1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Copyright (C) 2000, 2001 Kanoj Sarcar
5 * Copyright (C) 2000, 2001 Ralf Baechle
6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8 */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42
43 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60
61 /*
62 * A logical cpu mask containing only one VPE per core to
63 * reduce the number of IPIs on large MT systems.
64 */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73
74 cpumask_t cpu_coherent_mask;
75
76 #ifdef CONFIG_GENERIC_IRQ_IPI
77 static struct irq_desc *call_desc;
78 static struct irq_desc *sched_desc;
79 #endif
80
set_cpu_sibling_map(int cpu)81 static inline void set_cpu_sibling_map(int cpu)
82 {
83 int i;
84
85 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86
87 if (smp_num_siblings > 1) {
88 for_each_cpu(i, &cpu_sibling_setup_map) {
89 if (cpus_are_siblings(cpu, i)) {
90 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
91 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
92 }
93 }
94 } else
95 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
96 }
97
set_cpu_core_map(int cpu)98 static inline void set_cpu_core_map(int cpu)
99 {
100 int i;
101
102 cpumask_set_cpu(cpu, &cpu_core_setup_map);
103
104 for_each_cpu(i, &cpu_core_setup_map) {
105 if (cpu_data[cpu].package == cpu_data[i].package) {
106 cpumask_set_cpu(i, &cpu_core_map[cpu]);
107 cpumask_set_cpu(cpu, &cpu_core_map[i]);
108 }
109 }
110 }
111
112 /*
113 * Calculate a new cpu_foreign_map mask whenever a
114 * new cpu appears or disappears.
115 */
calculate_cpu_foreign_map(void)116 void calculate_cpu_foreign_map(void)
117 {
118 int i, k, core_present;
119 cpumask_t temp_foreign_map;
120
121 /* Re-calculate the mask */
122 cpumask_clear(&temp_foreign_map);
123 for_each_online_cpu(i) {
124 core_present = 0;
125 for_each_cpu(k, &temp_foreign_map)
126 if (cpus_are_siblings(i, k))
127 core_present = 1;
128 if (!core_present)
129 cpumask_set_cpu(i, &temp_foreign_map);
130 }
131
132 for_each_online_cpu(i)
133 cpumask_andnot(&cpu_foreign_map[i],
134 &temp_foreign_map, &cpu_sibling_map[i]);
135 }
136
137 const struct plat_smp_ops *mp_ops;
138 EXPORT_SYMBOL(mp_ops);
139
register_smp_ops(const struct plat_smp_ops * ops)140 void register_smp_ops(const struct plat_smp_ops *ops)
141 {
142 if (mp_ops)
143 printk(KERN_WARNING "Overriding previously set SMP ops\n");
144
145 mp_ops = ops;
146 }
147
148 #ifdef CONFIG_GENERIC_IRQ_IPI
mips_smp_send_ipi_single(int cpu,unsigned int action)149 void mips_smp_send_ipi_single(int cpu, unsigned int action)
150 {
151 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152 }
153
mips_smp_send_ipi_mask(const struct cpumask * mask,unsigned int action)154 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155 {
156 unsigned long flags;
157 unsigned int core;
158 int cpu;
159
160 local_irq_save(flags);
161
162 switch (action) {
163 case SMP_CALL_FUNCTION:
164 __ipi_send_mask(call_desc, mask);
165 break;
166
167 case SMP_RESCHEDULE_YOURSELF:
168 __ipi_send_mask(sched_desc, mask);
169 break;
170
171 default:
172 BUG();
173 }
174
175 if (mips_cpc_present()) {
176 for_each_cpu(cpu, mask) {
177 if (cpus_are_siblings(cpu, smp_processor_id()))
178 continue;
179
180 core = cpu_core(&cpu_data[cpu]);
181
182 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184 mips_cpc_lock_other(core);
185 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186 mips_cpc_unlock_other();
187 mips_cm_unlock_other();
188 }
189 }
190 }
191
192 local_irq_restore(flags);
193 }
194
195
ipi_resched_interrupt(int irq,void * dev_id)196 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197 {
198 scheduler_ipi();
199
200 return IRQ_HANDLED;
201 }
202
ipi_call_interrupt(int irq,void * dev_id)203 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204 {
205 generic_smp_call_function_interrupt();
206
207 return IRQ_HANDLED;
208 }
209
smp_ipi_init_one(unsigned int virq,const char * name,irq_handler_t handler)210 static void smp_ipi_init_one(unsigned int virq, const char *name,
211 irq_handler_t handler)
212 {
213 int ret;
214
215 irq_set_handler(virq, handle_percpu_irq);
216 ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
217 BUG_ON(ret);
218 }
219
220 static unsigned int call_virq, sched_virq;
221
mips_smp_ipi_allocate(const struct cpumask * mask)222 int mips_smp_ipi_allocate(const struct cpumask *mask)
223 {
224 int virq;
225 struct irq_domain *ipidomain;
226 struct device_node *node;
227
228 node = of_irq_find_parent(of_root);
229 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
230
231 /*
232 * Some platforms have half DT setup. So if we found irq node but
233 * didn't find an ipidomain, try to search for one that is not in the
234 * DT.
235 */
236 if (node && !ipidomain)
237 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
238
239 /*
240 * There are systems which use IPI IRQ domains, but only have one
241 * registered when some runtime condition is met. For example a Malta
242 * kernel may include support for GIC & CPU interrupt controller IPI
243 * IRQ domains, but if run on a system with no GIC & no MT ASE then
244 * neither will be supported or registered.
245 *
246 * We only have a problem if we're actually using multiple CPUs so fail
247 * loudly if that is the case. Otherwise simply return, skipping IPI
248 * setup, if we're running with only a single CPU.
249 */
250 if (!ipidomain) {
251 BUG_ON(num_present_cpus() > 1);
252 return 0;
253 }
254
255 virq = irq_reserve_ipi(ipidomain, mask);
256 BUG_ON(!virq);
257 if (!call_virq)
258 call_virq = virq;
259
260 virq = irq_reserve_ipi(ipidomain, mask);
261 BUG_ON(!virq);
262 if (!sched_virq)
263 sched_virq = virq;
264
265 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
266 int cpu;
267
268 for_each_cpu(cpu, mask) {
269 smp_ipi_init_one(call_virq + cpu, "IPI call",
270 ipi_call_interrupt);
271 smp_ipi_init_one(sched_virq + cpu, "IPI resched",
272 ipi_resched_interrupt);
273 }
274 } else {
275 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
276 smp_ipi_init_one(sched_virq, "IPI resched",
277 ipi_resched_interrupt);
278 }
279
280 return 0;
281 }
282
mips_smp_ipi_free(const struct cpumask * mask)283 int mips_smp_ipi_free(const struct cpumask *mask)
284 {
285 struct irq_domain *ipidomain;
286 struct device_node *node;
287
288 node = of_irq_find_parent(of_root);
289 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
290
291 /*
292 * Some platforms have half DT setup. So if we found irq node but
293 * didn't find an ipidomain, try to search for one that is not in the
294 * DT.
295 */
296 if (node && !ipidomain)
297 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
298
299 BUG_ON(!ipidomain);
300
301 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
302 int cpu;
303
304 for_each_cpu(cpu, mask) {
305 free_irq(call_virq + cpu, NULL);
306 free_irq(sched_virq + cpu, NULL);
307 }
308 }
309 irq_destroy_ipi(call_virq, mask);
310 irq_destroy_ipi(sched_virq, mask);
311 return 0;
312 }
313
314
mips_smp_ipi_init(void)315 static int __init mips_smp_ipi_init(void)
316 {
317 if (num_possible_cpus() == 1)
318 return 0;
319
320 mips_smp_ipi_allocate(cpu_possible_mask);
321
322 call_desc = irq_to_desc(call_virq);
323 sched_desc = irq_to_desc(sched_virq);
324
325 return 0;
326 }
327 early_initcall(mips_smp_ipi_init);
328 #endif
329
330 /*
331 * First C code run on the secondary CPUs after being started up by
332 * the master.
333 */
start_secondary(void)334 asmlinkage void start_secondary(void)
335 {
336 unsigned int cpu;
337
338 cpu_probe();
339 per_cpu_trap_init(false);
340 mips_clockevent_init();
341 mp_ops->init_secondary();
342 cpu_report();
343 maar_init();
344
345 /*
346 * XXX parity protection should be folded in here when it's converted
347 * to an option instead of something based on .cputype
348 */
349
350 calibrate_delay();
351 cpu = smp_processor_id();
352 cpu_data[cpu].udelay_val = loops_per_jiffy;
353
354 set_cpu_sibling_map(cpu);
355 set_cpu_core_map(cpu);
356
357 cpumask_set_cpu(cpu, &cpu_coherent_mask);
358 notify_cpu_starting(cpu);
359
360 /* Notify boot CPU that we're starting & ready to sync counters */
361 complete(&cpu_starting);
362
363 synchronise_count_slave(cpu);
364
365 /* The CPU is running and counters synchronised, now mark it online */
366 set_cpu_online(cpu, true);
367
368 calculate_cpu_foreign_map();
369
370 /*
371 * Notify boot CPU that we're up & online and it can safely return
372 * from __cpu_up
373 */
374 complete(&cpu_running);
375
376 /*
377 * irq will be enabled in ->smp_finish(), enabling it too early
378 * is dangerous.
379 */
380 WARN_ON_ONCE(!irqs_disabled());
381 mp_ops->smp_finish();
382
383 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
384 }
385
stop_this_cpu(void * dummy)386 static void stop_this_cpu(void *dummy)
387 {
388 /*
389 * Remove this CPU:
390 */
391
392 set_cpu_online(smp_processor_id(), false);
393 calculate_cpu_foreign_map();
394 local_irq_disable();
395 while (1);
396 }
397
smp_send_stop(void)398 void smp_send_stop(void)
399 {
400 smp_call_function(stop_this_cpu, NULL, 0);
401 }
402
smp_cpus_done(unsigned int max_cpus)403 void __init smp_cpus_done(unsigned int max_cpus)
404 {
405 }
406
407 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)408 void __init smp_prepare_cpus(unsigned int max_cpus)
409 {
410 init_new_context(current, &init_mm);
411 current_thread_info()->cpu = 0;
412 mp_ops->prepare_cpus(max_cpus);
413 set_cpu_sibling_map(0);
414 set_cpu_core_map(0);
415 calculate_cpu_foreign_map();
416 #ifndef CONFIG_HOTPLUG_CPU
417 init_cpu_present(cpu_possible_mask);
418 #endif
419 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
420 }
421
422 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)423 void smp_prepare_boot_cpu(void)
424 {
425 if (mp_ops->prepare_boot_cpu)
426 mp_ops->prepare_boot_cpu();
427 set_cpu_possible(0, true);
428 set_cpu_online(0, true);
429 }
430
__cpu_up(unsigned int cpu,struct task_struct * tidle)431 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
432 {
433 int err;
434
435 err = mp_ops->boot_secondary(cpu, tidle);
436 if (err)
437 return err;
438
439 /* Wait for CPU to start and be ready to sync counters */
440 if (!wait_for_completion_timeout(&cpu_starting,
441 msecs_to_jiffies(1000))) {
442 pr_crit("CPU%u: failed to start\n", cpu);
443 return -EIO;
444 }
445
446 synchronise_count_master(cpu);
447
448 /* Wait for CPU to finish startup & mark itself online before return */
449 wait_for_completion(&cpu_running);
450 return 0;
451 }
452
453 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)454 int setup_profiling_timer(unsigned int multiplier)
455 {
456 return 0;
457 }
458
flush_tlb_all_ipi(void * info)459 static void flush_tlb_all_ipi(void *info)
460 {
461 local_flush_tlb_all();
462 }
463
flush_tlb_all(void)464 void flush_tlb_all(void)
465 {
466 if (cpu_has_mmid) {
467 htw_stop();
468 ginvt_full();
469 sync_ginv();
470 instruction_hazard();
471 htw_start();
472 return;
473 }
474
475 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
476 }
477
flush_tlb_mm_ipi(void * mm)478 static void flush_tlb_mm_ipi(void *mm)
479 {
480 drop_mmu_context((struct mm_struct *)mm);
481 }
482
483 /*
484 * Special Variant of smp_call_function for use by TLB functions:
485 *
486 * o No return value
487 * o collapses to normal function call on UP kernels
488 * o collapses to normal function call on systems with a single shared
489 * primary cache.
490 */
smp_on_other_tlbs(void (* func)(void * info),void * info)491 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
492 {
493 smp_call_function(func, info, 1);
494 }
495
smp_on_each_tlb(void (* func)(void * info),void * info)496 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
497 {
498 preempt_disable();
499
500 smp_on_other_tlbs(func, info);
501 func(info);
502
503 preempt_enable();
504 }
505
506 /*
507 * The following tlb flush calls are invoked when old translations are
508 * being torn down, or pte attributes are changing. For single threaded
509 * address spaces, a new context is obtained on the current cpu, and tlb
510 * context on other cpus are invalidated to force a new context allocation
511 * at switch_mm time, should the mm ever be used on other cpus. For
512 * multithreaded address spaces, inter-CPU interrupts have to be sent.
513 * Another case where inter-CPU interrupts are required is when the target
514 * mm might be active on another cpu (eg debuggers doing the flushes on
515 * behalf of debugees, kswapd stealing pages from another process etc).
516 * Kanoj 07/00.
517 */
518
flush_tlb_mm(struct mm_struct * mm)519 void flush_tlb_mm(struct mm_struct *mm)
520 {
521 if (!mm)
522 return;
523
524 if (atomic_read(&mm->mm_users) == 0)
525 return; /* happens as a result of exit_mmap() */
526
527 preempt_disable();
528
529 if (cpu_has_mmid) {
530 /*
531 * No need to worry about other CPUs - the ginvt in
532 * drop_mmu_context() will be globalized.
533 */
534 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
535 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
536 } else {
537 unsigned int cpu;
538
539 for_each_online_cpu(cpu) {
540 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
541 set_cpu_context(cpu, mm, 0);
542 }
543 }
544 drop_mmu_context(mm);
545
546 preempt_enable();
547 }
548
549 struct flush_tlb_data {
550 struct vm_area_struct *vma;
551 unsigned long addr1;
552 unsigned long addr2;
553 };
554
flush_tlb_range_ipi(void * info)555 static void flush_tlb_range_ipi(void *info)
556 {
557 struct flush_tlb_data *fd = info;
558
559 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
560 }
561
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)562 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
563 {
564 struct mm_struct *mm = vma->vm_mm;
565 unsigned long addr;
566 u32 old_mmid;
567
568 preempt_disable();
569 if (cpu_has_mmid) {
570 htw_stop();
571 old_mmid = read_c0_memorymapid();
572 write_c0_memorymapid(cpu_asid(0, mm));
573 mtc0_tlbw_hazard();
574 addr = round_down(start, PAGE_SIZE * 2);
575 end = round_up(end, PAGE_SIZE * 2);
576 do {
577 ginvt_va_mmid(addr);
578 sync_ginv();
579 addr += PAGE_SIZE * 2;
580 } while (addr < end);
581 write_c0_memorymapid(old_mmid);
582 instruction_hazard();
583 htw_start();
584 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
585 struct flush_tlb_data fd = {
586 .vma = vma,
587 .addr1 = start,
588 .addr2 = end,
589 };
590
591 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
592 local_flush_tlb_range(vma, start, end);
593 } else {
594 unsigned int cpu;
595 int exec = vma->vm_flags & VM_EXEC;
596
597 for_each_online_cpu(cpu) {
598 /*
599 * flush_cache_range() will only fully flush icache if
600 * the VMA is executable, otherwise we must invalidate
601 * ASID without it appearing to has_valid_asid() as if
602 * mm has been completely unused by that CPU.
603 */
604 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
605 set_cpu_context(cpu, mm, !exec);
606 }
607 local_flush_tlb_range(vma, start, end);
608 }
609 preempt_enable();
610 }
611
flush_tlb_kernel_range_ipi(void * info)612 static void flush_tlb_kernel_range_ipi(void *info)
613 {
614 struct flush_tlb_data *fd = info;
615
616 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
617 }
618
flush_tlb_kernel_range(unsigned long start,unsigned long end)619 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
620 {
621 struct flush_tlb_data fd = {
622 .addr1 = start,
623 .addr2 = end,
624 };
625
626 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
627 }
628
flush_tlb_page_ipi(void * info)629 static void flush_tlb_page_ipi(void *info)
630 {
631 struct flush_tlb_data *fd = info;
632
633 local_flush_tlb_page(fd->vma, fd->addr1);
634 }
635
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)636 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
637 {
638 u32 old_mmid;
639
640 preempt_disable();
641 if (cpu_has_mmid) {
642 htw_stop();
643 old_mmid = read_c0_memorymapid();
644 write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
645 mtc0_tlbw_hazard();
646 ginvt_va_mmid(page);
647 sync_ginv();
648 write_c0_memorymapid(old_mmid);
649 instruction_hazard();
650 htw_start();
651 } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
652 (current->mm != vma->vm_mm)) {
653 struct flush_tlb_data fd = {
654 .vma = vma,
655 .addr1 = page,
656 };
657
658 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
659 local_flush_tlb_page(vma, page);
660 } else {
661 unsigned int cpu;
662
663 for_each_online_cpu(cpu) {
664 /*
665 * flush_cache_page() only does partial flushes, so
666 * invalidate ASID without it appearing to
667 * has_valid_asid() as if mm has been completely unused
668 * by that CPU.
669 */
670 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
671 set_cpu_context(cpu, vma->vm_mm, 1);
672 }
673 local_flush_tlb_page(vma, page);
674 }
675 preempt_enable();
676 }
677
flush_tlb_one_ipi(void * info)678 static void flush_tlb_one_ipi(void *info)
679 {
680 unsigned long vaddr = (unsigned long) info;
681
682 local_flush_tlb_one(vaddr);
683 }
684
flush_tlb_one(unsigned long vaddr)685 void flush_tlb_one(unsigned long vaddr)
686 {
687 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
688 }
689
690 EXPORT_SYMBOL(flush_tlb_page);
691 EXPORT_SYMBOL(flush_tlb_one);
692
693 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
694
tick_broadcast_callee(void * info)695 static void tick_broadcast_callee(void *info)
696 {
697 tick_receive_broadcast();
698 }
699
700 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
701 CSD_INIT(tick_broadcast_callee, NULL);
702
tick_broadcast(const struct cpumask * mask)703 void tick_broadcast(const struct cpumask *mask)
704 {
705 call_single_data_t *csd;
706 int cpu;
707
708 for_each_cpu(cpu, mask) {
709 csd = &per_cpu(tick_broadcast_csd, cpu);
710 smp_call_function_single_async(cpu, csd);
711 }
712 }
713
714 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
715