SIZE,
1193 		.pa = start,
1194 		.va = start,
1195 		.size = len,
1196 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1197 	};
1198 
1199 	(*last)++;
1200 
1201 	return true;
1202 }
1203 
init_mem_map(struct tee_mmap_region * memory_map,size_t num_elems,unsigned long seed)1204 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1205 				  size_t num_elems, unsigned long seed)
1206 {
1207 	/*
1208 	 * @id_map_start and @id_map_end describes a physical memory range
1209 	 * that must be mapped Read-Only eXecutable at identical virtual
1210 	 * addresses.
1211 	 */
1212 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1213 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1214 	unsigned long offs = 0;
1215 	size_t last = 0;
1216 
1217 	last = collect_mem_ranges(memory_map, num_elems);
1218 	assign_mem_granularity(memory_map);
1219 
1220 	/*
1221 	 * To ease mapping and lower use of xlat tables, sort mapping
1222 	 * description moving small-page regions after the pgdir regions.
1223 	 */
1224 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1225 	      cmp_init_mem_map);
1226 
1227 	add_pager_vaspace(memory_map, num_elems, &last);
1228 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1229 		vaddr_t base_addr = TEE_RAM_START + seed;
1230 		const unsigned int va_width = core_mmu_get_va_width();
1231 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1232 						   SMALL_PAGE_SHIFT);
1233 		vaddr_t ba = base_addr;
1234 		size_t n = 0;
1235 
1236 		for (n = 0; n < 3; n++) {
1237 			if (n)
1238 				ba = base_addr ^ BIT64(va_width - n);
1239 			ba &= va_mask;
1240 			if (assign_mem_va(ba, memory_map) &&
1241 			    mem_map_add_id_map(memory_map, num_elems, &last,
1242 					       id_map_start, id_map_end)) {
1243 				offs = ba - TEE_RAM_START;
1244 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1245 				     ba, offs);
1246 				goto out;
1247 			} else {
1248 				DMSG("Failed to map core at %#"PRIxVA, ba);
1249 			}
1250 		}
1251 		EMSG("Failed to map core with seed %#lx", seed);
1252 	}
1253 
1254 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1255 		panic();
1256 
1257 out:
1258 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1259 	      cmp_mmap_by_lower_va);
1260 
1261 	dump_mmap_table(memory_map);
1262 
1263 	return offs;
1264 }
1265 
check_mem_map(struct tee_mmap_region * map)1266 static void check_mem_map(struct tee_mmap_region *map)
1267 {
1268 	struct tee_mmap_region *m = NULL;
1269 
1270 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1271 		switch (m->type) {
1272 		case MEM_AREA_TEE_RAM:
1273 		case MEM_AREA_TEE_RAM_RX:
1274 		case MEM_AREA_TEE_RAM_RO:
1275 		case MEM_AREA_TEE_RAM_RW:
1276 		case MEM_AREA_INIT_RAM_RX:
1277 		case MEM_AREA_INIT_RAM_RO:
1278 		case MEM_AREA_NEX_RAM_RW:
1279 		case MEM_AREA_NEX_RAM_RO:
1280 		case MEM_AREA_IDENTITY_MAP_RX:
1281 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1282 				panic("TEE_RAM can't fit in secure_only");
1283 			break;
1284 		case MEM_AREA_TA_RAM:
1285 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1286 				panic("TA_RAM can't fit in secure_only");
1287 			break;
1288 		case MEM_AREA_NSEC_SHM:
1289 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1290 				panic("NS_SHM can't fit in nsec_shared");
1291 			break;
1292 		case MEM_AREA_SEC_RAM_OVERALL:
1293 		case MEM_AREA_TEE_COHERENT:
1294 		case MEM_AREA_TEE_ASAN:
1295 		case MEM_AREA_IO_SEC:
1296 		case MEM_AREA_IO_NSEC:
1297 		case MEM_AREA_EXT_DT:
1298 		case MEM_AREA_RAM_SEC:
1299 		case MEM_AREA_RAM_NSEC:
1300 		case MEM_AREA_RES_VASPACE:
1301 		case MEM_AREA_SHM_VASPACE:
1302 		case MEM_AREA_PAGER_VASPACE:
1303 			break;
1304 		default:
1305 			EMSG("Uhandled memtype %d", m->type);
1306 			panic();
1307 		}
1308 	}
1309 }
1310 
get_tmp_mmap(void)1311 static struct tee_mmap_region *get_tmp_mmap(void)
1312 {
1313 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1314 
1315 #ifdef CFG_WITH_PAGER
1316 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1317 		tmp_mmap = (void *)__heap2_start;
1318 #endif
1319 
1320 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1321 
1322 	return tmp_mmap;
1323 }
1324 
1325 /*
1326  * core_init_mmu_map() - init tee core default memory mapping
1327  *
1328  * This routine sets the static default TEE core mapping. If @seed is > 0
1329  * and configured with CFG_CORE_ASLR it will map tee core at a location
1330  * based on the seed and return the offset from the link address.
1331  *
1332  * If an error happened: core_init_mmu_map is expected to panic.
1333  *
1334  * Note: this function is weak just to make it possible to exclude it from
1335  * the unpaged area.
1336  */
core_init_mmu_map(unsigned long seed,struct core_mmu_config * cfg)1337 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1338 {
1339 #ifndef CFG_VIRTUALIZATION
1340 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1341 #else
1342 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1343 				  SMALL_PAGE_SIZE);
1344 #endif
1345 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1346 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1347 	unsigned long offs = 0;
1348 
1349 	check_sec_nsec_mem_config();
1350 
1351 	/*
1352 	 * Add a entry covering the translation tables which will be
1353 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1354 	 */
1355 	static_memory_map[0] = (struct tee_mmap_region){
1356 		.type = MEM_AREA_TEE_RAM,
1357 		.region_size = SMALL_PAGE_SIZE,
1358 		.pa = start,
1359 		.va = start,
1360 		.size = len,
1361 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1362 	};
1363 
1364 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1365 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1366 
1367 	check_mem_map(tmp_mmap);
1368 	core_init_mmu(tmp_mmap);
1369 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1370 	core_init_mmu_regs(cfg);
1371 	cfg->load_offset = offs;
1372 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1373 }
1374 
core_mmu_mattr_is_ok(uint32_t mattr)1375 bool core_mmu_mattr_is_ok(uint32_t mattr)
1376 {
1377 	/*
1378 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1379 	 * core_mmu_v7.c:mattr_to_texcb
1380 	 */
1381 
1382 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1383 	case TEE_MATTR_MEM_TYPE_DEV:
1384 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1385 	case TEE_MATTR_MEM_TYPE_CACHED:
1386 	case TEE_MATTR_MEM_TYPE_TAGGED:
1387 		return true;
1388 	default:
1389 		return false;
1390 	}
1391 }
1392 
1393 /*
1394  * test attributes of target physical buffer
1395  *
1396  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1397  *
1398  */
core_pbuf_is(uint32_t attr,paddr_t pbuf,size_t len)1399 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1400 {
1401 	struct tee_mmap_region *map;
1402 
1403 	/* Empty buffers complies with anything */
1404 	if (len == 0)
1405 		return true;
1406 
1407 	switch (attr) {
1408 	case CORE_MEM_SEC:
1409 		return pbuf_is_inside(secure_only, pbuf, len);
1410 	case CORE_MEM_NON_SEC:
1411 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1412 			pbuf_is_nsec_ddr(pbuf, len);
1413 	case CORE_MEM_TEE_RAM:
1414 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1415 							TEE_RAM_PH_SIZE);
1416 	case CORE_MEM_TA_RAM:
1417 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1418 							TA_RAM_SIZE);
1419 #ifdef CFG_CORE_RESERVED_SHM
1420 	case CORE_MEM_NSEC_SHM:
1421 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1422 							TEE_SHMEM_SIZE);
1423 #endif
1424 	case CORE_MEM_SDP_MEM:
1425 		return pbuf_is_sdp_mem(pbuf, len);
1426 	case CORE_MEM_CACHED:
1427 		map = find_map_by_pa(pbuf);
1428 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1429 			return false;
1430 		return mattr_is_cached(map->attr);
1431 	default:
1432 		return false;
1433 	}
1434 }
1435 
1436 /* test attributes of target virtual buffer (in core mapping) */
core_vbuf_is(uint32_t attr,const void * vbuf,size_t len)1437 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1438 {
1439 	paddr_t p;
1440 
1441 	/* Empty buffers complies with anything */
1442 	if (len == 0)
1443 		return true;
1444 
1445 	p = virt_to_phys((void *)vbuf);
1446 	if (!p)
1447 		return false;
1448 
1449 	return core_pbuf_is(attr, p, len);
1450 }
1451 
1452 /* core_va2pa - teecore exported service */
core_va2pa_helper(void * va,paddr_t * pa)1453 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1454 {
1455 	struct tee_mmap_region *map;
1456 
1457 	map = find_map_by_va(va);
1458 	if (!va_is_in_map(map, (vaddr_t)va))
1459 		return -1;
1460 
1461 	/*
1462 	 * We can calculate PA for static map. Virtual address ranges
1463 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1464 	 * together with an invalid null physical address.
1465 	 */
1466 	if (map->pa)
1467 		*pa = map->pa + (vaddr_t)va  - map->va;
1468 	else
1469 		*pa = 0;
1470 
1471 	return 0;
1472 }
1473 
map_pa2va(struct tee_mmap_region * map,paddr_t pa,size_t len)1474 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1475 {
1476 	if (!pa_is_in_map(map, pa, len))
1477 		return NULL;
1478 
1479 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1480 }
1481 
1482 /*
1483  * teecore gets some memory area definitions
1484  */
core_mmu_get_mem_by_type(unsigned int type,vaddr_t * s,vaddr_t * e)1485 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1486 {
1487 	struct tee_mmap_region *map = find_map_by_type(type);
1488 
1489 	if (map) {
1490 		*s = map->va;
1491 		*e = map->va + map->size;
1492 	} else {
1493 		*s = 0;
1494 		*e = 0;
1495 	}
1496 }
1497 
core_mmu_get_type_by_pa(paddr_t pa)1498 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1499 {
1500 	struct tee_mmap_region *map = find_map_by_pa(pa);
1501 
1502 	if (!map)
1503 		return MEM_AREA_MAXTYPE;
1504 	return map->type;
1505 }
1506 
core_mmu_set_entry(struct core_mmu_table_info * tbl_info,unsigned int idx,paddr_t pa,uint32_t attr)1507 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1508 			paddr_t pa, uint32_t attr)
1509 {
1510 	assert(idx < tbl_info->num_entries);
1511 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1512 				     idx, pa, attr);
1513 }
1514 
core_mmu_get_entry(struct core_mmu_table_info * tbl_info,unsigned int idx,paddr_t * pa,uint32_t * attr)1515 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1516 			paddr_t *pa, uint32_t *attr)
1517 {
1518 	assert(idx < tbl_info->num_entries);
1519 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1520 				     idx, pa, attr);
1521 }
1522 
clear_region(struct core_mmu_table_info * tbl_info,struct tee_mmap_region * region)1523 static void clear_region(struct core_mmu_table_info *tbl_info,
1524 			 struct tee_mmap_region *region)
1525 {
1526 	unsigned int end = 0;
1527 	unsigned int idx = 0;
1528 
1529 	/* va, len and pa should be block aligned */
1530 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1531 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1532 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1533 
1534 	idx = core_mmu_va2idx(tbl_info, region->va);
1535 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1536 
1537 	while (idx < end) {
1538 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1539 		idx++;
1540 	}
1541 }
1542 
set_region(struct core_mmu_table_info * tbl_info,struct tee_mmap_region * region)1543 static void set_region(struct core_mmu_table_info *tbl_info,
1544 		       struct tee_mmap_region *region)
1545 {
1546 	unsigned int end;
1547 	unsigned int idx;
1548 	paddr_t pa;
1549 
1550 	/* va, len and pa should be block aligned */
1551 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1552 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1553 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1554 
1555 	idx = core_mmu_va2idx(tbl_info, region->va);
1556 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1557 	pa = region->pa;
1558 
1559 	while (idx < end) {
1560 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1561 		idx++;
1562 		pa += BIT64(tbl_info->shift);
1563 	}
1564 }
1565 
set_pg_region(struct core_mmu_table_info * dir_info,struct vm_region * region,struct pgt ** pgt,struct core_mmu_table_info * pg_info)1566 static void set_pg_region(struct core_mmu_table_info *dir_info,
1567 			  struct vm_region *region, struct pgt **pgt,
1568 			  struct core_mmu_table_info *pg_info)
1569 {
1570 	struct tee_mmap_region r = {
1571 		.va = region->va,
1572 		.size = region->size,
1573 		.attr = region->attr,
1574 	};
1575 	vaddr_t end = r.va + r.size;
1576 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1577 
1578 	while (r.va < end) {
1579 		if (!pg_info->table ||
1580 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1581 			/*
1582 			 * We're assigning a new translation table.
1583 			 */
1584 			unsigned int idx;
1585 
1586 			/* Virtual addresses must grow */
1587 			assert(r.va > pg_info->va_base);
1588 
1589 			idx = core_mmu_va2idx(dir_info, r.va);
1590 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1591 
1592 			/*
1593 			 * Advance pgt to va_base, note that we may need to
1594 			 * skip multiple page tables if there are large
1595 			 * holes in the vm map.
1596 			 */
1597 			while ((*pgt)->vabase < pg_info->va_base) {
1598 				*pgt = SLIST_NEXT(*pgt, link);
1599 				/* We should have allocated enough */
1600 				assert(*pgt);
1601 			}
1602 			assert((*pgt)->vabase == pg_info->va_base);
1603 			pg_info->table = (*pgt)->tbl;
1604 
1605 			core_mmu_set_entry(dir_info, idx,
1606 					   virt_to_phys(pg_info->table),
1607 					   pgt_attr);
1608 		}
1609 
1610 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1611 			     end - r.va);
1612 
1613 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1614 			size_t granule = BIT(pg_info->shift);
1615 			size_t offset = r.va - region->va + region->offset;
1616 
1617 			r.size = MIN(r.size,
1618 				     mobj_get_phys_granule(region->mobj));
1619 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1620 
1621 			if (mobj_get_pa(region->mobj, offset, granule,
1622 					&r.pa) != TEE_SUCCESS)
1623 				panic("Failed to get PA of unpaged mobj");
1624 			set_region(pg_info, &r);
1625 		}
1626 		r.va += r.size;
1627 	}
1628 }
1629 
can_map_at_level(paddr_t paddr,vaddr_t vaddr,size_t size_left,paddr_t block_size,struct tee_mmap_region * mm __maybe_unused)1630 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1631 			     size_t size_left, paddr_t block_size,
1632 			     struct tee_mmap_region *mm __maybe_unused)
1633 {
1634 	/* VA and PA are aligned to block size at current level */
1635 	if ((vaddr | paddr) & (block_size - 1))
1636 		return false;
1637 
1638 	/* Remainder fits into block at current level */
1639 	if (size_left < block_size)
1640 		return false;
1641 
1642 #ifdef CFG_WITH_PAGER
1643 	/*
1644 	 * If pager is enabled, we need to map tee ram
1645 	 * regions with small pages only
1646 	 */
1647 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1648 		return false;
1649 #endif
1650 
1651 	return true;
1652 }
1653 
core_mmu_map_region(struct mmu_partition * prtn,struct tee_mmap_region * mm)1654 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1655 {
1656 	struct core_mmu_table_info tbl_info;
1657 	unsigned int idx;
1658 	vaddr_t vaddr = mm->va;
1659 	paddr_t paddr = mm->pa;
1660 	ssize_t size_left = mm->size;
1661 	unsigned int level;
1662 	bool table_found;
1663 	uint32_t old_attr;
1664 
1665 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1666 
1667 	while (size_left > 0) {
1668 		level = CORE_MMU_BASE_TABLE_LEVEL;
1669 
1670 		while (true) {
1671 			paddr_t block_size = 0;
1672 
1673 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1674 
1675 			table_found = core_mmu_find_table(prtn, vaddr, level,
1676 							  &tbl_info);
1677 			if (!table_found)
1678 				panic("can't find table for mapping");
1679 
1680 			block_size = BIT64(tbl_info.shift);
1681 
1682 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1683 			if (!can_map_at_level(paddr, vaddr, size_left,
1684 					      block_size, mm)) {
1685 				bool secure = mm->attr & TEE_MATTR_SECURE;
1686 
1687 				/*
1688 				 * This part of the region can't be mapped at
1689 				 * this level. Need to go deeper.
1690 				 */
1691 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1692 								     idx,
1693 								     secure))
1694 					panic("Can't divide MMU entry");
1695 				level++;
1696 				continue;
1697 			}
1698 
1699 			/* We can map part of the region at current level */
1700 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1701 			if (old_attr)
1702 				panic("Page is already mapped");
1703 
1704 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1705 			paddr += block_size;
1706 			vaddr += block_size;
1707 			size_left -= block_size;
1708 
1709 			break;
1710 		}
1711 	}
1712 }
1713 
core_mmu_map_pages(vaddr_t vstart,paddr_t * pages,size_t num_pages,enum teecore_memtypes memtype)1714 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1715 			      enum teecore_memtypes memtype)
1716 {
1717 	TEE_Result ret;
1718 	struct core_mmu_table_info tbl_info;
1719 	struct tee_mmap_region *mm;
1720 	unsigned int idx;
1721 	uint32_t old_attr;
1722 	uint32_t exceptions;
1723 	vaddr_t vaddr = vstart;
1724 	size_t i;
1725 	bool secure;
1726 
1727 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1728 
1729 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1730 
1731 	if (vaddr & SMALL_PAGE_MASK)
1732 		return TEE_ERROR_BAD_PARAMETERS;
1733 
1734 	exceptions = mmu_lock();
1735 
1736 	mm = find_map_by_va((void *)vaddr);
1737 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1738 		panic("VA does not belong to any known mm region");
1739 
1740 	if (!core_mmu_is_dynamic_vaspace(mm))
1741 		panic("Trying to map into static region");
1742 
1743 	for (i = 0; i < num_pages; i++) {
1744 		if (pages[i] & SMALL_PAGE_MASK) {
1745 			ret = TEE_ERROR_BAD_PARAMETERS;
1746 			goto err;
1747 		}
1748 
1749 		while (true) {
1750 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1751 						 &tbl_info))
1752 				panic("Can't find pagetable for vaddr ");
1753 
1754 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1755 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1756 				break;
1757 
1758 			/* This is supertable. Need to divide it. */
1759 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1760 							     secure))
1761 				panic("Failed to spread pgdir on small tables");
1762 		}
1763 
1764 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1765 		if (old_attr)
1766 			panic("Page is already mapped");
1767 
1768 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1769 				   core_mmu_type_to_attr(memtype));
1770 		vaddr += SMALL_PAGE_SIZE;
1771 	}
1772 
1773 	/*
1774 	 * Make sure all the changes to translation tables are visible
1775 	 * before returning. TLB doesn't need to be invalidated as we are
1776 	 * guaranteed that there's no valid mapping in this range.
1777 	 */
1778 	core_mmu_table_write_barrier();
1779 	mmu_unlock(exceptions);
1780 
1781 	return TEE_SUCCESS;
1782 err:
1783 	mmu_unlock(exceptions);
1784 
1785 	if (i)
1786 		core_mmu_unmap_pages(vstart, i);
1787 
1788 	return ret;
1789 }
1790 
core_mmu_map_contiguous_pages(vaddr_t vstart,paddr_t pstart,size_t num_pages,enum teecore_memtypes memtype)1791 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1792 					 size_t num_pages,
1793 					 enum teecore_memtypes memtype)
1794 {
1795 	struct core_mmu_table_info tbl_info = { };
1796 	struct tee_mmap_region *mm = NULL;
1797 	unsigned int idx = 0;
1798 	uint32_t old_attr = 0;
1799 	uint32_t exceptions = 0;
1800 	vaddr_t vaddr = vstart;
1801 	paddr_t paddr = pstart;
1802 	size_t i = 0;
1803 	bool secure = false;
1804 
1805 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1806 
1807 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1808 
1809 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1810 		return TEE_ERROR_BAD_PARAMETERS;
1811 
1812 	exceptions = mmu_lock();
1813 
1814 	mm = find_map_by_va((void *)vaddr);
1815 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1816 		panic("VA does not belong to any known mm region");
1817 
1818 	if (!core_mmu_is_dynamic_vaspace(mm))
1819 		panic("Trying to map into static region");
1820 
1821 	for (i = 0; i < num_pages; i++) {
1822 		while (true) {
1823 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1824 						 &tbl_info))
1825 				panic("Can't find pagetable for vaddr ");
1826 
1827 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1828 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1829 				break;
1830 
1831 			/* This is supertable. Need to divide it. */
1832 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1833 							     secure))
1834 				panic("Failed to spread pgdir on small tables");
1835 		}
1836 
1837 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1838 		if (old_attr)
1839 			panic("Page is already mapped");
1840 
1841 		core_mmu_set_entry(&tbl_info, idx, paddr,
1842 				   core_mmu_type_to_attr(memtype));
1843 		paddr += SMALL_PAGE_SIZE;
1844 		vaddr += SMALL_PAGE_SIZE;
1845 	}
1846 
1847 	/*
1848 	 * Make sure all the changes to translation tables are visible
1849 	 * before returning. TLB doesn't need to be invalidated as we are
1850 	 * guaranteed that there's no valid mapping in this range.
1851 	 */
1852 	core_mmu_table_write_barrier();
1853 	mmu_unlock(exceptions);
1854 
1855 	return TEE_SUCCESS;
1856 }
1857 
core_mmu_unmap_pages(vaddr_t vstart,size_t num_pages)1858 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1859 {
1860 	struct core_mmu_table_info tbl_info;
1861 	struct tee_mmap_region *mm;
1862 	size_t i;
1863 	unsigned int idx;
1864 	uint32_t exceptions;
1865 
1866 	exceptions = mmu_lock();
1867 
1868 	mm = find_map_by_va((void *)vstart);
1869 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1870 		panic("VA does not belong to any known mm region");
1871 
1872 	if (!core_mmu_is_dynamic_vaspace(mm))
1873 		panic("Trying to unmap static region");
1874 
1875 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1876 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1877 			panic("Can't find pagetable");
1878 
1879 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1880 			panic("Invalid pagetable level");
1881 
1882 		idx = core_mmu_va2idx(&tbl_info, vstart);
1883 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1884 	}
1885 	tlbi_all();
1886 
1887 	mmu_unlock(exceptions);
1888 }
1889 
core_mmu_populate_user_map(struct core_mmu_table_info * dir_info,struct user_mode_ctx * uctx)1890 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1891 				struct user_mode_ctx *uctx)
1892 {
1893 	struct core_mmu_table_info pg_info = { };
1894 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1895 	struct pgt *pgt = NULL;
1896 	struct pgt *p = NULL;
1897 	struct vm_region *r = NULL;
1898 
1899 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1900 		return; /* Nothing to map */
1901 
1902 	/*
1903 	 * Allocate all page tables in advance.
1904 	 */
1905 	pgt_get_all(uctx);
1906 	pgt = SLIST_FIRST(pgt_cache);
1907 
1908 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1909 
1910 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1911 		set_pg_region(dir_info, r, &pgt, &pg_info);
1912 	/* Record that the translation tables now are populated. */
1913 	SLIST_FOREACH(p, pgt_cache, link) {
1914 		p->populated = true;
1915 		if (p == pgt)
1916 			break;
1917 	}
1918 	assert(p == pgt);
1919 }
1920 
core_mmu_remove_mapping(enum teecore_memtypes type,void * addr,size_t len)1921 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1922 				   size_t len)
1923 {
1924 	struct core_mmu_table_info tbl_info = { };
1925 	struct tee_mmap_region *res_map = NULL;
1926 	struct tee_mmap_region *map = NULL;
1927 	paddr_t pa = virt_to_phys(addr);
1928 	size_t granule = 0;
1929 	ptrdiff_t i = 0;
1930 	paddr_t p = 0;
1931 	size_t l = 0;
1932 
1933 	map = find_map_by_type_and_pa(type, pa, len);
1934 	if (!map)
1935 		return TEE_ERROR_GENERIC;
1936 
1937 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1938 	if (!res_map)
1939 		return TEE_ERROR_GENERIC;
1940 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1941 		return TEE_ERROR_GENERIC;
1942 	granule = BIT(tbl_info.shift);
1943 
1944 	if (map < static_memory_map ||
1945 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1946 		return TEE_ERROR_GENERIC;
1947 	i = map - static_memory_map;
1948 
1949 	/* Check that we have a full match */
1950 	p = ROUNDDOWN(pa, granule);
1951 	l = ROUNDUP(len + pa - p, granule);
1952 	if (map->pa != p || map->size != l)
1953 		return TEE_ERROR_GENERIC;
1954 
1955 	clear_region(&tbl_info, map);
1956 	tlbi_all();
1957 
1958 	/* If possible remove the va range from res_map */
1959 	if (res_map->va - map->size == map->va) {
1960 		res_map->va -= map->size;
1961 		res_map->size += map->size;
1962 	}
1963 
1964 	/* Remove the entry. */
1965 	memmove(map, map + 1,
1966 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1967 
1968 	/* Clear the last new entry in case it was used */
1969 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1970 	       0, sizeof(*map));
1971 
1972 	return TEE_SUCCESS;
1973 }
1974 
1975 struct tee_mmap_region *
core_mmu_find_mapping_exclusive(enum teecore_memtypes type,size_t len)1976 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
1977 {
1978 	struct tee_mmap_region *map = NULL;
1979 	struct tee_mmap_region *map_found = NULL;
1980 
1981 	if (!len)
1982 		return NULL;
1983 
1984 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
1985 		if (map->type != type)
1986 			continue;
1987 
1988 		if (map_found)
1989 			return NULL;
1990 
1991 		map_found = map;
1992 	}
1993 
1994 	if (!map_found || map_found->size < len)
1995 		return NULL;
1996 
1997 	return map_found;
1998 }
1999 
core_mmu_add_mapping(enum teecore_memtypes type,paddr_t addr,size_t len)2000 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2001 {
2002 	struct core_mmu_table_info tbl_info;
2003 	struct tee_mmap_region *map;
2004 	size_t n;
2005 	size_t granule;
2006 	paddr_t p;
2007 	size_t l;
2008 
2009 	if (!len)
2010 		return NULL;
2011 
2012 	if (!core_mmu_check_end_pa(addr, len))
2013 		return NULL;
2014 
2015 	/* Check if the memory is already mapped */
2016 	map = find_map_by_type_and_pa(type, addr, len);
2017 	if (map && pbuf_inside_map_area(addr, len, map))
2018 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2019 
2020 	/* Find the reserved va space used for late mappings */
2021 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2022 	if (!map)
2023 		return NULL;
2024 
2025 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2026 		return NULL;
2027 
2028 	granule = BIT64(tbl_info.shift);
2029 	p = ROUNDDOWN(addr, granule);
2030 	l = ROUNDUP(len + addr - p, granule);
2031 
2032 	/* Ban overflowing virtual addresses */
2033 	if (map->size < l)
2034 		return NULL;
2035 
2036 	/*
2037 	 * Something is wrong, we can't fit the va range into the selected
2038 	 * table. The reserved va range is possibly missaligned with
2039 	 * granule.
2040 	 */
2041 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2042 		return NULL;
2043 
2044 	/* Find end of the memory map */
2045 	n = 0;
2046 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2047 		n++;
2048 
2049 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2050 		/* There's room for another entry */
2051 		static_memory_map[n].va = map->va;
2052 		static_memory_map[n].size = l;
2053 		static_memory_map[n + 1].type = MEM_AREA_END;
2054 		map->va += l;
2055 		map->size -= l;
2056 		map = static_memory_map + n;
2057 	} else {
2058 		/*
2059 		 * There isn't room for another entry, steal the reserved
2060 		 * entry as it's not useful for anything else any longer.
2061 		 */
2062 		map->size = l;
2063 	}
2064 	map->type = type;
2065 	map->region_size = granule;
2066 	map->attr = core_mmu_type_to_attr(type);
2067 	map->pa = p;
2068 
2069 	set_region(&tbl_info, map);
2070 
2071 	/* Make sure the new entry is visible before continuing. */
2072 	core_mmu_table_write_barrier();
2073 
2074 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2075 }
2076 
2077 #ifdef CFG_WITH_PAGER
get_linear_map_end_va(void)2078 static vaddr_t get_linear_map_end_va(void)
2079 {
2080 	/* this is synced with the generic linker file kern.ld.S */
2081 	return (vaddr_t)__heap2_end;
2082 }
2083 
get_linear_map_end_pa(void)2084 static paddr_t get_linear_map_end_pa(void)
2085 {
2086 	return get_linear_map_end_va() - VCORE_START_VA + TEE_LOAD_ADDR;
2087 }
2088 #endif
2089 
2090 #if defined(CFG_TEE_CORE_DEBUG)
check_pa_matches_va(void * va,paddr_t pa)2091 static void check_pa_matches_va(void *va, paddr_t pa)
2092 {
2093 	TEE_Result res = TEE_ERROR_GENERIC;
2094 	vaddr_t v = (vaddr_t)va;
2095 	paddr_t p = 0;
2096 	struct core_mmu_table_info ti __maybe_unused = { };
2097 
2098 	if (core_mmu_user_va_range_is_defined()) {
2099 		vaddr_t user_va_base = 0;
2100 		size_t user_va_size = 0;
2101 
2102 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2103 		if (v >= user_va_base &&
2104 		    v <= (user_va_base - 1 + user_va_size)) {
2105 			if (!core_mmu_user_mapping_is_active()) {
2106 				if (pa)
2107 					panic("issue in linear address space");
2108 				return;
2109 			}
2110 
2111 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2112 				       va, &p);
2113 			if (res == TEE_ERROR_NOT_SUPPORTED)
2114 				return;
2115 			if (res == TEE_SUCCESS && pa != p)
2116 				panic("bad pa");
2117 			if (res != TEE_SUCCESS && pa)
2118 				panic("false pa");
2119 			return;
2120 		}
2121 	}
2122 #ifdef CFG_WITH_PAGER
2123 	if (is_unpaged(va)) {
2124 		if (v - boot_mmu_config.load_offset != pa)
2125 			panic("issue in linear address space");
2126 		return;
2127 	}
2128 
2129 	if (tee_pager_get_table_info(v, &ti)) {
2130 		uint32_t a;
2131 
2132 		/*
2133 		 * Lookups in the page table managed by the pager is
2134 		 * dangerous for addresses in the paged area as those pages
2135 		 * changes all the time. But some ranges are safe,
2136 		 * rw-locked areas when the page is populated for instance.
2137 		 */
2138 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2139 		if (a & TEE_MATTR_VALID_BLOCK) {
2140 			paddr_t mask = BIT64(ti.shift) - 1;
2141 
2142 			p |= v & mask;
2143 			if (pa != p)
2144 				panic();
2145 		} else {
2146 			if (pa)
2147 				panic();
2148 		}
2149 		return;
2150 	}
2151 #endif
2152 
2153 	if (!core_va2pa_helper(va, &p)) {
2154 		/* Verfiy only the static mapping (case non null phys addr) */
2155 		if (p && pa != p) {
2156 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2157 			     va, p, pa);
2158 			panic();
2159 		}
2160 	} else {
2161 		if (pa) {
2162 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2163 			panic();
2164 		}
2165 	}
2166 }
2167 #else
check_pa_matches_va(void * va __unused,paddr_t pa __unused)2168 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2169 {
2170 }
2171 #endif
2172 
virt_to_phys(void * va)2173 paddr_t virt_to_phys(void *va)
2174 {
2175 	paddr_t pa = 0;
2176 
2177 	if (!arch_va2pa_helper(va, &pa))
2178 		pa = 0;
2179 	check_pa_matches_va(va, pa);
2180 	return pa;
2181 }
2182 
2183 #if defined(CFG_TEE_CORE_DEBUG)
check_va_matches_pa(paddr_t pa,void * va)2184 static void check_va_matches_pa(paddr_t pa, void *va)
2185 {
2186 	paddr_t p = 0;
2187 
2188 	if (!va)
2189 		return;
2190 
2191 	p = virt_to_phys(va);
2192 	if (p != pa) {
2193 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2194 		panic();
2195 	}
2196 }
2197 #else
check_va_matches_pa(paddr_t pa __unused,void * va __unused)2198 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2199 {
2200 }
2201 #endif
2202 
phys_to_virt_ts_vaspace(paddr_t pa,size_t len)2203 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2204 {
2205 	if (!core_mmu_user_mapping_is_active())
2206 		return NULL;
2207 
2208 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2209 }
2210 
2211 #ifdef CFG_WITH_PAGER
phys_to_virt_tee_ram(paddr_t pa,size_t len)2212 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2213 {
2214 	paddr_t end_pa = 0;
2215 
2216 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2217 		return NULL;
2218 
2219 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2220 		if (end_pa > get_linear_map_end_pa())
2221 			return NULL;
2222 		return (void *)(vaddr_t)(pa + boot_mmu_config.load_offset);
2223 	}
2224 
2225 	return tee_pager_phys_to_virt(pa, len);
2226 }
2227 #else
phys_to_virt_tee_ram(paddr_t pa,size_t len)2228 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2229 {
2230 	struct tee_mmap_region *mmap = NULL;
2231 
2232 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2233 	if (!mmap)
2234 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2235 	if (!mmap)
2236 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2237 	if (!mmap)
2238 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2239 	if (!mmap)
2240 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2241 	if (!mmap)
2242 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2243 	/*
2244 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2245 	 * used with pager and not needed here.
2246 	 */
2247 	return map_pa2va(mmap, pa, len);
2248 }
2249 #endif
2250 
phys_to_virt(paddr_t pa,enum teecore_memtypes m,size_t len)2251 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2252 {
2253 	void *va = NULL;
2254 
2255 	switch (m) {
2256 	case MEM_AREA_TS_VASPACE:
2257 		va = phys_to_virt_ts_vaspace(pa, len);
2258 		break;
2259 	case MEM_AREA_TEE_RAM:
2260 	case MEM_AREA_TEE_RAM_RX:
2261 	case MEM_AREA_TEE_RAM_RO:
2262 	case MEM_AREA_TEE_RAM_RW:
2263 	case MEM_AREA_NEX_RAM_RO:
2264 	case MEM_AREA_NEX_RAM_RW:
2265 		va = phys_to_virt_tee_ram(pa, len);
2266 		break;
2267 	case MEM_AREA_SHM_VASPACE:
2268 		/* Find VA from PA in dynamic SHM is not yet supported */
2269 		va = NULL;
2270 		break;
2271 	default:
2272 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2273 	}
2274 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2275 		check_va_matches_pa(pa, va);
2276 	return va;
2277 }
2278 
phys_to_virt_io(paddr_t pa,size_t len)2279 void *phys_to_virt_io(paddr_t pa, size_t len)
2280 {
2281 	struct tee_mmap_region *map = NULL;
2282 	void *va = NULL;
2283 
2284 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2285 	if (!map)
2286 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2287 	if (!map)
2288 		return NULL;
2289 	va = map_pa2va(map, pa, len);
2290 	check_va_matches_pa(pa, va);
2291 	return va;
2292 }
2293 
core_mmu_get_va(paddr_t pa,enum teecore_memtypes type,size_t len)2294 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2295 {
2296 	if (cpu_mmu_enabled())
2297 		return (vaddr_t)phys_to_virt(pa, type, len);
2298 
2299 	return (vaddr_t)pa;
2300 }
2301 
2302 #ifdef CFG_WITH_PAGER
is_unpaged(void * va)2303 bool is_unpaged(void *va)
2304 {
2305 	vaddr_t v = (vaddr_t)va;
2306 
2307 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2308 }
2309 #else
is_unpaged(void * va __unused)2310 bool is_unpaged(void *va __unused)
2311 {
2312 	return true;
2313 }
2314 #endif
2315 
core_mmu_init_virtualization(void)2316 void core_mmu_init_virtualization(void)
2317 {
2318 	virt_init_memory(static_memory_map);
2319 }
2320 
io_pa_or_va(struct io_pa_va * p,size_t len)2321 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2322 {
2323 	assert(p->pa);
2324 	if (cpu_mmu_enabled()) {
2325 		if (!p->va)
2326 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2327 		assert(p->va);
2328 		return p->va;
2329 	}
2330 	return p->pa;
2331 }
2332 
io_pa_or_va_secure(struct io_pa_va * p,size_t len)2333 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2334 {
2335 	assert(p->pa);
2336 	if (cpu_mmu_enabled()) {
2337 		if (!p->va)
2338 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2339 						      len);
2340 		assert(p->va);
2341 		return p->va;
2342 	}
2343 	return p->pa;
2344 }
2345 
io_pa_or_va_nsec(struct io_pa_va * p,size_t len)2346 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2347 {
2348 	assert(p->pa);
2349 	if (cpu_mmu_enabled()) {
2350 		if (!p->va)
2351 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2352 						      len);
2353 		assert(p->va);
2354 		return p->va;
2355 	}
2356 	return p->pa;
2357 }
2358 
2359 #ifdef CFG_CORE_RESERVED_SHM
teecore_init_pub_ram(void)2360 static TEE_Result teecore_init_pub_ram(void)
2361 {
2362 	vaddr_t s = 0;
2363 	vaddr_t e = 0;
2364 
2365 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2366 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2367 
2368 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2369 		panic("invalid PUB RAM");
2370 
2371 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2372 	if (!tee_vbuf_is_non_sec(s, e - s))
2373 		panic("PUB RAM is not non-secure");
2374 
2375 #ifdef CFG_PL310
2376 	/* Allocate statically the l2cc mutex */
2377 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2378 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2379 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2380 #endif
2381 
2382 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2383 	default_nsec_shm_size = e - s;
2384 
2385 	return TEE_SUCCESS;
2386 }
2387 early_init(teecore_init_pub_ram);
2388 #endif /*CFG_CORE_RESERVED_SHM*/
2389 
core_mmu_init_ta_ram(void)2390 void core_mmu_init_ta_ram(void)
2391 {
2392 	vaddr_t s = 0;
2393 	vaddr_t e = 0;
2394 	paddr_t ps = 0;
2395 	size_t size = 0;
2396 
2397 	/*
2398 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2399 	 * shared mem allocated from teecore.
2400 	 */
2401 	if (IS_ENABLED(CFG_VIRTUALIZATION))
2402 		virt_get_ta_ram(&s, &e);
2403 	else
2404 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2405 
2406 	ps = virt_to_phys((void *)s);
2407 	size = e - s;
2408 
2409 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2410 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2411 		panic("invalid TA RAM");
2412 
2413 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2414 	if (!tee_pbuf_is_sec(ps, size))
2415 		panic("TA RAM is not secure");
2416 
2417 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2418 		panic("TA RAM pool is not empty");
2419 
2420 	/* remove previous config and init TA ddr memory pool */
2421 	tee_mm_final(&tee_mm_sec_ddr);
2422 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2423 		    TEE_MM_POOL_NO_FLAGS);
2424 }
2425