1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Software async crypto daemon.
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 *
7 * Added AEAD support to cryptd.
8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9 * Adrian Hoban <adrian.hoban@intel.com>
10 * Gabriele Paoloni <gabriele.paoloni@intel.com>
11 * Aidan O'Mahony (aidan.o.mahony@intel.com)
12 * Copyright (c) 2010, Intel Corporation.
13 */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33
34 static struct workqueue_struct *cryptd_wq;
35
36 struct cryptd_cpu_queue {
37 struct crypto_queue queue;
38 struct work_struct work;
39 };
40
41 struct cryptd_queue {
42 /*
43 * Protected by disabling BH to allow enqueueing from softinterrupt and
44 * dequeuing from kworker (cryptd_queue_worker()).
45 */
46 struct cryptd_cpu_queue __percpu *cpu_queue;
47 };
48
49 struct cryptd_instance_ctx {
50 struct crypto_spawn spawn;
51 struct cryptd_queue *queue;
52 };
53
54 struct skcipherd_instance_ctx {
55 struct crypto_skcipher_spawn spawn;
56 struct cryptd_queue *queue;
57 };
58
59 struct hashd_instance_ctx {
60 struct crypto_shash_spawn spawn;
61 struct cryptd_queue *queue;
62 };
63
64 struct aead_instance_ctx {
65 struct crypto_aead_spawn aead_spawn;
66 struct cryptd_queue *queue;
67 };
68
69 struct cryptd_skcipher_ctx {
70 refcount_t refcnt;
71 struct crypto_skcipher *child;
72 };
73
74 struct cryptd_skcipher_request_ctx {
75 struct skcipher_request req;
76 };
77
78 struct cryptd_hash_ctx {
79 refcount_t refcnt;
80 struct crypto_shash *child;
81 };
82
83 struct cryptd_hash_request_ctx {
84 crypto_completion_t complete;
85 void *data;
86 struct shash_desc desc;
87 };
88
89 struct cryptd_aead_ctx {
90 refcount_t refcnt;
91 struct crypto_aead *child;
92 };
93
94 struct cryptd_aead_request_ctx {
95 struct aead_request req;
96 };
97
98 static void cryptd_queue_worker(struct work_struct *work);
99
cryptd_init_queue(struct cryptd_queue * queue,unsigned int max_cpu_qlen)100 static int cryptd_init_queue(struct cryptd_queue *queue,
101 unsigned int max_cpu_qlen)
102 {
103 int cpu;
104 struct cryptd_cpu_queue *cpu_queue;
105
106 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
107 if (!queue->cpu_queue)
108 return -ENOMEM;
109 for_each_possible_cpu(cpu) {
110 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
111 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
112 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
113 }
114 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
115 return 0;
116 }
117
cryptd_fini_queue(struct cryptd_queue * queue)118 static void cryptd_fini_queue(struct cryptd_queue *queue)
119 {
120 int cpu;
121 struct cryptd_cpu_queue *cpu_queue;
122
123 for_each_possible_cpu(cpu) {
124 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
125 BUG_ON(cpu_queue->queue.qlen);
126 }
127 free_percpu(queue->cpu_queue);
128 }
129
cryptd_enqueue_request(struct cryptd_queue * queue,struct crypto_async_request * request)130 static int cryptd_enqueue_request(struct cryptd_queue *queue,
131 struct crypto_async_request *request)
132 {
133 int err;
134 struct cryptd_cpu_queue *cpu_queue;
135 refcount_t *refcnt;
136
137 local_bh_disable();
138 cpu_queue = this_cpu_ptr(queue->cpu_queue);
139 err = crypto_enqueue_request(&cpu_queue->queue, request);
140
141 refcnt = crypto_tfm_ctx(request->tfm);
142
143 if (err == -ENOSPC)
144 goto out;
145
146 queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work);
147
148 if (!refcount_read(refcnt))
149 goto out;
150
151 refcount_inc(refcnt);
152
153 out:
154 local_bh_enable();
155
156 return err;
157 }
158
159 /* Called in workqueue context, do one real cryption work (via
160 * req->complete) and reschedule itself if there are more work to
161 * do. */
cryptd_queue_worker(struct work_struct * work)162 static void cryptd_queue_worker(struct work_struct *work)
163 {
164 struct cryptd_cpu_queue *cpu_queue;
165 struct crypto_async_request *req, *backlog;
166
167 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
168 /*
169 * Only handle one request at a time to avoid hogging crypto workqueue.
170 */
171 local_bh_disable();
172 backlog = crypto_get_backlog(&cpu_queue->queue);
173 req = crypto_dequeue_request(&cpu_queue->queue);
174 local_bh_enable();
175
176 if (!req)
177 return;
178
179 if (backlog)
180 crypto_request_complete(backlog, -EINPROGRESS);
181 crypto_request_complete(req, 0);
182
183 if (cpu_queue->queue.qlen)
184 queue_work(cryptd_wq, &cpu_queue->work);
185 }
186
cryptd_get_queue(struct crypto_tfm * tfm)187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 return ictx->queue;
192 }
193
cryptd_type_and_mask(struct crypto_attr_type * algt,u32 * type,u32 * mask)194 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
195 u32 *type, u32 *mask)
196 {
197 /*
198 * cryptd is allowed to wrap internal algorithms, but in that case the
199 * resulting cryptd instance will be marked as internal as well.
200 */
201 *type = algt->type & CRYPTO_ALG_INTERNAL;
202 *mask = algt->mask & CRYPTO_ALG_INTERNAL;
203
204 /* No point in cryptd wrapping an algorithm that's already async. */
205 *mask |= CRYPTO_ALG_ASYNC;
206
207 *mask |= crypto_algt_inherited_mask(algt);
208 }
209
cryptd_init_instance(struct crypto_instance * inst,struct crypto_alg * alg)210 static int cryptd_init_instance(struct crypto_instance *inst,
211 struct crypto_alg *alg)
212 {
213 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 "cryptd(%s)",
215 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 return -ENAMETOOLONG;
217
218 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219
220 inst->alg.cra_priority = alg->cra_priority + 50;
221 inst->alg.cra_blocksize = alg->cra_blocksize;
222 inst->alg.cra_alignmask = alg->cra_alignmask;
223
224 return 0;
225 }
226
cryptd_skcipher_setkey(struct crypto_skcipher * parent,const u8 * key,unsigned int keylen)227 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
228 const u8 *key, unsigned int keylen)
229 {
230 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
231 struct crypto_skcipher *child = ctx->child;
232
233 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
234 crypto_skcipher_set_flags(child,
235 crypto_skcipher_get_flags(parent) &
236 CRYPTO_TFM_REQ_MASK);
237 return crypto_skcipher_setkey(child, key, keylen);
238 }
239
cryptd_skcipher_prepare(struct skcipher_request * req,int err)240 static struct skcipher_request *cryptd_skcipher_prepare(
241 struct skcipher_request *req, int err)
242 {
243 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
244 struct skcipher_request *subreq = &rctx->req;
245 struct cryptd_skcipher_ctx *ctx;
246 struct crypto_skcipher *child;
247
248 req->base.complete = subreq->base.complete;
249 req->base.data = subreq->base.data;
250
251 if (unlikely(err == -EINPROGRESS))
252 return NULL;
253
254 ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
255 child = ctx->child;
256
257 skcipher_request_set_tfm(subreq, child);
258 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
259 NULL, NULL);
260 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
261 req->iv);
262
263 return subreq;
264 }
265
cryptd_skcipher_complete(struct skcipher_request * req,int err,crypto_completion_t complete)266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err,
267 crypto_completion_t complete)
268 {
269 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
270 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
271 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
272 struct skcipher_request *subreq = &rctx->req;
273 int refcnt = refcount_read(&ctx->refcnt);
274
275 local_bh_disable();
276 skcipher_request_complete(req, err);
277 local_bh_enable();
278
279 if (unlikely(err == -EINPROGRESS)) {
280 subreq->base.complete = req->base.complete;
281 subreq->base.data = req->base.data;
282 req->base.complete = complete;
283 req->base.data = req;
284 } else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
285 crypto_free_skcipher(tfm);
286 }
287
cryptd_skcipher_encrypt(void * data,int err)288 static void cryptd_skcipher_encrypt(void *data, int err)
289 {
290 struct skcipher_request *req = data;
291 struct skcipher_request *subreq;
292
293 subreq = cryptd_skcipher_prepare(req, err);
294 if (likely(subreq))
295 err = crypto_skcipher_encrypt(subreq);
296
297 cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt);
298 }
299
cryptd_skcipher_decrypt(void * data,int err)300 static void cryptd_skcipher_decrypt(void *data, int err)
301 {
302 struct skcipher_request *req = data;
303 struct skcipher_request *subreq;
304
305 subreq = cryptd_skcipher_prepare(req, err);
306 if (likely(subreq))
307 err = crypto_skcipher_decrypt(subreq);
308
309 cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt);
310 }
311
cryptd_skcipher_enqueue(struct skcipher_request * req,crypto_completion_t compl)312 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
313 crypto_completion_t compl)
314 {
315 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
316 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
317 struct skcipher_request *subreq = &rctx->req;
318 struct cryptd_queue *queue;
319
320 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
321 subreq->base.complete = req->base.complete;
322 subreq->base.data = req->base.data;
323 req->base.complete = compl;
324 req->base.data = req;
325
326 return cryptd_enqueue_request(queue, &req->base);
327 }
328
cryptd_skcipher_encrypt_enqueue(struct skcipher_request * req)329 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
330 {
331 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
332 }
333
cryptd_skcipher_decrypt_enqueue(struct skcipher_request * req)334 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
335 {
336 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
337 }
338
cryptd_skcipher_init_tfm(struct crypto_skcipher * tfm)339 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
340 {
341 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
342 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
343 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
344 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
345 struct crypto_skcipher *cipher;
346
347 cipher = crypto_spawn_skcipher(spawn);
348 if (IS_ERR(cipher))
349 return PTR_ERR(cipher);
350
351 ctx->child = cipher;
352 crypto_skcipher_set_reqsize(
353 tfm, sizeof(struct cryptd_skcipher_request_ctx) +
354 crypto_skcipher_reqsize(cipher));
355 return 0;
356 }
357
cryptd_skcipher_exit_tfm(struct crypto_skcipher * tfm)358 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
359 {
360 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
361
362 crypto_free_skcipher(ctx->child);
363 }
364
cryptd_skcipher_free(struct skcipher_instance * inst)365 static void cryptd_skcipher_free(struct skcipher_instance *inst)
366 {
367 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
368
369 crypto_drop_skcipher(&ctx->spawn);
370 kfree(inst);
371 }
372
cryptd_create_skcipher(struct crypto_template * tmpl,struct rtattr ** tb,struct crypto_attr_type * algt,struct cryptd_queue * queue)373 static int cryptd_create_skcipher(struct crypto_template *tmpl,
374 struct rtattr **tb,
375 struct crypto_attr_type *algt,
376 struct cryptd_queue *queue)
377 {
378 struct skcipherd_instance_ctx *ctx;
379 struct skcipher_instance *inst;
380 struct skcipher_alg *alg;
381 u32 type;
382 u32 mask;
383 int err;
384
385 cryptd_type_and_mask(algt, &type, &mask);
386
387 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
388 if (!inst)
389 return -ENOMEM;
390
391 ctx = skcipher_instance_ctx(inst);
392 ctx->queue = queue;
393
394 err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
395 crypto_attr_alg_name(tb[1]), type, mask);
396 if (err)
397 goto err_free_inst;
398
399 alg = crypto_spawn_skcipher_alg(&ctx->spawn);
400 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
401 if (err)
402 goto err_free_inst;
403
404 inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
405 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
406 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
407 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
408 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
409 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
410
411 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
412
413 inst->alg.init = cryptd_skcipher_init_tfm;
414 inst->alg.exit = cryptd_skcipher_exit_tfm;
415
416 inst->alg.setkey = cryptd_skcipher_setkey;
417 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
418 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
419
420 inst->free = cryptd_skcipher_free;
421
422 err = skcipher_register_instance(tmpl, inst);
423 if (err) {
424 err_free_inst:
425 cryptd_skcipher_free(inst);
426 }
427 return err;
428 }
429
cryptd_hash_init_tfm(struct crypto_tfm * tfm)430 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
431 {
432 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
433 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
434 struct crypto_shash_spawn *spawn = &ictx->spawn;
435 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
436 struct crypto_shash *hash;
437
438 hash = crypto_spawn_shash(spawn);
439 if (IS_ERR(hash))
440 return PTR_ERR(hash);
441
442 ctx->child = hash;
443 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
444 sizeof(struct cryptd_hash_request_ctx) +
445 crypto_shash_descsize(hash));
446 return 0;
447 }
448
cryptd_hash_exit_tfm(struct crypto_tfm * tfm)449 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
450 {
451 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
452
453 crypto_free_shash(ctx->child);
454 }
455
cryptd_hash_setkey(struct crypto_ahash * parent,const u8 * key,unsigned int keylen)456 static int cryptd_hash_setkey(struct crypto_ahash *parent,
457 const u8 *key, unsigned int keylen)
458 {
459 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
460 struct crypto_shash *child = ctx->child;
461
462 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
463 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
464 CRYPTO_TFM_REQ_MASK);
465 return crypto_shash_setkey(child, key, keylen);
466 }
467
cryptd_hash_enqueue(struct ahash_request * req,crypto_completion_t compl)468 static int cryptd_hash_enqueue(struct ahash_request *req,
469 crypto_completion_t compl)
470 {
471 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
472 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
473 struct cryptd_queue *queue =
474 cryptd_get_queue(crypto_ahash_tfm(tfm));
475
476 rctx->complete = req->base.complete;
477 rctx->data = req->base.data;
478 req->base.complete = compl;
479 req->base.data = req;
480
481 return cryptd_enqueue_request(queue, &req->base);
482 }
483
cryptd_hash_prepare(struct ahash_request * req,int err)484 static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req,
485 int err)
486 {
487 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
488
489 req->base.complete = rctx->complete;
490 req->base.data = rctx->data;
491
492 if (unlikely(err == -EINPROGRESS))
493 return NULL;
494
495 return &rctx->desc;
496 }
497
cryptd_hash_complete(struct ahash_request * req,int err,crypto_completion_t complete)498 static void cryptd_hash_complete(struct ahash_request *req, int err,
499 crypto_completion_t complete)
500 {
501 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
502 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
503 int refcnt = refcount_read(&ctx->refcnt);
504
505 local_bh_disable();
506 ahash_request_complete(req, err);
507 local_bh_enable();
508
509 if (err == -EINPROGRESS) {
510 req->base.complete = complete;
511 req->base.data = req;
512 } else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
513 crypto_free_ahash(tfm);
514 }
515
cryptd_hash_init(void * data,int err)516 static void cryptd_hash_init(void *data, int err)
517 {
518 struct ahash_request *req = data;
519 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
520 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
521 struct crypto_shash *child = ctx->child;
522 struct shash_desc *desc;
523
524 desc = cryptd_hash_prepare(req, err);
525 if (unlikely(!desc))
526 goto out;
527
528 desc->tfm = child;
529
530 err = crypto_shash_init(desc);
531
532 out:
533 cryptd_hash_complete(req, err, cryptd_hash_init);
534 }
535
cryptd_hash_init_enqueue(struct ahash_request * req)536 static int cryptd_hash_init_enqueue(struct ahash_request *req)
537 {
538 return cryptd_hash_enqueue(req, cryptd_hash_init);
539 }
540
cryptd_hash_update(void * data,int err)541 static void cryptd_hash_update(void *data, int err)
542 {
543 struct ahash_request *req = data;
544 struct shash_desc *desc;
545
546 desc = cryptd_hash_prepare(req, err);
547 if (likely(desc))
548 err = shash_ahash_update(req, desc);
549
550 cryptd_hash_complete(req, err, cryptd_hash_update);
551 }
552
cryptd_hash_update_enqueue(struct ahash_request * req)553 static int cryptd_hash_update_enqueue(struct ahash_request *req)
554 {
555 return cryptd_hash_enqueue(req, cryptd_hash_update);
556 }
557
cryptd_hash_final(void * data,int err)558 static void cryptd_hash_final(void *data, int err)
559 {
560 struct ahash_request *req = data;
561 struct shash_desc *desc;
562
563 desc = cryptd_hash_prepare(req, err);
564 if (likely(desc))
565 err = crypto_shash_final(desc, req->result);
566
567 cryptd_hash_complete(req, err, cryptd_hash_final);
568 }
569
cryptd_hash_final_enqueue(struct ahash_request * req)570 static int cryptd_hash_final_enqueue(struct ahash_request *req)
571 {
572 return cryptd_hash_enqueue(req, cryptd_hash_final);
573 }
574
cryptd_hash_finup(void * data,int err)575 static void cryptd_hash_finup(void *data, int err)
576 {
577 struct ahash_request *req = data;
578 struct shash_desc *desc;
579
580 desc = cryptd_hash_prepare(req, err);
581 if (likely(desc))
582 err = shash_ahash_finup(req, desc);
583
584 cryptd_hash_complete(req, err, cryptd_hash_finup);
585 }
586
cryptd_hash_finup_enqueue(struct ahash_request * req)587 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
588 {
589 return cryptd_hash_enqueue(req, cryptd_hash_finup);
590 }
591
cryptd_hash_digest(void * data,int err)592 static void cryptd_hash_digest(void *data, int err)
593 {
594 struct ahash_request *req = data;
595 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
596 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
597 struct crypto_shash *child = ctx->child;
598 struct shash_desc *desc;
599
600 desc = cryptd_hash_prepare(req, err);
601 if (unlikely(!desc))
602 goto out;
603
604 desc->tfm = child;
605
606 err = shash_ahash_digest(req, desc);
607
608 out:
609 cryptd_hash_complete(req, err, cryptd_hash_digest);
610 }
611
cryptd_hash_digest_enqueue(struct ahash_request * req)612 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
613 {
614 return cryptd_hash_enqueue(req, cryptd_hash_digest);
615 }
616
cryptd_hash_export(struct ahash_request * req,void * out)617 static int cryptd_hash_export(struct ahash_request *req, void *out)
618 {
619 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
620
621 return crypto_shash_export(&rctx->desc, out);
622 }
623
cryptd_hash_import(struct ahash_request * req,const void * in)624 static int cryptd_hash_import(struct ahash_request *req, const void *in)
625 {
626 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
627 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
628 struct shash_desc *desc = cryptd_shash_desc(req);
629
630 desc->tfm = ctx->child;
631
632 return crypto_shash_import(desc, in);
633 }
634
cryptd_hash_free(struct ahash_instance * inst)635 static void cryptd_hash_free(struct ahash_instance *inst)
636 {
637 struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
638
639 crypto_drop_shash(&ctx->spawn);
640 kfree(inst);
641 }
642
cryptd_create_hash(struct crypto_template * tmpl,struct rtattr ** tb,struct crypto_attr_type * algt,struct cryptd_queue * queue)643 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
644 struct crypto_attr_type *algt,
645 struct cryptd_queue *queue)
646 {
647 struct hashd_instance_ctx *ctx;
648 struct ahash_instance *inst;
649 struct shash_alg *alg;
650 u32 type;
651 u32 mask;
652 int err;
653
654 cryptd_type_and_mask(algt, &type, &mask);
655
656 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
657 if (!inst)
658 return -ENOMEM;
659
660 ctx = ahash_instance_ctx(inst);
661 ctx->queue = queue;
662
663 err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
664 crypto_attr_alg_name(tb[1]), type, mask);
665 if (err)
666 goto err_free_inst;
667 alg = crypto_spawn_shash_alg(&ctx->spawn);
668
669 err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
670 if (err)
671 goto err_free_inst;
672
673 inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
674 (alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
675 CRYPTO_ALG_OPTIONAL_KEY));
676 inst->alg.halg.digestsize = alg->digestsize;
677 inst->alg.halg.statesize = alg->statesize;
678 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
679
680 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
681 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
682
683 inst->alg.init = cryptd_hash_init_enqueue;
684 inst->alg.update = cryptd_hash_update_enqueue;
685 inst->alg.final = cryptd_hash_final_enqueue;
686 inst->alg.finup = cryptd_hash_finup_enqueue;
687 inst->alg.export = cryptd_hash_export;
688 inst->alg.import = cryptd_hash_import;
689 if (crypto_shash_alg_has_setkey(alg))
690 inst->alg.setkey = cryptd_hash_setkey;
691 inst->alg.digest = cryptd_hash_digest_enqueue;
692
693 inst->free = cryptd_hash_free;
694
695 err = ahash_register_instance(tmpl, inst);
696 if (err) {
697 err_free_inst:
698 cryptd_hash_free(inst);
699 }
700 return err;
701 }
702
cryptd_aead_setkey(struct crypto_aead * parent,const u8 * key,unsigned int keylen)703 static int cryptd_aead_setkey(struct crypto_aead *parent,
704 const u8 *key, unsigned int keylen)
705 {
706 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
707 struct crypto_aead *child = ctx->child;
708
709 return crypto_aead_setkey(child, key, keylen);
710 }
711
cryptd_aead_setauthsize(struct crypto_aead * parent,unsigned int authsize)712 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
713 unsigned int authsize)
714 {
715 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
716 struct crypto_aead *child = ctx->child;
717
718 return crypto_aead_setauthsize(child, authsize);
719 }
720
cryptd_aead_crypt(struct aead_request * req,struct crypto_aead * child,int err,int (* crypt)(struct aead_request * req),crypto_completion_t compl)721 static void cryptd_aead_crypt(struct aead_request *req,
722 struct crypto_aead *child, int err,
723 int (*crypt)(struct aead_request *req),
724 crypto_completion_t compl)
725 {
726 struct cryptd_aead_request_ctx *rctx;
727 struct aead_request *subreq;
728 struct cryptd_aead_ctx *ctx;
729 struct crypto_aead *tfm;
730 int refcnt;
731
732 rctx = aead_request_ctx(req);
733 subreq = &rctx->req;
734 req->base.complete = subreq->base.complete;
735 req->base.data = subreq->base.data;
736
737 tfm = crypto_aead_reqtfm(req);
738
739 if (unlikely(err == -EINPROGRESS))
740 goto out;
741
742 aead_request_set_tfm(subreq, child);
743 aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
744 NULL, NULL);
745 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
746 req->iv);
747 aead_request_set_ad(subreq, req->assoclen);
748
749 err = crypt(subreq);
750
751 out:
752 ctx = crypto_aead_ctx(tfm);
753 refcnt = refcount_read(&ctx->refcnt);
754
755 local_bh_disable();
756 aead_request_complete(req, err);
757 local_bh_enable();
758
759 if (err == -EINPROGRESS) {
760 subreq->base.complete = req->base.complete;
761 subreq->base.data = req->base.data;
762 req->base.complete = compl;
763 req->base.data = req;
764 } else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
765 crypto_free_aead(tfm);
766 }
767
cryptd_aead_encrypt(void * data,int err)768 static void cryptd_aead_encrypt(void *data, int err)
769 {
770 struct aead_request *req = data;
771 struct cryptd_aead_ctx *ctx;
772 struct crypto_aead *child;
773
774 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
775 child = ctx->child;
776 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt,
777 cryptd_aead_encrypt);
778 }
779
cryptd_aead_decrypt(void * data,int err)780 static void cryptd_aead_decrypt(void *data, int err)
781 {
782 struct aead_request *req = data;
783 struct cryptd_aead_ctx *ctx;
784 struct crypto_aead *child;
785
786 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
787 child = ctx->child;
788 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt,
789 cryptd_aead_decrypt);
790 }
791
cryptd_aead_enqueue(struct aead_request * req,crypto_completion_t compl)792 static int cryptd_aead_enqueue(struct aead_request *req,
793 crypto_completion_t compl)
794 {
795 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
796 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
797 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
798 struct aead_request *subreq = &rctx->req;
799
800 subreq->base.complete = req->base.complete;
801 subreq->base.data = req->base.data;
802 req->base.complete = compl;
803 req->base.data = req;
804 return cryptd_enqueue_request(queue, &req->base);
805 }
806
cryptd_aead_encrypt_enqueue(struct aead_request * req)807 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
808 {
809 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
810 }
811
cryptd_aead_decrypt_enqueue(struct aead_request * req)812 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
813 {
814 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
815 }
816
cryptd_aead_init_tfm(struct crypto_aead * tfm)817 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
818 {
819 struct aead_instance *inst = aead_alg_instance(tfm);
820 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
821 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
822 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
823 struct crypto_aead *cipher;
824
825 cipher = crypto_spawn_aead(spawn);
826 if (IS_ERR(cipher))
827 return PTR_ERR(cipher);
828
829 ctx->child = cipher;
830 crypto_aead_set_reqsize(
831 tfm, sizeof(struct cryptd_aead_request_ctx) +
832 crypto_aead_reqsize(cipher));
833 return 0;
834 }
835
cryptd_aead_exit_tfm(struct crypto_aead * tfm)836 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
837 {
838 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
839 crypto_free_aead(ctx->child);
840 }
841
cryptd_aead_free(struct aead_instance * inst)842 static void cryptd_aead_free(struct aead_instance *inst)
843 {
844 struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
845
846 crypto_drop_aead(&ctx->aead_spawn);
847 kfree(inst);
848 }
849
cryptd_create_aead(struct crypto_template * tmpl,struct rtattr ** tb,struct crypto_attr_type * algt,struct cryptd_queue * queue)850 static int cryptd_create_aead(struct crypto_template *tmpl,
851 struct rtattr **tb,
852 struct crypto_attr_type *algt,
853 struct cryptd_queue *queue)
854 {
855 struct aead_instance_ctx *ctx;
856 struct aead_instance *inst;
857 struct aead_alg *alg;
858 u32 type;
859 u32 mask;
860 int err;
861
862 cryptd_type_and_mask(algt, &type, &mask);
863
864 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
865 if (!inst)
866 return -ENOMEM;
867
868 ctx = aead_instance_ctx(inst);
869 ctx->queue = queue;
870
871 err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
872 crypto_attr_alg_name(tb[1]), type, mask);
873 if (err)
874 goto err_free_inst;
875
876 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
877 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
878 if (err)
879 goto err_free_inst;
880
881 inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
882 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
883 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
884
885 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
886 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
887
888 inst->alg.init = cryptd_aead_init_tfm;
889 inst->alg.exit = cryptd_aead_exit_tfm;
890 inst->alg.setkey = cryptd_aead_setkey;
891 inst->alg.setauthsize = cryptd_aead_setauthsize;
892 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
893 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
894
895 inst->free = cryptd_aead_free;
896
897 err = aead_register_instance(tmpl, inst);
898 if (err) {
899 err_free_inst:
900 cryptd_aead_free(inst);
901 }
902 return err;
903 }
904
905 static struct cryptd_queue queue;
906
cryptd_create(struct crypto_template * tmpl,struct rtattr ** tb)907 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
908 {
909 struct crypto_attr_type *algt;
910
911 algt = crypto_get_attr_type(tb);
912 if (IS_ERR(algt))
913 return PTR_ERR(algt);
914
915 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
916 case CRYPTO_ALG_TYPE_SKCIPHER:
917 return cryptd_create_skcipher(tmpl, tb, algt, &queue);
918 case CRYPTO_ALG_TYPE_HASH:
919 return cryptd_create_hash(tmpl, tb, algt, &queue);
920 case CRYPTO_ALG_TYPE_AEAD:
921 return cryptd_create_aead(tmpl, tb, algt, &queue);
922 }
923
924 return -EINVAL;
925 }
926
927 static struct crypto_template cryptd_tmpl = {
928 .name = "cryptd",
929 .create = cryptd_create,
930 .module = THIS_MODULE,
931 };
932
cryptd_alloc_skcipher(const char * alg_name,u32 type,u32 mask)933 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
934 u32 type, u32 mask)
935 {
936 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
937 struct cryptd_skcipher_ctx *ctx;
938 struct crypto_skcipher *tfm;
939
940 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
941 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
942 return ERR_PTR(-EINVAL);
943
944 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
945 if (IS_ERR(tfm))
946 return ERR_CAST(tfm);
947
948 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
949 crypto_free_skcipher(tfm);
950 return ERR_PTR(-EINVAL);
951 }
952
953 ctx = crypto_skcipher_ctx(tfm);
954 refcount_set(&ctx->refcnt, 1);
955
956 return container_of(tfm, struct cryptd_skcipher, base);
957 }
958 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
959
cryptd_skcipher_child(struct cryptd_skcipher * tfm)960 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
961 {
962 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
963
964 return ctx->child;
965 }
966 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
967
cryptd_skcipher_queued(struct cryptd_skcipher * tfm)968 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
969 {
970 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
971
972 return refcount_read(&ctx->refcnt) - 1;
973 }
974 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
975
cryptd_free_skcipher(struct cryptd_skcipher * tfm)976 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
977 {
978 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
979
980 if (refcount_dec_and_test(&ctx->refcnt))
981 crypto_free_skcipher(&tfm->base);
982 }
983 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
984
cryptd_alloc_ahash(const char * alg_name,u32 type,u32 mask)985 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
986 u32 type, u32 mask)
987 {
988 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
989 struct cryptd_hash_ctx *ctx;
990 struct crypto_ahash *tfm;
991
992 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
993 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
994 return ERR_PTR(-EINVAL);
995 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
996 if (IS_ERR(tfm))
997 return ERR_CAST(tfm);
998 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
999 crypto_free_ahash(tfm);
1000 return ERR_PTR(-EINVAL);
1001 }
1002
1003 ctx = crypto_ahash_ctx(tfm);
1004 refcount_set(&ctx->refcnt, 1);
1005
1006 return __cryptd_ahash_cast(tfm);
1007 }
1008 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1009
cryptd_ahash_child(struct cryptd_ahash * tfm)1010 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1011 {
1012 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1013
1014 return ctx->child;
1015 }
1016 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1017
cryptd_shash_desc(struct ahash_request * req)1018 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1019 {
1020 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1021 return &rctx->desc;
1022 }
1023 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1024
cryptd_ahash_queued(struct cryptd_ahash * tfm)1025 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1026 {
1027 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1028
1029 return refcount_read(&ctx->refcnt) - 1;
1030 }
1031 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1032
cryptd_free_ahash(struct cryptd_ahash * tfm)1033 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1034 {
1035 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1036
1037 if (refcount_dec_and_test(&ctx->refcnt))
1038 crypto_free_ahash(&tfm->base);
1039 }
1040 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1041
cryptd_alloc_aead(const char * alg_name,u32 type,u32 mask)1042 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1043 u32 type, u32 mask)
1044 {
1045 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1046 struct cryptd_aead_ctx *ctx;
1047 struct crypto_aead *tfm;
1048
1049 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1050 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1051 return ERR_PTR(-EINVAL);
1052 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1053 if (IS_ERR(tfm))
1054 return ERR_CAST(tfm);
1055 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1056 crypto_free_aead(tfm);
1057 return ERR_PTR(-EINVAL);
1058 }
1059
1060 ctx = crypto_aead_ctx(tfm);
1061 refcount_set(&ctx->refcnt, 1);
1062
1063 return __cryptd_aead_cast(tfm);
1064 }
1065 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1066
cryptd_aead_child(struct cryptd_aead * tfm)1067 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1068 {
1069 struct cryptd_aead_ctx *ctx;
1070 ctx = crypto_aead_ctx(&tfm->base);
1071 return ctx->child;
1072 }
1073 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1074
cryptd_aead_queued(struct cryptd_aead * tfm)1075 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1076 {
1077 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1078
1079 return refcount_read(&ctx->refcnt) - 1;
1080 }
1081 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1082
cryptd_free_aead(struct cryptd_aead * tfm)1083 void cryptd_free_aead(struct cryptd_aead *tfm)
1084 {
1085 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1086
1087 if (refcount_dec_and_test(&ctx->refcnt))
1088 crypto_free_aead(&tfm->base);
1089 }
1090 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1091
cryptd_init(void)1092 static int __init cryptd_init(void)
1093 {
1094 int err;
1095
1096 cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1097 1);
1098 if (!cryptd_wq)
1099 return -ENOMEM;
1100
1101 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1102 if (err)
1103 goto err_destroy_wq;
1104
1105 err = crypto_register_template(&cryptd_tmpl);
1106 if (err)
1107 goto err_fini_queue;
1108
1109 return 0;
1110
1111 err_fini_queue:
1112 cryptd_fini_queue(&queue);
1113 err_destroy_wq:
1114 destroy_workqueue(cryptd_wq);
1115 return err;
1116 }
1117
cryptd_exit(void)1118 static void __exit cryptd_exit(void)
1119 {
1120 destroy_workqueue(cryptd_wq);
1121 cryptd_fini_queue(&queue);
1122 crypto_unregister_template(&cryptd_tmpl);
1123 }
1124
1125 subsys_initcall(cryptd_init);
1126 module_exit(cryptd_exit);
1127
1128 MODULE_LICENSE("GPL");
1129 MODULE_DESCRIPTION("Software async crypto daemon");
1130 MODULE_ALIAS_CRYPTO("cryptd");
1131