1 // Copyright 2018 Ulf Adams
2 //
3 // The contents of this file may be used under the terms of the Apache License,
4 // Version 2.0.
5 //
6 //    (See accompanying file LICENSE-Apache or copy at
7 //     http://www.apache.org/licenses/LICENSE-2.0)
8 //
9 // Alternatively, the contents of this file may be used under the terms of
10 // the Boost Software License, Version 1.0.
11 //    (See accompanying file LICENSE-Boost or copy at
12 //     https://www.boost.org/LICENSE_1_0.txt)
13 //
14 // Unless required by applicable law or agreed to in writing, this software
15 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 // KIND, either express or implied.
17 
18 // Runtime compiler options:
19 // -DRYU_DEBUG Generate verbose debugging output to stdout.
20 //
21 // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
22 //     depending on your compiler.
23 //
24 // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
25 //     required power of 5, only store every 26th entry, and compute
26 //     intermediate values with a multiplication. This reduces the lookup table
27 //     size by about 10x (only one case, and only double) at the cost of some
28 //     performance. Currently requires MSVC intrinsics.
29 
30 
31 
32 #ifdef RYU_DEBUG
33 #endif
34 
35 
36 // Include either the small or the full lookup tables depending on the mode.
37 #if defined(RYU_OPTIMIZE_SIZE)
38 #else
39 #endif
40 
41 #define DOUBLE_MANTISSA_BITS 52
42 #define DOUBLE_EXPONENT_BITS 11
43 #define DOUBLE_BIAS 1023
44 
decimalLength17(const uint64_t v)45 static inline uint32_t decimalLength17(const uint64_t v) {
46   // This is slightly faster than a loop.
47   // The average output length is 16.38 digits, so we check high-to-low.
48   // Function precondition: v is not an 18, 19, or 20-digit number.
49   // (17 digits are sufficient for round-tripping.)
50   assert(v < 100000000000000000L);
51   if (v >= 10000000000000000L) { return 17; }
52   if (v >= 1000000000000000L) { return 16; }
53   if (v >= 100000000000000L) { return 15; }
54   if (v >= 10000000000000L) { return 14; }
55   if (v >= 1000000000000L) { return 13; }
56   if (v >= 100000000000L) { return 12; }
57   if (v >= 10000000000L) { return 11; }
58   if (v >= 1000000000L) { return 10; }
59   if (v >= 100000000L) { return 9; }
60   if (v >= 10000000L) { return 8; }
61   if (v >= 1000000L) { return 7; }
62   if (v >= 100000L) { return 6; }
63   if (v >= 10000L) { return 5; }
64   if (v >= 1000L) { return 4; }
65   if (v >= 100L) { return 3; }
66   if (v >= 10L) { return 2; }
67   return 1;
68 }
69 
70 // A floating decimal representing m * 10^e.
71 typedef struct floating_decimal_64 {
72   uint64_t mantissa;
73   // Decimal exponent's range is -324 to 308
74   // inclusive, and can fit in a short if needed.
75   int32_t exponent;
76   bool sign;
77 } floating_decimal_64;
78 
d2d(const uint64_t ieeeMantissa,const uint32_t ieeeExponent,const bool ieeeSign)79 static inline floating_decimal_64 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) {
80   int32_t e2;
81   uint64_t m2;
82   if (ieeeExponent == 0) {
83     // We subtract 2 so that the bounds computation has 2 additional bits.
84     e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
85     m2 = ieeeMantissa;
86   } else {
87     e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
88     m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
89   }
90   const bool even = (m2 & 1) == 0;
91   const bool acceptBounds = even;
92 
93 #ifdef RYU_DEBUG
94   printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
95 #endif
96 
97   // Step 2: Determine the interval of valid decimal representations.
98   const uint64_t mv = 4 * m2;
99   // Implicit bool -> int conversion. True is 1, false is 0.
100   const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
101   // We would compute mp and mm like this:
102   // uint64_t mp = 4 * m2 + 2;
103   // uint64_t mm = mv - 1 - mmShift;
104 
105   // Step 3: Convert to a decimal power base using 128-bit arithmetic.
106   uint64_t vr, vp, vm;
107   int32_t e10;
108   bool vmIsTrailingZeros = false;
109   bool vrIsTrailingZeros = false;
110   if (e2 >= 0) {
111     // I tried special-casing q == 0, but there was no effect on performance.
112     // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
113     const uint32_t q = log10Pow2(e2) - (e2 > 3);
114     e10 = (int32_t) q;
115     const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
116     const int32_t i = -e2 + (int32_t) q + k;
117 #if defined(RYU_OPTIMIZE_SIZE)
118     uint64_t pow5[2];
119     double_computeInvPow5(q, pow5);
120     vr = mulShiftAll64(m2, pow5, i, &vp, &vm, mmShift);
121 #else
122     vr = mulShiftAll64(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
123 #endif
124 #ifdef RYU_DEBUG
125     printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
126     printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
127 #endif
128     if (q <= 21) {
129       // This should use q <= 22, but I think 21 is also safe. Smaller values
130       // may still be safe, but it's more difficult to reason about them.
131       // Only one of mp, mv, and mm can be a multiple of 5, if any.
132       const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv));
133       if (mvMod5 == 0) {
134         vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
135       } else if (acceptBounds) {
136         // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
137         // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
138         // <=> true && pow5Factor(mm) >= q, since e2 >= q.
139         vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
140       } else {
141         // Same as min(e2 + 1, pow5Factor(mp)) >= q.
142         vp -= multipleOfPowerOf5(mv + 2, q);
143       }
144     }
145   } else {
146     // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
147     const uint32_t q = log10Pow5(-e2) - (-e2 > 1);
148     e10 = (int32_t) q + e2;
149     const int32_t i = -e2 - (int32_t) q;
150     const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
151     const int32_t j = (int32_t) q - k;
152 #if defined(RYU_OPTIMIZE_SIZE)
153     uint64_t pow5[2];
154     double_computePow5(i, pow5);
155     vr = mulShiftAll64(m2, pow5, j, &vp, &vm, mmShift);
156 #else
157     vr = mulShiftAll64(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
158 #endif
159 #ifdef RYU_DEBUG
160     printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
161     printf("%u %d %d %d\n", q, i, k, j);
162     printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
163 #endif
164     if (q <= 1) {
165       // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
166       // mv = 4 * m2, so it always has at least two trailing 0 bits.
167       vrIsTrailingZeros = true;
168       if (acceptBounds) {
169         // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
170         vmIsTrailingZeros = mmShift == 1;
171       } else {
172         // mp = mv + 2, so it always has at least one trailing 0 bit.
173         --vp;
174       }
175     } else if (q < 63) { // TODO(ulfjack): Use a tighter bound here.
176       // We want to know if the full product has at least q trailing zeros.
177       // We need to compute min(p2(mv), p5(mv) - e2) >= q
178       // <=> p2(mv) >= q && p5(mv) - e2 >= q
179       // <=> p2(mv) >= q (because -e2 >= q)
180       vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
181 #ifdef RYU_DEBUG
182       printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
183 #endif
184     }
185   }
186 #ifdef RYU_DEBUG
187   printf("e10=%d\n", e10);
188   printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
189   printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
190   printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
191 #endif
192 
193   // Step 4: Find the shortest decimal representation in the interval of valid representations.
194   int32_t removed = 0;
195   uint8_t lastRemovedDigit = 0;
196   uint64_t output;
197   // On average, we remove ~2 digits.
198   if (vmIsTrailingZeros || vrIsTrailingZeros) {
199     // General case, which happens rarely (~0.7%).
200     for (;;) {
201       const uint64_t vpDiv10 = div10(vp);
202       const uint64_t vmDiv10 = div10(vm);
203       if (vpDiv10 <= vmDiv10) {
204         break;
205       }
206       const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
207       const uint64_t vrDiv10 = div10(vr);
208       const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
209       vmIsTrailingZeros &= vmMod10 == 0;
210       vrIsTrailingZeros &= lastRemovedDigit == 0;
211       lastRemovedDigit = (uint8_t) vrMod10;
212       vr = vrDiv10;
213       vp = vpDiv10;
214       vm = vmDiv10;
215       ++removed;
216     }
217 #ifdef RYU_DEBUG
218     printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
219     printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
220 #endif
221     if (vmIsTrailingZeros) {
222       for (;;) {
223         const uint64_t vmDiv10 = div10(vm);
224         const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
225         if (vmMod10 != 0) {
226           break;
227         }
228         const uint64_t vpDiv10 = div10(vp);
229         const uint64_t vrDiv10 = div10(vr);
230         const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
231         vrIsTrailingZeros &= lastRemovedDigit == 0;
232         lastRemovedDigit = (uint8_t) vrMod10;
233         vr = vrDiv10;
234         vp = vpDiv10;
235         vm = vmDiv10;
236         ++removed;
237       }
238     }
239 #ifdef RYU_DEBUG
240     printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
241     printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
242 #endif
243     if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
244       // Round even if the exact number is .....50..0.
245       lastRemovedDigit = 4;
246     }
247     // We need to take vr + 1 if vr is outside bounds or we need to round up.
248     output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
249   } else {
250     // Specialized for the common case (~99.3%). Percentages below are relative to this.
251     bool roundUp = false;
252     const uint64_t vpDiv100 = div100(vp);
253     const uint64_t vmDiv100 = div100(vm);
254     if (vpDiv100 > vmDiv100) { // Optimization: remove two digits at a time (~86.2%).
255       const uint64_t vrDiv100 = div100(vr);
256       const uint32_t vrMod100 = ((uint32_t) vr) - 100 * ((uint32_t) vrDiv100);
257       roundUp = vrMod100 >= 50;
258       vr = vrDiv100;
259       vp = vpDiv100;
260       vm = vmDiv100;
261       removed += 2;
262     }
263     // Loop iterations below (approximately), without optimization above:
264     // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
265     // Loop iterations below (approximately), with optimization above:
266     // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
267     for (;;) {
268       const uint64_t vpDiv10 = div10(vp);
269       const uint64_t vmDiv10 = div10(vm);
270       if (vpDiv10 <= vmDiv10) {
271         break;
272       }
273       const uint64_t vrDiv10 = div10(vr);
274       const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
275       roundUp = vrMod10 >= 5;
276       vr = vrDiv10;
277       vp = vpDiv10;
278       vm = vmDiv10;
279       ++removed;
280     }
281 #ifdef RYU_DEBUG
282     printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
283     printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
284 #endif
285     // We need to take vr + 1 if vr is outside bounds or we need to round up.
286     output = vr + (vr == vm || roundUp);
287   }
288   const int32_t exp = e10 + removed;
289 
290 #ifdef RYU_DEBUG
291   printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
292   printf("O=%" PRIu64 "\n", output);
293   printf("EXP=%d\n", exp);
294 #endif
295 
296   floating_decimal_64 fd;
297   fd.exponent = exp;
298   fd.mantissa = output;
299   fd.sign = ieeeSign;
300   return fd;
301 }
302 
to_chars(const floating_decimal_64 v,char * const result)303 static inline int to_chars(const floating_decimal_64 v, char* const result) {
304   // Step 5: Print the decimal representation.
305   int index = 0;
306   if (v.sign) {
307     result[index++] = '-';
308   }
309 
310   uint64_t output = v.mantissa;
311   const uint32_t olength = decimalLength17(output);
312 
313 #ifdef RYU_DEBUG
314   printf("DIGITS=%" PRIu64 "\n", v.mantissa);
315   printf("OLEN=%u\n", olength);
316   printf("EXP=%u\n", v.exponent + olength);
317 #endif
318 
319   // Print the decimal digits.
320   // The following code is equivalent to:
321   // for (uint32_t i = 0; i < olength - 1; ++i) {
322   //   const uint32_t c = output % 10; output /= 10;
323   //   result[index + olength - i] = (char) ('0' + c);
324   // }
325   // result[index] = '0' + output % 10;
326 
327   uint32_t i = 0;
328   // We prefer 32-bit operations, even on 64-bit platforms.
329   // We have at most 17 digits, and uint32_t can store 9 digits.
330   // If output doesn't fit into uint32_t, we cut off 8 digits,
331   // so the rest will fit into uint32_t.
332   if ((output >> 32) != 0) {
333     // Expensive 64-bit division.
334     const uint64_t q = div1e8(output);
335     uint32_t output2 = ((uint32_t) output) - 100000000 * ((uint32_t) q);
336     output = q;
337 
338     const uint32_t c = output2 % 10000;
339     output2 /= 10000;
340     const uint32_t d = output2 % 10000;
341     const uint32_t c0 = (c % 100) << 1;
342     const uint32_t c1 = (c / 100) << 1;
343     const uint32_t d0 = (d % 100) << 1;
344     const uint32_t d1 = (d / 100) << 1;
345     memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
346     memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
347     memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
348     memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
349     i += 8;
350   }
351   uint32_t output2 = (uint32_t) output;
352   while (output2 >= 10000) {
353 #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
354     const uint32_t c = output2 - 10000 * (output2 / 10000);
355 #else
356     const uint32_t c = output2 % 10000;
357 #endif
358     output2 /= 10000;
359     const uint32_t c0 = (c % 100) << 1;
360     const uint32_t c1 = (c / 100) << 1;
361     memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
362     memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
363     i += 4;
364   }
365   if (output2 >= 100) {
366     const uint32_t c = (output2 % 100) << 1;
367     output2 /= 100;
368     memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
369     i += 2;
370   }
371   if (output2 >= 10) {
372     const uint32_t c = output2 << 1;
373     // We can't use memcpy here: the decimal dot goes between these two digits.
374     result[index + olength - i] = DIGIT_TABLE[c + 1];
375     result[index] = DIGIT_TABLE[c];
376   } else {
377     result[index] = (char) ('0' + output2);
378   }
379 
380   // Print decimal point if needed.
381   if (olength > 1) {
382     result[index + 1] = '.';
383     index += olength + 1;
384   } else {
385     ++index;
386   }
387 
388   // Print the exponent.
389   result[index++] = 'e';
390   int32_t exp = v.exponent + (int32_t) olength - 1;
391   if (exp < 0) {
392     result[index++] = '-';
393     exp = -exp;
394   } else
395     result[index++] = '+';
396 
397   if (exp >= 100) {
398     const int32_t c = exp % 10;
399     memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
400     result[index + 2] = (char) ('0' + c);
401     index += 3;
402   } else {
403     memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
404     index += 2;
405   }
406 
407   return index;
408 }
409 
d2d_small_int(const uint64_t ieeeMantissa,const uint32_t ieeeExponent,const bool ieeeSign,floating_decimal_64 * const v)410 static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign,
411   floating_decimal_64* const v) {
412   const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
413   const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
414 
415   if (e2 > 0) {
416     // f = m2 * 2^e2 >= 2^53 is an integer.
417     // Ignore this case for now.
418     return false;
419   }
420 
421   if (e2 < -52) {
422     // f < 1.
423     return false;
424   }
425 
426   // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
427   // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
428   const uint64_t mask = (1ull << -e2) - 1;
429   const uint64_t fraction = m2 & mask;
430   if (fraction != 0) {
431     return false;
432   }
433 
434   // f is an integer in the range [1, 2^53).
435   // Note: mantissa might contain trailing (decimal) 0's.
436   // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
437   v->mantissa = m2 >> -e2;
438   v->exponent = 0;
439   v->sign = ieeeSign;
440   return true;
441 }
442 
floating_to_fd64(double f)443 floating_decimal_64 floating_to_fd64(double f) {
444   // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
445   const uint64_t bits = double_to_bits(f);
446 
447 #ifdef RYU_DEBUG
448   printf("IN=");
449   for (int32_t bit = 63; bit >= 0; --bit) {
450     printf("%d", (int) ((bits >> bit) & 1));
451   }
452   printf("\n");
453 #endif
454 
455   // Decode bits into sign, mantissa, and exponent.
456   const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
457   const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
458   const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
459   // Case distinction; exit early for the easy cases.
460   if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
461     __builtin_abort();
462   }
463 
464   floating_decimal_64 v;
465   const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, ieeeSign, &v);
466   if (isSmallInt) {
467     // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
468     // For scientific notation we need to move these zeros into the exponent.
469     // (This is not needed for fixed-point notation, so it might be beneficial to trim
470     // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
471     for (;;) {
472       const uint64_t q = div10(v.mantissa);
473       const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
474       if (r != 0) {
475         break;
476       }
477       v.mantissa = q;
478       ++v.exponent;
479     }
480   } else {
481     v = d2d(ieeeMantissa, ieeeExponent, ieeeSign);
482   }
483 
484   return v;
485 }
486