1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17 #include <linux/static_call.h>
18
19 #include <asm/hpet.h>
20 #include <asm/timer.h>
21 #include <asm/vgtod.h>
22 #include <asm/time.h>
23 #include <asm/delay.h>
24 #include <asm/hypervisor.h>
25 #include <asm/nmi.h>
26 #include <asm/x86_init.h>
27 #include <asm/geode.h>
28 #include <asm/apic.h>
29 #include <asm/intel-family.h>
30 #include <asm/i8259.h>
31 #include <asm/uv/uv.h>
32
33 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
34 EXPORT_SYMBOL(cpu_khz);
35
36 unsigned int __read_mostly tsc_khz;
37 EXPORT_SYMBOL(tsc_khz);
38
39 #define KHZ 1000
40
41 /*
42 * TSC can be unstable due to cpufreq or due to unsynced TSCs
43 */
44 static int __read_mostly tsc_unstable;
45 static unsigned int __initdata tsc_early_khz;
46
47 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
48
49 int tsc_clocksource_reliable;
50
51 static int __read_mostly tsc_force_recalibrate;
52
53 static u32 art_to_tsc_numerator;
54 static u32 art_to_tsc_denominator;
55 static u64 art_to_tsc_offset;
56 static struct clocksource *art_related_clocksource;
57
58 struct cyc2ns {
59 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
60 seqcount_latch_t seq; /* 32 + 4 = 36 */
61
62 }; /* fits one cacheline */
63
64 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
65
tsc_early_khz_setup(char * buf)66 static int __init tsc_early_khz_setup(char *buf)
67 {
68 return kstrtouint(buf, 0, &tsc_early_khz);
69 }
70 early_param("tsc_early_khz", tsc_early_khz_setup);
71
cyc2ns_read_begin(struct cyc2ns_data * data)72 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
73 {
74 int seq, idx;
75
76 preempt_disable_notrace();
77
78 do {
79 seq = this_cpu_read(cyc2ns.seq.seqcount.sequence);
80 idx = seq & 1;
81
82 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
83 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
84 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
85
86 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence)));
87 }
88
cyc2ns_read_end(void)89 __always_inline void cyc2ns_read_end(void)
90 {
91 preempt_enable_notrace();
92 }
93
94 /*
95 * Accelerators for sched_clock()
96 * convert from cycles(64bits) => nanoseconds (64bits)
97 * basic equation:
98 * ns = cycles / (freq / ns_per_sec)
99 * ns = cycles * (ns_per_sec / freq)
100 * ns = cycles * (10^9 / (cpu_khz * 10^3))
101 * ns = cycles * (10^6 / cpu_khz)
102 *
103 * Then we use scaling math (suggested by george@mvista.com) to get:
104 * ns = cycles * (10^6 * SC / cpu_khz) / SC
105 * ns = cycles * cyc2ns_scale / SC
106 *
107 * And since SC is a constant power of two, we can convert the div
108 * into a shift. The larger SC is, the more accurate the conversion, but
109 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
110 * (64-bit result) can be used.
111 *
112 * We can use khz divisor instead of mhz to keep a better precision.
113 * (mathieu.desnoyers@polymtl.ca)
114 *
115 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
116 */
117
cycles_2_ns(unsigned long long cyc)118 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
119 {
120 struct cyc2ns_data data;
121 unsigned long long ns;
122
123 cyc2ns_read_begin(&data);
124
125 ns = data.cyc2ns_offset;
126 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
127
128 cyc2ns_read_end();
129
130 return ns;
131 }
132
__set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)133 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
134 {
135 unsigned long long ns_now;
136 struct cyc2ns_data data;
137 struct cyc2ns *c2n;
138
139 ns_now = cycles_2_ns(tsc_now);
140
141 /*
142 * Compute a new multiplier as per the above comment and ensure our
143 * time function is continuous; see the comment near struct
144 * cyc2ns_data.
145 */
146 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
147 NSEC_PER_MSEC, 0);
148
149 /*
150 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
151 * not expected to be greater than 31 due to the original published
152 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
153 * value) - refer perf_event_mmap_page documentation in perf_event.h.
154 */
155 if (data.cyc2ns_shift == 32) {
156 data.cyc2ns_shift = 31;
157 data.cyc2ns_mul >>= 1;
158 }
159
160 data.cyc2ns_offset = ns_now -
161 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
162
163 c2n = per_cpu_ptr(&cyc2ns, cpu);
164
165 raw_write_seqcount_latch(&c2n->seq);
166 c2n->data[0] = data;
167 raw_write_seqcount_latch(&c2n->seq);
168 c2n->data[1] = data;
169 }
170
set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)171 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
172 {
173 unsigned long flags;
174
175 local_irq_save(flags);
176 sched_clock_idle_sleep_event();
177
178 if (khz)
179 __set_cyc2ns_scale(khz, cpu, tsc_now);
180
181 sched_clock_idle_wakeup_event();
182 local_irq_restore(flags);
183 }
184
185 /*
186 * Initialize cyc2ns for boot cpu
187 */
cyc2ns_init_boot_cpu(void)188 static void __init cyc2ns_init_boot_cpu(void)
189 {
190 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
191
192 seqcount_latch_init(&c2n->seq);
193 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
194 }
195
196 /*
197 * Secondary CPUs do not run through tsc_init(), so set up
198 * all the scale factors for all CPUs, assuming the same
199 * speed as the bootup CPU.
200 */
cyc2ns_init_secondary_cpus(void)201 static void __init cyc2ns_init_secondary_cpus(void)
202 {
203 unsigned int cpu, this_cpu = smp_processor_id();
204 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
205 struct cyc2ns_data *data = c2n->data;
206
207 for_each_possible_cpu(cpu) {
208 if (cpu != this_cpu) {
209 seqcount_latch_init(&c2n->seq);
210 c2n = per_cpu_ptr(&cyc2ns, cpu);
211 c2n->data[0] = data[0];
212 c2n->data[1] = data[1];
213 }
214 }
215 }
216
217 /*
218 * Scheduler clock - returns current time in nanosec units.
219 */
native_sched_clock(void)220 noinstr u64 native_sched_clock(void)
221 {
222 if (static_branch_likely(&__use_tsc)) {
223 u64 tsc_now = rdtsc();
224
225 /* return the value in ns */
226 return cycles_2_ns(tsc_now);
227 }
228
229 /*
230 * Fall back to jiffies if there's no TSC available:
231 * ( But note that we still use it if the TSC is marked
232 * unstable. We do this because unlike Time Of Day,
233 * the scheduler clock tolerates small errors and it's
234 * very important for it to be as fast as the platform
235 * can achieve it. )
236 */
237
238 /* No locking but a rare wrong value is not a big deal: */
239 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
240 }
241
242 /*
243 * Generate a sched_clock if you already have a TSC value.
244 */
native_sched_clock_from_tsc(u64 tsc)245 u64 native_sched_clock_from_tsc(u64 tsc)
246 {
247 return cycles_2_ns(tsc);
248 }
249
250 /* We need to define a real function for sched_clock, to override the
251 weak default version */
252 #ifdef CONFIG_PARAVIRT
sched_clock(void)253 noinstr u64 sched_clock(void)
254 {
255 return paravirt_sched_clock();
256 }
257
using_native_sched_clock(void)258 bool using_native_sched_clock(void)
259 {
260 return static_call_query(pv_sched_clock) == native_sched_clock;
261 }
262 #else
263 u64 sched_clock(void) __attribute__((alias("native_sched_clock")));
264
using_native_sched_clock(void)265 bool using_native_sched_clock(void) { return true; }
266 #endif
267
check_tsc_unstable(void)268 int check_tsc_unstable(void)
269 {
270 return tsc_unstable;
271 }
272 EXPORT_SYMBOL_GPL(check_tsc_unstable);
273
274 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)275 int __init notsc_setup(char *str)
276 {
277 mark_tsc_unstable("boot parameter notsc");
278 return 1;
279 }
280 #else
281 /*
282 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
283 * in cpu/common.c
284 */
notsc_setup(char * str)285 int __init notsc_setup(char *str)
286 {
287 setup_clear_cpu_cap(X86_FEATURE_TSC);
288 return 1;
289 }
290 #endif
291
292 __setup("notsc", notsc_setup);
293
294 static int no_sched_irq_time;
295 static int no_tsc_watchdog;
296 static int tsc_as_watchdog;
297
tsc_setup(char * str)298 static int __init tsc_setup(char *str)
299 {
300 if (!strcmp(str, "reliable"))
301 tsc_clocksource_reliable = 1;
302 if (!strncmp(str, "noirqtime", 9))
303 no_sched_irq_time = 1;
304 if (!strcmp(str, "unstable"))
305 mark_tsc_unstable("boot parameter");
306 if (!strcmp(str, "nowatchdog")) {
307 no_tsc_watchdog = 1;
308 if (tsc_as_watchdog)
309 pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n",
310 __func__);
311 tsc_as_watchdog = 0;
312 }
313 if (!strcmp(str, "recalibrate"))
314 tsc_force_recalibrate = 1;
315 if (!strcmp(str, "watchdog")) {
316 if (no_tsc_watchdog)
317 pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n",
318 __func__);
319 else
320 tsc_as_watchdog = 1;
321 }
322 return 1;
323 }
324
325 __setup("tsc=", tsc_setup);
326
327 #define MAX_RETRIES 5
328 #define TSC_DEFAULT_THRESHOLD 0x20000
329
330 /*
331 * Read TSC and the reference counters. Take care of any disturbances
332 */
tsc_read_refs(u64 * p,int hpet)333 static u64 tsc_read_refs(u64 *p, int hpet)
334 {
335 u64 t1, t2;
336 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
337 int i;
338
339 for (i = 0; i < MAX_RETRIES; i++) {
340 t1 = get_cycles();
341 if (hpet)
342 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
343 else
344 *p = acpi_pm_read_early();
345 t2 = get_cycles();
346 if ((t2 - t1) < thresh)
347 return t2;
348 }
349 return ULLONG_MAX;
350 }
351
352 /*
353 * Calculate the TSC frequency from HPET reference
354 */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)355 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
356 {
357 u64 tmp;
358
359 if (hpet2 < hpet1)
360 hpet2 += 0x100000000ULL;
361 hpet2 -= hpet1;
362 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
363 do_div(tmp, 1000000);
364 deltatsc = div64_u64(deltatsc, tmp);
365
366 return (unsigned long) deltatsc;
367 }
368
369 /*
370 * Calculate the TSC frequency from PMTimer reference
371 */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)372 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
373 {
374 u64 tmp;
375
376 if (!pm1 && !pm2)
377 return ULONG_MAX;
378
379 if (pm2 < pm1)
380 pm2 += (u64)ACPI_PM_OVRRUN;
381 pm2 -= pm1;
382 tmp = pm2 * 1000000000LL;
383 do_div(tmp, PMTMR_TICKS_PER_SEC);
384 do_div(deltatsc, tmp);
385
386 return (unsigned long) deltatsc;
387 }
388
389 #define CAL_MS 10
390 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
391 #define CAL_PIT_LOOPS 1000
392
393 #define CAL2_MS 50
394 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
395 #define CAL2_PIT_LOOPS 5000
396
397
398 /*
399 * Try to calibrate the TSC against the Programmable
400 * Interrupt Timer and return the frequency of the TSC
401 * in kHz.
402 *
403 * Return ULONG_MAX on failure to calibrate.
404 */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)405 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
406 {
407 u64 tsc, t1, t2, delta;
408 unsigned long tscmin, tscmax;
409 int pitcnt;
410
411 if (!has_legacy_pic()) {
412 /*
413 * Relies on tsc_early_delay_calibrate() to have given us semi
414 * usable udelay(), wait for the same 50ms we would have with
415 * the PIT loop below.
416 */
417 udelay(10 * USEC_PER_MSEC);
418 udelay(10 * USEC_PER_MSEC);
419 udelay(10 * USEC_PER_MSEC);
420 udelay(10 * USEC_PER_MSEC);
421 udelay(10 * USEC_PER_MSEC);
422 return ULONG_MAX;
423 }
424
425 /* Set the Gate high, disable speaker */
426 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
427
428 /*
429 * Setup CTC channel 2* for mode 0, (interrupt on terminal
430 * count mode), binary count. Set the latch register to 50ms
431 * (LSB then MSB) to begin countdown.
432 */
433 outb(0xb0, 0x43);
434 outb(latch & 0xff, 0x42);
435 outb(latch >> 8, 0x42);
436
437 tsc = t1 = t2 = get_cycles();
438
439 pitcnt = 0;
440 tscmax = 0;
441 tscmin = ULONG_MAX;
442 while ((inb(0x61) & 0x20) == 0) {
443 t2 = get_cycles();
444 delta = t2 - tsc;
445 tsc = t2;
446 if ((unsigned long) delta < tscmin)
447 tscmin = (unsigned int) delta;
448 if ((unsigned long) delta > tscmax)
449 tscmax = (unsigned int) delta;
450 pitcnt++;
451 }
452
453 /*
454 * Sanity checks:
455 *
456 * If we were not able to read the PIT more than loopmin
457 * times, then we have been hit by a massive SMI
458 *
459 * If the maximum is 10 times larger than the minimum,
460 * then we got hit by an SMI as well.
461 */
462 if (pitcnt < loopmin || tscmax > 10 * tscmin)
463 return ULONG_MAX;
464
465 /* Calculate the PIT value */
466 delta = t2 - t1;
467 do_div(delta, ms);
468 return delta;
469 }
470
471 /*
472 * This reads the current MSB of the PIT counter, and
473 * checks if we are running on sufficiently fast and
474 * non-virtualized hardware.
475 *
476 * Our expectations are:
477 *
478 * - the PIT is running at roughly 1.19MHz
479 *
480 * - each IO is going to take about 1us on real hardware,
481 * but we allow it to be much faster (by a factor of 10) or
482 * _slightly_ slower (ie we allow up to a 2us read+counter
483 * update - anything else implies a unacceptably slow CPU
484 * or PIT for the fast calibration to work.
485 *
486 * - with 256 PIT ticks to read the value, we have 214us to
487 * see the same MSB (and overhead like doing a single TSC
488 * read per MSB value etc).
489 *
490 * - We're doing 2 reads per loop (LSB, MSB), and we expect
491 * them each to take about a microsecond on real hardware.
492 * So we expect a count value of around 100. But we'll be
493 * generous, and accept anything over 50.
494 *
495 * - if the PIT is stuck, and we see *many* more reads, we
496 * return early (and the next caller of pit_expect_msb()
497 * then consider it a failure when they don't see the
498 * next expected value).
499 *
500 * These expectations mean that we know that we have seen the
501 * transition from one expected value to another with a fairly
502 * high accuracy, and we didn't miss any events. We can thus
503 * use the TSC value at the transitions to calculate a pretty
504 * good value for the TSC frequency.
505 */
pit_verify_msb(unsigned char val)506 static inline int pit_verify_msb(unsigned char val)
507 {
508 /* Ignore LSB */
509 inb(0x42);
510 return inb(0x42) == val;
511 }
512
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)513 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
514 {
515 int count;
516 u64 tsc = 0, prev_tsc = 0;
517
518 for (count = 0; count < 50000; count++) {
519 if (!pit_verify_msb(val))
520 break;
521 prev_tsc = tsc;
522 tsc = get_cycles();
523 }
524 *deltap = get_cycles() - prev_tsc;
525 *tscp = tsc;
526
527 /*
528 * We require _some_ success, but the quality control
529 * will be based on the error terms on the TSC values.
530 */
531 return count > 5;
532 }
533
534 /*
535 * How many MSB values do we want to see? We aim for
536 * a maximum error rate of 500ppm (in practice the
537 * real error is much smaller), but refuse to spend
538 * more than 50ms on it.
539 */
540 #define MAX_QUICK_PIT_MS 50
541 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
542
quick_pit_calibrate(void)543 static unsigned long quick_pit_calibrate(void)
544 {
545 int i;
546 u64 tsc, delta;
547 unsigned long d1, d2;
548
549 if (!has_legacy_pic())
550 return 0;
551
552 /* Set the Gate high, disable speaker */
553 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
554
555 /*
556 * Counter 2, mode 0 (one-shot), binary count
557 *
558 * NOTE! Mode 2 decrements by two (and then the
559 * output is flipped each time, giving the same
560 * final output frequency as a decrement-by-one),
561 * so mode 0 is much better when looking at the
562 * individual counts.
563 */
564 outb(0xb0, 0x43);
565
566 /* Start at 0xffff */
567 outb(0xff, 0x42);
568 outb(0xff, 0x42);
569
570 /*
571 * The PIT starts counting at the next edge, so we
572 * need to delay for a microsecond. The easiest way
573 * to do that is to just read back the 16-bit counter
574 * once from the PIT.
575 */
576 pit_verify_msb(0);
577
578 if (pit_expect_msb(0xff, &tsc, &d1)) {
579 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
580 if (!pit_expect_msb(0xff-i, &delta, &d2))
581 break;
582
583 delta -= tsc;
584
585 /*
586 * Extrapolate the error and fail fast if the error will
587 * never be below 500 ppm.
588 */
589 if (i == 1 &&
590 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
591 return 0;
592
593 /*
594 * Iterate until the error is less than 500 ppm
595 */
596 if (d1+d2 >= delta >> 11)
597 continue;
598
599 /*
600 * Check the PIT one more time to verify that
601 * all TSC reads were stable wrt the PIT.
602 *
603 * This also guarantees serialization of the
604 * last cycle read ('d2') in pit_expect_msb.
605 */
606 if (!pit_verify_msb(0xfe - i))
607 break;
608 goto success;
609 }
610 }
611 pr_info("Fast TSC calibration failed\n");
612 return 0;
613
614 success:
615 /*
616 * Ok, if we get here, then we've seen the
617 * MSB of the PIT decrement 'i' times, and the
618 * error has shrunk to less than 500 ppm.
619 *
620 * As a result, we can depend on there not being
621 * any odd delays anywhere, and the TSC reads are
622 * reliable (within the error).
623 *
624 * kHz = ticks / time-in-seconds / 1000;
625 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
626 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
627 */
628 delta *= PIT_TICK_RATE;
629 do_div(delta, i*256*1000);
630 pr_info("Fast TSC calibration using PIT\n");
631 return delta;
632 }
633
634 /**
635 * native_calibrate_tsc
636 * Determine TSC frequency via CPUID, else return 0.
637 */
native_calibrate_tsc(void)638 unsigned long native_calibrate_tsc(void)
639 {
640 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
641 unsigned int crystal_khz;
642
643 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
644 return 0;
645
646 if (boot_cpu_data.cpuid_level < 0x15)
647 return 0;
648
649 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
650
651 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
652 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
653
654 if (ebx_numerator == 0 || eax_denominator == 0)
655 return 0;
656
657 crystal_khz = ecx_hz / 1000;
658
659 /*
660 * Denverton SoCs don't report crystal clock, and also don't support
661 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
662 * clock.
663 */
664 if (crystal_khz == 0 &&
665 boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
666 crystal_khz = 25000;
667
668 /*
669 * TSC frequency reported directly by CPUID is a "hardware reported"
670 * frequency and is the most accurate one so far we have. This
671 * is considered a known frequency.
672 */
673 if (crystal_khz != 0)
674 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
675
676 /*
677 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
678 * clock, but we can easily calculate it to a high degree of accuracy
679 * by considering the crystal ratio and the CPU speed.
680 */
681 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
682 unsigned int eax_base_mhz, ebx, ecx, edx;
683
684 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
685 crystal_khz = eax_base_mhz * 1000 *
686 eax_denominator / ebx_numerator;
687 }
688
689 if (crystal_khz == 0)
690 return 0;
691
692 /*
693 * For Atom SoCs TSC is the only reliable clocksource.
694 * Mark TSC reliable so no watchdog on it.
695 */
696 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
697 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
698
699 #ifdef CONFIG_X86_LOCAL_APIC
700 /*
701 * The local APIC appears to be fed by the core crystal clock
702 * (which sounds entirely sensible). We can set the global
703 * lapic_timer_period here to avoid having to calibrate the APIC
704 * timer later.
705 */
706 lapic_timer_period = crystal_khz * 1000 / HZ;
707 #endif
708
709 return crystal_khz * ebx_numerator / eax_denominator;
710 }
711
cpu_khz_from_cpuid(void)712 static unsigned long cpu_khz_from_cpuid(void)
713 {
714 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
715
716 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
717 return 0;
718
719 if (boot_cpu_data.cpuid_level < 0x16)
720 return 0;
721
722 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
723
724 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
725
726 return eax_base_mhz * 1000;
727 }
728
729 /*
730 * calibrate cpu using pit, hpet, and ptimer methods. They are available
731 * later in boot after acpi is initialized.
732 */
pit_hpet_ptimer_calibrate_cpu(void)733 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
734 {
735 u64 tsc1, tsc2, delta, ref1, ref2;
736 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
737 unsigned long flags, latch, ms;
738 int hpet = is_hpet_enabled(), i, loopmin;
739
740 /*
741 * Run 5 calibration loops to get the lowest frequency value
742 * (the best estimate). We use two different calibration modes
743 * here:
744 *
745 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
746 * load a timeout of 50ms. We read the time right after we
747 * started the timer and wait until the PIT count down reaches
748 * zero. In each wait loop iteration we read the TSC and check
749 * the delta to the previous read. We keep track of the min
750 * and max values of that delta. The delta is mostly defined
751 * by the IO time of the PIT access, so we can detect when
752 * any disturbance happened between the two reads. If the
753 * maximum time is significantly larger than the minimum time,
754 * then we discard the result and have another try.
755 *
756 * 2) Reference counter. If available we use the HPET or the
757 * PMTIMER as a reference to check the sanity of that value.
758 * We use separate TSC readouts and check inside of the
759 * reference read for any possible disturbance. We discard
760 * disturbed values here as well. We do that around the PIT
761 * calibration delay loop as we have to wait for a certain
762 * amount of time anyway.
763 */
764
765 /* Preset PIT loop values */
766 latch = CAL_LATCH;
767 ms = CAL_MS;
768 loopmin = CAL_PIT_LOOPS;
769
770 for (i = 0; i < 3; i++) {
771 unsigned long tsc_pit_khz;
772
773 /*
774 * Read the start value and the reference count of
775 * hpet/pmtimer when available. Then do the PIT
776 * calibration, which will take at least 50ms, and
777 * read the end value.
778 */
779 local_irq_save(flags);
780 tsc1 = tsc_read_refs(&ref1, hpet);
781 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
782 tsc2 = tsc_read_refs(&ref2, hpet);
783 local_irq_restore(flags);
784
785 /* Pick the lowest PIT TSC calibration so far */
786 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
787
788 /* hpet or pmtimer available ? */
789 if (ref1 == ref2)
790 continue;
791
792 /* Check, whether the sampling was disturbed */
793 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
794 continue;
795
796 tsc2 = (tsc2 - tsc1) * 1000000LL;
797 if (hpet)
798 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
799 else
800 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
801
802 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
803
804 /* Check the reference deviation */
805 delta = ((u64) tsc_pit_min) * 100;
806 do_div(delta, tsc_ref_min);
807
808 /*
809 * If both calibration results are inside a 10% window
810 * then we can be sure, that the calibration
811 * succeeded. We break out of the loop right away. We
812 * use the reference value, as it is more precise.
813 */
814 if (delta >= 90 && delta <= 110) {
815 pr_info("PIT calibration matches %s. %d loops\n",
816 hpet ? "HPET" : "PMTIMER", i + 1);
817 return tsc_ref_min;
818 }
819
820 /*
821 * Check whether PIT failed more than once. This
822 * happens in virtualized environments. We need to
823 * give the virtual PC a slightly longer timeframe for
824 * the HPET/PMTIMER to make the result precise.
825 */
826 if (i == 1 && tsc_pit_min == ULONG_MAX) {
827 latch = CAL2_LATCH;
828 ms = CAL2_MS;
829 loopmin = CAL2_PIT_LOOPS;
830 }
831 }
832
833 /*
834 * Now check the results.
835 */
836 if (tsc_pit_min == ULONG_MAX) {
837 /* PIT gave no useful value */
838 pr_warn("Unable to calibrate against PIT\n");
839
840 /* We don't have an alternative source, disable TSC */
841 if (!hpet && !ref1 && !ref2) {
842 pr_notice("No reference (HPET/PMTIMER) available\n");
843 return 0;
844 }
845
846 /* The alternative source failed as well, disable TSC */
847 if (tsc_ref_min == ULONG_MAX) {
848 pr_warn("HPET/PMTIMER calibration failed\n");
849 return 0;
850 }
851
852 /* Use the alternative source */
853 pr_info("using %s reference calibration\n",
854 hpet ? "HPET" : "PMTIMER");
855
856 return tsc_ref_min;
857 }
858
859 /* We don't have an alternative source, use the PIT calibration value */
860 if (!hpet && !ref1 && !ref2) {
861 pr_info("Using PIT calibration value\n");
862 return tsc_pit_min;
863 }
864
865 /* The alternative source failed, use the PIT calibration value */
866 if (tsc_ref_min == ULONG_MAX) {
867 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
868 return tsc_pit_min;
869 }
870
871 /*
872 * The calibration values differ too much. In doubt, we use
873 * the PIT value as we know that there are PMTIMERs around
874 * running at double speed. At least we let the user know:
875 */
876 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
877 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
878 pr_info("Using PIT calibration value\n");
879 return tsc_pit_min;
880 }
881
882 /**
883 * native_calibrate_cpu_early - can calibrate the cpu early in boot
884 */
native_calibrate_cpu_early(void)885 unsigned long native_calibrate_cpu_early(void)
886 {
887 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
888
889 if (!fast_calibrate)
890 fast_calibrate = cpu_khz_from_msr();
891 if (!fast_calibrate) {
892 local_irq_save(flags);
893 fast_calibrate = quick_pit_calibrate();
894 local_irq_restore(flags);
895 }
896 return fast_calibrate;
897 }
898
899
900 /**
901 * native_calibrate_cpu - calibrate the cpu
902 */
native_calibrate_cpu(void)903 static unsigned long native_calibrate_cpu(void)
904 {
905 unsigned long tsc_freq = native_calibrate_cpu_early();
906
907 if (!tsc_freq)
908 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
909
910 return tsc_freq;
911 }
912
recalibrate_cpu_khz(void)913 void recalibrate_cpu_khz(void)
914 {
915 #ifndef CONFIG_SMP
916 unsigned long cpu_khz_old = cpu_khz;
917
918 if (!boot_cpu_has(X86_FEATURE_TSC))
919 return;
920
921 cpu_khz = x86_platform.calibrate_cpu();
922 tsc_khz = x86_platform.calibrate_tsc();
923 if (tsc_khz == 0)
924 tsc_khz = cpu_khz;
925 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
926 cpu_khz = tsc_khz;
927 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
928 cpu_khz_old, cpu_khz);
929 #endif
930 }
931 EXPORT_SYMBOL_GPL(recalibrate_cpu_khz);
932
933
934 static unsigned long long cyc2ns_suspend;
935
tsc_save_sched_clock_state(void)936 void tsc_save_sched_clock_state(void)
937 {
938 if (!sched_clock_stable())
939 return;
940
941 cyc2ns_suspend = sched_clock();
942 }
943
944 /*
945 * Even on processors with invariant TSC, TSC gets reset in some the
946 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
947 * arbitrary value (still sync'd across cpu's) during resume from such sleep
948 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
949 * that sched_clock() continues from the point where it was left off during
950 * suspend.
951 */
tsc_restore_sched_clock_state(void)952 void tsc_restore_sched_clock_state(void)
953 {
954 unsigned long long offset;
955 unsigned long flags;
956 int cpu;
957
958 if (!sched_clock_stable())
959 return;
960
961 local_irq_save(flags);
962
963 /*
964 * We're coming out of suspend, there's no concurrency yet; don't
965 * bother being nice about the RCU stuff, just write to both
966 * data fields.
967 */
968
969 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
970 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
971
972 offset = cyc2ns_suspend - sched_clock();
973
974 for_each_possible_cpu(cpu) {
975 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
976 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
977 }
978
979 local_irq_restore(flags);
980 }
981
982 #ifdef CONFIG_CPU_FREQ
983 /*
984 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
985 * changes.
986 *
987 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
988 * as unstable and give up in those cases.
989 *
990 * Should fix up last_tsc too. Currently gettimeofday in the
991 * first tick after the change will be slightly wrong.
992 */
993
994 static unsigned int ref_freq;
995 static unsigned long loops_per_jiffy_ref;
996 static unsigned long tsc_khz_ref;
997
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)998 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
999 void *data)
1000 {
1001 struct cpufreq_freqs *freq = data;
1002
1003 if (num_online_cpus() > 1) {
1004 mark_tsc_unstable("cpufreq changes on SMP");
1005 return 0;
1006 }
1007
1008 if (!ref_freq) {
1009 ref_freq = freq->old;
1010 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
1011 tsc_khz_ref = tsc_khz;
1012 }
1013
1014 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1015 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1016 boot_cpu_data.loops_per_jiffy =
1017 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1018
1019 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1020 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1021 mark_tsc_unstable("cpufreq changes");
1022
1023 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1024 }
1025
1026 return 0;
1027 }
1028
1029 static struct notifier_block time_cpufreq_notifier_block = {
1030 .notifier_call = time_cpufreq_notifier
1031 };
1032
cpufreq_register_tsc_scaling(void)1033 static int __init cpufreq_register_tsc_scaling(void)
1034 {
1035 if (!boot_cpu_has(X86_FEATURE_TSC))
1036 return 0;
1037 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1038 return 0;
1039 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1040 CPUFREQ_TRANSITION_NOTIFIER);
1041 return 0;
1042 }
1043
1044 core_initcall(cpufreq_register_tsc_scaling);
1045
1046 #endif /* CONFIG_CPU_FREQ */
1047
1048 #define ART_CPUID_LEAF (0x15)
1049 #define ART_MIN_DENOMINATOR (1)
1050
1051
1052 /*
1053 * If ART is present detect the numerator:denominator to convert to TSC
1054 */
detect_art(void)1055 static void __init detect_art(void)
1056 {
1057 unsigned int unused[2];
1058
1059 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1060 return;
1061
1062 /*
1063 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1064 * and the TSC counter resets must not occur asynchronously.
1065 */
1066 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1067 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1068 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1069 tsc_async_resets)
1070 return;
1071
1072 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1073 &art_to_tsc_numerator, unused, unused+1);
1074
1075 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1076 return;
1077
1078 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1079
1080 /* Make this sticky over multiple CPU init calls */
1081 setup_force_cpu_cap(X86_FEATURE_ART);
1082 }
1083
1084
1085 /* clocksource code */
1086
tsc_resume(struct clocksource * cs)1087 static void tsc_resume(struct clocksource *cs)
1088 {
1089 tsc_verify_tsc_adjust(true);
1090 }
1091
1092 /*
1093 * We used to compare the TSC to the cycle_last value in the clocksource
1094 * structure to avoid a nasty time-warp. This can be observed in a
1095 * very small window right after one CPU updated cycle_last under
1096 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1097 * is smaller than the cycle_last reference value due to a TSC which
1098 * is slightly behind. This delta is nowhere else observable, but in
1099 * that case it results in a forward time jump in the range of hours
1100 * due to the unsigned delta calculation of the time keeping core
1101 * code, which is necessary to support wrapping clocksources like pm
1102 * timer.
1103 *
1104 * This sanity check is now done in the core timekeeping code.
1105 * checking the result of read_tsc() - cycle_last for being negative.
1106 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1107 */
read_tsc(struct clocksource * cs)1108 static u64 read_tsc(struct clocksource *cs)
1109 {
1110 return (u64)rdtsc_ordered();
1111 }
1112
tsc_cs_mark_unstable(struct clocksource * cs)1113 static void tsc_cs_mark_unstable(struct clocksource *cs)
1114 {
1115 if (tsc_unstable)
1116 return;
1117
1118 tsc_unstable = 1;
1119 if (using_native_sched_clock())
1120 clear_sched_clock_stable();
1121 disable_sched_clock_irqtime();
1122 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1123 }
1124
tsc_cs_tick_stable(struct clocksource * cs)1125 static void tsc_cs_tick_stable(struct clocksource *cs)
1126 {
1127 if (tsc_unstable)
1128 return;
1129
1130 if (using_native_sched_clock())
1131 sched_clock_tick_stable();
1132 }
1133
tsc_cs_enable(struct clocksource * cs)1134 static int tsc_cs_enable(struct clocksource *cs)
1135 {
1136 vclocks_set_used(VDSO_CLOCKMODE_TSC);
1137 return 0;
1138 }
1139
1140 /*
1141 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1142 */
1143 static struct clocksource clocksource_tsc_early = {
1144 .name = "tsc-early",
1145 .rating = 299,
1146 .uncertainty_margin = 32 * NSEC_PER_MSEC,
1147 .read = read_tsc,
1148 .mask = CLOCKSOURCE_MASK(64),
1149 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1150 CLOCK_SOURCE_MUST_VERIFY,
1151 .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1152 .enable = tsc_cs_enable,
1153 .resume = tsc_resume,
1154 .mark_unstable = tsc_cs_mark_unstable,
1155 .tick_stable = tsc_cs_tick_stable,
1156 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1157 };
1158
1159 /*
1160 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1161 * this one will immediately take over. We will only register if TSC has
1162 * been found good.
1163 */
1164 static struct clocksource clocksource_tsc = {
1165 .name = "tsc",
1166 .rating = 300,
1167 .read = read_tsc,
1168 .mask = CLOCKSOURCE_MASK(64),
1169 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1170 CLOCK_SOURCE_VALID_FOR_HRES |
1171 CLOCK_SOURCE_MUST_VERIFY |
1172 CLOCK_SOURCE_VERIFY_PERCPU,
1173 .vdso_clock_mode = VDSO_CLOCKMODE_TSC,
1174 .enable = tsc_cs_enable,
1175 .resume = tsc_resume,
1176 .mark_unstable = tsc_cs_mark_unstable,
1177 .tick_stable = tsc_cs_tick_stable,
1178 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1179 };
1180
mark_tsc_unstable(char * reason)1181 void mark_tsc_unstable(char *reason)
1182 {
1183 if (tsc_unstable)
1184 return;
1185
1186 tsc_unstable = 1;
1187 if (using_native_sched_clock())
1188 clear_sched_clock_stable();
1189 disable_sched_clock_irqtime();
1190 pr_info("Marking TSC unstable due to %s\n", reason);
1191
1192 clocksource_mark_unstable(&clocksource_tsc_early);
1193 clocksource_mark_unstable(&clocksource_tsc);
1194 }
1195
1196 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1197
tsc_disable_clocksource_watchdog(void)1198 static void __init tsc_disable_clocksource_watchdog(void)
1199 {
1200 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1201 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1202 }
1203
tsc_clocksource_watchdog_disabled(void)1204 bool tsc_clocksource_watchdog_disabled(void)
1205 {
1206 return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) &&
1207 tsc_as_watchdog && !no_tsc_watchdog;
1208 }
1209
check_system_tsc_reliable(void)1210 static void __init check_system_tsc_reliable(void)
1211 {
1212 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1213 if (is_geode_lx()) {
1214 /* RTSC counts during suspend */
1215 #define RTSC_SUSP 0x100
1216 unsigned long res_low, res_high;
1217
1218 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1219 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1220 if (res_low & RTSC_SUSP)
1221 tsc_clocksource_reliable = 1;
1222 }
1223 #endif
1224 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1225 tsc_clocksource_reliable = 1;
1226
1227 /*
1228 * Disable the clocksource watchdog when the system has:
1229 * - TSC running at constant frequency
1230 * - TSC which does not stop in C-States
1231 * - the TSC_ADJUST register which allows to detect even minimal
1232 * modifications
1233 * - not more than two sockets. As the number of sockets cannot be
1234 * evaluated at the early boot stage where this has to be
1235 * invoked, check the number of online memory nodes as a
1236 * fallback solution which is an reasonable estimate.
1237 */
1238 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1239 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1240 boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1241 nr_online_nodes <= 2)
1242 tsc_disable_clocksource_watchdog();
1243 }
1244
1245 /*
1246 * Make an educated guess if the TSC is trustworthy and synchronized
1247 * over all CPUs.
1248 */
unsynchronized_tsc(void)1249 int unsynchronized_tsc(void)
1250 {
1251 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1252 return 1;
1253
1254 #ifdef CONFIG_SMP
1255 if (apic_is_clustered_box())
1256 return 1;
1257 #endif
1258
1259 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1260 return 0;
1261
1262 if (tsc_clocksource_reliable)
1263 return 0;
1264 /*
1265 * Intel systems are normally all synchronized.
1266 * Exceptions must mark TSC as unstable:
1267 */
1268 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1269 /* assume multi socket systems are not synchronized: */
1270 if (num_possible_cpus() > 1)
1271 return 1;
1272 }
1273
1274 return 0;
1275 }
1276
1277 /*
1278 * Convert ART to TSC given numerator/denominator found in detect_art()
1279 */
convert_art_to_tsc(u64 art)1280 struct system_counterval_t convert_art_to_tsc(u64 art)
1281 {
1282 u64 tmp, res, rem;
1283
1284 rem = do_div(art, art_to_tsc_denominator);
1285
1286 res = art * art_to_tsc_numerator;
1287 tmp = rem * art_to_tsc_numerator;
1288
1289 do_div(tmp, art_to_tsc_denominator);
1290 res += tmp + art_to_tsc_offset;
1291
1292 return (struct system_counterval_t) {.cs = art_related_clocksource,
1293 .cycles = res};
1294 }
1295 EXPORT_SYMBOL(convert_art_to_tsc);
1296
1297 /**
1298 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1299 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1300 *
1301 * PTM requires all timestamps to be in units of nanoseconds. When user
1302 * software requests a cross-timestamp, this function converts system timestamp
1303 * to TSC.
1304 *
1305 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1306 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1307 * that this flag is set before conversion to TSC is attempted.
1308 *
1309 * Return:
1310 * struct system_counterval_t - system counter value with the pointer to the
1311 * corresponding clocksource
1312 * @cycles: System counter value
1313 * @cs: Clocksource corresponding to system counter value. Used
1314 * by timekeeping code to verify comparability of two cycle
1315 * values.
1316 */
1317
convert_art_ns_to_tsc(u64 art_ns)1318 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1319 {
1320 u64 tmp, res, rem;
1321
1322 rem = do_div(art_ns, USEC_PER_SEC);
1323
1324 res = art_ns * tsc_khz;
1325 tmp = rem * tsc_khz;
1326
1327 do_div(tmp, USEC_PER_SEC);
1328 res += tmp;
1329
1330 return (struct system_counterval_t) { .cs = art_related_clocksource,
1331 .cycles = res};
1332 }
1333 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1334
1335
1336 static void tsc_refine_calibration_work(struct work_struct *work);
1337 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1338 /**
1339 * tsc_refine_calibration_work - Further refine tsc freq calibration
1340 * @work - ignored.
1341 *
1342 * This functions uses delayed work over a period of a
1343 * second to further refine the TSC freq value. Since this is
1344 * timer based, instead of loop based, we don't block the boot
1345 * process while this longer calibration is done.
1346 *
1347 * If there are any calibration anomalies (too many SMIs, etc),
1348 * or the refined calibration is off by 1% of the fast early
1349 * calibration, we throw out the new calibration and use the
1350 * early calibration.
1351 */
tsc_refine_calibration_work(struct work_struct * work)1352 static void tsc_refine_calibration_work(struct work_struct *work)
1353 {
1354 static u64 tsc_start = ULLONG_MAX, ref_start;
1355 static int hpet;
1356 u64 tsc_stop, ref_stop, delta;
1357 unsigned long freq;
1358 int cpu;
1359
1360 /* Don't bother refining TSC on unstable systems */
1361 if (tsc_unstable)
1362 goto unreg;
1363
1364 /*
1365 * Since the work is started early in boot, we may be
1366 * delayed the first time we expire. So set the workqueue
1367 * again once we know timers are working.
1368 */
1369 if (tsc_start == ULLONG_MAX) {
1370 restart:
1371 /*
1372 * Only set hpet once, to avoid mixing hardware
1373 * if the hpet becomes enabled later.
1374 */
1375 hpet = is_hpet_enabled();
1376 tsc_start = tsc_read_refs(&ref_start, hpet);
1377 schedule_delayed_work(&tsc_irqwork, HZ);
1378 return;
1379 }
1380
1381 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1382
1383 /* hpet or pmtimer available ? */
1384 if (ref_start == ref_stop)
1385 goto out;
1386
1387 /* Check, whether the sampling was disturbed */
1388 if (tsc_stop == ULLONG_MAX)
1389 goto restart;
1390
1391 delta = tsc_stop - tsc_start;
1392 delta *= 1000000LL;
1393 if (hpet)
1394 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1395 else
1396 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1397
1398 /* Will hit this only if tsc_force_recalibrate has been set */
1399 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1400
1401 /* Warn if the deviation exceeds 500 ppm */
1402 if (abs(tsc_khz - freq) > (tsc_khz >> 11)) {
1403 pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n");
1404 pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n",
1405 (unsigned long)tsc_khz / 1000,
1406 (unsigned long)tsc_khz % 1000);
1407 }
1408
1409 pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n",
1410 hpet ? "HPET" : "PM_TIMER",
1411 (unsigned long)freq / 1000,
1412 (unsigned long)freq % 1000);
1413
1414 return;
1415 }
1416
1417 /* Make sure we're within 1% */
1418 if (abs(tsc_khz - freq) > tsc_khz/100)
1419 goto out;
1420
1421 tsc_khz = freq;
1422 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1423 (unsigned long)tsc_khz / 1000,
1424 (unsigned long)tsc_khz % 1000);
1425
1426 /* Inform the TSC deadline clockevent devices about the recalibration */
1427 lapic_update_tsc_freq();
1428
1429 /* Update the sched_clock() rate to match the clocksource one */
1430 for_each_possible_cpu(cpu)
1431 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1432
1433 out:
1434 if (tsc_unstable)
1435 goto unreg;
1436
1437 if (boot_cpu_has(X86_FEATURE_ART))
1438 art_related_clocksource = &clocksource_tsc;
1439 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1440 unreg:
1441 clocksource_unregister(&clocksource_tsc_early);
1442 }
1443
1444
init_tsc_clocksource(void)1445 static int __init init_tsc_clocksource(void)
1446 {
1447 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1448 return 0;
1449
1450 if (tsc_unstable) {
1451 clocksource_unregister(&clocksource_tsc_early);
1452 return 0;
1453 }
1454
1455 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1456 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1457
1458 /*
1459 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1460 * the refined calibration and directly register it as a clocksource.
1461 */
1462 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1463 if (boot_cpu_has(X86_FEATURE_ART))
1464 art_related_clocksource = &clocksource_tsc;
1465 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1466 clocksource_unregister(&clocksource_tsc_early);
1467
1468 if (!tsc_force_recalibrate)
1469 return 0;
1470 }
1471
1472 schedule_delayed_work(&tsc_irqwork, 0);
1473 return 0;
1474 }
1475 /*
1476 * We use device_initcall here, to ensure we run after the hpet
1477 * is fully initialized, which may occur at fs_initcall time.
1478 */
1479 device_initcall(init_tsc_clocksource);
1480
determine_cpu_tsc_frequencies(bool early)1481 static bool __init determine_cpu_tsc_frequencies(bool early)
1482 {
1483 /* Make sure that cpu and tsc are not already calibrated */
1484 WARN_ON(cpu_khz || tsc_khz);
1485
1486 if (early) {
1487 cpu_khz = x86_platform.calibrate_cpu();
1488 if (tsc_early_khz)
1489 tsc_khz = tsc_early_khz;
1490 else
1491 tsc_khz = x86_platform.calibrate_tsc();
1492 } else {
1493 /* We should not be here with non-native cpu calibration */
1494 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1495 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1496 }
1497
1498 /*
1499 * Trust non-zero tsc_khz as authoritative,
1500 * and use it to sanity check cpu_khz,
1501 * which will be off if system timer is off.
1502 */
1503 if (tsc_khz == 0)
1504 tsc_khz = cpu_khz;
1505 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1506 cpu_khz = tsc_khz;
1507
1508 if (tsc_khz == 0)
1509 return false;
1510
1511 pr_info("Detected %lu.%03lu MHz processor\n",
1512 (unsigned long)cpu_khz / KHZ,
1513 (unsigned long)cpu_khz % KHZ);
1514
1515 if (cpu_khz != tsc_khz) {
1516 pr_info("Detected %lu.%03lu MHz TSC",
1517 (unsigned long)tsc_khz / KHZ,
1518 (unsigned long)tsc_khz % KHZ);
1519 }
1520 return true;
1521 }
1522
get_loops_per_jiffy(void)1523 static unsigned long __init get_loops_per_jiffy(void)
1524 {
1525 u64 lpj = (u64)tsc_khz * KHZ;
1526
1527 do_div(lpj, HZ);
1528 return lpj;
1529 }
1530
tsc_enable_sched_clock(void)1531 static void __init tsc_enable_sched_clock(void)
1532 {
1533 loops_per_jiffy = get_loops_per_jiffy();
1534 use_tsc_delay();
1535
1536 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1537 tsc_store_and_check_tsc_adjust(true);
1538 cyc2ns_init_boot_cpu();
1539 static_branch_enable(&__use_tsc);
1540 }
1541
tsc_early_init(void)1542 void __init tsc_early_init(void)
1543 {
1544 if (!boot_cpu_has(X86_FEATURE_TSC))
1545 return;
1546 /* Don't change UV TSC multi-chassis synchronization */
1547 if (is_early_uv_system())
1548 return;
1549 if (!determine_cpu_tsc_frequencies(true))
1550 return;
1551 tsc_enable_sched_clock();
1552 }
1553
tsc_init(void)1554 void __init tsc_init(void)
1555 {
1556 if (!cpu_feature_enabled(X86_FEATURE_TSC)) {
1557 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1558 return;
1559 }
1560
1561 /*
1562 * native_calibrate_cpu_early can only calibrate using methods that are
1563 * available early in boot.
1564 */
1565 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1566 x86_platform.calibrate_cpu = native_calibrate_cpu;
1567
1568 if (!tsc_khz) {
1569 /* We failed to determine frequencies earlier, try again */
1570 if (!determine_cpu_tsc_frequencies(false)) {
1571 mark_tsc_unstable("could not calculate TSC khz");
1572 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1573 return;
1574 }
1575 tsc_enable_sched_clock();
1576 }
1577
1578 cyc2ns_init_secondary_cpus();
1579
1580 if (!no_sched_irq_time)
1581 enable_sched_clock_irqtime();
1582
1583 lpj_fine = get_loops_per_jiffy();
1584
1585 check_system_tsc_reliable();
1586
1587 if (unsynchronized_tsc()) {
1588 mark_tsc_unstable("TSCs unsynchronized");
1589 return;
1590 }
1591
1592 if (tsc_clocksource_reliable || no_tsc_watchdog)
1593 tsc_disable_clocksource_watchdog();
1594
1595 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1596 detect_art();
1597 }
1598
1599 #ifdef CONFIG_SMP
1600 /*
1601 * If we have a constant TSC and are using the TSC for the delay loop,
1602 * we can skip clock calibration if another cpu in the same socket has already
1603 * been calibrated. This assumes that CONSTANT_TSC applies to all
1604 * cpus in the socket - this should be a safe assumption.
1605 */
calibrate_delay_is_known(void)1606 unsigned long calibrate_delay_is_known(void)
1607 {
1608 int sibling, cpu = smp_processor_id();
1609 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1610 const struct cpumask *mask = topology_core_cpumask(cpu);
1611
1612 if (!constant_tsc || !mask)
1613 return 0;
1614
1615 sibling = cpumask_any_but(mask, cpu);
1616 if (sibling < nr_cpu_ids)
1617 return cpu_data(sibling).loops_per_jiffy;
1618 return 0;
1619 }
1620 #endif
1621