1 // SPDX-License-Identifier: GPL-2.0
2 #include <api/fs/fs.h>
3 #include "cpumap.h"
4 #include "debug.h"
5 #include "event.h"
6 #include <assert.h>
7 #include <dirent.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <linux/bitmap.h>
11 #include "asm/bug.h"
12
13 #include <linux/ctype.h>
14 #include <linux/zalloc.h>
15 #include <internal/cpumap.h>
16
17 static struct perf_cpu max_cpu_num;
18 static struct perf_cpu max_present_cpu_num;
19 static int max_node_num;
20 /**
21 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22 * CPU number.
23 */
24 static int *cpunode_map;
25
perf_record_cpu_map_data__test_bit(int i,const struct perf_record_cpu_map_data * data)26 bool perf_record_cpu_map_data__test_bit(int i,
27 const struct perf_record_cpu_map_data *data)
28 {
29 int bit_word32 = i / 32;
30 __u32 bit_mask32 = 1U << (i & 31);
31 int bit_word64 = i / 64;
32 __u64 bit_mask64 = ((__u64)1) << (i & 63);
33
34 return (data->mask32_data.long_size == 4)
35 ? (bit_word32 < data->mask32_data.nr) &&
36 (data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37 : (bit_word64 < data->mask64_data.nr) &&
38 (data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39 }
40
41 /* Read ith mask value from data into the given 64-bit sized bitmap */
perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data * data,int i,unsigned long * bitmap)42 static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43 int i, unsigned long *bitmap)
44 {
45 #if __SIZEOF_LONG__ == 8
46 if (data->mask32_data.long_size == 4)
47 bitmap[0] = data->mask32_data.mask[i];
48 else
49 bitmap[0] = data->mask64_data.mask[i];
50 #else
51 if (data->mask32_data.long_size == 4) {
52 bitmap[0] = data->mask32_data.mask[i];
53 bitmap[1] = 0;
54 } else {
55 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56 bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57 bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58 #else
59 bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60 bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61 #endif
62 }
63 #endif
64 }
cpu_map__from_entries(const struct perf_record_cpu_map_data * data)65 static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66 {
67 struct perf_cpu_map *map;
68
69 map = perf_cpu_map__empty_new(data->cpus_data.nr);
70 if (map) {
71 unsigned i;
72
73 for (i = 0; i < data->cpus_data.nr; i++) {
74 /*
75 * Special treatment for -1, which is not real cpu number,
76 * and we need to use (int) -1 to initialize map[i],
77 * otherwise it would become 65535.
78 */
79 if (data->cpus_data.cpu[i] == (u16) -1)
80 map->map[i].cpu = -1;
81 else
82 map->map[i].cpu = (int) data->cpus_data.cpu[i];
83 }
84 }
85
86 return map;
87 }
88
cpu_map__from_mask(const struct perf_record_cpu_map_data * data)89 static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90 {
91 DECLARE_BITMAP(local_copy, 64);
92 int weight = 0, mask_nr = data->mask32_data.nr;
93 struct perf_cpu_map *map;
94
95 for (int i = 0; i < mask_nr; i++) {
96 perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97 weight += bitmap_weight(local_copy, 64);
98 }
99
100 map = perf_cpu_map__empty_new(weight);
101 if (!map)
102 return NULL;
103
104 for (int i = 0, j = 0; i < mask_nr; i++) {
105 int cpus_per_i = (i * data->mask32_data.long_size * BITS_PER_BYTE);
106 int cpu;
107
108 perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109 for_each_set_bit(cpu, local_copy, 64)
110 map->map[j++].cpu = cpu + cpus_per_i;
111 }
112 return map;
113
114 }
115
cpu_map__from_range(const struct perf_record_cpu_map_data * data)116 static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117 {
118 struct perf_cpu_map *map;
119 unsigned int i = 0;
120
121 map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122 data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123 if (!map)
124 return NULL;
125
126 if (data->range_cpu_data.any_cpu)
127 map->map[i++].cpu = -1;
128
129 for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130 i++, cpu++)
131 map->map[i].cpu = cpu;
132
133 return map;
134 }
135
cpu_map__new_data(const struct perf_record_cpu_map_data * data)136 struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137 {
138 switch (data->type) {
139 case PERF_CPU_MAP__CPUS:
140 return cpu_map__from_entries(data);
141 case PERF_CPU_MAP__MASK:
142 return cpu_map__from_mask(data);
143 case PERF_CPU_MAP__RANGE_CPUS:
144 return cpu_map__from_range(data);
145 default:
146 pr_err("cpu_map__new_data unknown type %d\n", data->type);
147 return NULL;
148 }
149 }
150
cpu_map__fprintf(struct perf_cpu_map * map,FILE * fp)151 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152 {
153 #define BUFSIZE 1024
154 char buf[BUFSIZE];
155
156 cpu_map__snprint(map, buf, sizeof(buf));
157 return fprintf(fp, "%s\n", buf);
158 #undef BUFSIZE
159 }
160
perf_cpu_map__empty_new(int nr)161 struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162 {
163 struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr);
164
165 if (cpus != NULL) {
166 int i;
167
168 cpus->nr = nr;
169 for (i = 0; i < nr; i++)
170 cpus->map[i].cpu = -1;
171
172 refcount_set(&cpus->refcnt, 1);
173 }
174
175 return cpus;
176 }
177
cpu_aggr_map__empty_new(int nr)178 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
179 {
180 struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
181
182 if (cpus != NULL) {
183 int i;
184
185 cpus->nr = nr;
186 for (i = 0; i < nr; i++)
187 cpus->map[i] = aggr_cpu_id__empty();
188
189 refcount_set(&cpus->refcnt, 1);
190 }
191
192 return cpus;
193 }
194
cpu__get_topology_int(int cpu,const char * name,int * value)195 static int cpu__get_topology_int(int cpu, const char *name, int *value)
196 {
197 char path[PATH_MAX];
198
199 snprintf(path, PATH_MAX,
200 "devices/system/cpu/cpu%d/topology/%s", cpu, name);
201
202 return sysfs__read_int(path, value);
203 }
204
cpu__get_socket_id(struct perf_cpu cpu)205 int cpu__get_socket_id(struct perf_cpu cpu)
206 {
207 int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
208 return ret ?: value;
209 }
210
aggr_cpu_id__socket(struct perf_cpu cpu,void * data __maybe_unused)211 struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
212 {
213 struct aggr_cpu_id id = aggr_cpu_id__empty();
214
215 id.socket = cpu__get_socket_id(cpu);
216 return id;
217 }
218
aggr_cpu_id__cmp(const void * a_pointer,const void * b_pointer)219 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
220 {
221 struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
222 struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
223
224 if (a->node != b->node)
225 return a->node - b->node;
226 else if (a->socket != b->socket)
227 return a->socket - b->socket;
228 else if (a->die != b->die)
229 return a->die - b->die;
230 else if (a->core != b->core)
231 return a->core - b->core;
232 else
233 return a->thread_idx - b->thread_idx;
234 }
235
cpu_aggr_map__new(const struct perf_cpu_map * cpus,aggr_cpu_id_get_t get_id,void * data,bool needs_sort)236 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
237 aggr_cpu_id_get_t get_id,
238 void *data, bool needs_sort)
239 {
240 int idx;
241 struct perf_cpu cpu;
242 struct cpu_aggr_map *c = cpu_aggr_map__empty_new(cpus->nr);
243
244 if (!c)
245 return NULL;
246
247 /* Reset size as it may only be partially filled */
248 c->nr = 0;
249
250 perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
251 bool duplicate = false;
252 struct aggr_cpu_id cpu_id = get_id(cpu, data);
253
254 for (int j = 0; j < c->nr; j++) {
255 if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
256 duplicate = true;
257 break;
258 }
259 }
260 if (!duplicate) {
261 c->map[c->nr] = cpu_id;
262 c->nr++;
263 }
264 }
265 /* Trim. */
266 if (c->nr != cpus->nr) {
267 struct cpu_aggr_map *trimmed_c =
268 realloc(c,
269 sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
270
271 if (trimmed_c)
272 c = trimmed_c;
273 }
274
275 /* ensure we process id in increasing order */
276 if (needs_sort)
277 qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
278
279 return c;
280
281 }
282
cpu__get_die_id(struct perf_cpu cpu)283 int cpu__get_die_id(struct perf_cpu cpu)
284 {
285 int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
286
287 return ret ?: value;
288 }
289
aggr_cpu_id__die(struct perf_cpu cpu,void * data)290 struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
291 {
292 struct aggr_cpu_id id;
293 int die;
294
295 die = cpu__get_die_id(cpu);
296 /* There is no die_id on legacy system. */
297 if (die == -1)
298 die = 0;
299
300 /*
301 * die_id is relative to socket, so start
302 * with the socket ID and then add die to
303 * make a unique ID.
304 */
305 id = aggr_cpu_id__socket(cpu, data);
306 if (aggr_cpu_id__is_empty(&id))
307 return id;
308
309 id.die = die;
310 return id;
311 }
312
cpu__get_core_id(struct perf_cpu cpu)313 int cpu__get_core_id(struct perf_cpu cpu)
314 {
315 int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
316 return ret ?: value;
317 }
318
aggr_cpu_id__core(struct perf_cpu cpu,void * data)319 struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
320 {
321 struct aggr_cpu_id id;
322 int core = cpu__get_core_id(cpu);
323
324 /* aggr_cpu_id__die returns a struct with socket and die set. */
325 id = aggr_cpu_id__die(cpu, data);
326 if (aggr_cpu_id__is_empty(&id))
327 return id;
328
329 /*
330 * core_id is relative to socket and die, we need a global id.
331 * So we combine the result from cpu_map__get_die with the core id
332 */
333 id.core = core;
334 return id;
335
336 }
337
aggr_cpu_id__cpu(struct perf_cpu cpu,void * data)338 struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
339 {
340 struct aggr_cpu_id id;
341
342 /* aggr_cpu_id__core returns a struct with socket, die and core set. */
343 id = aggr_cpu_id__core(cpu, data);
344 if (aggr_cpu_id__is_empty(&id))
345 return id;
346
347 id.cpu = cpu;
348 return id;
349
350 }
351
aggr_cpu_id__node(struct perf_cpu cpu,void * data __maybe_unused)352 struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
353 {
354 struct aggr_cpu_id id = aggr_cpu_id__empty();
355
356 id.node = cpu__get_node(cpu);
357 return id;
358 }
359
aggr_cpu_id__global(struct perf_cpu cpu,void * data __maybe_unused)360 struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
361 {
362 struct aggr_cpu_id id = aggr_cpu_id__empty();
363
364 /* it always aggregates to the cpu 0 */
365 cpu.cpu = 0;
366 id.cpu = cpu;
367 return id;
368 }
369
370 /* setup simple routines to easily access node numbers given a cpu number */
get_max_num(char * path,int * max)371 static int get_max_num(char *path, int *max)
372 {
373 size_t num;
374 char *buf;
375 int err = 0;
376
377 if (filename__read_str(path, &buf, &num))
378 return -1;
379
380 buf[num] = '\0';
381
382 /* start on the right, to find highest node num */
383 while (--num) {
384 if ((buf[num] == ',') || (buf[num] == '-')) {
385 num++;
386 break;
387 }
388 }
389 if (sscanf(&buf[num], "%d", max) < 1) {
390 err = -1;
391 goto out;
392 }
393
394 /* convert from 0-based to 1-based */
395 (*max)++;
396
397 out:
398 free(buf);
399 return err;
400 }
401
402 /* Determine highest possible cpu in the system for sparse allocation */
set_max_cpu_num(void)403 static void set_max_cpu_num(void)
404 {
405 const char *mnt;
406 char path[PATH_MAX];
407 int ret = -1;
408
409 /* set up default */
410 max_cpu_num.cpu = 4096;
411 max_present_cpu_num.cpu = 4096;
412
413 mnt = sysfs__mountpoint();
414 if (!mnt)
415 goto out;
416
417 /* get the highest possible cpu number for a sparse allocation */
418 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
419 if (ret >= PATH_MAX) {
420 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
421 goto out;
422 }
423
424 ret = get_max_num(path, &max_cpu_num.cpu);
425 if (ret)
426 goto out;
427
428 /* get the highest present cpu number for a sparse allocation */
429 ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
430 if (ret >= PATH_MAX) {
431 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
432 goto out;
433 }
434
435 ret = get_max_num(path, &max_present_cpu_num.cpu);
436
437 out:
438 if (ret)
439 pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
440 }
441
442 /* Determine highest possible node in the system for sparse allocation */
set_max_node_num(void)443 static void set_max_node_num(void)
444 {
445 const char *mnt;
446 char path[PATH_MAX];
447 int ret = -1;
448
449 /* set up default */
450 max_node_num = 8;
451
452 mnt = sysfs__mountpoint();
453 if (!mnt)
454 goto out;
455
456 /* get the highest possible cpu number for a sparse allocation */
457 ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
458 if (ret >= PATH_MAX) {
459 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
460 goto out;
461 }
462
463 ret = get_max_num(path, &max_node_num);
464
465 out:
466 if (ret)
467 pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
468 }
469
cpu__max_node(void)470 int cpu__max_node(void)
471 {
472 if (unlikely(!max_node_num))
473 set_max_node_num();
474
475 return max_node_num;
476 }
477
cpu__max_cpu(void)478 struct perf_cpu cpu__max_cpu(void)
479 {
480 if (unlikely(!max_cpu_num.cpu))
481 set_max_cpu_num();
482
483 return max_cpu_num;
484 }
485
cpu__max_present_cpu(void)486 struct perf_cpu cpu__max_present_cpu(void)
487 {
488 if (unlikely(!max_present_cpu_num.cpu))
489 set_max_cpu_num();
490
491 return max_present_cpu_num;
492 }
493
494
cpu__get_node(struct perf_cpu cpu)495 int cpu__get_node(struct perf_cpu cpu)
496 {
497 if (unlikely(cpunode_map == NULL)) {
498 pr_debug("cpu_map not initialized\n");
499 return -1;
500 }
501
502 return cpunode_map[cpu.cpu];
503 }
504
init_cpunode_map(void)505 static int init_cpunode_map(void)
506 {
507 int i;
508
509 set_max_cpu_num();
510 set_max_node_num();
511
512 cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
513 if (!cpunode_map) {
514 pr_err("%s: calloc failed\n", __func__);
515 return -1;
516 }
517
518 for (i = 0; i < max_cpu_num.cpu; i++)
519 cpunode_map[i] = -1;
520
521 return 0;
522 }
523
cpu__setup_cpunode_map(void)524 int cpu__setup_cpunode_map(void)
525 {
526 struct dirent *dent1, *dent2;
527 DIR *dir1, *dir2;
528 unsigned int cpu, mem;
529 char buf[PATH_MAX];
530 char path[PATH_MAX];
531 const char *mnt;
532 int n;
533
534 /* initialize globals */
535 if (init_cpunode_map())
536 return -1;
537
538 mnt = sysfs__mountpoint();
539 if (!mnt)
540 return 0;
541
542 n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
543 if (n >= PATH_MAX) {
544 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
545 return -1;
546 }
547
548 dir1 = opendir(path);
549 if (!dir1)
550 return 0;
551
552 /* walk tree and setup map */
553 while ((dent1 = readdir(dir1)) != NULL) {
554 if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
555 continue;
556
557 n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
558 if (n >= PATH_MAX) {
559 pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
560 continue;
561 }
562
563 dir2 = opendir(buf);
564 if (!dir2)
565 continue;
566 while ((dent2 = readdir(dir2)) != NULL) {
567 if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
568 continue;
569 cpunode_map[cpu] = mem;
570 }
571 closedir(dir2);
572 }
573 closedir(dir1);
574 return 0;
575 }
576
cpu_map__snprint(struct perf_cpu_map * map,char * buf,size_t size)577 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
578 {
579 int i, start = -1;
580 bool first = true;
581 size_t ret = 0;
582
583 #define COMMA first ? "" : ","
584
585 for (i = 0; i < map->nr + 1; i++) {
586 struct perf_cpu cpu = { .cpu = INT_MAX };
587 bool last = i == map->nr;
588
589 if (!last)
590 cpu = map->map[i];
591
592 if (start == -1) {
593 start = i;
594 if (last) {
595 ret += snprintf(buf + ret, size - ret,
596 "%s%d", COMMA,
597 map->map[i].cpu);
598 }
599 } else if (((i - start) != (cpu.cpu - map->map[start].cpu)) || last) {
600 int end = i - 1;
601
602 if (start == end) {
603 ret += snprintf(buf + ret, size - ret,
604 "%s%d", COMMA,
605 map->map[start].cpu);
606 } else {
607 ret += snprintf(buf + ret, size - ret,
608 "%s%d-%d", COMMA,
609 map->map[start].cpu, map->map[end].cpu);
610 }
611 first = false;
612 start = i;
613 }
614 }
615
616 #undef COMMA
617
618 pr_debug2("cpumask list: %s\n", buf);
619 return ret;
620 }
621
hex_char(unsigned char val)622 static char hex_char(unsigned char val)
623 {
624 if (val < 10)
625 return val + '0';
626 if (val < 16)
627 return val - 10 + 'a';
628 return '?';
629 }
630
cpu_map__snprint_mask(struct perf_cpu_map * map,char * buf,size_t size)631 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
632 {
633 int i, cpu;
634 char *ptr = buf;
635 unsigned char *bitmap;
636 struct perf_cpu last_cpu = perf_cpu_map__cpu(map, map->nr - 1);
637
638 if (buf == NULL)
639 return 0;
640
641 bitmap = zalloc(last_cpu.cpu / 8 + 1);
642 if (bitmap == NULL) {
643 buf[0] = '\0';
644 return 0;
645 }
646
647 for (i = 0; i < map->nr; i++) {
648 cpu = perf_cpu_map__cpu(map, i).cpu;
649 bitmap[cpu / 8] |= 1 << (cpu % 8);
650 }
651
652 for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
653 unsigned char bits = bitmap[cpu / 8];
654
655 if (cpu % 8)
656 bits >>= 4;
657 else
658 bits &= 0xf;
659
660 *ptr++ = hex_char(bits);
661 if ((cpu % 32) == 0 && cpu > 0)
662 *ptr++ = ',';
663 }
664 *ptr = '\0';
665 free(bitmap);
666
667 buf[size - 1] = '\0';
668 return ptr - buf;
669 }
670
cpu_map__online(void)671 const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
672 {
673 static const struct perf_cpu_map *online = NULL;
674
675 if (!online)
676 online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
677
678 return online;
679 }
680
aggr_cpu_id__equal(const struct aggr_cpu_id * a,const struct aggr_cpu_id * b)681 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
682 {
683 return a->thread_idx == b->thread_idx &&
684 a->node == b->node &&
685 a->socket == b->socket &&
686 a->die == b->die &&
687 a->core == b->core &&
688 a->cpu.cpu == b->cpu.cpu;
689 }
690
aggr_cpu_id__is_empty(const struct aggr_cpu_id * a)691 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
692 {
693 return a->thread_idx == -1 &&
694 a->node == -1 &&
695 a->socket == -1 &&
696 a->die == -1 &&
697 a->core == -1 &&
698 a->cpu.cpu == -1;
699 }
700
aggr_cpu_id__empty(void)701 struct aggr_cpu_id aggr_cpu_id__empty(void)
702 {
703 struct aggr_cpu_id ret = {
704 .thread_idx = -1,
705 .node = -1,
706 .socket = -1,
707 .die = -1,
708 .core = -1,
709 .cpu = (struct perf_cpu){ .cpu = -1 },
710 };
711 return ret;
712 }
713