1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015-2018 Linaro Limited.
4 *
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
8
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include "tsc.h"
39 #include <tools/libc_compat.h>
40 #include "util/synthetic-events.h"
41
42 struct cs_etm_auxtrace {
43 struct auxtrace auxtrace;
44 struct auxtrace_queues queues;
45 struct auxtrace_heap heap;
46 struct itrace_synth_opts synth_opts;
47 struct perf_session *session;
48 struct machine *machine;
49 struct thread *unknown_thread;
50 struct perf_tsc_conversion tc;
51
52 u8 timeless_decoding;
53 u8 snapshot_mode;
54 u8 data_queued;
55 u8 has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */
56
57 int num_cpu;
58 u64 latest_kernel_timestamp;
59 u32 auxtrace_type;
60 u64 branches_sample_type;
61 u64 branches_id;
62 u64 instructions_sample_type;
63 u64 instructions_sample_period;
64 u64 instructions_id;
65 u64 **metadata;
66 unsigned int pmu_type;
67 };
68
69 struct cs_etm_traceid_queue {
70 u8 trace_chan_id;
71 pid_t pid, tid;
72 u64 period_instructions;
73 size_t last_branch_pos;
74 union perf_event *event_buf;
75 struct thread *thread;
76 struct branch_stack *last_branch;
77 struct branch_stack *last_branch_rb;
78 struct cs_etm_packet *prev_packet;
79 struct cs_etm_packet *packet;
80 struct cs_etm_packet_queue packet_queue;
81 };
82
83 struct cs_etm_queue {
84 struct cs_etm_auxtrace *etm;
85 struct cs_etm_decoder *decoder;
86 struct auxtrace_buffer *buffer;
87 unsigned int queue_nr;
88 u8 pending_timestamp_chan_id;
89 u64 offset;
90 const unsigned char *buf;
91 size_t buf_len, buf_used;
92 /* Conversion between traceID and index in traceid_queues array */
93 struct intlist *traceid_queues_list;
94 struct cs_etm_traceid_queue **traceid_queues;
95 };
96
97 /* RB tree for quick conversion between traceID and metadata pointers */
98 static struct intlist *traceid_list;
99
100 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
101 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
102 pid_t tid);
103 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
104 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
105
106 /* PTMs ETMIDR [11:8] set to b0011 */
107 #define ETMIDR_PTM_VERSION 0x00000300
108
109 /*
110 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
111 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply
112 * encode the etm queue number as the upper 16 bit and the channel as
113 * the lower 16 bit.
114 */
115 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
116 (queue_nr << 16 | trace_chan_id)
117 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
118 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
119
cs_etm__get_v7_protocol_version(u32 etmidr)120 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
121 {
122 etmidr &= ETMIDR_PTM_VERSION;
123
124 if (etmidr == ETMIDR_PTM_VERSION)
125 return CS_ETM_PROTO_PTM;
126
127 return CS_ETM_PROTO_ETMV3;
128 }
129
cs_etm__get_magic(u8 trace_chan_id,u64 * magic)130 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
131 {
132 struct int_node *inode;
133 u64 *metadata;
134
135 inode = intlist__find(traceid_list, trace_chan_id);
136 if (!inode)
137 return -EINVAL;
138
139 metadata = inode->priv;
140 *magic = metadata[CS_ETM_MAGIC];
141 return 0;
142 }
143
cs_etm__get_cpu(u8 trace_chan_id,int * cpu)144 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
145 {
146 struct int_node *inode;
147 u64 *metadata;
148
149 inode = intlist__find(traceid_list, trace_chan_id);
150 if (!inode)
151 return -EINVAL;
152
153 metadata = inode->priv;
154 *cpu = (int)metadata[CS_ETM_CPU];
155 return 0;
156 }
157
158 /*
159 * The returned PID format is presented by two bits:
160 *
161 * Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
162 * Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
163 *
164 * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
165 * are enabled at the same time when the session runs on an EL2 kernel.
166 * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
167 * recorded in the trace data, the tool will selectively use
168 * CONTEXTIDR_EL2 as PID.
169 */
cs_etm__get_pid_fmt(u8 trace_chan_id,u64 * pid_fmt)170 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
171 {
172 struct int_node *inode;
173 u64 *metadata, val;
174
175 inode = intlist__find(traceid_list, trace_chan_id);
176 if (!inode)
177 return -EINVAL;
178
179 metadata = inode->priv;
180
181 if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
182 val = metadata[CS_ETM_ETMCR];
183 /* CONTEXTIDR is traced */
184 if (val & BIT(ETM_OPT_CTXTID))
185 *pid_fmt = BIT(ETM_OPT_CTXTID);
186 } else {
187 val = metadata[CS_ETMV4_TRCCONFIGR];
188 /* CONTEXTIDR_EL2 is traced */
189 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
190 *pid_fmt = BIT(ETM_OPT_CTXTID2);
191 /* CONTEXTIDR_EL1 is traced */
192 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
193 *pid_fmt = BIT(ETM_OPT_CTXTID);
194 }
195
196 return 0;
197 }
198
cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue * etmq,u8 trace_chan_id)199 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
200 u8 trace_chan_id)
201 {
202 /*
203 * When a timestamp packet is encountered the backend code
204 * is stopped so that the front end has time to process packets
205 * that were accumulated in the traceID queue. Since there can
206 * be more than one channel per cs_etm_queue, we need to specify
207 * what traceID queue needs servicing.
208 */
209 etmq->pending_timestamp_chan_id = trace_chan_id;
210 }
211
cs_etm__etmq_get_timestamp(struct cs_etm_queue * etmq,u8 * trace_chan_id)212 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
213 u8 *trace_chan_id)
214 {
215 struct cs_etm_packet_queue *packet_queue;
216
217 if (!etmq->pending_timestamp_chan_id)
218 return 0;
219
220 if (trace_chan_id)
221 *trace_chan_id = etmq->pending_timestamp_chan_id;
222
223 packet_queue = cs_etm__etmq_get_packet_queue(etmq,
224 etmq->pending_timestamp_chan_id);
225 if (!packet_queue)
226 return 0;
227
228 /* Acknowledge pending status */
229 etmq->pending_timestamp_chan_id = 0;
230
231 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
232 return packet_queue->cs_timestamp;
233 }
234
cs_etm__clear_packet_queue(struct cs_etm_packet_queue * queue)235 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
236 {
237 int i;
238
239 queue->head = 0;
240 queue->tail = 0;
241 queue->packet_count = 0;
242 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
243 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
244 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
245 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
246 queue->packet_buffer[i].instr_count = 0;
247 queue->packet_buffer[i].last_instr_taken_branch = false;
248 queue->packet_buffer[i].last_instr_size = 0;
249 queue->packet_buffer[i].last_instr_type = 0;
250 queue->packet_buffer[i].last_instr_subtype = 0;
251 queue->packet_buffer[i].last_instr_cond = 0;
252 queue->packet_buffer[i].flags = 0;
253 queue->packet_buffer[i].exception_number = UINT32_MAX;
254 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
255 queue->packet_buffer[i].cpu = INT_MIN;
256 }
257 }
258
cs_etm__clear_all_packet_queues(struct cs_etm_queue * etmq)259 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
260 {
261 int idx;
262 struct int_node *inode;
263 struct cs_etm_traceid_queue *tidq;
264 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
265
266 intlist__for_each_entry(inode, traceid_queues_list) {
267 idx = (int)(intptr_t)inode->priv;
268 tidq = etmq->traceid_queues[idx];
269 cs_etm__clear_packet_queue(&tidq->packet_queue);
270 }
271 }
272
cs_etm__init_traceid_queue(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u8 trace_chan_id)273 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
274 struct cs_etm_traceid_queue *tidq,
275 u8 trace_chan_id)
276 {
277 int rc = -ENOMEM;
278 struct auxtrace_queue *queue;
279 struct cs_etm_auxtrace *etm = etmq->etm;
280
281 cs_etm__clear_packet_queue(&tidq->packet_queue);
282
283 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
284 tidq->tid = queue->tid;
285 tidq->pid = -1;
286 tidq->trace_chan_id = trace_chan_id;
287
288 tidq->packet = zalloc(sizeof(struct cs_etm_packet));
289 if (!tidq->packet)
290 goto out;
291
292 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
293 if (!tidq->prev_packet)
294 goto out_free;
295
296 if (etm->synth_opts.last_branch) {
297 size_t sz = sizeof(struct branch_stack);
298
299 sz += etm->synth_opts.last_branch_sz *
300 sizeof(struct branch_entry);
301 tidq->last_branch = zalloc(sz);
302 if (!tidq->last_branch)
303 goto out_free;
304 tidq->last_branch_rb = zalloc(sz);
305 if (!tidq->last_branch_rb)
306 goto out_free;
307 }
308
309 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
310 if (!tidq->event_buf)
311 goto out_free;
312
313 return 0;
314
315 out_free:
316 zfree(&tidq->last_branch_rb);
317 zfree(&tidq->last_branch);
318 zfree(&tidq->prev_packet);
319 zfree(&tidq->packet);
320 out:
321 return rc;
322 }
323
324 static struct cs_etm_traceid_queue
cs_etm__etmq_get_traceid_queue(struct cs_etm_queue * etmq,u8 trace_chan_id)325 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
326 {
327 int idx;
328 struct int_node *inode;
329 struct intlist *traceid_queues_list;
330 struct cs_etm_traceid_queue *tidq, **traceid_queues;
331 struct cs_etm_auxtrace *etm = etmq->etm;
332
333 if (etm->timeless_decoding)
334 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
335
336 traceid_queues_list = etmq->traceid_queues_list;
337
338 /*
339 * Check if the traceid_queue exist for this traceID by looking
340 * in the queue list.
341 */
342 inode = intlist__find(traceid_queues_list, trace_chan_id);
343 if (inode) {
344 idx = (int)(intptr_t)inode->priv;
345 return etmq->traceid_queues[idx];
346 }
347
348 /* We couldn't find a traceid_queue for this traceID, allocate one */
349 tidq = malloc(sizeof(*tidq));
350 if (!tidq)
351 return NULL;
352
353 memset(tidq, 0, sizeof(*tidq));
354
355 /* Get a valid index for the new traceid_queue */
356 idx = intlist__nr_entries(traceid_queues_list);
357 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
358 inode = intlist__findnew(traceid_queues_list, trace_chan_id);
359 if (!inode)
360 goto out_free;
361
362 /* Associate this traceID with this index */
363 inode->priv = (void *)(intptr_t)idx;
364
365 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
366 goto out_free;
367
368 /* Grow the traceid_queues array by one unit */
369 traceid_queues = etmq->traceid_queues;
370 traceid_queues = reallocarray(traceid_queues,
371 idx + 1,
372 sizeof(*traceid_queues));
373
374 /*
375 * On failure reallocarray() returns NULL and the original block of
376 * memory is left untouched.
377 */
378 if (!traceid_queues)
379 goto out_free;
380
381 traceid_queues[idx] = tidq;
382 etmq->traceid_queues = traceid_queues;
383
384 return etmq->traceid_queues[idx];
385
386 out_free:
387 /*
388 * Function intlist__remove() removes the inode from the list
389 * and delete the memory associated to it.
390 */
391 intlist__remove(traceid_queues_list, inode);
392 free(tidq);
393
394 return NULL;
395 }
396
397 struct cs_etm_packet_queue
cs_etm__etmq_get_packet_queue(struct cs_etm_queue * etmq,u8 trace_chan_id)398 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
399 {
400 struct cs_etm_traceid_queue *tidq;
401
402 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
403 if (tidq)
404 return &tidq->packet_queue;
405
406 return NULL;
407 }
408
cs_etm__packet_swap(struct cs_etm_auxtrace * etm,struct cs_etm_traceid_queue * tidq)409 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
410 struct cs_etm_traceid_queue *tidq)
411 {
412 struct cs_etm_packet *tmp;
413
414 if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
415 etm->synth_opts.instructions) {
416 /*
417 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
418 * the next incoming packet.
419 */
420 tmp = tidq->packet;
421 tidq->packet = tidq->prev_packet;
422 tidq->prev_packet = tmp;
423 }
424 }
425
cs_etm__packet_dump(const char * pkt_string)426 static void cs_etm__packet_dump(const char *pkt_string)
427 {
428 const char *color = PERF_COLOR_BLUE;
429 int len = strlen(pkt_string);
430
431 if (len && (pkt_string[len-1] == '\n'))
432 color_fprintf(stdout, color, " %s", pkt_string);
433 else
434 color_fprintf(stdout, color, " %s\n", pkt_string);
435
436 fflush(stdout);
437 }
438
cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params * t_params,struct cs_etm_auxtrace * etm,int idx,u32 etmidr)439 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
440 struct cs_etm_auxtrace *etm, int idx,
441 u32 etmidr)
442 {
443 u64 **metadata = etm->metadata;
444
445 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
446 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
447 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
448 }
449
cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params * t_params,struct cs_etm_auxtrace * etm,int idx)450 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
451 struct cs_etm_auxtrace *etm, int idx)
452 {
453 u64 **metadata = etm->metadata;
454
455 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
456 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
457 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
458 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
459 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
460 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
461 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
462 }
463
cs_etm__set_trace_param_ete(struct cs_etm_trace_params * t_params,struct cs_etm_auxtrace * etm,int idx)464 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
465 struct cs_etm_auxtrace *etm, int idx)
466 {
467 u64 **metadata = etm->metadata;
468
469 t_params[idx].protocol = CS_ETM_PROTO_ETE;
470 t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0];
471 t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1];
472 t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2];
473 t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8];
474 t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR];
475 t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR];
476 t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
477 }
478
cs_etm__init_trace_params(struct cs_etm_trace_params * t_params,struct cs_etm_auxtrace * etm,int decoders)479 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
480 struct cs_etm_auxtrace *etm,
481 int decoders)
482 {
483 int i;
484 u32 etmidr;
485 u64 architecture;
486
487 for (i = 0; i < decoders; i++) {
488 architecture = etm->metadata[i][CS_ETM_MAGIC];
489
490 switch (architecture) {
491 case __perf_cs_etmv3_magic:
492 etmidr = etm->metadata[i][CS_ETM_ETMIDR];
493 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
494 break;
495 case __perf_cs_etmv4_magic:
496 cs_etm__set_trace_param_etmv4(t_params, etm, i);
497 break;
498 case __perf_cs_ete_magic:
499 cs_etm__set_trace_param_ete(t_params, etm, i);
500 break;
501 default:
502 return -EINVAL;
503 }
504 }
505
506 return 0;
507 }
508
cs_etm__init_decoder_params(struct cs_etm_decoder_params * d_params,struct cs_etm_queue * etmq,enum cs_etm_decoder_operation mode,bool formatted)509 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
510 struct cs_etm_queue *etmq,
511 enum cs_etm_decoder_operation mode,
512 bool formatted)
513 {
514 int ret = -EINVAL;
515
516 if (!(mode < CS_ETM_OPERATION_MAX))
517 goto out;
518
519 d_params->packet_printer = cs_etm__packet_dump;
520 d_params->operation = mode;
521 d_params->data = etmq;
522 d_params->formatted = formatted;
523 d_params->fsyncs = false;
524 d_params->hsyncs = false;
525 d_params->frame_aligned = true;
526
527 ret = 0;
528 out:
529 return ret;
530 }
531
cs_etm__dump_event(struct cs_etm_queue * etmq,struct auxtrace_buffer * buffer)532 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
533 struct auxtrace_buffer *buffer)
534 {
535 int ret;
536 const char *color = PERF_COLOR_BLUE;
537 size_t buffer_used = 0;
538
539 fprintf(stdout, "\n");
540 color_fprintf(stdout, color,
541 ". ... CoreSight %s Trace data: size %#zx bytes\n",
542 cs_etm_decoder__get_name(etmq->decoder), buffer->size);
543
544 do {
545 size_t consumed;
546
547 ret = cs_etm_decoder__process_data_block(
548 etmq->decoder, buffer->offset,
549 &((u8 *)buffer->data)[buffer_used],
550 buffer->size - buffer_used, &consumed);
551 if (ret)
552 break;
553
554 buffer_used += consumed;
555 } while (buffer_used < buffer->size);
556
557 cs_etm_decoder__reset(etmq->decoder);
558 }
559
cs_etm__flush_events(struct perf_session * session,struct perf_tool * tool)560 static int cs_etm__flush_events(struct perf_session *session,
561 struct perf_tool *tool)
562 {
563 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
564 struct cs_etm_auxtrace,
565 auxtrace);
566 if (dump_trace)
567 return 0;
568
569 if (!tool->ordered_events)
570 return -EINVAL;
571
572 if (etm->timeless_decoding)
573 return cs_etm__process_timeless_queues(etm, -1);
574
575 return cs_etm__process_queues(etm);
576 }
577
cs_etm__free_traceid_queues(struct cs_etm_queue * etmq)578 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
579 {
580 int idx;
581 uintptr_t priv;
582 struct int_node *inode, *tmp;
583 struct cs_etm_traceid_queue *tidq;
584 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
585
586 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
587 priv = (uintptr_t)inode->priv;
588 idx = priv;
589
590 /* Free this traceid_queue from the array */
591 tidq = etmq->traceid_queues[idx];
592 thread__zput(tidq->thread);
593 zfree(&tidq->event_buf);
594 zfree(&tidq->last_branch);
595 zfree(&tidq->last_branch_rb);
596 zfree(&tidq->prev_packet);
597 zfree(&tidq->packet);
598 zfree(&tidq);
599
600 /*
601 * Function intlist__remove() removes the inode from the list
602 * and delete the memory associated to it.
603 */
604 intlist__remove(traceid_queues_list, inode);
605 }
606
607 /* Then the RB tree itself */
608 intlist__delete(traceid_queues_list);
609 etmq->traceid_queues_list = NULL;
610
611 /* finally free the traceid_queues array */
612 zfree(&etmq->traceid_queues);
613 }
614
cs_etm__free_queue(void * priv)615 static void cs_etm__free_queue(void *priv)
616 {
617 struct cs_etm_queue *etmq = priv;
618
619 if (!etmq)
620 return;
621
622 cs_etm_decoder__free(etmq->decoder);
623 cs_etm__free_traceid_queues(etmq);
624 free(etmq);
625 }
626
cs_etm__free_events(struct perf_session * session)627 static void cs_etm__free_events(struct perf_session *session)
628 {
629 unsigned int i;
630 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
631 struct cs_etm_auxtrace,
632 auxtrace);
633 struct auxtrace_queues *queues = &aux->queues;
634
635 for (i = 0; i < queues->nr_queues; i++) {
636 cs_etm__free_queue(queues->queue_array[i].priv);
637 queues->queue_array[i].priv = NULL;
638 }
639
640 auxtrace_queues__free(queues);
641 }
642
cs_etm__free(struct perf_session * session)643 static void cs_etm__free(struct perf_session *session)
644 {
645 int i;
646 struct int_node *inode, *tmp;
647 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
648 struct cs_etm_auxtrace,
649 auxtrace);
650 cs_etm__free_events(session);
651 session->auxtrace = NULL;
652
653 /* First remove all traceID/metadata nodes for the RB tree */
654 intlist__for_each_entry_safe(inode, tmp, traceid_list)
655 intlist__remove(traceid_list, inode);
656 /* Then the RB tree itself */
657 intlist__delete(traceid_list);
658
659 for (i = 0; i < aux->num_cpu; i++)
660 zfree(&aux->metadata[i]);
661
662 thread__zput(aux->unknown_thread);
663 zfree(&aux->metadata);
664 zfree(&aux);
665 }
666
cs_etm__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)667 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
668 struct evsel *evsel)
669 {
670 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
671 struct cs_etm_auxtrace,
672 auxtrace);
673
674 return evsel->core.attr.type == aux->pmu_type;
675 }
676
cs_etm__cpu_mode(struct cs_etm_queue * etmq,u64 address)677 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
678 {
679 struct machine *machine;
680
681 machine = etmq->etm->machine;
682
683 if (address >= machine__kernel_start(machine)) {
684 if (machine__is_host(machine))
685 return PERF_RECORD_MISC_KERNEL;
686 else
687 return PERF_RECORD_MISC_GUEST_KERNEL;
688 } else {
689 if (machine__is_host(machine))
690 return PERF_RECORD_MISC_USER;
691 else if (perf_guest)
692 return PERF_RECORD_MISC_GUEST_USER;
693 else
694 return PERF_RECORD_MISC_HYPERVISOR;
695 }
696 }
697
cs_etm__mem_access(struct cs_etm_queue * etmq,u8 trace_chan_id,u64 address,size_t size,u8 * buffer)698 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
699 u64 address, size_t size, u8 *buffer)
700 {
701 u8 cpumode;
702 u64 offset;
703 int len;
704 struct thread *thread;
705 struct machine *machine;
706 struct addr_location al;
707 struct cs_etm_traceid_queue *tidq;
708
709 if (!etmq)
710 return 0;
711
712 machine = etmq->etm->machine;
713 cpumode = cs_etm__cpu_mode(etmq, address);
714 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
715 if (!tidq)
716 return 0;
717
718 thread = tidq->thread;
719 if (!thread) {
720 if (cpumode != PERF_RECORD_MISC_KERNEL)
721 return 0;
722 thread = etmq->etm->unknown_thread;
723 }
724
725 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
726 return 0;
727
728 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
729 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
730 return 0;
731
732 offset = al.map->map_ip(al.map, address);
733
734 map__load(al.map);
735
736 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
737
738 if (len <= 0) {
739 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
740 " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
741 if (!al.map->dso->auxtrace_warned) {
742 pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
743 address,
744 al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
745 al.map->dso->auxtrace_warned = true;
746 }
747 return 0;
748 }
749
750 return len;
751 }
752
cs_etm__alloc_queue(struct cs_etm_auxtrace * etm,bool formatted)753 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
754 bool formatted)
755 {
756 struct cs_etm_decoder_params d_params;
757 struct cs_etm_trace_params *t_params = NULL;
758 struct cs_etm_queue *etmq;
759 /*
760 * Each queue can only contain data from one CPU when unformatted, so only one decoder is
761 * needed.
762 */
763 int decoders = formatted ? etm->num_cpu : 1;
764
765 etmq = zalloc(sizeof(*etmq));
766 if (!etmq)
767 return NULL;
768
769 etmq->traceid_queues_list = intlist__new(NULL);
770 if (!etmq->traceid_queues_list)
771 goto out_free;
772
773 /* Use metadata to fill in trace parameters for trace decoder */
774 t_params = zalloc(sizeof(*t_params) * decoders);
775
776 if (!t_params)
777 goto out_free;
778
779 if (cs_etm__init_trace_params(t_params, etm, decoders))
780 goto out_free;
781
782 /* Set decoder parameters to decode trace packets */
783 if (cs_etm__init_decoder_params(&d_params, etmq,
784 dump_trace ? CS_ETM_OPERATION_PRINT :
785 CS_ETM_OPERATION_DECODE,
786 formatted))
787 goto out_free;
788
789 etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
790 t_params);
791
792 if (!etmq->decoder)
793 goto out_free;
794
795 /*
796 * Register a function to handle all memory accesses required by
797 * the trace decoder library.
798 */
799 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
800 0x0L, ((u64) -1L),
801 cs_etm__mem_access))
802 goto out_free_decoder;
803
804 zfree(&t_params);
805 return etmq;
806
807 out_free_decoder:
808 cs_etm_decoder__free(etmq->decoder);
809 out_free:
810 intlist__delete(etmq->traceid_queues_list);
811 free(etmq);
812
813 return NULL;
814 }
815
cs_etm__setup_queue(struct cs_etm_auxtrace * etm,struct auxtrace_queue * queue,unsigned int queue_nr,bool formatted)816 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
817 struct auxtrace_queue *queue,
818 unsigned int queue_nr,
819 bool formatted)
820 {
821 struct cs_etm_queue *etmq = queue->priv;
822
823 if (list_empty(&queue->head) || etmq)
824 return 0;
825
826 etmq = cs_etm__alloc_queue(etm, formatted);
827
828 if (!etmq)
829 return -ENOMEM;
830
831 queue->priv = etmq;
832 etmq->etm = etm;
833 etmq->queue_nr = queue_nr;
834 etmq->offset = 0;
835
836 return 0;
837 }
838
cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace * etm,struct cs_etm_queue * etmq,unsigned int queue_nr)839 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
840 struct cs_etm_queue *etmq,
841 unsigned int queue_nr)
842 {
843 int ret = 0;
844 unsigned int cs_queue_nr;
845 u8 trace_chan_id;
846 u64 cs_timestamp;
847
848 /*
849 * We are under a CPU-wide trace scenario. As such we need to know
850 * when the code that generated the traces started to execute so that
851 * it can be correlated with execution on other CPUs. So we get a
852 * handle on the beginning of traces and decode until we find a
853 * timestamp. The timestamp is then added to the auxtrace min heap
854 * in order to know what nibble (of all the etmqs) to decode first.
855 */
856 while (1) {
857 /*
858 * Fetch an aux_buffer from this etmq. Bail if no more
859 * blocks or an error has been encountered.
860 */
861 ret = cs_etm__get_data_block(etmq);
862 if (ret <= 0)
863 goto out;
864
865 /*
866 * Run decoder on the trace block. The decoder will stop when
867 * encountering a CS timestamp, a full packet queue or the end of
868 * trace for that block.
869 */
870 ret = cs_etm__decode_data_block(etmq);
871 if (ret)
872 goto out;
873
874 /*
875 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
876 * the timestamp calculation for us.
877 */
878 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
879
880 /* We found a timestamp, no need to continue. */
881 if (cs_timestamp)
882 break;
883
884 /*
885 * We didn't find a timestamp so empty all the traceid packet
886 * queues before looking for another timestamp packet, either
887 * in the current data block or a new one. Packets that were
888 * just decoded are useless since no timestamp has been
889 * associated with them. As such simply discard them.
890 */
891 cs_etm__clear_all_packet_queues(etmq);
892 }
893
894 /*
895 * We have a timestamp. Add it to the min heap to reflect when
896 * instructions conveyed by the range packets of this traceID queue
897 * started to execute. Once the same has been done for all the traceID
898 * queues of each etmq, redenring and decoding can start in
899 * chronological order.
900 *
901 * Note that packets decoded above are still in the traceID's packet
902 * queue and will be processed in cs_etm__process_queues().
903 */
904 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
905 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
906 out:
907 return ret;
908 }
909
910 static inline
cs_etm__copy_last_branch_rb(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)911 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
912 struct cs_etm_traceid_queue *tidq)
913 {
914 struct branch_stack *bs_src = tidq->last_branch_rb;
915 struct branch_stack *bs_dst = tidq->last_branch;
916 size_t nr = 0;
917
918 /*
919 * Set the number of records before early exit: ->nr is used to
920 * determine how many branches to copy from ->entries.
921 */
922 bs_dst->nr = bs_src->nr;
923
924 /*
925 * Early exit when there is nothing to copy.
926 */
927 if (!bs_src->nr)
928 return;
929
930 /*
931 * As bs_src->entries is a circular buffer, we need to copy from it in
932 * two steps. First, copy the branches from the most recently inserted
933 * branch ->last_branch_pos until the end of bs_src->entries buffer.
934 */
935 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
936 memcpy(&bs_dst->entries[0],
937 &bs_src->entries[tidq->last_branch_pos],
938 sizeof(struct branch_entry) * nr);
939
940 /*
941 * If we wrapped around at least once, the branches from the beginning
942 * of the bs_src->entries buffer and until the ->last_branch_pos element
943 * are older valid branches: copy them over. The total number of
944 * branches copied over will be equal to the number of branches asked by
945 * the user in last_branch_sz.
946 */
947 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
948 memcpy(&bs_dst->entries[nr],
949 &bs_src->entries[0],
950 sizeof(struct branch_entry) * tidq->last_branch_pos);
951 }
952 }
953
954 static inline
cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue * tidq)955 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
956 {
957 tidq->last_branch_pos = 0;
958 tidq->last_branch_rb->nr = 0;
959 }
960
cs_etm__t32_instr_size(struct cs_etm_queue * etmq,u8 trace_chan_id,u64 addr)961 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
962 u8 trace_chan_id, u64 addr)
963 {
964 u8 instrBytes[2];
965
966 cs_etm__mem_access(etmq, trace_chan_id, addr,
967 ARRAY_SIZE(instrBytes), instrBytes);
968 /*
969 * T32 instruction size is indicated by bits[15:11] of the first
970 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
971 * denote a 32-bit instruction.
972 */
973 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
974 }
975
cs_etm__first_executed_instr(struct cs_etm_packet * packet)976 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
977 {
978 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
979 if (packet->sample_type == CS_ETM_DISCONTINUITY)
980 return 0;
981
982 return packet->start_addr;
983 }
984
985 static inline
cs_etm__last_executed_instr(const struct cs_etm_packet * packet)986 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
987 {
988 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
989 if (packet->sample_type == CS_ETM_DISCONTINUITY)
990 return 0;
991
992 return packet->end_addr - packet->last_instr_size;
993 }
994
cs_etm__instr_addr(struct cs_etm_queue * etmq,u64 trace_chan_id,const struct cs_etm_packet * packet,u64 offset)995 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
996 u64 trace_chan_id,
997 const struct cs_etm_packet *packet,
998 u64 offset)
999 {
1000 if (packet->isa == CS_ETM_ISA_T32) {
1001 u64 addr = packet->start_addr;
1002
1003 while (offset) {
1004 addr += cs_etm__t32_instr_size(etmq,
1005 trace_chan_id, addr);
1006 offset--;
1007 }
1008 return addr;
1009 }
1010
1011 /* Assume a 4 byte instruction size (A32/A64) */
1012 return packet->start_addr + offset * 4;
1013 }
1014
cs_etm__update_last_branch_rb(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1015 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1016 struct cs_etm_traceid_queue *tidq)
1017 {
1018 struct branch_stack *bs = tidq->last_branch_rb;
1019 struct branch_entry *be;
1020
1021 /*
1022 * The branches are recorded in a circular buffer in reverse
1023 * chronological order: we start recording from the last element of the
1024 * buffer down. After writing the first element of the stack, move the
1025 * insert position back to the end of the buffer.
1026 */
1027 if (!tidq->last_branch_pos)
1028 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1029
1030 tidq->last_branch_pos -= 1;
1031
1032 be = &bs->entries[tidq->last_branch_pos];
1033 be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1034 be->to = cs_etm__first_executed_instr(tidq->packet);
1035 /* No support for mispredict */
1036 be->flags.mispred = 0;
1037 be->flags.predicted = 1;
1038
1039 /*
1040 * Increment bs->nr until reaching the number of last branches asked by
1041 * the user on the command line.
1042 */
1043 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1044 bs->nr += 1;
1045 }
1046
cs_etm__inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1047 static int cs_etm__inject_event(union perf_event *event,
1048 struct perf_sample *sample, u64 type)
1049 {
1050 event->header.size = perf_event__sample_event_size(sample, type, 0);
1051 return perf_event__synthesize_sample(event, type, 0, sample);
1052 }
1053
1054
1055 static int
cs_etm__get_trace(struct cs_etm_queue * etmq)1056 cs_etm__get_trace(struct cs_etm_queue *etmq)
1057 {
1058 struct auxtrace_buffer *aux_buffer = etmq->buffer;
1059 struct auxtrace_buffer *old_buffer = aux_buffer;
1060 struct auxtrace_queue *queue;
1061
1062 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1063
1064 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1065
1066 /* If no more data, drop the previous auxtrace_buffer and return */
1067 if (!aux_buffer) {
1068 if (old_buffer)
1069 auxtrace_buffer__drop_data(old_buffer);
1070 etmq->buf_len = 0;
1071 return 0;
1072 }
1073
1074 etmq->buffer = aux_buffer;
1075
1076 /* If the aux_buffer doesn't have data associated, try to load it */
1077 if (!aux_buffer->data) {
1078 /* get the file desc associated with the perf data file */
1079 int fd = perf_data__fd(etmq->etm->session->data);
1080
1081 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1082 if (!aux_buffer->data)
1083 return -ENOMEM;
1084 }
1085
1086 /* If valid, drop the previous buffer */
1087 if (old_buffer)
1088 auxtrace_buffer__drop_data(old_buffer);
1089
1090 etmq->buf_used = 0;
1091 etmq->buf_len = aux_buffer->size;
1092 etmq->buf = aux_buffer->data;
1093
1094 return etmq->buf_len;
1095 }
1096
cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace * etm,struct cs_etm_traceid_queue * tidq)1097 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1098 struct cs_etm_traceid_queue *tidq)
1099 {
1100 if ((!tidq->thread) && (tidq->tid != -1))
1101 tidq->thread = machine__find_thread(etm->machine, -1,
1102 tidq->tid);
1103
1104 if (tidq->thread)
1105 tidq->pid = tidq->thread->pid_;
1106 }
1107
cs_etm__etmq_set_tid(struct cs_etm_queue * etmq,pid_t tid,u8 trace_chan_id)1108 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1109 pid_t tid, u8 trace_chan_id)
1110 {
1111 int cpu, err = -EINVAL;
1112 struct cs_etm_auxtrace *etm = etmq->etm;
1113 struct cs_etm_traceid_queue *tidq;
1114
1115 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1116 if (!tidq)
1117 return err;
1118
1119 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1120 return err;
1121
1122 err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1123 if (err)
1124 return err;
1125
1126 tidq->tid = tid;
1127 thread__zput(tidq->thread);
1128
1129 cs_etm__set_pid_tid_cpu(etm, tidq);
1130 return 0;
1131 }
1132
cs_etm__etmq_is_timeless(struct cs_etm_queue * etmq)1133 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1134 {
1135 return !!etmq->etm->timeless_decoding;
1136 }
1137
cs_etm__copy_insn(struct cs_etm_queue * etmq,u64 trace_chan_id,const struct cs_etm_packet * packet,struct perf_sample * sample)1138 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1139 u64 trace_chan_id,
1140 const struct cs_etm_packet *packet,
1141 struct perf_sample *sample)
1142 {
1143 /*
1144 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1145 * packet, so directly bail out with 'insn_len' = 0.
1146 */
1147 if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1148 sample->insn_len = 0;
1149 return;
1150 }
1151
1152 /*
1153 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1154 * cs_etm__t32_instr_size().
1155 */
1156 if (packet->isa == CS_ETM_ISA_T32)
1157 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1158 sample->ip);
1159 /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1160 else
1161 sample->insn_len = 4;
1162
1163 cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1164 sample->insn_len, (void *)sample->insn);
1165 }
1166
cs_etm__convert_sample_time(struct cs_etm_queue * etmq,u64 cs_timestamp)1167 u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp)
1168 {
1169 struct cs_etm_auxtrace *etm = etmq->etm;
1170
1171 if (etm->has_virtual_ts)
1172 return tsc_to_perf_time(cs_timestamp, &etm->tc);
1173 else
1174 return cs_timestamp;
1175 }
1176
cs_etm__resolve_sample_time(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1177 static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq,
1178 struct cs_etm_traceid_queue *tidq)
1179 {
1180 struct cs_etm_auxtrace *etm = etmq->etm;
1181 struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue;
1182
1183 if (etm->timeless_decoding)
1184 return 0;
1185 else if (etm->has_virtual_ts)
1186 return packet_queue->cs_timestamp;
1187 else
1188 return etm->latest_kernel_timestamp;
1189 }
1190
cs_etm__synth_instruction_sample(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u64 addr,u64 period)1191 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1192 struct cs_etm_traceid_queue *tidq,
1193 u64 addr, u64 period)
1194 {
1195 int ret = 0;
1196 struct cs_etm_auxtrace *etm = etmq->etm;
1197 union perf_event *event = tidq->event_buf;
1198 struct perf_sample sample = {.ip = 0,};
1199
1200 event->sample.header.type = PERF_RECORD_SAMPLE;
1201 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1202 event->sample.header.size = sizeof(struct perf_event_header);
1203
1204 /* Set time field based on etm auxtrace config. */
1205 sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1206
1207 sample.ip = addr;
1208 sample.pid = tidq->pid;
1209 sample.tid = tidq->tid;
1210 sample.id = etmq->etm->instructions_id;
1211 sample.stream_id = etmq->etm->instructions_id;
1212 sample.period = period;
1213 sample.cpu = tidq->packet->cpu;
1214 sample.flags = tidq->prev_packet->flags;
1215 sample.cpumode = event->sample.header.misc;
1216
1217 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1218
1219 if (etm->synth_opts.last_branch)
1220 sample.branch_stack = tidq->last_branch;
1221
1222 if (etm->synth_opts.inject) {
1223 ret = cs_etm__inject_event(event, &sample,
1224 etm->instructions_sample_type);
1225 if (ret)
1226 return ret;
1227 }
1228
1229 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1230
1231 if (ret)
1232 pr_err(
1233 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1234 ret);
1235
1236 return ret;
1237 }
1238
1239 /*
1240 * The cs etm packet encodes an instruction range between a branch target
1241 * and the next taken branch. Generate sample accordingly.
1242 */
cs_etm__synth_branch_sample(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1243 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1244 struct cs_etm_traceid_queue *tidq)
1245 {
1246 int ret = 0;
1247 struct cs_etm_auxtrace *etm = etmq->etm;
1248 struct perf_sample sample = {.ip = 0,};
1249 union perf_event *event = tidq->event_buf;
1250 struct dummy_branch_stack {
1251 u64 nr;
1252 u64 hw_idx;
1253 struct branch_entry entries;
1254 } dummy_bs;
1255 u64 ip;
1256
1257 ip = cs_etm__last_executed_instr(tidq->prev_packet);
1258
1259 event->sample.header.type = PERF_RECORD_SAMPLE;
1260 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1261 event->sample.header.size = sizeof(struct perf_event_header);
1262
1263 /* Set time field based on etm auxtrace config. */
1264 sample.time = cs_etm__resolve_sample_time(etmq, tidq);
1265
1266 sample.ip = ip;
1267 sample.pid = tidq->pid;
1268 sample.tid = tidq->tid;
1269 sample.addr = cs_etm__first_executed_instr(tidq->packet);
1270 sample.id = etmq->etm->branches_id;
1271 sample.stream_id = etmq->etm->branches_id;
1272 sample.period = 1;
1273 sample.cpu = tidq->packet->cpu;
1274 sample.flags = tidq->prev_packet->flags;
1275 sample.cpumode = event->sample.header.misc;
1276
1277 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1278 &sample);
1279
1280 /*
1281 * perf report cannot handle events without a branch stack
1282 */
1283 if (etm->synth_opts.last_branch) {
1284 dummy_bs = (struct dummy_branch_stack){
1285 .nr = 1,
1286 .hw_idx = -1ULL,
1287 .entries = {
1288 .from = sample.ip,
1289 .to = sample.addr,
1290 },
1291 };
1292 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1293 }
1294
1295 if (etm->synth_opts.inject) {
1296 ret = cs_etm__inject_event(event, &sample,
1297 etm->branches_sample_type);
1298 if (ret)
1299 return ret;
1300 }
1301
1302 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1303
1304 if (ret)
1305 pr_err(
1306 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1307 ret);
1308
1309 return ret;
1310 }
1311
1312 struct cs_etm_synth {
1313 struct perf_tool dummy_tool;
1314 struct perf_session *session;
1315 };
1316
cs_etm__event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1317 static int cs_etm__event_synth(struct perf_tool *tool,
1318 union perf_event *event,
1319 struct perf_sample *sample __maybe_unused,
1320 struct machine *machine __maybe_unused)
1321 {
1322 struct cs_etm_synth *cs_etm_synth =
1323 container_of(tool, struct cs_etm_synth, dummy_tool);
1324
1325 return perf_session__deliver_synth_event(cs_etm_synth->session,
1326 event, NULL);
1327 }
1328
cs_etm__synth_event(struct perf_session * session,struct perf_event_attr * attr,u64 id)1329 static int cs_etm__synth_event(struct perf_session *session,
1330 struct perf_event_attr *attr, u64 id)
1331 {
1332 struct cs_etm_synth cs_etm_synth;
1333
1334 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1335 cs_etm_synth.session = session;
1336
1337 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1338 &id, cs_etm__event_synth);
1339 }
1340
cs_etm__synth_events(struct cs_etm_auxtrace * etm,struct perf_session * session)1341 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1342 struct perf_session *session)
1343 {
1344 struct evlist *evlist = session->evlist;
1345 struct evsel *evsel;
1346 struct perf_event_attr attr;
1347 bool found = false;
1348 u64 id;
1349 int err;
1350
1351 evlist__for_each_entry(evlist, evsel) {
1352 if (evsel->core.attr.type == etm->pmu_type) {
1353 found = true;
1354 break;
1355 }
1356 }
1357
1358 if (!found) {
1359 pr_debug("No selected events with CoreSight Trace data\n");
1360 return 0;
1361 }
1362
1363 memset(&attr, 0, sizeof(struct perf_event_attr));
1364 attr.size = sizeof(struct perf_event_attr);
1365 attr.type = PERF_TYPE_HARDWARE;
1366 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1367 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1368 PERF_SAMPLE_PERIOD;
1369 if (etm->timeless_decoding)
1370 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1371 else
1372 attr.sample_type |= PERF_SAMPLE_TIME;
1373
1374 attr.exclude_user = evsel->core.attr.exclude_user;
1375 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1376 attr.exclude_hv = evsel->core.attr.exclude_hv;
1377 attr.exclude_host = evsel->core.attr.exclude_host;
1378 attr.exclude_guest = evsel->core.attr.exclude_guest;
1379 attr.sample_id_all = evsel->core.attr.sample_id_all;
1380 attr.read_format = evsel->core.attr.read_format;
1381
1382 /* create new id val to be a fixed offset from evsel id */
1383 id = evsel->core.id[0] + 1000000000;
1384
1385 if (!id)
1386 id = 1;
1387
1388 if (etm->synth_opts.branches) {
1389 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1390 attr.sample_period = 1;
1391 attr.sample_type |= PERF_SAMPLE_ADDR;
1392 err = cs_etm__synth_event(session, &attr, id);
1393 if (err)
1394 return err;
1395 etm->branches_sample_type = attr.sample_type;
1396 etm->branches_id = id;
1397 id += 1;
1398 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1399 }
1400
1401 if (etm->synth_opts.last_branch) {
1402 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1403 /*
1404 * We don't use the hardware index, but the sample generation
1405 * code uses the new format branch_stack with this field,
1406 * so the event attributes must indicate that it's present.
1407 */
1408 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1409 }
1410
1411 if (etm->synth_opts.instructions) {
1412 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1413 attr.sample_period = etm->synth_opts.period;
1414 etm->instructions_sample_period = attr.sample_period;
1415 err = cs_etm__synth_event(session, &attr, id);
1416 if (err)
1417 return err;
1418 etm->instructions_sample_type = attr.sample_type;
1419 etm->instructions_id = id;
1420 id += 1;
1421 }
1422
1423 return 0;
1424 }
1425
cs_etm__sample(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1426 static int cs_etm__sample(struct cs_etm_queue *etmq,
1427 struct cs_etm_traceid_queue *tidq)
1428 {
1429 struct cs_etm_auxtrace *etm = etmq->etm;
1430 int ret;
1431 u8 trace_chan_id = tidq->trace_chan_id;
1432 u64 instrs_prev;
1433
1434 /* Get instructions remainder from previous packet */
1435 instrs_prev = tidq->period_instructions;
1436
1437 tidq->period_instructions += tidq->packet->instr_count;
1438
1439 /*
1440 * Record a branch when the last instruction in
1441 * PREV_PACKET is a branch.
1442 */
1443 if (etm->synth_opts.last_branch &&
1444 tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1445 tidq->prev_packet->last_instr_taken_branch)
1446 cs_etm__update_last_branch_rb(etmq, tidq);
1447
1448 if (etm->synth_opts.instructions &&
1449 tidq->period_instructions >= etm->instructions_sample_period) {
1450 /*
1451 * Emit instruction sample periodically
1452 * TODO: allow period to be defined in cycles and clock time
1453 */
1454
1455 /*
1456 * Below diagram demonstrates the instruction samples
1457 * generation flows:
1458 *
1459 * Instrs Instrs Instrs Instrs
1460 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3)
1461 * | | | |
1462 * V V V V
1463 * --------------------------------------------------
1464 * ^ ^
1465 * | |
1466 * Period Period
1467 * instructions(Pi) instructions(Pi')
1468 *
1469 * | |
1470 * \---------------- -----------------/
1471 * V
1472 * tidq->packet->instr_count
1473 *
1474 * Instrs Sample(n...) are the synthesised samples occurring
1475 * every etm->instructions_sample_period instructions - as
1476 * defined on the perf command line. Sample(n) is being the
1477 * last sample before the current etm packet, n+1 to n+3
1478 * samples are generated from the current etm packet.
1479 *
1480 * tidq->packet->instr_count represents the number of
1481 * instructions in the current etm packet.
1482 *
1483 * Period instructions (Pi) contains the number of
1484 * instructions executed after the sample point(n) from the
1485 * previous etm packet. This will always be less than
1486 * etm->instructions_sample_period.
1487 *
1488 * When generate new samples, it combines with two parts
1489 * instructions, one is the tail of the old packet and another
1490 * is the head of the new coming packet, to generate
1491 * sample(n+1); sample(n+2) and sample(n+3) consume the
1492 * instructions with sample period. After sample(n+3), the rest
1493 * instructions will be used by later packet and it is assigned
1494 * to tidq->period_instructions for next round calculation.
1495 */
1496
1497 /*
1498 * Get the initial offset into the current packet instructions;
1499 * entry conditions ensure that instrs_prev is less than
1500 * etm->instructions_sample_period.
1501 */
1502 u64 offset = etm->instructions_sample_period - instrs_prev;
1503 u64 addr;
1504
1505 /* Prepare last branches for instruction sample */
1506 if (etm->synth_opts.last_branch)
1507 cs_etm__copy_last_branch_rb(etmq, tidq);
1508
1509 while (tidq->period_instructions >=
1510 etm->instructions_sample_period) {
1511 /*
1512 * Calculate the address of the sampled instruction (-1
1513 * as sample is reported as though instruction has just
1514 * been executed, but PC has not advanced to next
1515 * instruction)
1516 */
1517 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1518 tidq->packet, offset - 1);
1519 ret = cs_etm__synth_instruction_sample(
1520 etmq, tidq, addr,
1521 etm->instructions_sample_period);
1522 if (ret)
1523 return ret;
1524
1525 offset += etm->instructions_sample_period;
1526 tidq->period_instructions -=
1527 etm->instructions_sample_period;
1528 }
1529 }
1530
1531 if (etm->synth_opts.branches) {
1532 bool generate_sample = false;
1533
1534 /* Generate sample for tracing on packet */
1535 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1536 generate_sample = true;
1537
1538 /* Generate sample for branch taken packet */
1539 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1540 tidq->prev_packet->last_instr_taken_branch)
1541 generate_sample = true;
1542
1543 if (generate_sample) {
1544 ret = cs_etm__synth_branch_sample(etmq, tidq);
1545 if (ret)
1546 return ret;
1547 }
1548 }
1549
1550 cs_etm__packet_swap(etm, tidq);
1551
1552 return 0;
1553 }
1554
cs_etm__exception(struct cs_etm_traceid_queue * tidq)1555 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1556 {
1557 /*
1558 * When the exception packet is inserted, whether the last instruction
1559 * in previous range packet is taken branch or not, we need to force
1560 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures
1561 * to generate branch sample for the instruction range before the
1562 * exception is trapped to kernel or before the exception returning.
1563 *
1564 * The exception packet includes the dummy address values, so don't
1565 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
1566 * for generating instruction and branch samples.
1567 */
1568 if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1569 tidq->prev_packet->last_instr_taken_branch = true;
1570
1571 return 0;
1572 }
1573
cs_etm__flush(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1574 static int cs_etm__flush(struct cs_etm_queue *etmq,
1575 struct cs_etm_traceid_queue *tidq)
1576 {
1577 int err = 0;
1578 struct cs_etm_auxtrace *etm = etmq->etm;
1579
1580 /* Handle start tracing packet */
1581 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1582 goto swap_packet;
1583
1584 if (etmq->etm->synth_opts.last_branch &&
1585 etmq->etm->synth_opts.instructions &&
1586 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1587 u64 addr;
1588
1589 /* Prepare last branches for instruction sample */
1590 cs_etm__copy_last_branch_rb(etmq, tidq);
1591
1592 /*
1593 * Generate a last branch event for the branches left in the
1594 * circular buffer at the end of the trace.
1595 *
1596 * Use the address of the end of the last reported execution
1597 * range
1598 */
1599 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1600
1601 err = cs_etm__synth_instruction_sample(
1602 etmq, tidq, addr,
1603 tidq->period_instructions);
1604 if (err)
1605 return err;
1606
1607 tidq->period_instructions = 0;
1608
1609 }
1610
1611 if (etm->synth_opts.branches &&
1612 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1613 err = cs_etm__synth_branch_sample(etmq, tidq);
1614 if (err)
1615 return err;
1616 }
1617
1618 swap_packet:
1619 cs_etm__packet_swap(etm, tidq);
1620
1621 /* Reset last branches after flush the trace */
1622 if (etm->synth_opts.last_branch)
1623 cs_etm__reset_last_branch_rb(tidq);
1624
1625 return err;
1626 }
1627
cs_etm__end_block(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1628 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1629 struct cs_etm_traceid_queue *tidq)
1630 {
1631 int err;
1632
1633 /*
1634 * It has no new packet coming and 'etmq->packet' contains the stale
1635 * packet which was set at the previous time with packets swapping;
1636 * so skip to generate branch sample to avoid stale packet.
1637 *
1638 * For this case only flush branch stack and generate a last branch
1639 * event for the branches left in the circular buffer at the end of
1640 * the trace.
1641 */
1642 if (etmq->etm->synth_opts.last_branch &&
1643 etmq->etm->synth_opts.instructions &&
1644 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1645 u64 addr;
1646
1647 /* Prepare last branches for instruction sample */
1648 cs_etm__copy_last_branch_rb(etmq, tidq);
1649
1650 /*
1651 * Use the address of the end of the last reported execution
1652 * range.
1653 */
1654 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1655
1656 err = cs_etm__synth_instruction_sample(
1657 etmq, tidq, addr,
1658 tidq->period_instructions);
1659 if (err)
1660 return err;
1661
1662 tidq->period_instructions = 0;
1663 }
1664
1665 return 0;
1666 }
1667 /*
1668 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1669 * if need be.
1670 * Returns: < 0 if error
1671 * = 0 if no more auxtrace_buffer to read
1672 * > 0 if the current buffer isn't empty yet
1673 */
cs_etm__get_data_block(struct cs_etm_queue * etmq)1674 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1675 {
1676 int ret;
1677
1678 if (!etmq->buf_len) {
1679 ret = cs_etm__get_trace(etmq);
1680 if (ret <= 0)
1681 return ret;
1682 /*
1683 * We cannot assume consecutive blocks in the data file
1684 * are contiguous, reset the decoder to force re-sync.
1685 */
1686 ret = cs_etm_decoder__reset(etmq->decoder);
1687 if (ret)
1688 return ret;
1689 }
1690
1691 return etmq->buf_len;
1692 }
1693
cs_etm__is_svc_instr(struct cs_etm_queue * etmq,u8 trace_chan_id,struct cs_etm_packet * packet,u64 end_addr)1694 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1695 struct cs_etm_packet *packet,
1696 u64 end_addr)
1697 {
1698 /* Initialise to keep compiler happy */
1699 u16 instr16 = 0;
1700 u32 instr32 = 0;
1701 u64 addr;
1702
1703 switch (packet->isa) {
1704 case CS_ETM_ISA_T32:
1705 /*
1706 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1707 *
1708 * b'15 b'8
1709 * +-----------------+--------+
1710 * | 1 1 0 1 1 1 1 1 | imm8 |
1711 * +-----------------+--------+
1712 *
1713 * According to the specification, it only defines SVC for T32
1714 * with 16 bits instruction and has no definition for 32bits;
1715 * so below only read 2 bytes as instruction size for T32.
1716 */
1717 addr = end_addr - 2;
1718 cs_etm__mem_access(etmq, trace_chan_id, addr,
1719 sizeof(instr16), (u8 *)&instr16);
1720 if ((instr16 & 0xFF00) == 0xDF00)
1721 return true;
1722
1723 break;
1724 case CS_ETM_ISA_A32:
1725 /*
1726 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1727 *
1728 * b'31 b'28 b'27 b'24
1729 * +---------+---------+-------------------------+
1730 * | !1111 | 1 1 1 1 | imm24 |
1731 * +---------+---------+-------------------------+
1732 */
1733 addr = end_addr - 4;
1734 cs_etm__mem_access(etmq, trace_chan_id, addr,
1735 sizeof(instr32), (u8 *)&instr32);
1736 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1737 (instr32 & 0xF0000000) != 0xF0000000)
1738 return true;
1739
1740 break;
1741 case CS_ETM_ISA_A64:
1742 /*
1743 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1744 *
1745 * b'31 b'21 b'4 b'0
1746 * +-----------------------+---------+-----------+
1747 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
1748 * +-----------------------+---------+-----------+
1749 */
1750 addr = end_addr - 4;
1751 cs_etm__mem_access(etmq, trace_chan_id, addr,
1752 sizeof(instr32), (u8 *)&instr32);
1753 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1754 return true;
1755
1756 break;
1757 case CS_ETM_ISA_UNKNOWN:
1758 default:
1759 break;
1760 }
1761
1762 return false;
1763 }
1764
cs_etm__is_syscall(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u64 magic)1765 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1766 struct cs_etm_traceid_queue *tidq, u64 magic)
1767 {
1768 u8 trace_chan_id = tidq->trace_chan_id;
1769 struct cs_etm_packet *packet = tidq->packet;
1770 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1771
1772 if (magic == __perf_cs_etmv3_magic)
1773 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1774 return true;
1775
1776 /*
1777 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1778 * HVC cases; need to check if it's SVC instruction based on
1779 * packet address.
1780 */
1781 if (magic == __perf_cs_etmv4_magic) {
1782 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1783 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1784 prev_packet->end_addr))
1785 return true;
1786 }
1787
1788 return false;
1789 }
1790
cs_etm__is_async_exception(struct cs_etm_traceid_queue * tidq,u64 magic)1791 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1792 u64 magic)
1793 {
1794 struct cs_etm_packet *packet = tidq->packet;
1795
1796 if (magic == __perf_cs_etmv3_magic)
1797 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1798 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1799 packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1800 packet->exception_number == CS_ETMV3_EXC_IRQ ||
1801 packet->exception_number == CS_ETMV3_EXC_FIQ)
1802 return true;
1803
1804 if (magic == __perf_cs_etmv4_magic)
1805 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1806 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1807 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1808 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1809 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1810 packet->exception_number == CS_ETMV4_EXC_IRQ ||
1811 packet->exception_number == CS_ETMV4_EXC_FIQ)
1812 return true;
1813
1814 return false;
1815 }
1816
cs_etm__is_sync_exception(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u64 magic)1817 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1818 struct cs_etm_traceid_queue *tidq,
1819 u64 magic)
1820 {
1821 u8 trace_chan_id = tidq->trace_chan_id;
1822 struct cs_etm_packet *packet = tidq->packet;
1823 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1824
1825 if (magic == __perf_cs_etmv3_magic)
1826 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1827 packet->exception_number == CS_ETMV3_EXC_HYP ||
1828 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1829 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1830 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1831 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1832 packet->exception_number == CS_ETMV3_EXC_GENERIC)
1833 return true;
1834
1835 if (magic == __perf_cs_etmv4_magic) {
1836 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1837 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1838 packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1839 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1840 return true;
1841
1842 /*
1843 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1844 * (SMC, HVC) are taken as sync exceptions.
1845 */
1846 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1847 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1848 prev_packet->end_addr))
1849 return true;
1850
1851 /*
1852 * ETMv4 has 5 bits for exception number; if the numbers
1853 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1854 * they are implementation defined exceptions.
1855 *
1856 * For this case, simply take it as sync exception.
1857 */
1858 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1859 packet->exception_number <= CS_ETMV4_EXC_END)
1860 return true;
1861 }
1862
1863 return false;
1864 }
1865
cs_etm__set_sample_flags(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1866 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1867 struct cs_etm_traceid_queue *tidq)
1868 {
1869 struct cs_etm_packet *packet = tidq->packet;
1870 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1871 u8 trace_chan_id = tidq->trace_chan_id;
1872 u64 magic;
1873 int ret;
1874
1875 switch (packet->sample_type) {
1876 case CS_ETM_RANGE:
1877 /*
1878 * Immediate branch instruction without neither link nor
1879 * return flag, it's normal branch instruction within
1880 * the function.
1881 */
1882 if (packet->last_instr_type == OCSD_INSTR_BR &&
1883 packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1884 packet->flags = PERF_IP_FLAG_BRANCH;
1885
1886 if (packet->last_instr_cond)
1887 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1888 }
1889
1890 /*
1891 * Immediate branch instruction with link (e.g. BL), this is
1892 * branch instruction for function call.
1893 */
1894 if (packet->last_instr_type == OCSD_INSTR_BR &&
1895 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1896 packet->flags = PERF_IP_FLAG_BRANCH |
1897 PERF_IP_FLAG_CALL;
1898
1899 /*
1900 * Indirect branch instruction with link (e.g. BLR), this is
1901 * branch instruction for function call.
1902 */
1903 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1904 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1905 packet->flags = PERF_IP_FLAG_BRANCH |
1906 PERF_IP_FLAG_CALL;
1907
1908 /*
1909 * Indirect branch instruction with subtype of
1910 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1911 * function return for A32/T32.
1912 */
1913 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1914 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1915 packet->flags = PERF_IP_FLAG_BRANCH |
1916 PERF_IP_FLAG_RETURN;
1917
1918 /*
1919 * Indirect branch instruction without link (e.g. BR), usually
1920 * this is used for function return, especially for functions
1921 * within dynamic link lib.
1922 */
1923 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1924 packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1925 packet->flags = PERF_IP_FLAG_BRANCH |
1926 PERF_IP_FLAG_RETURN;
1927
1928 /* Return instruction for function return. */
1929 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1930 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1931 packet->flags = PERF_IP_FLAG_BRANCH |
1932 PERF_IP_FLAG_RETURN;
1933
1934 /*
1935 * Decoder might insert a discontinuity in the middle of
1936 * instruction packets, fixup prev_packet with flag
1937 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1938 */
1939 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1940 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1941 PERF_IP_FLAG_TRACE_BEGIN;
1942
1943 /*
1944 * If the previous packet is an exception return packet
1945 * and the return address just follows SVC instruction,
1946 * it needs to calibrate the previous packet sample flags
1947 * as PERF_IP_FLAG_SYSCALLRET.
1948 */
1949 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1950 PERF_IP_FLAG_RETURN |
1951 PERF_IP_FLAG_INTERRUPT) &&
1952 cs_etm__is_svc_instr(etmq, trace_chan_id,
1953 packet, packet->start_addr))
1954 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1955 PERF_IP_FLAG_RETURN |
1956 PERF_IP_FLAG_SYSCALLRET;
1957 break;
1958 case CS_ETM_DISCONTINUITY:
1959 /*
1960 * The trace is discontinuous, if the previous packet is
1961 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1962 * for previous packet.
1963 */
1964 if (prev_packet->sample_type == CS_ETM_RANGE)
1965 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1966 PERF_IP_FLAG_TRACE_END;
1967 break;
1968 case CS_ETM_EXCEPTION:
1969 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1970 if (ret)
1971 return ret;
1972
1973 /* The exception is for system call. */
1974 if (cs_etm__is_syscall(etmq, tidq, magic))
1975 packet->flags = PERF_IP_FLAG_BRANCH |
1976 PERF_IP_FLAG_CALL |
1977 PERF_IP_FLAG_SYSCALLRET;
1978 /*
1979 * The exceptions are triggered by external signals from bus,
1980 * interrupt controller, debug module, PE reset or halt.
1981 */
1982 else if (cs_etm__is_async_exception(tidq, magic))
1983 packet->flags = PERF_IP_FLAG_BRANCH |
1984 PERF_IP_FLAG_CALL |
1985 PERF_IP_FLAG_ASYNC |
1986 PERF_IP_FLAG_INTERRUPT;
1987 /*
1988 * Otherwise, exception is caused by trap, instruction &
1989 * data fault, or alignment errors.
1990 */
1991 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1992 packet->flags = PERF_IP_FLAG_BRANCH |
1993 PERF_IP_FLAG_CALL |
1994 PERF_IP_FLAG_INTERRUPT;
1995
1996 /*
1997 * When the exception packet is inserted, since exception
1998 * packet is not used standalone for generating samples
1999 * and it's affiliation to the previous instruction range
2000 * packet; so set previous range packet flags to tell perf
2001 * it is an exception taken branch.
2002 */
2003 if (prev_packet->sample_type == CS_ETM_RANGE)
2004 prev_packet->flags = packet->flags;
2005 break;
2006 case CS_ETM_EXCEPTION_RET:
2007 /*
2008 * When the exception return packet is inserted, since
2009 * exception return packet is not used standalone for
2010 * generating samples and it's affiliation to the previous
2011 * instruction range packet; so set previous range packet
2012 * flags to tell perf it is an exception return branch.
2013 *
2014 * The exception return can be for either system call or
2015 * other exception types; unfortunately the packet doesn't
2016 * contain exception type related info so we cannot decide
2017 * the exception type purely based on exception return packet.
2018 * If we record the exception number from exception packet and
2019 * reuse it for exception return packet, this is not reliable
2020 * due the trace can be discontinuity or the interrupt can
2021 * be nested, thus the recorded exception number cannot be
2022 * used for exception return packet for these two cases.
2023 *
2024 * For exception return packet, we only need to distinguish the
2025 * packet is for system call or for other types. Thus the
2026 * decision can be deferred when receive the next packet which
2027 * contains the return address, based on the return address we
2028 * can read out the previous instruction and check if it's a
2029 * system call instruction and then calibrate the sample flag
2030 * as needed.
2031 */
2032 if (prev_packet->sample_type == CS_ETM_RANGE)
2033 prev_packet->flags = PERF_IP_FLAG_BRANCH |
2034 PERF_IP_FLAG_RETURN |
2035 PERF_IP_FLAG_INTERRUPT;
2036 break;
2037 case CS_ETM_EMPTY:
2038 default:
2039 break;
2040 }
2041
2042 return 0;
2043 }
2044
cs_etm__decode_data_block(struct cs_etm_queue * etmq)2045 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2046 {
2047 int ret = 0;
2048 size_t processed = 0;
2049
2050 /*
2051 * Packets are decoded and added to the decoder's packet queue
2052 * until the decoder packet processing callback has requested that
2053 * processing stops or there is nothing left in the buffer. Normal
2054 * operations that stop processing are a timestamp packet or a full
2055 * decoder buffer queue.
2056 */
2057 ret = cs_etm_decoder__process_data_block(etmq->decoder,
2058 etmq->offset,
2059 &etmq->buf[etmq->buf_used],
2060 etmq->buf_len,
2061 &processed);
2062 if (ret)
2063 goto out;
2064
2065 etmq->offset += processed;
2066 etmq->buf_used += processed;
2067 etmq->buf_len -= processed;
2068
2069 out:
2070 return ret;
2071 }
2072
cs_etm__process_traceid_queue(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)2073 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2074 struct cs_etm_traceid_queue *tidq)
2075 {
2076 int ret;
2077 struct cs_etm_packet_queue *packet_queue;
2078
2079 packet_queue = &tidq->packet_queue;
2080
2081 /* Process each packet in this chunk */
2082 while (1) {
2083 ret = cs_etm_decoder__get_packet(packet_queue,
2084 tidq->packet);
2085 if (ret <= 0)
2086 /*
2087 * Stop processing this chunk on
2088 * end of data or error
2089 */
2090 break;
2091
2092 /*
2093 * Since packet addresses are swapped in packet
2094 * handling within below switch() statements,
2095 * thus setting sample flags must be called
2096 * prior to switch() statement to use address
2097 * information before packets swapping.
2098 */
2099 ret = cs_etm__set_sample_flags(etmq, tidq);
2100 if (ret < 0)
2101 break;
2102
2103 switch (tidq->packet->sample_type) {
2104 case CS_ETM_RANGE:
2105 /*
2106 * If the packet contains an instruction
2107 * range, generate instruction sequence
2108 * events.
2109 */
2110 cs_etm__sample(etmq, tidq);
2111 break;
2112 case CS_ETM_EXCEPTION:
2113 case CS_ETM_EXCEPTION_RET:
2114 /*
2115 * If the exception packet is coming,
2116 * make sure the previous instruction
2117 * range packet to be handled properly.
2118 */
2119 cs_etm__exception(tidq);
2120 break;
2121 case CS_ETM_DISCONTINUITY:
2122 /*
2123 * Discontinuity in trace, flush
2124 * previous branch stack
2125 */
2126 cs_etm__flush(etmq, tidq);
2127 break;
2128 case CS_ETM_EMPTY:
2129 /*
2130 * Should not receive empty packet,
2131 * report error.
2132 */
2133 pr_err("CS ETM Trace: empty packet\n");
2134 return -EINVAL;
2135 default:
2136 break;
2137 }
2138 }
2139
2140 return ret;
2141 }
2142
cs_etm__clear_all_traceid_queues(struct cs_etm_queue * etmq)2143 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2144 {
2145 int idx;
2146 struct int_node *inode;
2147 struct cs_etm_traceid_queue *tidq;
2148 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2149
2150 intlist__for_each_entry(inode, traceid_queues_list) {
2151 idx = (int)(intptr_t)inode->priv;
2152 tidq = etmq->traceid_queues[idx];
2153
2154 /* Ignore return value */
2155 cs_etm__process_traceid_queue(etmq, tidq);
2156
2157 /*
2158 * Generate an instruction sample with the remaining
2159 * branchstack entries.
2160 */
2161 cs_etm__flush(etmq, tidq);
2162 }
2163 }
2164
cs_etm__run_decoder(struct cs_etm_queue * etmq)2165 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2166 {
2167 int err = 0;
2168 struct cs_etm_traceid_queue *tidq;
2169
2170 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2171 if (!tidq)
2172 return -EINVAL;
2173
2174 /* Go through each buffer in the queue and decode them one by one */
2175 while (1) {
2176 err = cs_etm__get_data_block(etmq);
2177 if (err <= 0)
2178 return err;
2179
2180 /* Run trace decoder until buffer consumed or end of trace */
2181 do {
2182 err = cs_etm__decode_data_block(etmq);
2183 if (err)
2184 return err;
2185
2186 /*
2187 * Process each packet in this chunk, nothing to do if
2188 * an error occurs other than hoping the next one will
2189 * be better.
2190 */
2191 err = cs_etm__process_traceid_queue(etmq, tidq);
2192
2193 } while (etmq->buf_len);
2194
2195 if (err == 0)
2196 /* Flush any remaining branch stack entries */
2197 err = cs_etm__end_block(etmq, tidq);
2198 }
2199
2200 return err;
2201 }
2202
cs_etm__process_timeless_queues(struct cs_etm_auxtrace * etm,pid_t tid)2203 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2204 pid_t tid)
2205 {
2206 unsigned int i;
2207 struct auxtrace_queues *queues = &etm->queues;
2208
2209 for (i = 0; i < queues->nr_queues; i++) {
2210 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2211 struct cs_etm_queue *etmq = queue->priv;
2212 struct cs_etm_traceid_queue *tidq;
2213
2214 if (!etmq)
2215 continue;
2216
2217 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2218 CS_ETM_PER_THREAD_TRACEID);
2219
2220 if (!tidq)
2221 continue;
2222
2223 if ((tid == -1) || (tidq->tid == tid)) {
2224 cs_etm__set_pid_tid_cpu(etm, tidq);
2225 cs_etm__run_decoder(etmq);
2226 }
2227 }
2228
2229 return 0;
2230 }
2231
cs_etm__process_queues(struct cs_etm_auxtrace * etm)2232 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2233 {
2234 int ret = 0;
2235 unsigned int cs_queue_nr, queue_nr, i;
2236 u8 trace_chan_id;
2237 u64 cs_timestamp;
2238 struct auxtrace_queue *queue;
2239 struct cs_etm_queue *etmq;
2240 struct cs_etm_traceid_queue *tidq;
2241
2242 /*
2243 * Pre-populate the heap with one entry from each queue so that we can
2244 * start processing in time order across all queues.
2245 */
2246 for (i = 0; i < etm->queues.nr_queues; i++) {
2247 etmq = etm->queues.queue_array[i].priv;
2248 if (!etmq)
2249 continue;
2250
2251 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2252 if (ret)
2253 return ret;
2254 }
2255
2256 while (1) {
2257 if (!etm->heap.heap_cnt)
2258 goto out;
2259
2260 /* Take the entry at the top of the min heap */
2261 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2262 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2263 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2264 queue = &etm->queues.queue_array[queue_nr];
2265 etmq = queue->priv;
2266
2267 /*
2268 * Remove the top entry from the heap since we are about
2269 * to process it.
2270 */
2271 auxtrace_heap__pop(&etm->heap);
2272
2273 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2274 if (!tidq) {
2275 /*
2276 * No traceID queue has been allocated for this traceID,
2277 * which means something somewhere went very wrong. No
2278 * other choice than simply exit.
2279 */
2280 ret = -EINVAL;
2281 goto out;
2282 }
2283
2284 /*
2285 * Packets associated with this timestamp are already in
2286 * the etmq's traceID queue, so process them.
2287 */
2288 ret = cs_etm__process_traceid_queue(etmq, tidq);
2289 if (ret < 0)
2290 goto out;
2291
2292 /*
2293 * Packets for this timestamp have been processed, time to
2294 * move on to the next timestamp, fetching a new auxtrace_buffer
2295 * if need be.
2296 */
2297 refetch:
2298 ret = cs_etm__get_data_block(etmq);
2299 if (ret < 0)
2300 goto out;
2301
2302 /*
2303 * No more auxtrace_buffers to process in this etmq, simply
2304 * move on to another entry in the auxtrace_heap.
2305 */
2306 if (!ret)
2307 continue;
2308
2309 ret = cs_etm__decode_data_block(etmq);
2310 if (ret)
2311 goto out;
2312
2313 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2314
2315 if (!cs_timestamp) {
2316 /*
2317 * Function cs_etm__decode_data_block() returns when
2318 * there is no more traces to decode in the current
2319 * auxtrace_buffer OR when a timestamp has been
2320 * encountered on any of the traceID queues. Since we
2321 * did not get a timestamp, there is no more traces to
2322 * process in this auxtrace_buffer. As such empty and
2323 * flush all traceID queues.
2324 */
2325 cs_etm__clear_all_traceid_queues(etmq);
2326
2327 /* Fetch another auxtrace_buffer for this etmq */
2328 goto refetch;
2329 }
2330
2331 /*
2332 * Add to the min heap the timestamp for packets that have
2333 * just been decoded. They will be processed and synthesized
2334 * during the next call to cs_etm__process_traceid_queue() for
2335 * this queue/traceID.
2336 */
2337 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2338 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2339 }
2340
2341 out:
2342 return ret;
2343 }
2344
cs_etm__process_itrace_start(struct cs_etm_auxtrace * etm,union perf_event * event)2345 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2346 union perf_event *event)
2347 {
2348 struct thread *th;
2349
2350 if (etm->timeless_decoding)
2351 return 0;
2352
2353 /*
2354 * Add the tid/pid to the log so that we can get a match when
2355 * we get a contextID from the decoder.
2356 */
2357 th = machine__findnew_thread(etm->machine,
2358 event->itrace_start.pid,
2359 event->itrace_start.tid);
2360 if (!th)
2361 return -ENOMEM;
2362
2363 thread__put(th);
2364
2365 return 0;
2366 }
2367
cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace * etm,union perf_event * event)2368 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2369 union perf_event *event)
2370 {
2371 struct thread *th;
2372 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2373
2374 /*
2375 * Context switch in per-thread mode are irrelevant since perf
2376 * will start/stop tracing as the process is scheduled.
2377 */
2378 if (etm->timeless_decoding)
2379 return 0;
2380
2381 /*
2382 * SWITCH_IN events carry the next process to be switched out while
2383 * SWITCH_OUT events carry the process to be switched in. As such
2384 * we don't care about IN events.
2385 */
2386 if (!out)
2387 return 0;
2388
2389 /*
2390 * Add the tid/pid to the log so that we can get a match when
2391 * we get a contextID from the decoder.
2392 */
2393 th = machine__findnew_thread(etm->machine,
2394 event->context_switch.next_prev_pid,
2395 event->context_switch.next_prev_tid);
2396 if (!th)
2397 return -ENOMEM;
2398
2399 thread__put(th);
2400
2401 return 0;
2402 }
2403
cs_etm__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2404 static int cs_etm__process_event(struct perf_session *session,
2405 union perf_event *event,
2406 struct perf_sample *sample,
2407 struct perf_tool *tool)
2408 {
2409 u64 sample_kernel_timestamp;
2410 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2411 struct cs_etm_auxtrace,
2412 auxtrace);
2413
2414 if (dump_trace)
2415 return 0;
2416
2417 if (!tool->ordered_events) {
2418 pr_err("CoreSight ETM Trace requires ordered events\n");
2419 return -EINVAL;
2420 }
2421
2422 if (sample->time && (sample->time != (u64) -1))
2423 sample_kernel_timestamp = sample->time;
2424 else
2425 sample_kernel_timestamp = 0;
2426
2427 /*
2428 * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2429 * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2430 * ETM_OPT_CTXTID is not enabled.
2431 */
2432 if (etm->timeless_decoding &&
2433 event->header.type == PERF_RECORD_EXIT)
2434 return cs_etm__process_timeless_queues(etm,
2435 event->fork.tid);
2436
2437 if (event->header.type == PERF_RECORD_ITRACE_START)
2438 return cs_etm__process_itrace_start(etm, event);
2439 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2440 return cs_etm__process_switch_cpu_wide(etm, event);
2441
2442 if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2443 /*
2444 * Record the latest kernel timestamp available in the header
2445 * for samples so that synthesised samples occur from this point
2446 * onwards.
2447 */
2448 etm->latest_kernel_timestamp = sample_kernel_timestamp;
2449 }
2450
2451 return 0;
2452 }
2453
dump_queued_data(struct cs_etm_auxtrace * etm,struct perf_record_auxtrace * event)2454 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2455 struct perf_record_auxtrace *event)
2456 {
2457 struct auxtrace_buffer *buf;
2458 unsigned int i;
2459 /*
2460 * Find all buffers with same reference in the queues and dump them.
2461 * This is because the queues can contain multiple entries of the same
2462 * buffer that were split on aux records.
2463 */
2464 for (i = 0; i < etm->queues.nr_queues; ++i)
2465 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2466 if (buf->reference == event->reference)
2467 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2468 }
2469
cs_etm__process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)2470 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2471 union perf_event *event,
2472 struct perf_tool *tool __maybe_unused)
2473 {
2474 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2475 struct cs_etm_auxtrace,
2476 auxtrace);
2477 if (!etm->data_queued) {
2478 struct auxtrace_buffer *buffer;
2479 off_t data_offset;
2480 int fd = perf_data__fd(session->data);
2481 bool is_pipe = perf_data__is_pipe(session->data);
2482 int err;
2483 int idx = event->auxtrace.idx;
2484
2485 if (is_pipe)
2486 data_offset = 0;
2487 else {
2488 data_offset = lseek(fd, 0, SEEK_CUR);
2489 if (data_offset == -1)
2490 return -errno;
2491 }
2492
2493 err = auxtrace_queues__add_event(&etm->queues, session,
2494 event, data_offset, &buffer);
2495 if (err)
2496 return err;
2497
2498 /*
2499 * Knowing if the trace is formatted or not requires a lookup of
2500 * the aux record so only works in non-piped mode where data is
2501 * queued in cs_etm__queue_aux_records(). Always assume
2502 * formatted in piped mode (true).
2503 */
2504 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2505 idx, true);
2506 if (err)
2507 return err;
2508
2509 if (dump_trace)
2510 if (auxtrace_buffer__get_data(buffer, fd)) {
2511 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2512 auxtrace_buffer__put_data(buffer);
2513 }
2514 } else if (dump_trace)
2515 dump_queued_data(etm, &event->auxtrace);
2516
2517 return 0;
2518 }
2519
cs_etm__is_timeless_decoding(struct cs_etm_auxtrace * etm)2520 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2521 {
2522 struct evsel *evsel;
2523 struct evlist *evlist = etm->session->evlist;
2524 bool timeless_decoding = true;
2525
2526 /* Override timeless mode with user input from --itrace=Z */
2527 if (etm->synth_opts.timeless_decoding)
2528 return true;
2529
2530 /*
2531 * Circle through the list of event and complain if we find one
2532 * with the time bit set.
2533 */
2534 evlist__for_each_entry(evlist, evsel) {
2535 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2536 timeless_decoding = false;
2537 }
2538
2539 return timeless_decoding;
2540 }
2541
2542 /*
2543 * Read a single cpu parameter block from the auxtrace_info priv block.
2544 *
2545 * For version 1 there is a per cpu nr_params entry. If we are handling
2546 * version 1 file, then there may be less, the same, or more params
2547 * indicated by this value than the compile time number we understand.
2548 *
2549 * For a version 0 info block, there are a fixed number, and we need to
2550 * fill out the nr_param value in the metadata we create.
2551 */
cs_etm__create_meta_blk(u64 * buff_in,int * buff_in_offset,int out_blk_size,int nr_params_v0)2552 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2553 int out_blk_size, int nr_params_v0)
2554 {
2555 u64 *metadata = NULL;
2556 int hdr_version;
2557 int nr_in_params, nr_out_params, nr_cmn_params;
2558 int i, k;
2559
2560 metadata = zalloc(sizeof(*metadata) * out_blk_size);
2561 if (!metadata)
2562 return NULL;
2563
2564 /* read block current index & version */
2565 i = *buff_in_offset;
2566 hdr_version = buff_in[CS_HEADER_VERSION];
2567
2568 if (!hdr_version) {
2569 /* read version 0 info block into a version 1 metadata block */
2570 nr_in_params = nr_params_v0;
2571 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2572 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2573 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2574 /* remaining block params at offset +1 from source */
2575 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2576 metadata[k + 1] = buff_in[i + k];
2577 /* version 0 has 2 common params */
2578 nr_cmn_params = 2;
2579 } else {
2580 /* read version 1 info block - input and output nr_params may differ */
2581 /* version 1 has 3 common params */
2582 nr_cmn_params = 3;
2583 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2584
2585 /* if input has more params than output - skip excess */
2586 nr_out_params = nr_in_params + nr_cmn_params;
2587 if (nr_out_params > out_blk_size)
2588 nr_out_params = out_blk_size;
2589
2590 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2591 metadata[k] = buff_in[i + k];
2592
2593 /* record the actual nr params we copied */
2594 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2595 }
2596
2597 /* adjust in offset by number of in params used */
2598 i += nr_in_params + nr_cmn_params;
2599 *buff_in_offset = i;
2600 return metadata;
2601 }
2602
2603 /**
2604 * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2605 * on the bounds of aux_event, if it matches with the buffer that's at
2606 * file_offset.
2607 *
2608 * Normally, whole auxtrace buffers would be added to the queue. But we
2609 * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2610 * is reset across each buffer, so splitting the buffers up in advance has
2611 * the same effect.
2612 */
cs_etm__queue_aux_fragment(struct perf_session * session,off_t file_offset,size_t sz,struct perf_record_aux * aux_event,struct perf_sample * sample)2613 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2614 struct perf_record_aux *aux_event, struct perf_sample *sample)
2615 {
2616 int err;
2617 char buf[PERF_SAMPLE_MAX_SIZE];
2618 union perf_event *auxtrace_event_union;
2619 struct perf_record_auxtrace *auxtrace_event;
2620 union perf_event auxtrace_fragment;
2621 __u64 aux_offset, aux_size;
2622 __u32 idx;
2623 bool formatted;
2624
2625 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2626 struct cs_etm_auxtrace,
2627 auxtrace);
2628
2629 /*
2630 * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2631 * from looping through the auxtrace index.
2632 */
2633 err = perf_session__peek_event(session, file_offset, buf,
2634 PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2635 if (err)
2636 return err;
2637 auxtrace_event = &auxtrace_event_union->auxtrace;
2638 if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2639 return -EINVAL;
2640
2641 if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2642 auxtrace_event->header.size != sz) {
2643 return -EINVAL;
2644 }
2645
2646 /*
2647 * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2648 * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2649 */
2650 if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2651 auxtrace_event->cpu != sample->cpu)
2652 return 1;
2653
2654 if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2655 /*
2656 * Clamp size in snapshot mode. The buffer size is clamped in
2657 * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2658 * the buffer size.
2659 */
2660 aux_size = min(aux_event->aux_size, auxtrace_event->size);
2661
2662 /*
2663 * In this mode, the head also points to the end of the buffer so aux_offset
2664 * needs to have the size subtracted so it points to the beginning as in normal mode
2665 */
2666 aux_offset = aux_event->aux_offset - aux_size;
2667 } else {
2668 aux_size = aux_event->aux_size;
2669 aux_offset = aux_event->aux_offset;
2670 }
2671
2672 if (aux_offset >= auxtrace_event->offset &&
2673 aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2674 /*
2675 * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2676 * based on the sizes of the aux event, and queue that fragment.
2677 */
2678 auxtrace_fragment.auxtrace = *auxtrace_event;
2679 auxtrace_fragment.auxtrace.size = aux_size;
2680 auxtrace_fragment.auxtrace.offset = aux_offset;
2681 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2682
2683 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2684 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2685 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2686 file_offset, NULL);
2687 if (err)
2688 return err;
2689
2690 idx = auxtrace_event->idx;
2691 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2692 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2693 idx, formatted);
2694 }
2695
2696 /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2697 return 1;
2698 }
2699
cs_etm__queue_aux_records_cb(struct perf_session * session,union perf_event * event,u64 offset __maybe_unused,void * data __maybe_unused)2700 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2701 u64 offset __maybe_unused, void *data __maybe_unused)
2702 {
2703 struct perf_sample sample;
2704 int ret;
2705 struct auxtrace_index_entry *ent;
2706 struct auxtrace_index *auxtrace_index;
2707 struct evsel *evsel;
2708 size_t i;
2709
2710 /* Don't care about any other events, we're only queuing buffers for AUX events */
2711 if (event->header.type != PERF_RECORD_AUX)
2712 return 0;
2713
2714 if (event->header.size < sizeof(struct perf_record_aux))
2715 return -EINVAL;
2716
2717 /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2718 if (!event->aux.aux_size)
2719 return 0;
2720
2721 /*
2722 * Parse the sample, we need the sample_id_all data that comes after the event so that the
2723 * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2724 */
2725 evsel = evlist__event2evsel(session->evlist, event);
2726 if (!evsel)
2727 return -EINVAL;
2728 ret = evsel__parse_sample(evsel, event, &sample);
2729 if (ret)
2730 return ret;
2731
2732 /*
2733 * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2734 */
2735 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2736 for (i = 0; i < auxtrace_index->nr; i++) {
2737 ent = &auxtrace_index->entries[i];
2738 ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2739 ent->sz, &event->aux, &sample);
2740 /*
2741 * Stop search on error or successful values. Continue search on
2742 * 1 ('not found')
2743 */
2744 if (ret != 1)
2745 return ret;
2746 }
2747 }
2748
2749 /*
2750 * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2751 * don't exit with an error because it will still be possible to decode other aux records.
2752 */
2753 pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2754 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2755 return 0;
2756 }
2757
cs_etm__queue_aux_records(struct perf_session * session)2758 static int cs_etm__queue_aux_records(struct perf_session *session)
2759 {
2760 struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2761 struct auxtrace_index, list);
2762 if (index && index->nr > 0)
2763 return perf_session__peek_events(session, session->header.data_offset,
2764 session->header.data_size,
2765 cs_etm__queue_aux_records_cb, NULL);
2766
2767 /*
2768 * We would get here if there are no entries in the index (either no auxtrace
2769 * buffers or no index at all). Fail silently as there is the possibility of
2770 * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2771 * false.
2772 *
2773 * In that scenario, buffers will not be split by AUX records.
2774 */
2775 return 0;
2776 }
2777
2778 #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \
2779 (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1))
2780
2781 /*
2782 * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual
2783 * timestamps).
2784 */
cs_etm__has_virtual_ts(u64 ** metadata,int num_cpu)2785 static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu)
2786 {
2787 int j;
2788
2789 for (j = 0; j < num_cpu; j++) {
2790 switch (metadata[j][CS_ETM_MAGIC]) {
2791 case __perf_cs_etmv4_magic:
2792 if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1)
2793 return false;
2794 break;
2795 case __perf_cs_ete_magic:
2796 if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1)
2797 return false;
2798 break;
2799 default:
2800 /* Unknown / unsupported magic number. */
2801 return false;
2802 }
2803 }
2804 return true;
2805 }
2806
cs_etm__process_auxtrace_info_full(union perf_event * event,struct perf_session * session)2807 int cs_etm__process_auxtrace_info_full(union perf_event *event,
2808 struct perf_session *session)
2809 {
2810 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2811 struct cs_etm_auxtrace *etm = NULL;
2812 struct int_node *inode;
2813 struct perf_record_time_conv *tc = &session->time_conv;
2814 int event_header_size = sizeof(struct perf_event_header);
2815 int total_size = auxtrace_info->header.size;
2816 int priv_size = 0;
2817 int num_cpu, trcidr_idx;
2818 int err = 0;
2819 int i, j;
2820 u64 *ptr = NULL;
2821 u64 **metadata = NULL;
2822
2823 /*
2824 * Create an RB tree for traceID-metadata tuple. Since the conversion
2825 * has to be made for each packet that gets decoded, optimizing access
2826 * in anything other than a sequential array is worth doing.
2827 */
2828 traceid_list = intlist__new(NULL);
2829 if (!traceid_list)
2830 return -ENOMEM;
2831
2832 /* First the global part */
2833 ptr = (u64 *) auxtrace_info->priv;
2834 num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2835 metadata = zalloc(sizeof(*metadata) * num_cpu);
2836 if (!metadata) {
2837 err = -ENOMEM;
2838 goto err_free_traceid_list;
2839 }
2840
2841 /* Start parsing after the common part of the header */
2842 i = CS_HEADER_VERSION_MAX;
2843
2844 /*
2845 * The metadata is stored in the auxtrace_info section and encodes
2846 * the configuration of the ARM embedded trace macrocell which is
2847 * required by the trace decoder to properly decode the trace due
2848 * to its highly compressed nature.
2849 */
2850 for (j = 0; j < num_cpu; j++) {
2851 if (ptr[i] == __perf_cs_etmv3_magic) {
2852 metadata[j] =
2853 cs_etm__create_meta_blk(ptr, &i,
2854 CS_ETM_PRIV_MAX,
2855 CS_ETM_NR_TRC_PARAMS_V0);
2856
2857 /* The traceID is our handle */
2858 trcidr_idx = CS_ETM_ETMTRACEIDR;
2859
2860 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2861 metadata[j] =
2862 cs_etm__create_meta_blk(ptr, &i,
2863 CS_ETMV4_PRIV_MAX,
2864 CS_ETMV4_NR_TRC_PARAMS_V0);
2865
2866 /* The traceID is our handle */
2867 trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2868 } else if (ptr[i] == __perf_cs_ete_magic) {
2869 metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
2870
2871 /* ETE shares first part of metadata with ETMv4 */
2872 trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2873 } else {
2874 ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
2875 ptr[i]);
2876 err = -EINVAL;
2877 goto err_free_metadata;
2878 }
2879
2880 if (!metadata[j]) {
2881 err = -ENOMEM;
2882 goto err_free_metadata;
2883 }
2884
2885 /* Get an RB node for this CPU */
2886 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2887
2888 /* Something went wrong, no need to continue */
2889 if (!inode) {
2890 err = -ENOMEM;
2891 goto err_free_metadata;
2892 }
2893
2894 /*
2895 * The node for that CPU should not be taken.
2896 * Back out if that's the case.
2897 */
2898 if (inode->priv) {
2899 err = -EINVAL;
2900 goto err_free_metadata;
2901 }
2902 /* All good, associate the traceID with the metadata pointer */
2903 inode->priv = metadata[j];
2904 }
2905
2906 /*
2907 * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2908 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2909 * global metadata, and each cpu's metadata respectively.
2910 * The following tests if the correct number of double words was
2911 * present in the auxtrace info section.
2912 */
2913 priv_size = total_size - event_header_size - INFO_HEADER_SIZE;
2914 if (i * 8 != priv_size) {
2915 err = -EINVAL;
2916 goto err_free_metadata;
2917 }
2918
2919 etm = zalloc(sizeof(*etm));
2920
2921 if (!etm) {
2922 err = -ENOMEM;
2923 goto err_free_metadata;
2924 }
2925
2926 err = auxtrace_queues__init(&etm->queues);
2927 if (err)
2928 goto err_free_etm;
2929
2930 if (session->itrace_synth_opts->set) {
2931 etm->synth_opts = *session->itrace_synth_opts;
2932 } else {
2933 itrace_synth_opts__set_default(&etm->synth_opts,
2934 session->itrace_synth_opts->default_no_sample);
2935 etm->synth_opts.callchain = false;
2936 }
2937
2938 etm->session = session;
2939 etm->machine = &session->machines.host;
2940
2941 etm->num_cpu = num_cpu;
2942 etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff);
2943 etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0);
2944 etm->metadata = metadata;
2945 etm->auxtrace_type = auxtrace_info->type;
2946 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2947
2948 /* Use virtual timestamps if all ETMs report ts_source = 1 */
2949 etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu);
2950
2951 if (!etm->has_virtual_ts)
2952 ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n"
2953 "The time field of the samples will not be set accurately.\n\n");
2954
2955 etm->auxtrace.process_event = cs_etm__process_event;
2956 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2957 etm->auxtrace.flush_events = cs_etm__flush_events;
2958 etm->auxtrace.free_events = cs_etm__free_events;
2959 etm->auxtrace.free = cs_etm__free;
2960 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2961 session->auxtrace = &etm->auxtrace;
2962
2963 etm->unknown_thread = thread__new(999999999, 999999999);
2964 if (!etm->unknown_thread) {
2965 err = -ENOMEM;
2966 goto err_free_queues;
2967 }
2968
2969 /*
2970 * Initialize list node so that at thread__zput() we can avoid
2971 * segmentation fault at list_del_init().
2972 */
2973 INIT_LIST_HEAD(&etm->unknown_thread->node);
2974
2975 err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2976 if (err)
2977 goto err_delete_thread;
2978
2979 if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2980 err = -ENOMEM;
2981 goto err_delete_thread;
2982 }
2983
2984 etm->tc.time_shift = tc->time_shift;
2985 etm->tc.time_mult = tc->time_mult;
2986 etm->tc.time_zero = tc->time_zero;
2987 if (event_contains(*tc, time_cycles)) {
2988 etm->tc.time_cycles = tc->time_cycles;
2989 etm->tc.time_mask = tc->time_mask;
2990 etm->tc.cap_user_time_zero = tc->cap_user_time_zero;
2991 etm->tc.cap_user_time_short = tc->cap_user_time_short;
2992 }
2993 err = cs_etm__synth_events(etm, session);
2994 if (err)
2995 goto err_delete_thread;
2996
2997 err = cs_etm__queue_aux_records(session);
2998 if (err)
2999 goto err_delete_thread;
3000
3001 etm->data_queued = etm->queues.populated;
3002 /*
3003 * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3004 * cs_etm__queue_aux_fragment() for details relating to limitations.
3005 */
3006 if (!etm->data_queued)
3007 pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3008 "Continuing with best effort decoding in piped mode.\n\n");
3009
3010 return 0;
3011
3012 err_delete_thread:
3013 thread__zput(etm->unknown_thread);
3014 err_free_queues:
3015 auxtrace_queues__free(&etm->queues);
3016 session->auxtrace = NULL;
3017 err_free_etm:
3018 zfree(&etm);
3019 err_free_metadata:
3020 /* No need to check @metadata[j], free(NULL) is supported */
3021 for (j = 0; j < num_cpu; j++)
3022 zfree(&metadata[j]);
3023 zfree(&metadata);
3024 err_free_traceid_list:
3025 intlist__delete(traceid_list);
3026 return err;
3027 }
3028