1 /*
2  * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/list.h>
36 #include <linux/slab.h>
37 #include <net/neighbour.h>
38 #include <linux/notifier.h>
39 #include <linux/atomic.h>
40 #include <linux/proc_fs.h>
41 #include <linux/if_vlan.h>
42 #include <net/netevent.h>
43 #include <linux/highmem.h>
44 #include <linux/vmalloc.h>
45 #include <linux/export.h>
46 
47 #include "common.h"
48 #include "regs.h"
49 #include "cxgb3_ioctl.h"
50 #include "cxgb3_ctl_defs.h"
51 #include "cxgb3_defs.h"
52 #include "l2t.h"
53 #include "firmware_exports.h"
54 #include "cxgb3_offload.h"
55 
56 static LIST_HEAD(client_list);
57 static LIST_HEAD(ofld_dev_list);
58 static DEFINE_MUTEX(cxgb3_db_lock);
59 
60 static DEFINE_RWLOCK(adapter_list_lock);
61 static LIST_HEAD(adapter_list);
62 
63 static const unsigned int MAX_ATIDS = 64 * 1024;
64 static const unsigned int ATID_BASE = 0x10000;
65 
66 static void cxgb_neigh_update(struct neighbour *neigh);
67 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new,
68 			  struct neighbour *neigh, const void *daddr);
69 
offload_activated(struct t3cdev * tdev)70 static inline int offload_activated(struct t3cdev *tdev)
71 {
72 	const struct adapter *adapter = tdev2adap(tdev);
73 
74 	return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
75 }
76 
77 /**
78  *	cxgb3_register_client - register an offload client
79  *	@client: the client
80  *
81  *	Add the client to the client list,
82  *	and call backs the client for each activated offload device
83  */
cxgb3_register_client(struct cxgb3_client * client)84 void cxgb3_register_client(struct cxgb3_client *client)
85 {
86 	struct t3cdev *tdev;
87 
88 	mutex_lock(&cxgb3_db_lock);
89 	list_add_tail(&client->client_list, &client_list);
90 
91 	if (client->add) {
92 		list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
93 			if (offload_activated(tdev))
94 				client->add(tdev);
95 		}
96 	}
97 	mutex_unlock(&cxgb3_db_lock);
98 }
99 
100 EXPORT_SYMBOL(cxgb3_register_client);
101 
102 /**
103  *	cxgb3_unregister_client - unregister an offload client
104  *	@client: the client
105  *
106  *	Remove the client to the client list,
107  *	and call backs the client for each activated offload device.
108  */
cxgb3_unregister_client(struct cxgb3_client * client)109 void cxgb3_unregister_client(struct cxgb3_client *client)
110 {
111 	struct t3cdev *tdev;
112 
113 	mutex_lock(&cxgb3_db_lock);
114 	list_del(&client->client_list);
115 
116 	if (client->remove) {
117 		list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
118 			if (offload_activated(tdev))
119 				client->remove(tdev);
120 		}
121 	}
122 	mutex_unlock(&cxgb3_db_lock);
123 }
124 
125 EXPORT_SYMBOL(cxgb3_unregister_client);
126 
127 /**
128  *	cxgb3_add_clients - activate registered clients for an offload device
129  *	@tdev: the offload device
130  *
131  *	Call backs all registered clients once a offload device is activated
132  */
cxgb3_add_clients(struct t3cdev * tdev)133 void cxgb3_add_clients(struct t3cdev *tdev)
134 {
135 	struct cxgb3_client *client;
136 
137 	mutex_lock(&cxgb3_db_lock);
138 	list_for_each_entry(client, &client_list, client_list) {
139 		if (client->add)
140 			client->add(tdev);
141 	}
142 	mutex_unlock(&cxgb3_db_lock);
143 }
144 
145 /**
146  *	cxgb3_remove_clients - deactivates registered clients
147  *			       for an offload device
148  *	@tdev: the offload device
149  *
150  *	Call backs all registered clients once a offload device is deactivated
151  */
cxgb3_remove_clients(struct t3cdev * tdev)152 void cxgb3_remove_clients(struct t3cdev *tdev)
153 {
154 	struct cxgb3_client *client;
155 
156 	mutex_lock(&cxgb3_db_lock);
157 	list_for_each_entry(client, &client_list, client_list) {
158 		if (client->remove)
159 			client->remove(tdev);
160 	}
161 	mutex_unlock(&cxgb3_db_lock);
162 }
163 
cxgb3_event_notify(struct t3cdev * tdev,u32 event,u32 port)164 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
165 {
166 	struct cxgb3_client *client;
167 
168 	mutex_lock(&cxgb3_db_lock);
169 	list_for_each_entry(client, &client_list, client_list) {
170 		if (client->event_handler)
171 			client->event_handler(tdev, event, port);
172 	}
173 	mutex_unlock(&cxgb3_db_lock);
174 }
175 
get_iff_from_mac(struct adapter * adapter,const unsigned char * mac,unsigned int vlan)176 static struct net_device *get_iff_from_mac(struct adapter *adapter,
177 					   const unsigned char *mac,
178 					   unsigned int vlan)
179 {
180 	int i;
181 
182 	for_each_port(adapter, i) {
183 		struct net_device *dev = adapter->port[i];
184 
185 		if (ether_addr_equal(dev->dev_addr, mac)) {
186 			rcu_read_lock();
187 			if (vlan && vlan != VLAN_VID_MASK) {
188 				dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), vlan);
189 			} else if (netif_is_bond_slave(dev)) {
190 				struct net_device *upper_dev;
191 
192 				while ((upper_dev =
193 					netdev_master_upper_dev_get_rcu(dev)))
194 					dev = upper_dev;
195 			}
196 			rcu_read_unlock();
197 			return dev;
198 		}
199 	}
200 	return NULL;
201 }
202 
cxgb_ulp_iscsi_ctl(struct adapter * adapter,unsigned int req,void * data)203 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
204 			      void *data)
205 {
206 	int i;
207 	int ret = 0;
208 	unsigned int val = 0;
209 	struct ulp_iscsi_info *uiip = data;
210 
211 	switch (req) {
212 	case ULP_ISCSI_GET_PARAMS:
213 		uiip->pdev = adapter->pdev;
214 		uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
215 		uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
216 		uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
217 
218 		val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
219 		for (i = 0; i < 4; i++, val >>= 8)
220 			uiip->pgsz_factor[i] = val & 0xFF;
221 
222 		val = t3_read_reg(adapter, A_TP_PARA_REG7);
223 		uiip->max_txsz =
224 		uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
225 				     (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
226 		/*
227 		 * On tx, the iscsi pdu has to be <= tx page size and has to
228 		 * fit into the Tx PM FIFO.
229 		 */
230 		val = min(adapter->params.tp.tx_pg_size,
231 			  t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
232 		uiip->max_txsz = min(val, uiip->max_txsz);
233 
234 		/* set MaxRxData to 16224 */
235 		val = t3_read_reg(adapter, A_TP_PARA_REG2);
236 		if ((val >> S_MAXRXDATA) != 0x3f60) {
237 			val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
238 			val |= V_MAXRXDATA(0x3f60);
239 			pr_info("%s, iscsi set MaxRxData to 16224 (0x%x)\n",
240 				adapter->name, val);
241 			t3_write_reg(adapter, A_TP_PARA_REG2, val);
242 		}
243 
244 		/*
245 		 * on rx, the iscsi pdu has to be < rx page size and the
246 		 * max rx data length programmed in TP
247 		 */
248 		val = min(adapter->params.tp.rx_pg_size,
249 			  ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
250 				S_MAXRXDATA) & M_MAXRXDATA);
251 		uiip->max_rxsz = min(val, uiip->max_rxsz);
252 		break;
253 	case ULP_ISCSI_SET_PARAMS:
254 		t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
255 		/* program the ddp page sizes */
256 		for (i = 0; i < 4; i++)
257 			val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
258 		if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
259 			pr_info("%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u\n",
260 				adapter->name, val, uiip->pgsz_factor[0],
261 				uiip->pgsz_factor[1], uiip->pgsz_factor[2],
262 				uiip->pgsz_factor[3]);
263 			t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
264 		}
265 		break;
266 	default:
267 		ret = -EOPNOTSUPP;
268 	}
269 	return ret;
270 }
271 
272 /* Response queue used for RDMA events. */
273 #define ASYNC_NOTIF_RSPQ 0
274 
cxgb_rdma_ctl(struct adapter * adapter,unsigned int req,void * data)275 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
276 {
277 	int ret = 0;
278 
279 	switch (req) {
280 	case RDMA_GET_PARAMS: {
281 		struct rdma_info *rdma = data;
282 		struct pci_dev *pdev = adapter->pdev;
283 
284 		rdma->udbell_physbase = pci_resource_start(pdev, 2);
285 		rdma->udbell_len = pci_resource_len(pdev, 2);
286 		rdma->tpt_base =
287 			t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
288 		rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
289 		rdma->pbl_base =
290 			t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
291 		rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
292 		rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
293 		rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
294 		rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
295 		rdma->pdev = pdev;
296 		break;
297 	}
298 	case RDMA_CQ_OP:{
299 		unsigned long flags;
300 		struct rdma_cq_op *rdma = data;
301 
302 		/* may be called in any context */
303 		spin_lock_irqsave(&adapter->sge.reg_lock, flags);
304 		ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
305 					rdma->credits);
306 		spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
307 		break;
308 	}
309 	case RDMA_GET_MEM:{
310 		struct ch_mem_range *t = data;
311 		struct mc7 *mem;
312 
313 		if ((t->addr & 7) || (t->len & 7))
314 			return -EINVAL;
315 		if (t->mem_id == MEM_CM)
316 			mem = &adapter->cm;
317 		else if (t->mem_id == MEM_PMRX)
318 			mem = &adapter->pmrx;
319 		else if (t->mem_id == MEM_PMTX)
320 			mem = &adapter->pmtx;
321 		else
322 			return -EINVAL;
323 
324 		ret =
325 			t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
326 					(u64 *) t->buf);
327 		if (ret)
328 			return ret;
329 		break;
330 	}
331 	case RDMA_CQ_SETUP:{
332 		struct rdma_cq_setup *rdma = data;
333 
334 		spin_lock_irq(&adapter->sge.reg_lock);
335 		ret =
336 			t3_sge_init_cqcntxt(adapter, rdma->id,
337 					rdma->base_addr, rdma->size,
338 					ASYNC_NOTIF_RSPQ,
339 					rdma->ovfl_mode, rdma->credits,
340 					rdma->credit_thres);
341 		spin_unlock_irq(&adapter->sge.reg_lock);
342 		break;
343 	}
344 	case RDMA_CQ_DISABLE:
345 		spin_lock_irq(&adapter->sge.reg_lock);
346 		ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
347 		spin_unlock_irq(&adapter->sge.reg_lock);
348 		break;
349 	case RDMA_CTRL_QP_SETUP:{
350 		struct rdma_ctrlqp_setup *rdma = data;
351 
352 		spin_lock_irq(&adapter->sge.reg_lock);
353 		ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
354 						SGE_CNTXT_RDMA,
355 						ASYNC_NOTIF_RSPQ,
356 						rdma->base_addr, rdma->size,
357 						FW_RI_TID_START, 1, 0);
358 		spin_unlock_irq(&adapter->sge.reg_lock);
359 		break;
360 	}
361 	case RDMA_GET_MIB: {
362 		spin_lock(&adapter->stats_lock);
363 		t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
364 		spin_unlock(&adapter->stats_lock);
365 		break;
366 	}
367 	default:
368 		ret = -EOPNOTSUPP;
369 	}
370 	return ret;
371 }
372 
cxgb_offload_ctl(struct t3cdev * tdev,unsigned int req,void * data)373 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
374 {
375 	struct adapter *adapter = tdev2adap(tdev);
376 	struct tid_range *tid;
377 	struct mtutab *mtup;
378 	struct iff_mac *iffmacp;
379 	struct ddp_params *ddpp;
380 	struct adap_ports *ports;
381 	struct ofld_page_info *rx_page_info;
382 	struct tp_params *tp = &adapter->params.tp;
383 	int i;
384 
385 	switch (req) {
386 	case GET_MAX_OUTSTANDING_WR:
387 		*(unsigned int *)data = FW_WR_NUM;
388 		break;
389 	case GET_WR_LEN:
390 		*(unsigned int *)data = WR_FLITS;
391 		break;
392 	case GET_TX_MAX_CHUNK:
393 		*(unsigned int *)data = 1 << 20;	/* 1MB */
394 		break;
395 	case GET_TID_RANGE:
396 		tid = data;
397 		tid->num = t3_mc5_size(&adapter->mc5) -
398 		    adapter->params.mc5.nroutes -
399 		    adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
400 		tid->base = 0;
401 		break;
402 	case GET_STID_RANGE:
403 		tid = data;
404 		tid->num = adapter->params.mc5.nservers;
405 		tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
406 		    adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
407 		break;
408 	case GET_L2T_CAPACITY:
409 		*(unsigned int *)data = 2048;
410 		break;
411 	case GET_MTUS:
412 		mtup = data;
413 		mtup->size = NMTUS;
414 		mtup->mtus = adapter->params.mtus;
415 		break;
416 	case GET_IFF_FROM_MAC:
417 		iffmacp = data;
418 		iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
419 						iffmacp->vlan_tag &
420 						VLAN_VID_MASK);
421 		break;
422 	case GET_DDP_PARAMS:
423 		ddpp = data;
424 		ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
425 		ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
426 		ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
427 		break;
428 	case GET_PORTS:
429 		ports = data;
430 		ports->nports = adapter->params.nports;
431 		for_each_port(adapter, i)
432 			ports->lldevs[i] = adapter->port[i];
433 		break;
434 	case ULP_ISCSI_GET_PARAMS:
435 	case ULP_ISCSI_SET_PARAMS:
436 		if (!offload_running(adapter))
437 			return -EAGAIN;
438 		return cxgb_ulp_iscsi_ctl(adapter, req, data);
439 	case RDMA_GET_PARAMS:
440 	case RDMA_CQ_OP:
441 	case RDMA_CQ_SETUP:
442 	case RDMA_CQ_DISABLE:
443 	case RDMA_CTRL_QP_SETUP:
444 	case RDMA_GET_MEM:
445 	case RDMA_GET_MIB:
446 		if (!offload_running(adapter))
447 			return -EAGAIN;
448 		return cxgb_rdma_ctl(adapter, req, data);
449 	case GET_RX_PAGE_INFO:
450 		rx_page_info = data;
451 		rx_page_info->page_size = tp->rx_pg_size;
452 		rx_page_info->num = tp->rx_num_pgs;
453 		break;
454 	case GET_ISCSI_IPV4ADDR: {
455 		struct iscsi_ipv4addr *p = data;
456 		struct port_info *pi = netdev_priv(p->dev);
457 		p->ipv4addr = pi->iscsi_ipv4addr;
458 		break;
459 	}
460 	case GET_EMBEDDED_INFO: {
461 		struct ch_embedded_info *e = data;
462 
463 		spin_lock(&adapter->stats_lock);
464 		t3_get_fw_version(adapter, &e->fw_vers);
465 		t3_get_tp_version(adapter, &e->tp_vers);
466 		spin_unlock(&adapter->stats_lock);
467 		break;
468 	}
469 	default:
470 		return -EOPNOTSUPP;
471 	}
472 	return 0;
473 }
474 
475 /*
476  * Dummy handler for Rx offload packets in case we get an offload packet before
477  * proper processing is setup.  This complains and drops the packet as it isn't
478  * normal to get offload packets at this stage.
479  */
rx_offload_blackhole(struct t3cdev * dev,struct sk_buff ** skbs,int n)480 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
481 				int n)
482 {
483 	while (n--)
484 		dev_kfree_skb_any(skbs[n]);
485 	return 0;
486 }
487 
dummy_neigh_update(struct t3cdev * dev,struct neighbour * neigh)488 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
489 {
490 }
491 
cxgb3_set_dummy_ops(struct t3cdev * dev)492 void cxgb3_set_dummy_ops(struct t3cdev *dev)
493 {
494 	dev->recv = rx_offload_blackhole;
495 	dev->neigh_update = dummy_neigh_update;
496 }
497 
498 /*
499  * Free an active-open TID.
500  */
cxgb3_free_atid(struct t3cdev * tdev,int atid)501 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
502 {
503 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
504 	union active_open_entry *p = atid2entry(t, atid);
505 	void *ctx = p->t3c_tid.ctx;
506 
507 	spin_lock_bh(&t->atid_lock);
508 	p->next = t->afree;
509 	t->afree = p;
510 	t->atids_in_use--;
511 	spin_unlock_bh(&t->atid_lock);
512 
513 	return ctx;
514 }
515 
516 EXPORT_SYMBOL(cxgb3_free_atid);
517 
518 /*
519  * Free a server TID and return it to the free pool.
520  */
cxgb3_free_stid(struct t3cdev * tdev,int stid)521 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
522 {
523 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
524 	union listen_entry *p = stid2entry(t, stid);
525 
526 	spin_lock_bh(&t->stid_lock);
527 	p->next = t->sfree;
528 	t->sfree = p;
529 	t->stids_in_use--;
530 	spin_unlock_bh(&t->stid_lock);
531 }
532 
533 EXPORT_SYMBOL(cxgb3_free_stid);
534 
cxgb3_insert_tid(struct t3cdev * tdev,struct cxgb3_client * client,void * ctx,unsigned int tid)535 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
536 		      void *ctx, unsigned int tid)
537 {
538 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
539 
540 	t->tid_tab[tid].client = client;
541 	t->tid_tab[tid].ctx = ctx;
542 	atomic_inc(&t->tids_in_use);
543 }
544 
545 EXPORT_SYMBOL(cxgb3_insert_tid);
546 
547 /*
548  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
549  */
mk_tid_release(struct sk_buff * skb,unsigned int tid)550 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
551 {
552 	struct cpl_tid_release *req;
553 
554 	skb->priority = CPL_PRIORITY_SETUP;
555 	req = __skb_put(skb, sizeof(*req));
556 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
557 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
558 }
559 
t3_process_tid_release_list(struct work_struct * work)560 static void t3_process_tid_release_list(struct work_struct *work)
561 {
562 	struct t3c_data *td = container_of(work, struct t3c_data,
563 					   tid_release_task);
564 	struct sk_buff *skb;
565 	struct t3cdev *tdev = td->dev;
566 
567 
568 	spin_lock_bh(&td->tid_release_lock);
569 	while (td->tid_release_list) {
570 		struct t3c_tid_entry *p = td->tid_release_list;
571 
572 		td->tid_release_list = p->ctx;
573 		spin_unlock_bh(&td->tid_release_lock);
574 
575 		skb = alloc_skb(sizeof(struct cpl_tid_release),
576 				GFP_KERNEL);
577 		if (!skb)
578 			skb = td->nofail_skb;
579 		if (!skb) {
580 			spin_lock_bh(&td->tid_release_lock);
581 			p->ctx = (void *)td->tid_release_list;
582 			td->tid_release_list = p;
583 			break;
584 		}
585 		mk_tid_release(skb, p - td->tid_maps.tid_tab);
586 		cxgb3_ofld_send(tdev, skb);
587 		p->ctx = NULL;
588 		if (skb == td->nofail_skb)
589 			td->nofail_skb =
590 				alloc_skb(sizeof(struct cpl_tid_release),
591 					GFP_KERNEL);
592 		spin_lock_bh(&td->tid_release_lock);
593 	}
594 	td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
595 	spin_unlock_bh(&td->tid_release_lock);
596 
597 	if (!td->nofail_skb)
598 		td->nofail_skb =
599 			alloc_skb(sizeof(struct cpl_tid_release),
600 				GFP_KERNEL);
601 }
602 
603 /* use ctx as a next pointer in the tid release list */
cxgb3_queue_tid_release(struct t3cdev * tdev,unsigned int tid)604 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
605 {
606 	struct t3c_data *td = T3C_DATA(tdev);
607 	struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
608 
609 	spin_lock_bh(&td->tid_release_lock);
610 	p->ctx = (void *)td->tid_release_list;
611 	p->client = NULL;
612 	td->tid_release_list = p;
613 	if (!p->ctx || td->release_list_incomplete)
614 		schedule_work(&td->tid_release_task);
615 	spin_unlock_bh(&td->tid_release_lock);
616 }
617 
618 EXPORT_SYMBOL(cxgb3_queue_tid_release);
619 
620 /*
621  * Remove a tid from the TID table.  A client may defer processing its last
622  * CPL message if it is locked at the time it arrives, and while the message
623  * sits in the client's backlog the TID may be reused for another connection.
624  * To handle this we atomically switch the TID association if it still points
625  * to the original client context.
626  */
cxgb3_remove_tid(struct t3cdev * tdev,void * ctx,unsigned int tid)627 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
628 {
629 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
630 
631 	BUG_ON(tid >= t->ntids);
632 	if (tdev->type == T3A)
633 		(void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
634 	else {
635 		struct sk_buff *skb;
636 
637 		skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
638 		if (likely(skb)) {
639 			mk_tid_release(skb, tid);
640 			cxgb3_ofld_send(tdev, skb);
641 			t->tid_tab[tid].ctx = NULL;
642 		} else
643 			cxgb3_queue_tid_release(tdev, tid);
644 	}
645 	atomic_dec(&t->tids_in_use);
646 }
647 
648 EXPORT_SYMBOL(cxgb3_remove_tid);
649 
cxgb3_alloc_atid(struct t3cdev * tdev,struct cxgb3_client * client,void * ctx)650 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
651 		     void *ctx)
652 {
653 	int atid = -1;
654 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
655 
656 	spin_lock_bh(&t->atid_lock);
657 	if (t->afree &&
658 	    t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
659 	    t->ntids) {
660 		union active_open_entry *p = t->afree;
661 
662 		atid = (p - t->atid_tab) + t->atid_base;
663 		t->afree = p->next;
664 		p->t3c_tid.ctx = ctx;
665 		p->t3c_tid.client = client;
666 		t->atids_in_use++;
667 	}
668 	spin_unlock_bh(&t->atid_lock);
669 	return atid;
670 }
671 
672 EXPORT_SYMBOL(cxgb3_alloc_atid);
673 
cxgb3_alloc_stid(struct t3cdev * tdev,struct cxgb3_client * client,void * ctx)674 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
675 		     void *ctx)
676 {
677 	int stid = -1;
678 	struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
679 
680 	spin_lock_bh(&t->stid_lock);
681 	if (t->sfree) {
682 		union listen_entry *p = t->sfree;
683 
684 		stid = (p - t->stid_tab) + t->stid_base;
685 		t->sfree = p->next;
686 		p->t3c_tid.ctx = ctx;
687 		p->t3c_tid.client = client;
688 		t->stids_in_use++;
689 	}
690 	spin_unlock_bh(&t->stid_lock);
691 	return stid;
692 }
693 
694 EXPORT_SYMBOL(cxgb3_alloc_stid);
695 
696 /* Get the t3cdev associated with a net_device */
dev2t3cdev(struct net_device * dev)697 struct t3cdev *dev2t3cdev(struct net_device *dev)
698 {
699 	const struct port_info *pi = netdev_priv(dev);
700 
701 	return (struct t3cdev *)pi->adapter;
702 }
703 
704 EXPORT_SYMBOL(dev2t3cdev);
705 
do_smt_write_rpl(struct t3cdev * dev,struct sk_buff * skb)706 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
707 {
708 	struct cpl_smt_write_rpl *rpl = cplhdr(skb);
709 
710 	if (rpl->status != CPL_ERR_NONE)
711 		pr_err("Unexpected SMT_WRITE_RPL status %u for entry %u\n",
712 		       rpl->status, GET_TID(rpl));
713 
714 	return CPL_RET_BUF_DONE;
715 }
716 
do_l2t_write_rpl(struct t3cdev * dev,struct sk_buff * skb)717 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
718 {
719 	struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
720 
721 	if (rpl->status != CPL_ERR_NONE)
722 		pr_err("Unexpected L2T_WRITE_RPL status %u for entry %u\n",
723 		       rpl->status, GET_TID(rpl));
724 
725 	return CPL_RET_BUF_DONE;
726 }
727 
do_rte_write_rpl(struct t3cdev * dev,struct sk_buff * skb)728 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
729 {
730 	struct cpl_rte_write_rpl *rpl = cplhdr(skb);
731 
732 	if (rpl->status != CPL_ERR_NONE)
733 		pr_err("Unexpected RTE_WRITE_RPL status %u for entry %u\n",
734 		       rpl->status, GET_TID(rpl));
735 
736 	return CPL_RET_BUF_DONE;
737 }
738 
do_act_open_rpl(struct t3cdev * dev,struct sk_buff * skb)739 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
740 {
741 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
742 	unsigned int atid = G_TID(ntohl(rpl->atid));
743 	struct t3c_tid_entry *t3c_tid;
744 
745 	t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
746 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
747 	    t3c_tid->client->handlers &&
748 	    t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
749 		return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
750 								    t3c_tid->
751 								    ctx);
752 	} else {
753 		pr_err("%s: received clientless CPL command 0x%x\n",
754 		       dev->name, CPL_ACT_OPEN_RPL);
755 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
756 	}
757 }
758 
do_stid_rpl(struct t3cdev * dev,struct sk_buff * skb)759 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
760 {
761 	union opcode_tid *p = cplhdr(skb);
762 	unsigned int stid = G_TID(ntohl(p->opcode_tid));
763 	struct t3c_tid_entry *t3c_tid;
764 
765 	t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
766 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
767 	    t3c_tid->client->handlers[p->opcode]) {
768 		return t3c_tid->client->handlers[p->opcode] (dev, skb,
769 							     t3c_tid->ctx);
770 	} else {
771 		pr_err("%s: received clientless CPL command 0x%x\n",
772 		       dev->name, p->opcode);
773 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
774 	}
775 }
776 
do_hwtid_rpl(struct t3cdev * dev,struct sk_buff * skb)777 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
778 {
779 	union opcode_tid *p = cplhdr(skb);
780 	unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
781 	struct t3c_tid_entry *t3c_tid;
782 
783 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
784 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
785 	    t3c_tid->client->handlers[p->opcode]) {
786 		return t3c_tid->client->handlers[p->opcode]
787 		    (dev, skb, t3c_tid->ctx);
788 	} else {
789 		pr_err("%s: received clientless CPL command 0x%x\n",
790 		       dev->name, p->opcode);
791 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
792 	}
793 }
794 
do_cr(struct t3cdev * dev,struct sk_buff * skb)795 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
796 {
797 	struct cpl_pass_accept_req *req = cplhdr(skb);
798 	unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
799 	struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
800 	struct t3c_tid_entry *t3c_tid;
801 	unsigned int tid = GET_TID(req);
802 
803 	if (unlikely(tid >= t->ntids)) {
804 		printk("%s: passive open TID %u too large\n",
805 		       dev->name, tid);
806 		t3_fatal_err(tdev2adap(dev));
807 		return CPL_RET_BUF_DONE;
808 	}
809 
810 	t3c_tid = lookup_stid(t, stid);
811 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
812 	    t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
813 		return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
814 		    (dev, skb, t3c_tid->ctx);
815 	} else {
816 		pr_err("%s: received clientless CPL command 0x%x\n",
817 		       dev->name, CPL_PASS_ACCEPT_REQ);
818 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
819 	}
820 }
821 
822 /*
823  * Returns an sk_buff for a reply CPL message of size len.  If the input
824  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
825  * is allocated.  The input skb must be of size at least len.  Note that this
826  * operation does not destroy the original skb data even if it decides to reuse
827  * the buffer.
828  */
cxgb3_get_cpl_reply_skb(struct sk_buff * skb,size_t len,gfp_t gfp)829 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
830 					       gfp_t gfp)
831 {
832 	if (likely(!skb_cloned(skb))) {
833 		BUG_ON(skb->len < len);
834 		__skb_trim(skb, len);
835 		skb_get(skb);
836 	} else {
837 		skb = alloc_skb(len, gfp);
838 		if (skb)
839 			__skb_put(skb, len);
840 	}
841 	return skb;
842 }
843 
do_abort_req_rss(struct t3cdev * dev,struct sk_buff * skb)844 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
845 {
846 	union opcode_tid *p = cplhdr(skb);
847 	unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
848 	struct t3c_tid_entry *t3c_tid;
849 
850 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
851 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
852 	    t3c_tid->client->handlers[p->opcode]) {
853 		return t3c_tid->client->handlers[p->opcode]
854 		    (dev, skb, t3c_tid->ctx);
855 	} else {
856 		struct cpl_abort_req_rss *req = cplhdr(skb);
857 		struct cpl_abort_rpl *rpl;
858 		struct sk_buff *reply_skb;
859 		unsigned int tid = GET_TID(req);
860 		u8 cmd = req->status;
861 
862 		if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
863 		    req->status == CPL_ERR_PERSIST_NEG_ADVICE)
864 			goto out;
865 
866 		reply_skb = cxgb3_get_cpl_reply_skb(skb,
867 						    sizeof(struct
868 							   cpl_abort_rpl),
869 						    GFP_ATOMIC);
870 
871 		if (!reply_skb) {
872 			printk("do_abort_req_rss: couldn't get skb!\n");
873 			goto out;
874 		}
875 		reply_skb->priority = CPL_PRIORITY_DATA;
876 		__skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
877 		rpl = cplhdr(reply_skb);
878 		rpl->wr.wr_hi =
879 		    htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
880 		rpl->wr.wr_lo = htonl(V_WR_TID(tid));
881 		OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
882 		rpl->cmd = cmd;
883 		cxgb3_ofld_send(dev, reply_skb);
884 out:
885 		return CPL_RET_BUF_DONE;
886 	}
887 }
888 
do_act_establish(struct t3cdev * dev,struct sk_buff * skb)889 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
890 {
891 	struct cpl_act_establish *req = cplhdr(skb);
892 	unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
893 	struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
894 	struct t3c_tid_entry *t3c_tid;
895 	unsigned int tid = GET_TID(req);
896 
897 	if (unlikely(tid >= t->ntids)) {
898 		printk("%s: active establish TID %u too large\n",
899 		       dev->name, tid);
900 		t3_fatal_err(tdev2adap(dev));
901 		return CPL_RET_BUF_DONE;
902 	}
903 
904 	t3c_tid = lookup_atid(t, atid);
905 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
906 	    t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
907 		return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
908 		    (dev, skb, t3c_tid->ctx);
909 	} else {
910 		pr_err("%s: received clientless CPL command 0x%x\n",
911 		       dev->name, CPL_ACT_ESTABLISH);
912 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
913 	}
914 }
915 
do_trace(struct t3cdev * dev,struct sk_buff * skb)916 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
917 {
918 	struct cpl_trace_pkt *p = cplhdr(skb);
919 
920 	skb->protocol = htons(0xffff);
921 	skb->dev = dev->lldev;
922 	skb_pull(skb, sizeof(*p));
923 	skb_reset_mac_header(skb);
924 	netif_receive_skb(skb);
925 	return 0;
926 }
927 
928 /*
929  * That skb would better have come from process_responses() where we abuse
930  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
931  * ->csum, the things might get really interesting here.
932  */
933 
get_hwtid(struct sk_buff * skb)934 static inline u32 get_hwtid(struct sk_buff *skb)
935 {
936 	return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
937 }
938 
get_opcode(struct sk_buff * skb)939 static inline u32 get_opcode(struct sk_buff *skb)
940 {
941 	return G_OPCODE(ntohl((__force __be32)skb->csum));
942 }
943 
do_term(struct t3cdev * dev,struct sk_buff * skb)944 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
945 {
946 	unsigned int hwtid = get_hwtid(skb);
947 	unsigned int opcode = get_opcode(skb);
948 	struct t3c_tid_entry *t3c_tid;
949 
950 	t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
951 	if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
952 	    t3c_tid->client->handlers[opcode]) {
953 		return t3c_tid->client->handlers[opcode] (dev, skb,
954 							  t3c_tid->ctx);
955 	} else {
956 		pr_err("%s: received clientless CPL command 0x%x\n",
957 		       dev->name, opcode);
958 		return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
959 	}
960 }
961 
nb_callback(struct notifier_block * self,unsigned long event,void * ctx)962 static int nb_callback(struct notifier_block *self, unsigned long event,
963 		       void *ctx)
964 {
965 	switch (event) {
966 	case (NETEVENT_NEIGH_UPDATE):{
967 		cxgb_neigh_update((struct neighbour *)ctx);
968 		break;
969 	}
970 	case (NETEVENT_REDIRECT):{
971 		struct netevent_redirect *nr = ctx;
972 		cxgb_redirect(nr->old, nr->new, nr->neigh,
973 			      nr->daddr);
974 		cxgb_neigh_update(nr->neigh);
975 		break;
976 	}
977 	default:
978 		break;
979 	}
980 	return 0;
981 }
982 
983 static struct notifier_block nb = {
984 	.notifier_call = nb_callback
985 };
986 
987 /*
988  * Process a received packet with an unknown/unexpected CPL opcode.
989  */
do_bad_cpl(struct t3cdev * dev,struct sk_buff * skb)990 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
991 {
992 	pr_err("%s: received bad CPL command 0x%x\n", dev->name, *skb->data);
993 	return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
994 }
995 
996 /*
997  * Handlers for each CPL opcode
998  */
999 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
1000 
1001 /*
1002  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
1003  * to unregister an existing handler.
1004  */
t3_register_cpl_handler(unsigned int opcode,cpl_handler_func h)1005 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1006 {
1007 	if (opcode < NUM_CPL_CMDS)
1008 		cpl_handlers[opcode] = h ? h : do_bad_cpl;
1009 	else
1010 		pr_err("T3C: handler registration for opcode %x failed\n",
1011 		       opcode);
1012 }
1013 
1014 EXPORT_SYMBOL(t3_register_cpl_handler);
1015 
1016 /*
1017  * T3CDEV's receive method.
1018  */
process_rx(struct t3cdev * dev,struct sk_buff ** skbs,int n)1019 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1020 {
1021 	while (n--) {
1022 		struct sk_buff *skb = *skbs++;
1023 		unsigned int opcode = get_opcode(skb);
1024 		int ret = cpl_handlers[opcode] (dev, skb);
1025 
1026 #if VALIDATE_TID
1027 		if (ret & CPL_RET_UNKNOWN_TID) {
1028 			union opcode_tid *p = cplhdr(skb);
1029 
1030 			pr_err("%s: CPL message (opcode %u) had unknown TID %u\n",
1031 			       dev->name, opcode, G_TID(ntohl(p->opcode_tid)));
1032 		}
1033 #endif
1034 		if (ret & CPL_RET_BUF_DONE)
1035 			kfree_skb(skb);
1036 	}
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1042  */
cxgb3_ofld_send(struct t3cdev * dev,struct sk_buff * skb)1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1044 {
1045 	int r;
1046 
1047 	local_bh_disable();
1048 	r = dev->send(dev, skb);
1049 	local_bh_enable();
1050 	return r;
1051 }
1052 
1053 EXPORT_SYMBOL(cxgb3_ofld_send);
1054 
is_offloading(struct net_device * dev)1055 static int is_offloading(struct net_device *dev)
1056 {
1057 	struct adapter *adapter;
1058 	int i;
1059 
1060 	read_lock_bh(&adapter_list_lock);
1061 	list_for_each_entry(adapter, &adapter_list, adapter_list) {
1062 		for_each_port(adapter, i) {
1063 			if (dev == adapter->port[i]) {
1064 				read_unlock_bh(&adapter_list_lock);
1065 				return 1;
1066 			}
1067 		}
1068 	}
1069 	read_unlock_bh(&adapter_list_lock);
1070 	return 0;
1071 }
1072 
cxgb_neigh_update(struct neighbour * neigh)1073 static void cxgb_neigh_update(struct neighbour *neigh)
1074 {
1075 	struct net_device *dev;
1076 
1077 	if (!neigh)
1078 		return;
1079 	dev = neigh->dev;
1080 	if (dev && (is_offloading(dev))) {
1081 		struct t3cdev *tdev = dev2t3cdev(dev);
1082 
1083 		BUG_ON(!tdev);
1084 		t3_l2t_update(tdev, neigh);
1085 	}
1086 }
1087 
set_l2t_ix(struct t3cdev * tdev,u32 tid,struct l2t_entry * e)1088 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1089 {
1090 	struct sk_buff *skb;
1091 	struct cpl_set_tcb_field *req;
1092 
1093 	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1094 	if (!skb) {
1095 		pr_err("%s: cannot allocate skb!\n", __func__);
1096 		return;
1097 	}
1098 	skb->priority = CPL_PRIORITY_CONTROL;
1099 	req = skb_put(skb, sizeof(*req));
1100 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1101 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1102 	req->reply = 0;
1103 	req->cpu_idx = 0;
1104 	req->word = htons(W_TCB_L2T_IX);
1105 	req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1106 	req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1107 	tdev->send(tdev, skb);
1108 }
1109 
cxgb_redirect(struct dst_entry * old,struct dst_entry * new,struct neighbour * neigh,const void * daddr)1110 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new,
1111 			  struct neighbour *neigh,
1112 			  const void *daddr)
1113 {
1114 	struct net_device *dev;
1115 	struct tid_info *ti;
1116 	struct t3cdev *tdev;
1117 	u32 tid;
1118 	int update_tcb;
1119 	struct l2t_entry *e;
1120 	struct t3c_tid_entry *te;
1121 
1122 	dev = neigh->dev;
1123 
1124 	if (!is_offloading(dev))
1125 		return;
1126 	tdev = dev2t3cdev(dev);
1127 	BUG_ON(!tdev);
1128 
1129 	/* Add new L2T entry */
1130 	e = t3_l2t_get(tdev, new, dev, daddr);
1131 	if (!e) {
1132 		pr_err("%s: couldn't allocate new l2t entry!\n", __func__);
1133 		return;
1134 	}
1135 
1136 	/* Walk tid table and notify clients of dst change. */
1137 	ti = &(T3C_DATA(tdev))->tid_maps;
1138 	for (tid = 0; tid < ti->ntids; tid++) {
1139 		te = lookup_tid(ti, tid);
1140 		BUG_ON(!te);
1141 		if (te && te->ctx && te->client && te->client->redirect) {
1142 			update_tcb = te->client->redirect(te->ctx, old, new, e);
1143 			if (update_tcb) {
1144 				rcu_read_lock();
1145 				l2t_hold(L2DATA(tdev), e);
1146 				rcu_read_unlock();
1147 				set_l2t_ix(tdev, tid, e);
1148 			}
1149 		}
1150 	}
1151 	l2t_release(tdev, e);
1152 }
1153 
1154 /*
1155  * Allocate and initialize the TID tables.  Returns 0 on success.
1156  */
init_tid_tabs(struct tid_info * t,unsigned int ntids,unsigned int natids,unsigned int nstids,unsigned int atid_base,unsigned int stid_base)1157 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1158 			 unsigned int natids, unsigned int nstids,
1159 			 unsigned int atid_base, unsigned int stid_base)
1160 {
1161 	unsigned long size = ntids * sizeof(*t->tid_tab) +
1162 	    natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1163 
1164 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1165 	if (!t->tid_tab)
1166 		return -ENOMEM;
1167 
1168 	t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1169 	t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1170 	t->ntids = ntids;
1171 	t->nstids = nstids;
1172 	t->stid_base = stid_base;
1173 	t->sfree = NULL;
1174 	t->natids = natids;
1175 	t->atid_base = atid_base;
1176 	t->afree = NULL;
1177 	t->stids_in_use = t->atids_in_use = 0;
1178 	atomic_set(&t->tids_in_use, 0);
1179 	spin_lock_init(&t->stid_lock);
1180 	spin_lock_init(&t->atid_lock);
1181 
1182 	/*
1183 	 * Setup the free lists for stid_tab and atid_tab.
1184 	 */
1185 	if (nstids) {
1186 		while (--nstids)
1187 			t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1188 		t->sfree = t->stid_tab;
1189 	}
1190 	if (natids) {
1191 		while (--natids)
1192 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1193 		t->afree = t->atid_tab;
1194 	}
1195 	return 0;
1196 }
1197 
free_tid_maps(struct tid_info * t)1198 static void free_tid_maps(struct tid_info *t)
1199 {
1200 	kvfree(t->tid_tab);
1201 }
1202 
add_adapter(struct adapter * adap)1203 static inline void add_adapter(struct adapter *adap)
1204 {
1205 	write_lock_bh(&adapter_list_lock);
1206 	list_add_tail(&adap->adapter_list, &adapter_list);
1207 	write_unlock_bh(&adapter_list_lock);
1208 }
1209 
remove_adapter(struct adapter * adap)1210 static inline void remove_adapter(struct adapter *adap)
1211 {
1212 	write_lock_bh(&adapter_list_lock);
1213 	list_del(&adap->adapter_list);
1214 	write_unlock_bh(&adapter_list_lock);
1215 }
1216 
cxgb3_offload_activate(struct adapter * adapter)1217 int cxgb3_offload_activate(struct adapter *adapter)
1218 {
1219 	struct t3cdev *dev = &adapter->tdev;
1220 	int natids, err;
1221 	struct t3c_data *t;
1222 	struct tid_range stid_range, tid_range;
1223 	struct mtutab mtutab;
1224 	unsigned int l2t_capacity;
1225 	struct l2t_data *l2td;
1226 
1227 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1228 	if (!t)
1229 		return -ENOMEM;
1230 
1231 	err = -EOPNOTSUPP;
1232 	if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1233 	    dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1234 	    dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1235 	    dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1236 	    dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1237 	    dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1238 		goto out_free;
1239 
1240 	err = -ENOMEM;
1241 	l2td = t3_init_l2t(l2t_capacity);
1242 	if (!l2td)
1243 		goto out_free;
1244 
1245 	natids = min(tid_range.num / 2, MAX_ATIDS);
1246 	err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1247 			    stid_range.num, ATID_BASE, stid_range.base);
1248 	if (err)
1249 		goto out_free_l2t;
1250 
1251 	t->mtus = mtutab.mtus;
1252 	t->nmtus = mtutab.size;
1253 
1254 	INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1255 	spin_lock_init(&t->tid_release_lock);
1256 	INIT_LIST_HEAD(&t->list_node);
1257 	t->dev = dev;
1258 
1259 	RCU_INIT_POINTER(dev->l2opt, l2td);
1260 	T3C_DATA(dev) = t;
1261 	dev->recv = process_rx;
1262 	dev->neigh_update = t3_l2t_update;
1263 
1264 	/* Register netevent handler once */
1265 	if (list_empty(&adapter_list))
1266 		register_netevent_notifier(&nb);
1267 
1268 	t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1269 	t->release_list_incomplete = 0;
1270 
1271 	add_adapter(adapter);
1272 	return 0;
1273 
1274 out_free_l2t:
1275 	kvfree(l2td);
1276 out_free:
1277 	kfree(t);
1278 	return err;
1279 }
1280 
clean_l2_data(struct rcu_head * head)1281 static void clean_l2_data(struct rcu_head *head)
1282 {
1283 	struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
1284 	kvfree(d);
1285 }
1286 
1287 
cxgb3_offload_deactivate(struct adapter * adapter)1288 void cxgb3_offload_deactivate(struct adapter *adapter)
1289 {
1290 	struct t3cdev *tdev = &adapter->tdev;
1291 	struct t3c_data *t = T3C_DATA(tdev);
1292 	struct l2t_data *d;
1293 
1294 	remove_adapter(adapter);
1295 	if (list_empty(&adapter_list))
1296 		unregister_netevent_notifier(&nb);
1297 
1298 	free_tid_maps(&t->tid_maps);
1299 	T3C_DATA(tdev) = NULL;
1300 	rcu_read_lock();
1301 	d = L2DATA(tdev);
1302 	rcu_read_unlock();
1303 	RCU_INIT_POINTER(tdev->l2opt, NULL);
1304 	call_rcu(&d->rcu_head, clean_l2_data);
1305 	kfree_skb(t->nofail_skb);
1306 	kfree(t);
1307 }
1308 
register_tdev(struct t3cdev * tdev)1309 static inline void register_tdev(struct t3cdev *tdev)
1310 {
1311 	static int unit;
1312 
1313 	mutex_lock(&cxgb3_db_lock);
1314 	snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1315 	list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1316 	mutex_unlock(&cxgb3_db_lock);
1317 }
1318 
unregister_tdev(struct t3cdev * tdev)1319 static inline void unregister_tdev(struct t3cdev *tdev)
1320 {
1321 	mutex_lock(&cxgb3_db_lock);
1322 	list_del(&tdev->ofld_dev_list);
1323 	mutex_unlock(&cxgb3_db_lock);
1324 }
1325 
adap2type(struct adapter * adapter)1326 static inline int adap2type(struct adapter *adapter)
1327 {
1328 	int type = 0;
1329 
1330 	switch (adapter->params.rev) {
1331 	case T3_REV_A:
1332 		type = T3A;
1333 		break;
1334 	case T3_REV_B:
1335 	case T3_REV_B2:
1336 		type = T3B;
1337 		break;
1338 	case T3_REV_C:
1339 		type = T3C;
1340 		break;
1341 	}
1342 	return type;
1343 }
1344 
cxgb3_adapter_ofld(struct adapter * adapter)1345 void cxgb3_adapter_ofld(struct adapter *adapter)
1346 {
1347 	struct t3cdev *tdev = &adapter->tdev;
1348 
1349 	INIT_LIST_HEAD(&tdev->ofld_dev_list);
1350 
1351 	cxgb3_set_dummy_ops(tdev);
1352 	tdev->send = t3_offload_tx;
1353 	tdev->ctl = cxgb_offload_ctl;
1354 	tdev->type = adap2type(adapter);
1355 
1356 	register_tdev(tdev);
1357 }
1358 
cxgb3_adapter_unofld(struct adapter * adapter)1359 void cxgb3_adapter_unofld(struct adapter *adapter)
1360 {
1361 	struct t3cdev *tdev = &adapter->tdev;
1362 
1363 	tdev->recv = NULL;
1364 	tdev->neigh_update = NULL;
1365 
1366 	unregister_tdev(tdev);
1367 }
1368 
cxgb3_offload_init(void)1369 void __init cxgb3_offload_init(void)
1370 {
1371 	int i;
1372 
1373 	for (i = 0; i < NUM_CPL_CMDS; ++i)
1374 		cpl_handlers[i] = do_bad_cpl;
1375 
1376 	t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1377 	t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1378 	t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1379 	t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1380 	t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1381 	t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1382 	t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1383 	t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1384 	t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1385 	t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1386 	t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1387 	t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1388 	t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1389 	t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1390 	t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1391 	t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1392 	t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1393 	t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1394 	t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1395 	t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1396 	t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1397 	t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1398 	t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1399 	t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1400 	t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1401 	t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1402 }
1403