1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/kdev_t.h>
22 #include <linux/notifier.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38
39 #ifdef CONFIG_SYSFS_DEPRECATED
40 #ifdef CONFIG_SYSFS_DEPRECATED_V2
41 long sysfs_deprecated = 1;
42 #else
43 long sysfs_deprecated = 0;
44 #endif
sysfs_deprecated_setup(char * arg)45 static int __init sysfs_deprecated_setup(char *arg)
46 {
47 return kstrtol(arg, 10, &sysfs_deprecated);
48 }
49 early_param("sysfs.deprecated", sysfs_deprecated_setup);
50 #endif
51
52 /* Device links support. */
53 static LIST_HEAD(deferred_sync);
54 static unsigned int defer_sync_state_count = 1;
55 static DEFINE_MUTEX(fwnode_link_lock);
56 static bool fw_devlink_is_permissive(void);
57 static void __fw_devlink_link_to_consumers(struct device *dev);
58 static bool fw_devlink_drv_reg_done;
59 static bool fw_devlink_best_effort;
60
61 /**
62 * __fwnode_link_add - Create a link between two fwnode_handles.
63 * @con: Consumer end of the link.
64 * @sup: Supplier end of the link.
65 *
66 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
67 * represents the detail that the firmware lists @sup fwnode as supplying a
68 * resource to @con.
69 *
70 * The driver core will use the fwnode link to create a device link between the
71 * two device objects corresponding to @con and @sup when they are created. The
72 * driver core will automatically delete the fwnode link between @con and @sup
73 * after doing that.
74 *
75 * Attempts to create duplicate links between the same pair of fwnode handles
76 * are ignored and there is no reference counting.
77 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)78 static int __fwnode_link_add(struct fwnode_handle *con,
79 struct fwnode_handle *sup, u8 flags)
80 {
81 struct fwnode_link *link;
82
83 list_for_each_entry(link, &sup->consumers, s_hook)
84 if (link->consumer == con) {
85 link->flags |= flags;
86 return 0;
87 }
88
89 link = kzalloc(sizeof(*link), GFP_KERNEL);
90 if (!link)
91 return -ENOMEM;
92
93 link->supplier = sup;
94 INIT_LIST_HEAD(&link->s_hook);
95 link->consumer = con;
96 INIT_LIST_HEAD(&link->c_hook);
97 link->flags = flags;
98
99 list_add(&link->s_hook, &sup->consumers);
100 list_add(&link->c_hook, &con->suppliers);
101 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
102 con, sup);
103
104 return 0;
105 }
106
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)107 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
108 {
109 int ret;
110
111 mutex_lock(&fwnode_link_lock);
112 ret = __fwnode_link_add(con, sup, 0);
113 mutex_unlock(&fwnode_link_lock);
114 return ret;
115 }
116
117 /**
118 * __fwnode_link_del - Delete a link between two fwnode_handles.
119 * @link: the fwnode_link to be deleted
120 *
121 * The fwnode_link_lock needs to be held when this function is called.
122 */
__fwnode_link_del(struct fwnode_link * link)123 static void __fwnode_link_del(struct fwnode_link *link)
124 {
125 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
126 link->consumer, link->supplier);
127 list_del(&link->s_hook);
128 list_del(&link->c_hook);
129 kfree(link);
130 }
131
132 /**
133 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
134 * @link: the fwnode_link to be marked
135 *
136 * The fwnode_link_lock needs to be held when this function is called.
137 */
__fwnode_link_cycle(struct fwnode_link * link)138 static void __fwnode_link_cycle(struct fwnode_link *link)
139 {
140 pr_debug("%pfwf: Relaxing link with %pfwf\n",
141 link->consumer, link->supplier);
142 link->flags |= FWLINK_FLAG_CYCLE;
143 }
144
145 /**
146 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
147 * @fwnode: fwnode whose supplier links need to be deleted
148 *
149 * Deletes all supplier links connecting directly to @fwnode.
150 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)151 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
152 {
153 struct fwnode_link *link, *tmp;
154
155 mutex_lock(&fwnode_link_lock);
156 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
157 __fwnode_link_del(link);
158 mutex_unlock(&fwnode_link_lock);
159 }
160
161 /**
162 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
163 * @fwnode: fwnode whose consumer links need to be deleted
164 *
165 * Deletes all consumer links connecting directly to @fwnode.
166 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)167 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
168 {
169 struct fwnode_link *link, *tmp;
170
171 mutex_lock(&fwnode_link_lock);
172 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
173 __fwnode_link_del(link);
174 mutex_unlock(&fwnode_link_lock);
175 }
176
177 /**
178 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
179 * @fwnode: fwnode whose links needs to be deleted
180 *
181 * Deletes all links connecting directly to a fwnode.
182 */
fwnode_links_purge(struct fwnode_handle * fwnode)183 void fwnode_links_purge(struct fwnode_handle *fwnode)
184 {
185 fwnode_links_purge_suppliers(fwnode);
186 fwnode_links_purge_consumers(fwnode);
187 }
188
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)189 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
190 {
191 struct fwnode_handle *child;
192
193 /* Don't purge consumer links of an added child */
194 if (fwnode->dev)
195 return;
196
197 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
198 fwnode_links_purge_consumers(fwnode);
199
200 fwnode_for_each_available_child_node(fwnode, child)
201 fw_devlink_purge_absent_suppliers(child);
202 }
203 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
204
205 /**
206 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
207 * @from: move consumers away from this fwnode
208 * @to: move consumers to this fwnode
209 *
210 * Move all consumer links from @from fwnode to @to fwnode.
211 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)212 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
213 struct fwnode_handle *to)
214 {
215 struct fwnode_link *link, *tmp;
216
217 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
218 __fwnode_link_add(link->consumer, to, link->flags);
219 __fwnode_link_del(link);
220 }
221 }
222
223 /**
224 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
225 * @fwnode: fwnode from which to pick up dangling consumers
226 * @new_sup: fwnode of new supplier
227 *
228 * If the @fwnode has a corresponding struct device and the device supports
229 * probing (that is, added to a bus), then we want to let fw_devlink create
230 * MANAGED device links to this device, so leave @fwnode and its descendant's
231 * fwnode links alone.
232 *
233 * Otherwise, move its consumers to the new supplier @new_sup.
234 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)235 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
236 struct fwnode_handle *new_sup)
237 {
238 struct fwnode_handle *child;
239
240 if (fwnode->dev && fwnode->dev->bus)
241 return;
242
243 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
244 __fwnode_links_move_consumers(fwnode, new_sup);
245
246 fwnode_for_each_available_child_node(fwnode, child)
247 __fw_devlink_pickup_dangling_consumers(child, new_sup);
248 }
249
250 static DEFINE_MUTEX(device_links_lock);
251 DEFINE_STATIC_SRCU(device_links_srcu);
252
device_links_write_lock(void)253 static inline void device_links_write_lock(void)
254 {
255 mutex_lock(&device_links_lock);
256 }
257
device_links_write_unlock(void)258 static inline void device_links_write_unlock(void)
259 {
260 mutex_unlock(&device_links_lock);
261 }
262
device_links_read_lock(void)263 int device_links_read_lock(void) __acquires(&device_links_srcu)
264 {
265 return srcu_read_lock(&device_links_srcu);
266 }
267
device_links_read_unlock(int idx)268 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
269 {
270 srcu_read_unlock(&device_links_srcu, idx);
271 }
272
device_links_read_lock_held(void)273 int device_links_read_lock_held(void)
274 {
275 return srcu_read_lock_held(&device_links_srcu);
276 }
277
device_link_synchronize_removal(void)278 static void device_link_synchronize_removal(void)
279 {
280 synchronize_srcu(&device_links_srcu);
281 }
282
device_link_remove_from_lists(struct device_link * link)283 static void device_link_remove_from_lists(struct device_link *link)
284 {
285 list_del_rcu(&link->s_node);
286 list_del_rcu(&link->c_node);
287 }
288
device_is_ancestor(struct device * dev,struct device * target)289 static bool device_is_ancestor(struct device *dev, struct device *target)
290 {
291 while (target->parent) {
292 target = target->parent;
293 if (dev == target)
294 return true;
295 }
296 return false;
297 }
298
device_link_flag_is_sync_state_only(u32 flags)299 static inline bool device_link_flag_is_sync_state_only(u32 flags)
300 {
301 return (flags & ~(DL_FLAG_INFERRED | DL_FLAG_CYCLE)) ==
302 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED);
303 }
304
305 /**
306 * device_is_dependent - Check if one device depends on another one
307 * @dev: Device to check dependencies for.
308 * @target: Device to check against.
309 *
310 * Check if @target depends on @dev or any device dependent on it (its child or
311 * its consumer etc). Return 1 if that is the case or 0 otherwise.
312 */
device_is_dependent(struct device * dev,void * target)313 int device_is_dependent(struct device *dev, void *target)
314 {
315 struct device_link *link;
316 int ret;
317
318 /*
319 * The "ancestors" check is needed to catch the case when the target
320 * device has not been completely initialized yet and it is still
321 * missing from the list of children of its parent device.
322 */
323 if (dev == target || device_is_ancestor(dev, target))
324 return 1;
325
326 ret = device_for_each_child(dev, target, device_is_dependent);
327 if (ret)
328 return ret;
329
330 list_for_each_entry(link, &dev->links.consumers, s_node) {
331 if (device_link_flag_is_sync_state_only(link->flags))
332 continue;
333
334 if (link->consumer == target)
335 return 1;
336
337 ret = device_is_dependent(link->consumer, target);
338 if (ret)
339 break;
340 }
341 return ret;
342 }
343
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)344 static void device_link_init_status(struct device_link *link,
345 struct device *consumer,
346 struct device *supplier)
347 {
348 switch (supplier->links.status) {
349 case DL_DEV_PROBING:
350 switch (consumer->links.status) {
351 case DL_DEV_PROBING:
352 /*
353 * A consumer driver can create a link to a supplier
354 * that has not completed its probing yet as long as it
355 * knows that the supplier is already functional (for
356 * example, it has just acquired some resources from the
357 * supplier).
358 */
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 default:
362 link->status = DL_STATE_DORMANT;
363 break;
364 }
365 break;
366 case DL_DEV_DRIVER_BOUND:
367 switch (consumer->links.status) {
368 case DL_DEV_PROBING:
369 link->status = DL_STATE_CONSUMER_PROBE;
370 break;
371 case DL_DEV_DRIVER_BOUND:
372 link->status = DL_STATE_ACTIVE;
373 break;
374 default:
375 link->status = DL_STATE_AVAILABLE;
376 break;
377 }
378 break;
379 case DL_DEV_UNBINDING:
380 link->status = DL_STATE_SUPPLIER_UNBIND;
381 break;
382 default:
383 link->status = DL_STATE_DORMANT;
384 break;
385 }
386 }
387
device_reorder_to_tail(struct device * dev,void * not_used)388 static int device_reorder_to_tail(struct device *dev, void *not_used)
389 {
390 struct device_link *link;
391
392 /*
393 * Devices that have not been registered yet will be put to the ends
394 * of the lists during the registration, so skip them here.
395 */
396 if (device_is_registered(dev))
397 devices_kset_move_last(dev);
398
399 if (device_pm_initialized(dev))
400 device_pm_move_last(dev);
401
402 device_for_each_child(dev, NULL, device_reorder_to_tail);
403 list_for_each_entry(link, &dev->links.consumers, s_node) {
404 if (device_link_flag_is_sync_state_only(link->flags))
405 continue;
406 device_reorder_to_tail(link->consumer, NULL);
407 }
408
409 return 0;
410 }
411
412 /**
413 * device_pm_move_to_tail - Move set of devices to the end of device lists
414 * @dev: Device to move
415 *
416 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
417 *
418 * It moves the @dev along with all of its children and all of its consumers
419 * to the ends of the device_kset and dpm_list, recursively.
420 */
device_pm_move_to_tail(struct device * dev)421 void device_pm_move_to_tail(struct device *dev)
422 {
423 int idx;
424
425 idx = device_links_read_lock();
426 device_pm_lock();
427 device_reorder_to_tail(dev, NULL);
428 device_pm_unlock();
429 device_links_read_unlock(idx);
430 }
431
432 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
433
status_show(struct device * dev,struct device_attribute * attr,char * buf)434 static ssize_t status_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
436 {
437 const char *output;
438
439 switch (to_devlink(dev)->status) {
440 case DL_STATE_NONE:
441 output = "not tracked";
442 break;
443 case DL_STATE_DORMANT:
444 output = "dormant";
445 break;
446 case DL_STATE_AVAILABLE:
447 output = "available";
448 break;
449 case DL_STATE_CONSUMER_PROBE:
450 output = "consumer probing";
451 break;
452 case DL_STATE_ACTIVE:
453 output = "active";
454 break;
455 case DL_STATE_SUPPLIER_UNBIND:
456 output = "supplier unbinding";
457 break;
458 default:
459 output = "unknown";
460 break;
461 }
462
463 return sysfs_emit(buf, "%s\n", output);
464 }
465 static DEVICE_ATTR_RO(status);
466
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)467 static ssize_t auto_remove_on_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct device_link *link = to_devlink(dev);
471 const char *output;
472
473 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
474 output = "supplier unbind";
475 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
476 output = "consumer unbind";
477 else
478 output = "never";
479
480 return sysfs_emit(buf, "%s\n", output);
481 }
482 static DEVICE_ATTR_RO(auto_remove_on);
483
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)484 static ssize_t runtime_pm_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486 {
487 struct device_link *link = to_devlink(dev);
488
489 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
490 }
491 static DEVICE_ATTR_RO(runtime_pm);
492
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)493 static ssize_t sync_state_only_show(struct device *dev,
494 struct device_attribute *attr, char *buf)
495 {
496 struct device_link *link = to_devlink(dev);
497
498 return sysfs_emit(buf, "%d\n",
499 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
500 }
501 static DEVICE_ATTR_RO(sync_state_only);
502
503 static struct attribute *devlink_attrs[] = {
504 &dev_attr_status.attr,
505 &dev_attr_auto_remove_on.attr,
506 &dev_attr_runtime_pm.attr,
507 &dev_attr_sync_state_only.attr,
508 NULL,
509 };
510 ATTRIBUTE_GROUPS(devlink);
511
device_link_release_fn(struct work_struct * work)512 static void device_link_release_fn(struct work_struct *work)
513 {
514 struct device_link *link = container_of(work, struct device_link, rm_work);
515
516 /* Ensure that all references to the link object have been dropped. */
517 device_link_synchronize_removal();
518
519 pm_runtime_release_supplier(link);
520 /*
521 * If supplier_preactivated is set, the link has been dropped between
522 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
523 * in __driver_probe_device(). In that case, drop the supplier's
524 * PM-runtime usage counter to remove the reference taken by
525 * pm_runtime_get_suppliers().
526 */
527 if (link->supplier_preactivated)
528 pm_runtime_put_noidle(link->supplier);
529
530 pm_request_idle(link->supplier);
531
532 put_device(link->consumer);
533 put_device(link->supplier);
534 kfree(link);
535 }
536
devlink_dev_release(struct device * dev)537 static void devlink_dev_release(struct device *dev)
538 {
539 struct device_link *link = to_devlink(dev);
540
541 INIT_WORK(&link->rm_work, device_link_release_fn);
542 /*
543 * It may take a while to complete this work because of the SRCU
544 * synchronization in device_link_release_fn() and if the consumer or
545 * supplier devices get deleted when it runs, so put it into the "long"
546 * workqueue.
547 */
548 queue_work(system_long_wq, &link->rm_work);
549 }
550
551 static struct class devlink_class = {
552 .name = "devlink",
553 .owner = THIS_MODULE,
554 .dev_groups = devlink_groups,
555 .dev_release = devlink_dev_release,
556 };
557
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)558 static int devlink_add_symlinks(struct device *dev,
559 struct class_interface *class_intf)
560 {
561 int ret;
562 size_t len;
563 struct device_link *link = to_devlink(dev);
564 struct device *sup = link->supplier;
565 struct device *con = link->consumer;
566 char *buf;
567
568 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
569 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
570 len += strlen(":");
571 len += strlen("supplier:") + 1;
572 buf = kzalloc(len, GFP_KERNEL);
573 if (!buf)
574 return -ENOMEM;
575
576 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
577 if (ret)
578 goto out;
579
580 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
581 if (ret)
582 goto err_con;
583
584 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
585 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
586 if (ret)
587 goto err_con_dev;
588
589 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
590 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
591 if (ret)
592 goto err_sup_dev;
593
594 goto out;
595
596 err_sup_dev:
597 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
598 sysfs_remove_link(&sup->kobj, buf);
599 err_con_dev:
600 sysfs_remove_link(&link->link_dev.kobj, "consumer");
601 err_con:
602 sysfs_remove_link(&link->link_dev.kobj, "supplier");
603 out:
604 kfree(buf);
605 return ret;
606 }
607
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)608 static void devlink_remove_symlinks(struct device *dev,
609 struct class_interface *class_intf)
610 {
611 struct device_link *link = to_devlink(dev);
612 size_t len;
613 struct device *sup = link->supplier;
614 struct device *con = link->consumer;
615 char *buf;
616
617 sysfs_remove_link(&link->link_dev.kobj, "consumer");
618 sysfs_remove_link(&link->link_dev.kobj, "supplier");
619
620 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
621 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
622 len += strlen(":");
623 len += strlen("supplier:") + 1;
624 buf = kzalloc(len, GFP_KERNEL);
625 if (!buf) {
626 WARN(1, "Unable to properly free device link symlinks!\n");
627 return;
628 }
629
630 if (device_is_registered(con)) {
631 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
632 sysfs_remove_link(&con->kobj, buf);
633 }
634 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
635 sysfs_remove_link(&sup->kobj, buf);
636 kfree(buf);
637 }
638
639 static struct class_interface devlink_class_intf = {
640 .class = &devlink_class,
641 .add_dev = devlink_add_symlinks,
642 .remove_dev = devlink_remove_symlinks,
643 };
644
devlink_class_init(void)645 static int __init devlink_class_init(void)
646 {
647 int ret;
648
649 ret = class_register(&devlink_class);
650 if (ret)
651 return ret;
652
653 ret = class_interface_register(&devlink_class_intf);
654 if (ret)
655 class_unregister(&devlink_class);
656
657 return ret;
658 }
659 postcore_initcall(devlink_class_init);
660
661 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
662 DL_FLAG_AUTOREMOVE_SUPPLIER | \
663 DL_FLAG_AUTOPROBE_CONSUMER | \
664 DL_FLAG_SYNC_STATE_ONLY | \
665 DL_FLAG_INFERRED | \
666 DL_FLAG_CYCLE)
667
668 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
669 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
670
671 /**
672 * device_link_add - Create a link between two devices.
673 * @consumer: Consumer end of the link.
674 * @supplier: Supplier end of the link.
675 * @flags: Link flags.
676 *
677 * The caller is responsible for the proper synchronization of the link creation
678 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
679 * runtime PM framework to take the link into account. Second, if the
680 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
681 * be forced into the active meta state and reference-counted upon the creation
682 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
683 * ignored.
684 *
685 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
686 * expected to release the link returned by it directly with the help of either
687 * device_link_del() or device_link_remove().
688 *
689 * If that flag is not set, however, the caller of this function is handing the
690 * management of the link over to the driver core entirely and its return value
691 * can only be used to check whether or not the link is present. In that case,
692 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
693 * flags can be used to indicate to the driver core when the link can be safely
694 * deleted. Namely, setting one of them in @flags indicates to the driver core
695 * that the link is not going to be used (by the given caller of this function)
696 * after unbinding the consumer or supplier driver, respectively, from its
697 * device, so the link can be deleted at that point. If none of them is set,
698 * the link will be maintained until one of the devices pointed to by it (either
699 * the consumer or the supplier) is unregistered.
700 *
701 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
702 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
703 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
704 * be used to request the driver core to automatically probe for a consumer
705 * driver after successfully binding a driver to the supplier device.
706 *
707 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
708 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
709 * the same time is invalid and will cause NULL to be returned upfront.
710 * However, if a device link between the given @consumer and @supplier pair
711 * exists already when this function is called for them, the existing link will
712 * be returned regardless of its current type and status (the link's flags may
713 * be modified then). The caller of this function is then expected to treat
714 * the link as though it has just been created, so (in particular) if
715 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
716 * explicitly when not needed any more (as stated above).
717 *
718 * A side effect of the link creation is re-ordering of dpm_list and the
719 * devices_kset list by moving the consumer device and all devices depending
720 * on it to the ends of these lists (that does not happen to devices that have
721 * not been registered when this function is called).
722 *
723 * The supplier device is required to be registered when this function is called
724 * and NULL will be returned if that is not the case. The consumer device need
725 * not be registered, however.
726 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)727 struct device_link *device_link_add(struct device *consumer,
728 struct device *supplier, u32 flags)
729 {
730 struct device_link *link;
731
732 if (!consumer || !supplier || consumer == supplier ||
733 flags & ~DL_ADD_VALID_FLAGS ||
734 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
735 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
736 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
737 DL_FLAG_AUTOREMOVE_SUPPLIER)))
738 return NULL;
739
740 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
741 if (pm_runtime_get_sync(supplier) < 0) {
742 pm_runtime_put_noidle(supplier);
743 return NULL;
744 }
745 }
746
747 if (!(flags & DL_FLAG_STATELESS))
748 flags |= DL_FLAG_MANAGED;
749
750 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
751 !device_link_flag_is_sync_state_only(flags))
752 return NULL;
753
754 device_links_write_lock();
755 device_pm_lock();
756
757 /*
758 * If the supplier has not been fully registered yet or there is a
759 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
760 * the supplier already in the graph, return NULL. If the link is a
761 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
762 * because it only affects sync_state() callbacks.
763 */
764 if (!device_pm_initialized(supplier)
765 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
766 device_is_dependent(consumer, supplier))) {
767 link = NULL;
768 goto out;
769 }
770
771 /*
772 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
773 * So, only create it if the consumer hasn't probed yet.
774 */
775 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
776 consumer->links.status != DL_DEV_NO_DRIVER &&
777 consumer->links.status != DL_DEV_PROBING) {
778 link = NULL;
779 goto out;
780 }
781
782 /*
783 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
784 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
785 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
786 */
787 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
788 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
789
790 list_for_each_entry(link, &supplier->links.consumers, s_node) {
791 if (link->consumer != consumer)
792 continue;
793
794 if (link->flags & DL_FLAG_INFERRED &&
795 !(flags & DL_FLAG_INFERRED))
796 link->flags &= ~DL_FLAG_INFERRED;
797
798 if (flags & DL_FLAG_PM_RUNTIME) {
799 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
800 pm_runtime_new_link(consumer);
801 link->flags |= DL_FLAG_PM_RUNTIME;
802 }
803 if (flags & DL_FLAG_RPM_ACTIVE)
804 refcount_inc(&link->rpm_active);
805 }
806
807 if (flags & DL_FLAG_STATELESS) {
808 kref_get(&link->kref);
809 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
810 !(link->flags & DL_FLAG_STATELESS)) {
811 link->flags |= DL_FLAG_STATELESS;
812 goto reorder;
813 } else {
814 link->flags |= DL_FLAG_STATELESS;
815 goto out;
816 }
817 }
818
819 /*
820 * If the life time of the link following from the new flags is
821 * longer than indicated by the flags of the existing link,
822 * update the existing link to stay around longer.
823 */
824 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
825 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
826 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
827 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
828 }
829 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
830 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
831 DL_FLAG_AUTOREMOVE_SUPPLIER);
832 }
833 if (!(link->flags & DL_FLAG_MANAGED)) {
834 kref_get(&link->kref);
835 link->flags |= DL_FLAG_MANAGED;
836 device_link_init_status(link, consumer, supplier);
837 }
838 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
839 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
840 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
841 goto reorder;
842 }
843
844 goto out;
845 }
846
847 link = kzalloc(sizeof(*link), GFP_KERNEL);
848 if (!link)
849 goto out;
850
851 refcount_set(&link->rpm_active, 1);
852
853 get_device(supplier);
854 link->supplier = supplier;
855 INIT_LIST_HEAD(&link->s_node);
856 get_device(consumer);
857 link->consumer = consumer;
858 INIT_LIST_HEAD(&link->c_node);
859 link->flags = flags;
860 kref_init(&link->kref);
861
862 link->link_dev.class = &devlink_class;
863 device_set_pm_not_required(&link->link_dev);
864 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
865 dev_bus_name(supplier), dev_name(supplier),
866 dev_bus_name(consumer), dev_name(consumer));
867 if (device_register(&link->link_dev)) {
868 put_device(&link->link_dev);
869 link = NULL;
870 goto out;
871 }
872
873 if (flags & DL_FLAG_PM_RUNTIME) {
874 if (flags & DL_FLAG_RPM_ACTIVE)
875 refcount_inc(&link->rpm_active);
876
877 pm_runtime_new_link(consumer);
878 }
879
880 /* Determine the initial link state. */
881 if (flags & DL_FLAG_STATELESS)
882 link->status = DL_STATE_NONE;
883 else
884 device_link_init_status(link, consumer, supplier);
885
886 /*
887 * Some callers expect the link creation during consumer driver probe to
888 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
889 */
890 if (link->status == DL_STATE_CONSUMER_PROBE &&
891 flags & DL_FLAG_PM_RUNTIME)
892 pm_runtime_resume(supplier);
893
894 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
895 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
896
897 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
898 dev_dbg(consumer,
899 "Linked as a sync state only consumer to %s\n",
900 dev_name(supplier));
901 goto out;
902 }
903
904 reorder:
905 /*
906 * Move the consumer and all of the devices depending on it to the end
907 * of dpm_list and the devices_kset list.
908 *
909 * It is necessary to hold dpm_list locked throughout all that or else
910 * we may end up suspending with a wrong ordering of it.
911 */
912 device_reorder_to_tail(consumer, NULL);
913
914 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
915
916 out:
917 device_pm_unlock();
918 device_links_write_unlock();
919
920 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
921 pm_runtime_put(supplier);
922
923 return link;
924 }
925 EXPORT_SYMBOL_GPL(device_link_add);
926
__device_link_del(struct kref * kref)927 static void __device_link_del(struct kref *kref)
928 {
929 struct device_link *link = container_of(kref, struct device_link, kref);
930
931 dev_dbg(link->consumer, "Dropping the link to %s\n",
932 dev_name(link->supplier));
933
934 pm_runtime_drop_link(link);
935
936 device_link_remove_from_lists(link);
937 device_unregister(&link->link_dev);
938 }
939
device_link_put_kref(struct device_link * link)940 static void device_link_put_kref(struct device_link *link)
941 {
942 if (link->flags & DL_FLAG_STATELESS)
943 kref_put(&link->kref, __device_link_del);
944 else if (!device_is_registered(link->consumer))
945 __device_link_del(&link->kref);
946 else
947 WARN(1, "Unable to drop a managed device link reference\n");
948 }
949
950 /**
951 * device_link_del - Delete a stateless link between two devices.
952 * @link: Device link to delete.
953 *
954 * The caller must ensure proper synchronization of this function with runtime
955 * PM. If the link was added multiple times, it needs to be deleted as often.
956 * Care is required for hotplugged devices: Their links are purged on removal
957 * and calling device_link_del() is then no longer allowed.
958 */
device_link_del(struct device_link * link)959 void device_link_del(struct device_link *link)
960 {
961 device_links_write_lock();
962 device_link_put_kref(link);
963 device_links_write_unlock();
964 }
965 EXPORT_SYMBOL_GPL(device_link_del);
966
967 /**
968 * device_link_remove - Delete a stateless link between two devices.
969 * @consumer: Consumer end of the link.
970 * @supplier: Supplier end of the link.
971 *
972 * The caller must ensure proper synchronization of this function with runtime
973 * PM.
974 */
device_link_remove(void * consumer,struct device * supplier)975 void device_link_remove(void *consumer, struct device *supplier)
976 {
977 struct device_link *link;
978
979 if (WARN_ON(consumer == supplier))
980 return;
981
982 device_links_write_lock();
983
984 list_for_each_entry(link, &supplier->links.consumers, s_node) {
985 if (link->consumer == consumer) {
986 device_link_put_kref(link);
987 break;
988 }
989 }
990
991 device_links_write_unlock();
992 }
993 EXPORT_SYMBOL_GPL(device_link_remove);
994
device_links_missing_supplier(struct device * dev)995 static void device_links_missing_supplier(struct device *dev)
996 {
997 struct device_link *link;
998
999 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1000 if (link->status != DL_STATE_CONSUMER_PROBE)
1001 continue;
1002
1003 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1004 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1005 } else {
1006 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1007 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1008 }
1009 }
1010 }
1011
dev_is_best_effort(struct device * dev)1012 static bool dev_is_best_effort(struct device *dev)
1013 {
1014 return (fw_devlink_best_effort && dev->can_match) ||
1015 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1016 }
1017
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1018 static struct fwnode_handle *fwnode_links_check_suppliers(
1019 struct fwnode_handle *fwnode)
1020 {
1021 struct fwnode_link *link;
1022
1023 if (!fwnode || fw_devlink_is_permissive())
1024 return NULL;
1025
1026 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1027 if (!(link->flags & FWLINK_FLAG_CYCLE))
1028 return link->supplier;
1029
1030 return NULL;
1031 }
1032
1033 /**
1034 * device_links_check_suppliers - Check presence of supplier drivers.
1035 * @dev: Consumer device.
1036 *
1037 * Check links from this device to any suppliers. Walk the list of the device's
1038 * links to suppliers and see if all of them are available. If not, simply
1039 * return -EPROBE_DEFER.
1040 *
1041 * We need to guarantee that the supplier will not go away after the check has
1042 * been positive here. It only can go away in __device_release_driver() and
1043 * that function checks the device's links to consumers. This means we need to
1044 * mark the link as "consumer probe in progress" to make the supplier removal
1045 * wait for us to complete (or bad things may happen).
1046 *
1047 * Links without the DL_FLAG_MANAGED flag set are ignored.
1048 */
device_links_check_suppliers(struct device * dev)1049 int device_links_check_suppliers(struct device *dev)
1050 {
1051 struct device_link *link;
1052 int ret = 0, fwnode_ret = 0;
1053 struct fwnode_handle *sup_fw;
1054
1055 /*
1056 * Device waiting for supplier to become available is not allowed to
1057 * probe.
1058 */
1059 mutex_lock(&fwnode_link_lock);
1060 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1061 if (sup_fw) {
1062 if (!dev_is_best_effort(dev)) {
1063 fwnode_ret = -EPROBE_DEFER;
1064 dev_err_probe(dev, -EPROBE_DEFER,
1065 "wait for supplier %pfwf\n", sup_fw);
1066 } else {
1067 fwnode_ret = -EAGAIN;
1068 }
1069 }
1070 mutex_unlock(&fwnode_link_lock);
1071 if (fwnode_ret == -EPROBE_DEFER)
1072 return fwnode_ret;
1073
1074 device_links_write_lock();
1075
1076 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1077 if (!(link->flags & DL_FLAG_MANAGED))
1078 continue;
1079
1080 if (link->status != DL_STATE_AVAILABLE &&
1081 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1082
1083 if (dev_is_best_effort(dev) &&
1084 link->flags & DL_FLAG_INFERRED &&
1085 !link->supplier->can_match) {
1086 ret = -EAGAIN;
1087 continue;
1088 }
1089
1090 device_links_missing_supplier(dev);
1091 dev_err_probe(dev, -EPROBE_DEFER,
1092 "supplier %s not ready\n",
1093 dev_name(link->supplier));
1094 ret = -EPROBE_DEFER;
1095 break;
1096 }
1097 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1098 }
1099 dev->links.status = DL_DEV_PROBING;
1100
1101 device_links_write_unlock();
1102
1103 return ret ? ret : fwnode_ret;
1104 }
1105
1106 /**
1107 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1108 * @dev: Device to call sync_state() on
1109 * @list: List head to queue the @dev on
1110 *
1111 * Queues a device for a sync_state() callback when the device links write lock
1112 * isn't held. This allows the sync_state() execution flow to use device links
1113 * APIs. The caller must ensure this function is called with
1114 * device_links_write_lock() held.
1115 *
1116 * This function does a get_device() to make sure the device is not freed while
1117 * on this list.
1118 *
1119 * So the caller must also ensure that device_links_flush_sync_list() is called
1120 * as soon as the caller releases device_links_write_lock(). This is necessary
1121 * to make sure the sync_state() is called in a timely fashion and the
1122 * put_device() is called on this device.
1123 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1124 static void __device_links_queue_sync_state(struct device *dev,
1125 struct list_head *list)
1126 {
1127 struct device_link *link;
1128
1129 if (!dev_has_sync_state(dev))
1130 return;
1131 if (dev->state_synced)
1132 return;
1133
1134 list_for_each_entry(link, &dev->links.consumers, s_node) {
1135 if (!(link->flags & DL_FLAG_MANAGED))
1136 continue;
1137 if (link->status != DL_STATE_ACTIVE)
1138 return;
1139 }
1140
1141 /*
1142 * Set the flag here to avoid adding the same device to a list more
1143 * than once. This can happen if new consumers get added to the device
1144 * and probed before the list is flushed.
1145 */
1146 dev->state_synced = true;
1147
1148 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1149 return;
1150
1151 get_device(dev);
1152 list_add_tail(&dev->links.defer_sync, list);
1153 }
1154
1155 /**
1156 * device_links_flush_sync_list - Call sync_state() on a list of devices
1157 * @list: List of devices to call sync_state() on
1158 * @dont_lock_dev: Device for which lock is already held by the caller
1159 *
1160 * Calls sync_state() on all the devices that have been queued for it. This
1161 * function is used in conjunction with __device_links_queue_sync_state(). The
1162 * @dont_lock_dev parameter is useful when this function is called from a
1163 * context where a device lock is already held.
1164 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1165 static void device_links_flush_sync_list(struct list_head *list,
1166 struct device *dont_lock_dev)
1167 {
1168 struct device *dev, *tmp;
1169
1170 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1171 list_del_init(&dev->links.defer_sync);
1172
1173 if (dev != dont_lock_dev)
1174 device_lock(dev);
1175
1176 if (dev->bus->sync_state)
1177 dev->bus->sync_state(dev);
1178 else if (dev->driver && dev->driver->sync_state)
1179 dev->driver->sync_state(dev);
1180
1181 if (dev != dont_lock_dev)
1182 device_unlock(dev);
1183
1184 put_device(dev);
1185 }
1186 }
1187
device_links_supplier_sync_state_pause(void)1188 void device_links_supplier_sync_state_pause(void)
1189 {
1190 device_links_write_lock();
1191 defer_sync_state_count++;
1192 device_links_write_unlock();
1193 }
1194
device_links_supplier_sync_state_resume(void)1195 void device_links_supplier_sync_state_resume(void)
1196 {
1197 struct device *dev, *tmp;
1198 LIST_HEAD(sync_list);
1199
1200 device_links_write_lock();
1201 if (!defer_sync_state_count) {
1202 WARN(true, "Unmatched sync_state pause/resume!");
1203 goto out;
1204 }
1205 defer_sync_state_count--;
1206 if (defer_sync_state_count)
1207 goto out;
1208
1209 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1210 /*
1211 * Delete from deferred_sync list before queuing it to
1212 * sync_list because defer_sync is used for both lists.
1213 */
1214 list_del_init(&dev->links.defer_sync);
1215 __device_links_queue_sync_state(dev, &sync_list);
1216 }
1217 out:
1218 device_links_write_unlock();
1219
1220 device_links_flush_sync_list(&sync_list, NULL);
1221 }
1222
sync_state_resume_initcall(void)1223 static int sync_state_resume_initcall(void)
1224 {
1225 device_links_supplier_sync_state_resume();
1226 return 0;
1227 }
1228 late_initcall(sync_state_resume_initcall);
1229
__device_links_supplier_defer_sync(struct device * sup)1230 static void __device_links_supplier_defer_sync(struct device *sup)
1231 {
1232 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1233 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1234 }
1235
device_link_drop_managed(struct device_link * link)1236 static void device_link_drop_managed(struct device_link *link)
1237 {
1238 link->flags &= ~DL_FLAG_MANAGED;
1239 WRITE_ONCE(link->status, DL_STATE_NONE);
1240 kref_put(&link->kref, __device_link_del);
1241 }
1242
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1243 static ssize_t waiting_for_supplier_show(struct device *dev,
1244 struct device_attribute *attr,
1245 char *buf)
1246 {
1247 bool val;
1248
1249 device_lock(dev);
1250 mutex_lock(&fwnode_link_lock);
1251 val = !!fwnode_links_check_suppliers(dev->fwnode);
1252 mutex_unlock(&fwnode_link_lock);
1253 device_unlock(dev);
1254 return sysfs_emit(buf, "%u\n", val);
1255 }
1256 static DEVICE_ATTR_RO(waiting_for_supplier);
1257
1258 /**
1259 * device_links_force_bind - Prepares device to be force bound
1260 * @dev: Consumer device.
1261 *
1262 * device_bind_driver() force binds a device to a driver without calling any
1263 * driver probe functions. So the consumer really isn't going to wait for any
1264 * supplier before it's bound to the driver. We still want the device link
1265 * states to be sensible when this happens.
1266 *
1267 * In preparation for device_bind_driver(), this function goes through each
1268 * supplier device links and checks if the supplier is bound. If it is, then
1269 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1270 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1271 */
device_links_force_bind(struct device * dev)1272 void device_links_force_bind(struct device *dev)
1273 {
1274 struct device_link *link, *ln;
1275
1276 device_links_write_lock();
1277
1278 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1279 if (!(link->flags & DL_FLAG_MANAGED))
1280 continue;
1281
1282 if (link->status != DL_STATE_AVAILABLE) {
1283 device_link_drop_managed(link);
1284 continue;
1285 }
1286 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1287 }
1288 dev->links.status = DL_DEV_PROBING;
1289
1290 device_links_write_unlock();
1291 }
1292
1293 /**
1294 * device_links_driver_bound - Update device links after probing its driver.
1295 * @dev: Device to update the links for.
1296 *
1297 * The probe has been successful, so update links from this device to any
1298 * consumers by changing their status to "available".
1299 *
1300 * Also change the status of @dev's links to suppliers to "active".
1301 *
1302 * Links without the DL_FLAG_MANAGED flag set are ignored.
1303 */
device_links_driver_bound(struct device * dev)1304 void device_links_driver_bound(struct device *dev)
1305 {
1306 struct device_link *link, *ln;
1307 LIST_HEAD(sync_list);
1308
1309 /*
1310 * If a device binds successfully, it's expected to have created all
1311 * the device links it needs to or make new device links as it needs
1312 * them. So, fw_devlink no longer needs to create device links to any
1313 * of the device's suppliers.
1314 *
1315 * Also, if a child firmware node of this bound device is not added as a
1316 * device by now, assume it is never going to be added. Make this bound
1317 * device the fallback supplier to the dangling consumers of the child
1318 * firmware node because this bound device is probably implementing the
1319 * child firmware node functionality and we don't want the dangling
1320 * consumers to defer probe indefinitely waiting for a device for the
1321 * child firmware node.
1322 */
1323 if (dev->fwnode && dev->fwnode->dev == dev) {
1324 struct fwnode_handle *child;
1325 fwnode_links_purge_suppliers(dev->fwnode);
1326 mutex_lock(&fwnode_link_lock);
1327 fwnode_for_each_available_child_node(dev->fwnode, child)
1328 __fw_devlink_pickup_dangling_consumers(child,
1329 dev->fwnode);
1330 __fw_devlink_link_to_consumers(dev);
1331 mutex_unlock(&fwnode_link_lock);
1332 }
1333 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1334
1335 device_links_write_lock();
1336
1337 list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 if (!(link->flags & DL_FLAG_MANAGED))
1339 continue;
1340
1341 /*
1342 * Links created during consumer probe may be in the "consumer
1343 * probe" state to start with if the supplier is still probing
1344 * when they are created and they may become "active" if the
1345 * consumer probe returns first. Skip them here.
1346 */
1347 if (link->status == DL_STATE_CONSUMER_PROBE ||
1348 link->status == DL_STATE_ACTIVE)
1349 continue;
1350
1351 WARN_ON(link->status != DL_STATE_DORMANT);
1352 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1353
1354 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1355 driver_deferred_probe_add(link->consumer);
1356 }
1357
1358 if (defer_sync_state_count)
1359 __device_links_supplier_defer_sync(dev);
1360 else
1361 __device_links_queue_sync_state(dev, &sync_list);
1362
1363 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1364 struct device *supplier;
1365
1366 if (!(link->flags & DL_FLAG_MANAGED))
1367 continue;
1368
1369 supplier = link->supplier;
1370 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1371 /*
1372 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1373 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1374 * save to drop the managed link completely.
1375 */
1376 device_link_drop_managed(link);
1377 } else if (dev_is_best_effort(dev) &&
1378 link->flags & DL_FLAG_INFERRED &&
1379 link->status != DL_STATE_CONSUMER_PROBE &&
1380 !link->supplier->can_match) {
1381 /*
1382 * When dev_is_best_effort() is true, we ignore device
1383 * links to suppliers that don't have a driver. If the
1384 * consumer device still managed to probe, there's no
1385 * point in maintaining a device link in a weird state
1386 * (consumer probed before supplier). So delete it.
1387 */
1388 device_link_drop_managed(link);
1389 } else {
1390 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1391 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1392 }
1393
1394 /*
1395 * This needs to be done even for the deleted
1396 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1397 * device link that was preventing the supplier from getting a
1398 * sync_state() call.
1399 */
1400 if (defer_sync_state_count)
1401 __device_links_supplier_defer_sync(supplier);
1402 else
1403 __device_links_queue_sync_state(supplier, &sync_list);
1404 }
1405
1406 dev->links.status = DL_DEV_DRIVER_BOUND;
1407
1408 device_links_write_unlock();
1409
1410 device_links_flush_sync_list(&sync_list, dev);
1411 }
1412
1413 /**
1414 * __device_links_no_driver - Update links of a device without a driver.
1415 * @dev: Device without a drvier.
1416 *
1417 * Delete all non-persistent links from this device to any suppliers.
1418 *
1419 * Persistent links stay around, but their status is changed to "available",
1420 * unless they already are in the "supplier unbind in progress" state in which
1421 * case they need not be updated.
1422 *
1423 * Links without the DL_FLAG_MANAGED flag set are ignored.
1424 */
__device_links_no_driver(struct device * dev)1425 static void __device_links_no_driver(struct device *dev)
1426 {
1427 struct device_link *link, *ln;
1428
1429 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1430 if (!(link->flags & DL_FLAG_MANAGED))
1431 continue;
1432
1433 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1434 device_link_drop_managed(link);
1435 continue;
1436 }
1437
1438 if (link->status != DL_STATE_CONSUMER_PROBE &&
1439 link->status != DL_STATE_ACTIVE)
1440 continue;
1441
1442 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1443 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1444 } else {
1445 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1446 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1447 }
1448 }
1449
1450 dev->links.status = DL_DEV_NO_DRIVER;
1451 }
1452
1453 /**
1454 * device_links_no_driver - Update links after failing driver probe.
1455 * @dev: Device whose driver has just failed to probe.
1456 *
1457 * Clean up leftover links to consumers for @dev and invoke
1458 * %__device_links_no_driver() to update links to suppliers for it as
1459 * appropriate.
1460 *
1461 * Links without the DL_FLAG_MANAGED flag set are ignored.
1462 */
device_links_no_driver(struct device * dev)1463 void device_links_no_driver(struct device *dev)
1464 {
1465 struct device_link *link;
1466
1467 device_links_write_lock();
1468
1469 list_for_each_entry(link, &dev->links.consumers, s_node) {
1470 if (!(link->flags & DL_FLAG_MANAGED))
1471 continue;
1472
1473 /*
1474 * The probe has failed, so if the status of the link is
1475 * "consumer probe" or "active", it must have been added by
1476 * a probing consumer while this device was still probing.
1477 * Change its state to "dormant", as it represents a valid
1478 * relationship, but it is not functionally meaningful.
1479 */
1480 if (link->status == DL_STATE_CONSUMER_PROBE ||
1481 link->status == DL_STATE_ACTIVE)
1482 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1483 }
1484
1485 __device_links_no_driver(dev);
1486
1487 device_links_write_unlock();
1488 }
1489
1490 /**
1491 * device_links_driver_cleanup - Update links after driver removal.
1492 * @dev: Device whose driver has just gone away.
1493 *
1494 * Update links to consumers for @dev by changing their status to "dormant" and
1495 * invoke %__device_links_no_driver() to update links to suppliers for it as
1496 * appropriate.
1497 *
1498 * Links without the DL_FLAG_MANAGED flag set are ignored.
1499 */
device_links_driver_cleanup(struct device * dev)1500 void device_links_driver_cleanup(struct device *dev)
1501 {
1502 struct device_link *link, *ln;
1503
1504 device_links_write_lock();
1505
1506 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1507 if (!(link->flags & DL_FLAG_MANAGED))
1508 continue;
1509
1510 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1511 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1512
1513 /*
1514 * autoremove the links between this @dev and its consumer
1515 * devices that are not active, i.e. where the link state
1516 * has moved to DL_STATE_SUPPLIER_UNBIND.
1517 */
1518 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1519 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1520 device_link_drop_managed(link);
1521
1522 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1523 }
1524
1525 list_del_init(&dev->links.defer_sync);
1526 __device_links_no_driver(dev);
1527
1528 device_links_write_unlock();
1529 }
1530
1531 /**
1532 * device_links_busy - Check if there are any busy links to consumers.
1533 * @dev: Device to check.
1534 *
1535 * Check each consumer of the device and return 'true' if its link's status
1536 * is one of "consumer probe" or "active" (meaning that the given consumer is
1537 * probing right now or its driver is present). Otherwise, change the link
1538 * state to "supplier unbind" to prevent the consumer from being probed
1539 * successfully going forward.
1540 *
1541 * Return 'false' if there are no probing or active consumers.
1542 *
1543 * Links without the DL_FLAG_MANAGED flag set are ignored.
1544 */
device_links_busy(struct device * dev)1545 bool device_links_busy(struct device *dev)
1546 {
1547 struct device_link *link;
1548 bool ret = false;
1549
1550 device_links_write_lock();
1551
1552 list_for_each_entry(link, &dev->links.consumers, s_node) {
1553 if (!(link->flags & DL_FLAG_MANAGED))
1554 continue;
1555
1556 if (link->status == DL_STATE_CONSUMER_PROBE
1557 || link->status == DL_STATE_ACTIVE) {
1558 ret = true;
1559 break;
1560 }
1561 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1562 }
1563
1564 dev->links.status = DL_DEV_UNBINDING;
1565
1566 device_links_write_unlock();
1567 return ret;
1568 }
1569
1570 /**
1571 * device_links_unbind_consumers - Force unbind consumers of the given device.
1572 * @dev: Device to unbind the consumers of.
1573 *
1574 * Walk the list of links to consumers for @dev and if any of them is in the
1575 * "consumer probe" state, wait for all device probes in progress to complete
1576 * and start over.
1577 *
1578 * If that's not the case, change the status of the link to "supplier unbind"
1579 * and check if the link was in the "active" state. If so, force the consumer
1580 * driver to unbind and start over (the consumer will not re-probe as we have
1581 * changed the state of the link already).
1582 *
1583 * Links without the DL_FLAG_MANAGED flag set are ignored.
1584 */
device_links_unbind_consumers(struct device * dev)1585 void device_links_unbind_consumers(struct device *dev)
1586 {
1587 struct device_link *link;
1588
1589 start:
1590 device_links_write_lock();
1591
1592 list_for_each_entry(link, &dev->links.consumers, s_node) {
1593 enum device_link_state status;
1594
1595 if (!(link->flags & DL_FLAG_MANAGED) ||
1596 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1597 continue;
1598
1599 status = link->status;
1600 if (status == DL_STATE_CONSUMER_PROBE) {
1601 device_links_write_unlock();
1602
1603 wait_for_device_probe();
1604 goto start;
1605 }
1606 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1607 if (status == DL_STATE_ACTIVE) {
1608 struct device *consumer = link->consumer;
1609
1610 get_device(consumer);
1611
1612 device_links_write_unlock();
1613
1614 device_release_driver_internal(consumer, NULL,
1615 consumer->parent);
1616 put_device(consumer);
1617 goto start;
1618 }
1619 }
1620
1621 device_links_write_unlock();
1622 }
1623
1624 /**
1625 * device_links_purge - Delete existing links to other devices.
1626 * @dev: Target device.
1627 */
device_links_purge(struct device * dev)1628 static void device_links_purge(struct device *dev)
1629 {
1630 struct device_link *link, *ln;
1631
1632 if (dev->class == &devlink_class)
1633 return;
1634
1635 /*
1636 * Delete all of the remaining links from this device to any other
1637 * devices (either consumers or suppliers).
1638 */
1639 device_links_write_lock();
1640
1641 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1642 WARN_ON(link->status == DL_STATE_ACTIVE);
1643 __device_link_del(&link->kref);
1644 }
1645
1646 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1647 WARN_ON(link->status != DL_STATE_DORMANT &&
1648 link->status != DL_STATE_NONE);
1649 __device_link_del(&link->kref);
1650 }
1651
1652 device_links_write_unlock();
1653 }
1654
1655 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1656 DL_FLAG_SYNC_STATE_ONLY)
1657 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1658 DL_FLAG_AUTOPROBE_CONSUMER)
1659 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1660 DL_FLAG_PM_RUNTIME)
1661
1662 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1663 static int __init fw_devlink_setup(char *arg)
1664 {
1665 if (!arg)
1666 return -EINVAL;
1667
1668 if (strcmp(arg, "off") == 0) {
1669 fw_devlink_flags = 0;
1670 } else if (strcmp(arg, "permissive") == 0) {
1671 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1672 } else if (strcmp(arg, "on") == 0) {
1673 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1674 } else if (strcmp(arg, "rpm") == 0) {
1675 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1676 }
1677 return 0;
1678 }
1679 early_param("fw_devlink", fw_devlink_setup);
1680
1681 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1682 static int __init fw_devlink_strict_setup(char *arg)
1683 {
1684 return kstrtobool(arg, &fw_devlink_strict);
1685 }
1686 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1687
fw_devlink_get_flags(u8 fwlink_flags)1688 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1689 {
1690 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1691 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1692
1693 return fw_devlink_flags;
1694 }
1695
fw_devlink_is_permissive(void)1696 static bool fw_devlink_is_permissive(void)
1697 {
1698 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1699 }
1700
fw_devlink_is_strict(void)1701 bool fw_devlink_is_strict(void)
1702 {
1703 return fw_devlink_strict && !fw_devlink_is_permissive();
1704 }
1705
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1706 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1707 {
1708 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1709 return;
1710
1711 fwnode_call_int_op(fwnode, add_links);
1712 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1713 }
1714
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1715 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1716 {
1717 struct fwnode_handle *child = NULL;
1718
1719 fw_devlink_parse_fwnode(fwnode);
1720
1721 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1722 fw_devlink_parse_fwtree(child);
1723 }
1724
fw_devlink_relax_link(struct device_link * link)1725 static void fw_devlink_relax_link(struct device_link *link)
1726 {
1727 if (!(link->flags & DL_FLAG_INFERRED))
1728 return;
1729
1730 if (device_link_flag_is_sync_state_only(link->flags))
1731 return;
1732
1733 pm_runtime_drop_link(link);
1734 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1735 dev_dbg(link->consumer, "Relaxing link with %s\n",
1736 dev_name(link->supplier));
1737 }
1738
fw_devlink_no_driver(struct device * dev,void * data)1739 static int fw_devlink_no_driver(struct device *dev, void *data)
1740 {
1741 struct device_link *link = to_devlink(dev);
1742
1743 if (!link->supplier->can_match)
1744 fw_devlink_relax_link(link);
1745
1746 return 0;
1747 }
1748
fw_devlink_drivers_done(void)1749 void fw_devlink_drivers_done(void)
1750 {
1751 fw_devlink_drv_reg_done = true;
1752 device_links_write_lock();
1753 class_for_each_device(&devlink_class, NULL, NULL,
1754 fw_devlink_no_driver);
1755 device_links_write_unlock();
1756 }
1757
1758 /**
1759 * wait_for_init_devices_probe - Try to probe any device needed for init
1760 *
1761 * Some devices might need to be probed and bound successfully before the kernel
1762 * boot sequence can finish and move on to init/userspace. For example, a
1763 * network interface might need to be bound to be able to mount a NFS rootfs.
1764 *
1765 * With fw_devlink=on by default, some of these devices might be blocked from
1766 * probing because they are waiting on a optional supplier that doesn't have a
1767 * driver. While fw_devlink will eventually identify such devices and unblock
1768 * the probing automatically, it might be too late by the time it unblocks the
1769 * probing of devices. For example, the IP4 autoconfig might timeout before
1770 * fw_devlink unblocks probing of the network interface.
1771 *
1772 * This function is available to temporarily try and probe all devices that have
1773 * a driver even if some of their suppliers haven't been added or don't have
1774 * drivers.
1775 *
1776 * The drivers can then decide which of the suppliers are optional vs mandatory
1777 * and probe the device if possible. By the time this function returns, all such
1778 * "best effort" probes are guaranteed to be completed. If a device successfully
1779 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1780 * device where the supplier hasn't yet probed successfully because they have to
1781 * be optional dependencies.
1782 *
1783 * Any devices that didn't successfully probe go back to being treated as if
1784 * this function was never called.
1785 *
1786 * This also means that some devices that aren't needed for init and could have
1787 * waited for their optional supplier to probe (when the supplier's module is
1788 * loaded later on) would end up probing prematurely with limited functionality.
1789 * So call this function only when boot would fail without it.
1790 */
wait_for_init_devices_probe(void)1791 void __init wait_for_init_devices_probe(void)
1792 {
1793 if (!fw_devlink_flags || fw_devlink_is_permissive())
1794 return;
1795
1796 /*
1797 * Wait for all ongoing probes to finish so that the "best effort" is
1798 * only applied to devices that can't probe otherwise.
1799 */
1800 wait_for_device_probe();
1801
1802 pr_info("Trying to probe devices needed for running init ...\n");
1803 fw_devlink_best_effort = true;
1804 driver_deferred_probe_trigger();
1805
1806 /*
1807 * Wait for all "best effort" probes to finish before going back to
1808 * normal enforcement.
1809 */
1810 wait_for_device_probe();
1811 fw_devlink_best_effort = false;
1812 }
1813
fw_devlink_unblock_consumers(struct device * dev)1814 static void fw_devlink_unblock_consumers(struct device *dev)
1815 {
1816 struct device_link *link;
1817
1818 if (!fw_devlink_flags || fw_devlink_is_permissive())
1819 return;
1820
1821 device_links_write_lock();
1822 list_for_each_entry(link, &dev->links.consumers, s_node)
1823 fw_devlink_relax_link(link);
1824 device_links_write_unlock();
1825 }
1826
1827
fwnode_init_without_drv(struct fwnode_handle * fwnode)1828 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1829 {
1830 struct device *dev;
1831 bool ret;
1832
1833 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1834 return false;
1835
1836 dev = get_dev_from_fwnode(fwnode);
1837 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1838 put_device(dev);
1839
1840 return ret;
1841 }
1842
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1843 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1844 {
1845 struct fwnode_handle *parent;
1846
1847 fwnode_for_each_parent_node(fwnode, parent) {
1848 if (fwnode_init_without_drv(parent)) {
1849 fwnode_handle_put(parent);
1850 return true;
1851 }
1852 }
1853
1854 return false;
1855 }
1856
1857 /**
1858 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1859 * @con: Potential consumer device.
1860 * @sup_handle: Potential supplier's fwnode.
1861 *
1862 * Needs to be called with fwnode_lock and device link lock held.
1863 *
1864 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1865 * depend on @con. This function can detect multiple cyles between @sup_handle
1866 * and @con. When such dependency cycles are found, convert all device links
1867 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1868 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1869 * converted into a device link in the future, they are created as
1870 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1871 * fw_devlink=permissive just between the devices in the cycle. We need to do
1872 * this because, at this point, fw_devlink can't tell which of these
1873 * dependencies is not a real dependency.
1874 *
1875 * Return true if one or more cycles were found. Otherwise, return false.
1876 */
__fw_devlink_relax_cycles(struct device * con,struct fwnode_handle * sup_handle)1877 static bool __fw_devlink_relax_cycles(struct device *con,
1878 struct fwnode_handle *sup_handle)
1879 {
1880 struct device *sup_dev = NULL, *par_dev = NULL;
1881 struct fwnode_link *link;
1882 struct device_link *dev_link;
1883 bool ret = false;
1884
1885 if (!sup_handle)
1886 return false;
1887
1888 /*
1889 * We aren't trying to find all cycles. Just a cycle between con and
1890 * sup_handle.
1891 */
1892 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1893 return false;
1894
1895 sup_handle->flags |= FWNODE_FLAG_VISITED;
1896
1897 sup_dev = get_dev_from_fwnode(sup_handle);
1898
1899 /* Termination condition. */
1900 if (sup_dev == con) {
1901 ret = true;
1902 goto out;
1903 }
1904
1905 /*
1906 * If sup_dev is bound to a driver and @con hasn't started binding to a
1907 * driver, sup_dev can't be a consumer of @con. So, no need to check
1908 * further.
1909 */
1910 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1911 con->links.status == DL_DEV_NO_DRIVER) {
1912 ret = false;
1913 goto out;
1914 }
1915
1916 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1917 if (__fw_devlink_relax_cycles(con, link->supplier)) {
1918 __fwnode_link_cycle(link);
1919 ret = true;
1920 }
1921 }
1922
1923 /*
1924 * Give priority to device parent over fwnode parent to account for any
1925 * quirks in how fwnodes are converted to devices.
1926 */
1927 if (sup_dev)
1928 par_dev = get_device(sup_dev->parent);
1929 else
1930 par_dev = fwnode_get_next_parent_dev(sup_handle);
1931
1932 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1933 ret = true;
1934
1935 if (!sup_dev)
1936 goto out;
1937
1938 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1939 /*
1940 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1941 * such due to a cycle.
1942 */
1943 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1944 !(dev_link->flags & DL_FLAG_CYCLE))
1945 continue;
1946
1947 if (__fw_devlink_relax_cycles(con,
1948 dev_link->supplier->fwnode)) {
1949 fw_devlink_relax_link(dev_link);
1950 dev_link->flags |= DL_FLAG_CYCLE;
1951 ret = true;
1952 }
1953 }
1954
1955 out:
1956 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
1957 put_device(sup_dev);
1958 put_device(par_dev);
1959 return ret;
1960 }
1961
1962 /**
1963 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1964 * @con: consumer device for the device link
1965 * @sup_handle: fwnode handle of supplier
1966 * @link: fwnode link that's being converted to a device link
1967 *
1968 * This function will try to create a device link between the consumer device
1969 * @con and the supplier device represented by @sup_handle.
1970 *
1971 * The supplier has to be provided as a fwnode because incorrect cycles in
1972 * fwnode links can sometimes cause the supplier device to never be created.
1973 * This function detects such cases and returns an error if it cannot create a
1974 * device link from the consumer to a missing supplier.
1975 *
1976 * Returns,
1977 * 0 on successfully creating a device link
1978 * -EINVAL if the device link cannot be created as expected
1979 * -EAGAIN if the device link cannot be created right now, but it may be
1980 * possible to do that in the future
1981 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)1982 static int fw_devlink_create_devlink(struct device *con,
1983 struct fwnode_handle *sup_handle,
1984 struct fwnode_link *link)
1985 {
1986 struct device *sup_dev;
1987 int ret = 0;
1988 u32 flags;
1989
1990 if (con->fwnode == link->consumer)
1991 flags = fw_devlink_get_flags(link->flags);
1992 else
1993 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1994
1995 /*
1996 * In some cases, a device P might also be a supplier to its child node
1997 * C. However, this would defer the probe of C until the probe of P
1998 * completes successfully. This is perfectly fine in the device driver
1999 * model. device_add() doesn't guarantee probe completion of the device
2000 * by the time it returns.
2001 *
2002 * However, there are a few drivers that assume C will finish probing
2003 * as soon as it's added and before P finishes probing. So, we provide
2004 * a flag to let fw_devlink know not to delay the probe of C until the
2005 * probe of P completes successfully.
2006 *
2007 * When such a flag is set, we can't create device links where P is the
2008 * supplier of C as that would delay the probe of C.
2009 */
2010 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2011 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2012 return -EINVAL;
2013
2014 /*
2015 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2016 * So cycle detection isn't necessary and shouldn't be done.
2017 */
2018 if (!(flags & DL_FLAG_SYNC_STATE_ONLY)) {
2019 device_links_write_lock();
2020 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2021 __fwnode_link_cycle(link);
2022 flags = fw_devlink_get_flags(link->flags);
2023 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2024 sup_handle);
2025 }
2026 device_links_write_unlock();
2027 }
2028
2029 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2030 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2031 else
2032 sup_dev = get_dev_from_fwnode(sup_handle);
2033
2034 if (sup_dev) {
2035 /*
2036 * If it's one of those drivers that don't actually bind to
2037 * their device using driver core, then don't wait on this
2038 * supplier device indefinitely.
2039 */
2040 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2041 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2042 dev_dbg(con,
2043 "Not linking %pfwf - dev might never probe\n",
2044 sup_handle);
2045 ret = -EINVAL;
2046 goto out;
2047 }
2048
2049 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2050 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2051 flags, dev_name(sup_dev));
2052 ret = -EINVAL;
2053 }
2054
2055 goto out;
2056 }
2057
2058 /*
2059 * Supplier or supplier's ancestor already initialized without a struct
2060 * device or being probed by a driver.
2061 */
2062 if (fwnode_init_without_drv(sup_handle) ||
2063 fwnode_ancestor_init_without_drv(sup_handle)) {
2064 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2065 sup_handle);
2066 return -EINVAL;
2067 }
2068
2069 ret = -EAGAIN;
2070 out:
2071 put_device(sup_dev);
2072 return ret;
2073 }
2074
2075 /**
2076 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2077 * @dev: Device that needs to be linked to its consumers
2078 *
2079 * This function looks at all the consumer fwnodes of @dev and creates device
2080 * links between the consumer device and @dev (supplier).
2081 *
2082 * If the consumer device has not been added yet, then this function creates a
2083 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2084 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2085 * sync_state() callback before the real consumer device gets to be added and
2086 * then probed.
2087 *
2088 * Once device links are created from the real consumer to @dev (supplier), the
2089 * fwnode links are deleted.
2090 */
__fw_devlink_link_to_consumers(struct device * dev)2091 static void __fw_devlink_link_to_consumers(struct device *dev)
2092 {
2093 struct fwnode_handle *fwnode = dev->fwnode;
2094 struct fwnode_link *link, *tmp;
2095
2096 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2097 struct device *con_dev;
2098 bool own_link = true;
2099 int ret;
2100
2101 con_dev = get_dev_from_fwnode(link->consumer);
2102 /*
2103 * If consumer device is not available yet, make a "proxy"
2104 * SYNC_STATE_ONLY link from the consumer's parent device to
2105 * the supplier device. This is necessary to make sure the
2106 * supplier doesn't get a sync_state() callback before the real
2107 * consumer can create a device link to the supplier.
2108 *
2109 * This proxy link step is needed to handle the case where the
2110 * consumer's parent device is added before the supplier.
2111 */
2112 if (!con_dev) {
2113 con_dev = fwnode_get_next_parent_dev(link->consumer);
2114 /*
2115 * However, if the consumer's parent device is also the
2116 * parent of the supplier, don't create a
2117 * consumer-supplier link from the parent to its child
2118 * device. Such a dependency is impossible.
2119 */
2120 if (con_dev &&
2121 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2122 put_device(con_dev);
2123 con_dev = NULL;
2124 } else {
2125 own_link = false;
2126 }
2127 }
2128
2129 if (!con_dev)
2130 continue;
2131
2132 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2133 put_device(con_dev);
2134 if (!own_link || ret == -EAGAIN)
2135 continue;
2136
2137 __fwnode_link_del(link);
2138 }
2139 }
2140
2141 /**
2142 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2143 * @dev: The consumer device that needs to be linked to its suppliers
2144 * @fwnode: Root of the fwnode tree that is used to create device links
2145 *
2146 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2147 * @fwnode and creates device links between @dev (consumer) and all the
2148 * supplier devices of the entire fwnode tree at @fwnode.
2149 *
2150 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2151 * and the real suppliers of @dev. Once these device links are created, the
2152 * fwnode links are deleted.
2153 *
2154 * In addition, it also looks at all the suppliers of the entire fwnode tree
2155 * because some of the child devices of @dev that have not been added yet
2156 * (because @dev hasn't probed) might already have their suppliers added to
2157 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2158 * @dev (consumer) and these suppliers to make sure they don't execute their
2159 * sync_state() callbacks before these child devices have a chance to create
2160 * their device links. The fwnode links that correspond to the child devices
2161 * aren't delete because they are needed later to create the device links
2162 * between the real consumer and supplier devices.
2163 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2164 static void __fw_devlink_link_to_suppliers(struct device *dev,
2165 struct fwnode_handle *fwnode)
2166 {
2167 bool own_link = (dev->fwnode == fwnode);
2168 struct fwnode_link *link, *tmp;
2169 struct fwnode_handle *child = NULL;
2170
2171 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2172 int ret;
2173 struct fwnode_handle *sup = link->supplier;
2174
2175 ret = fw_devlink_create_devlink(dev, sup, link);
2176 if (!own_link || ret == -EAGAIN)
2177 continue;
2178
2179 __fwnode_link_del(link);
2180 }
2181
2182 /*
2183 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2184 * all the descendants. This proxy link step is needed to handle the
2185 * case where the supplier is added before the consumer's parent device
2186 * (@dev).
2187 */
2188 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2189 __fw_devlink_link_to_suppliers(dev, child);
2190 }
2191
fw_devlink_link_device(struct device * dev)2192 static void fw_devlink_link_device(struct device *dev)
2193 {
2194 struct fwnode_handle *fwnode = dev->fwnode;
2195
2196 if (!fw_devlink_flags)
2197 return;
2198
2199 fw_devlink_parse_fwtree(fwnode);
2200
2201 mutex_lock(&fwnode_link_lock);
2202 __fw_devlink_link_to_consumers(dev);
2203 __fw_devlink_link_to_suppliers(dev, fwnode);
2204 mutex_unlock(&fwnode_link_lock);
2205 }
2206
2207 /* Device links support end. */
2208
2209 int (*platform_notify)(struct device *dev) = NULL;
2210 int (*platform_notify_remove)(struct device *dev) = NULL;
2211 static struct kobject *dev_kobj;
2212 struct kobject *sysfs_dev_char_kobj;
2213 struct kobject *sysfs_dev_block_kobj;
2214
2215 static DEFINE_MUTEX(device_hotplug_lock);
2216
lock_device_hotplug(void)2217 void lock_device_hotplug(void)
2218 {
2219 mutex_lock(&device_hotplug_lock);
2220 }
2221
unlock_device_hotplug(void)2222 void unlock_device_hotplug(void)
2223 {
2224 mutex_unlock(&device_hotplug_lock);
2225 }
2226
lock_device_hotplug_sysfs(void)2227 int lock_device_hotplug_sysfs(void)
2228 {
2229 if (mutex_trylock(&device_hotplug_lock))
2230 return 0;
2231
2232 /* Avoid busy looping (5 ms of sleep should do). */
2233 msleep(5);
2234 return restart_syscall();
2235 }
2236
2237 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2238 static inline int device_is_not_partition(struct device *dev)
2239 {
2240 return !(dev->type == &part_type);
2241 }
2242 #else
device_is_not_partition(struct device * dev)2243 static inline int device_is_not_partition(struct device *dev)
2244 {
2245 return 1;
2246 }
2247 #endif
2248
device_platform_notify(struct device * dev)2249 static void device_platform_notify(struct device *dev)
2250 {
2251 acpi_device_notify(dev);
2252
2253 software_node_notify(dev);
2254
2255 if (platform_notify)
2256 platform_notify(dev);
2257 }
2258
device_platform_notify_remove(struct device * dev)2259 static void device_platform_notify_remove(struct device *dev)
2260 {
2261 acpi_device_notify_remove(dev);
2262
2263 software_node_notify_remove(dev);
2264
2265 if (platform_notify_remove)
2266 platform_notify_remove(dev);
2267 }
2268
2269 /**
2270 * dev_driver_string - Return a device's driver name, if at all possible
2271 * @dev: struct device to get the name of
2272 *
2273 * Will return the device's driver's name if it is bound to a device. If
2274 * the device is not bound to a driver, it will return the name of the bus
2275 * it is attached to. If it is not attached to a bus either, an empty
2276 * string will be returned.
2277 */
dev_driver_string(const struct device * dev)2278 const char *dev_driver_string(const struct device *dev)
2279 {
2280 struct device_driver *drv;
2281
2282 /* dev->driver can change to NULL underneath us because of unbinding,
2283 * so be careful about accessing it. dev->bus and dev->class should
2284 * never change once they are set, so they don't need special care.
2285 */
2286 drv = READ_ONCE(dev->driver);
2287 return drv ? drv->name : dev_bus_name(dev);
2288 }
2289 EXPORT_SYMBOL(dev_driver_string);
2290
2291 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2292
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2293 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2294 char *buf)
2295 {
2296 struct device_attribute *dev_attr = to_dev_attr(attr);
2297 struct device *dev = kobj_to_dev(kobj);
2298 ssize_t ret = -EIO;
2299
2300 if (dev_attr->show)
2301 ret = dev_attr->show(dev, dev_attr, buf);
2302 if (ret >= (ssize_t)PAGE_SIZE) {
2303 printk("dev_attr_show: %pS returned bad count\n",
2304 dev_attr->show);
2305 }
2306 return ret;
2307 }
2308
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2309 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2310 const char *buf, size_t count)
2311 {
2312 struct device_attribute *dev_attr = to_dev_attr(attr);
2313 struct device *dev = kobj_to_dev(kobj);
2314 ssize_t ret = -EIO;
2315
2316 if (dev_attr->store)
2317 ret = dev_attr->store(dev, dev_attr, buf, count);
2318 return ret;
2319 }
2320
2321 static const struct sysfs_ops dev_sysfs_ops = {
2322 .show = dev_attr_show,
2323 .store = dev_attr_store,
2324 };
2325
2326 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2327
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2328 ssize_t device_store_ulong(struct device *dev,
2329 struct device_attribute *attr,
2330 const char *buf, size_t size)
2331 {
2332 struct dev_ext_attribute *ea = to_ext_attr(attr);
2333 int ret;
2334 unsigned long new;
2335
2336 ret = kstrtoul(buf, 0, &new);
2337 if (ret)
2338 return ret;
2339 *(unsigned long *)(ea->var) = new;
2340 /* Always return full write size even if we didn't consume all */
2341 return size;
2342 }
2343 EXPORT_SYMBOL_GPL(device_store_ulong);
2344
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2345 ssize_t device_show_ulong(struct device *dev,
2346 struct device_attribute *attr,
2347 char *buf)
2348 {
2349 struct dev_ext_attribute *ea = to_ext_attr(attr);
2350 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2351 }
2352 EXPORT_SYMBOL_GPL(device_show_ulong);
2353
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2354 ssize_t device_store_int(struct device *dev,
2355 struct device_attribute *attr,
2356 const char *buf, size_t size)
2357 {
2358 struct dev_ext_attribute *ea = to_ext_attr(attr);
2359 int ret;
2360 long new;
2361
2362 ret = kstrtol(buf, 0, &new);
2363 if (ret)
2364 return ret;
2365
2366 if (new > INT_MAX || new < INT_MIN)
2367 return -EINVAL;
2368 *(int *)(ea->var) = new;
2369 /* Always return full write size even if we didn't consume all */
2370 return size;
2371 }
2372 EXPORT_SYMBOL_GPL(device_store_int);
2373
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2374 ssize_t device_show_int(struct device *dev,
2375 struct device_attribute *attr,
2376 char *buf)
2377 {
2378 struct dev_ext_attribute *ea = to_ext_attr(attr);
2379
2380 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2381 }
2382 EXPORT_SYMBOL_GPL(device_show_int);
2383
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2384 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2385 const char *buf, size_t size)
2386 {
2387 struct dev_ext_attribute *ea = to_ext_attr(attr);
2388
2389 if (kstrtobool(buf, ea->var) < 0)
2390 return -EINVAL;
2391
2392 return size;
2393 }
2394 EXPORT_SYMBOL_GPL(device_store_bool);
2395
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2396 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2397 char *buf)
2398 {
2399 struct dev_ext_attribute *ea = to_ext_attr(attr);
2400
2401 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2402 }
2403 EXPORT_SYMBOL_GPL(device_show_bool);
2404
2405 /**
2406 * device_release - free device structure.
2407 * @kobj: device's kobject.
2408 *
2409 * This is called once the reference count for the object
2410 * reaches 0. We forward the call to the device's release
2411 * method, which should handle actually freeing the structure.
2412 */
device_release(struct kobject * kobj)2413 static void device_release(struct kobject *kobj)
2414 {
2415 struct device *dev = kobj_to_dev(kobj);
2416 struct device_private *p = dev->p;
2417
2418 /*
2419 * Some platform devices are driven without driver attached
2420 * and managed resources may have been acquired. Make sure
2421 * all resources are released.
2422 *
2423 * Drivers still can add resources into device after device
2424 * is deleted but alive, so release devres here to avoid
2425 * possible memory leak.
2426 */
2427 devres_release_all(dev);
2428
2429 kfree(dev->dma_range_map);
2430
2431 if (dev->release)
2432 dev->release(dev);
2433 else if (dev->type && dev->type->release)
2434 dev->type->release(dev);
2435 else if (dev->class && dev->class->dev_release)
2436 dev->class->dev_release(dev);
2437 else
2438 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2439 dev_name(dev));
2440 kfree(p);
2441 }
2442
device_namespace(const struct kobject * kobj)2443 static const void *device_namespace(const struct kobject *kobj)
2444 {
2445 const struct device *dev = kobj_to_dev(kobj);
2446 const void *ns = NULL;
2447
2448 if (dev->class && dev->class->ns_type)
2449 ns = dev->class->namespace(dev);
2450
2451 return ns;
2452 }
2453
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2454 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2455 {
2456 const struct device *dev = kobj_to_dev(kobj);
2457
2458 if (dev->class && dev->class->get_ownership)
2459 dev->class->get_ownership(dev, uid, gid);
2460 }
2461
2462 static const struct kobj_type device_ktype = {
2463 .release = device_release,
2464 .sysfs_ops = &dev_sysfs_ops,
2465 .namespace = device_namespace,
2466 .get_ownership = device_get_ownership,
2467 };
2468
2469
dev_uevent_filter(const struct kobject * kobj)2470 static int dev_uevent_filter(const struct kobject *kobj)
2471 {
2472 const struct kobj_type *ktype = get_ktype(kobj);
2473
2474 if (ktype == &device_ktype) {
2475 const struct device *dev = kobj_to_dev(kobj);
2476 if (dev->bus)
2477 return 1;
2478 if (dev->class)
2479 return 1;
2480 }
2481 return 0;
2482 }
2483
dev_uevent_name(const struct kobject * kobj)2484 static const char *dev_uevent_name(const struct kobject *kobj)
2485 {
2486 const struct device *dev = kobj_to_dev(kobj);
2487
2488 if (dev->bus)
2489 return dev->bus->name;
2490 if (dev->class)
2491 return dev->class->name;
2492 return NULL;
2493 }
2494
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2495 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2496 {
2497 const struct device *dev = kobj_to_dev(kobj);
2498 int retval = 0;
2499
2500 /* add device node properties if present */
2501 if (MAJOR(dev->devt)) {
2502 const char *tmp;
2503 const char *name;
2504 umode_t mode = 0;
2505 kuid_t uid = GLOBAL_ROOT_UID;
2506 kgid_t gid = GLOBAL_ROOT_GID;
2507
2508 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2509 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2510 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2511 if (name) {
2512 add_uevent_var(env, "DEVNAME=%s", name);
2513 if (mode)
2514 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2515 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2516 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2517 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2518 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2519 kfree(tmp);
2520 }
2521 }
2522
2523 if (dev->type && dev->type->name)
2524 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2525
2526 if (dev->driver)
2527 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2528
2529 /* Add common DT information about the device */
2530 of_device_uevent(dev, env);
2531
2532 /* have the bus specific function add its stuff */
2533 if (dev->bus && dev->bus->uevent) {
2534 retval = dev->bus->uevent(dev, env);
2535 if (retval)
2536 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2537 dev_name(dev), __func__, retval);
2538 }
2539
2540 /* have the class specific function add its stuff */
2541 if (dev->class && dev->class->dev_uevent) {
2542 retval = dev->class->dev_uevent(dev, env);
2543 if (retval)
2544 pr_debug("device: '%s': %s: class uevent() "
2545 "returned %d\n", dev_name(dev),
2546 __func__, retval);
2547 }
2548
2549 /* have the device type specific function add its stuff */
2550 if (dev->type && dev->type->uevent) {
2551 retval = dev->type->uevent(dev, env);
2552 if (retval)
2553 pr_debug("device: '%s': %s: dev_type uevent() "
2554 "returned %d\n", dev_name(dev),
2555 __func__, retval);
2556 }
2557
2558 return retval;
2559 }
2560
2561 static const struct kset_uevent_ops device_uevent_ops = {
2562 .filter = dev_uevent_filter,
2563 .name = dev_uevent_name,
2564 .uevent = dev_uevent,
2565 };
2566
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2567 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2568 char *buf)
2569 {
2570 struct kobject *top_kobj;
2571 struct kset *kset;
2572 struct kobj_uevent_env *env = NULL;
2573 int i;
2574 int len = 0;
2575 int retval;
2576
2577 /* search the kset, the device belongs to */
2578 top_kobj = &dev->kobj;
2579 while (!top_kobj->kset && top_kobj->parent)
2580 top_kobj = top_kobj->parent;
2581 if (!top_kobj->kset)
2582 goto out;
2583
2584 kset = top_kobj->kset;
2585 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2586 goto out;
2587
2588 /* respect filter */
2589 if (kset->uevent_ops && kset->uevent_ops->filter)
2590 if (!kset->uevent_ops->filter(&dev->kobj))
2591 goto out;
2592
2593 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2594 if (!env)
2595 return -ENOMEM;
2596
2597 /* let the kset specific function add its keys */
2598 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2599 if (retval)
2600 goto out;
2601
2602 /* copy keys to file */
2603 for (i = 0; i < env->envp_idx; i++)
2604 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2605 out:
2606 kfree(env);
2607 return len;
2608 }
2609
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2610 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2611 const char *buf, size_t count)
2612 {
2613 int rc;
2614
2615 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2616
2617 if (rc) {
2618 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2619 return rc;
2620 }
2621
2622 return count;
2623 }
2624 static DEVICE_ATTR_RW(uevent);
2625
online_show(struct device * dev,struct device_attribute * attr,char * buf)2626 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2627 char *buf)
2628 {
2629 bool val;
2630
2631 device_lock(dev);
2632 val = !dev->offline;
2633 device_unlock(dev);
2634 return sysfs_emit(buf, "%u\n", val);
2635 }
2636
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2637 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2638 const char *buf, size_t count)
2639 {
2640 bool val;
2641 int ret;
2642
2643 ret = kstrtobool(buf, &val);
2644 if (ret < 0)
2645 return ret;
2646
2647 ret = lock_device_hotplug_sysfs();
2648 if (ret)
2649 return ret;
2650
2651 ret = val ? device_online(dev) : device_offline(dev);
2652 unlock_device_hotplug();
2653 return ret < 0 ? ret : count;
2654 }
2655 static DEVICE_ATTR_RW(online);
2656
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2657 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2658 char *buf)
2659 {
2660 const char *loc;
2661
2662 switch (dev->removable) {
2663 case DEVICE_REMOVABLE:
2664 loc = "removable";
2665 break;
2666 case DEVICE_FIXED:
2667 loc = "fixed";
2668 break;
2669 default:
2670 loc = "unknown";
2671 }
2672 return sysfs_emit(buf, "%s\n", loc);
2673 }
2674 static DEVICE_ATTR_RO(removable);
2675
device_add_groups(struct device * dev,const struct attribute_group ** groups)2676 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2677 {
2678 return sysfs_create_groups(&dev->kobj, groups);
2679 }
2680 EXPORT_SYMBOL_GPL(device_add_groups);
2681
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2682 void device_remove_groups(struct device *dev,
2683 const struct attribute_group **groups)
2684 {
2685 sysfs_remove_groups(&dev->kobj, groups);
2686 }
2687 EXPORT_SYMBOL_GPL(device_remove_groups);
2688
2689 union device_attr_group_devres {
2690 const struct attribute_group *group;
2691 const struct attribute_group **groups;
2692 };
2693
devm_attr_group_remove(struct device * dev,void * res)2694 static void devm_attr_group_remove(struct device *dev, void *res)
2695 {
2696 union device_attr_group_devres *devres = res;
2697 const struct attribute_group *group = devres->group;
2698
2699 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2700 sysfs_remove_group(&dev->kobj, group);
2701 }
2702
devm_attr_groups_remove(struct device * dev,void * res)2703 static void devm_attr_groups_remove(struct device *dev, void *res)
2704 {
2705 union device_attr_group_devres *devres = res;
2706 const struct attribute_group **groups = devres->groups;
2707
2708 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2709 sysfs_remove_groups(&dev->kobj, groups);
2710 }
2711
2712 /**
2713 * devm_device_add_group - given a device, create a managed attribute group
2714 * @dev: The device to create the group for
2715 * @grp: The attribute group to create
2716 *
2717 * This function creates a group for the first time. It will explicitly
2718 * warn and error if any of the attribute files being created already exist.
2719 *
2720 * Returns 0 on success or error code on failure.
2721 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2722 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2723 {
2724 union device_attr_group_devres *devres;
2725 int error;
2726
2727 devres = devres_alloc(devm_attr_group_remove,
2728 sizeof(*devres), GFP_KERNEL);
2729 if (!devres)
2730 return -ENOMEM;
2731
2732 error = sysfs_create_group(&dev->kobj, grp);
2733 if (error) {
2734 devres_free(devres);
2735 return error;
2736 }
2737
2738 devres->group = grp;
2739 devres_add(dev, devres);
2740 return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(devm_device_add_group);
2743
2744 /**
2745 * devm_device_add_groups - create a bunch of managed attribute groups
2746 * @dev: The device to create the group for
2747 * @groups: The attribute groups to create, NULL terminated
2748 *
2749 * This function creates a bunch of managed attribute groups. If an error
2750 * occurs when creating a group, all previously created groups will be
2751 * removed, unwinding everything back to the original state when this
2752 * function was called. It will explicitly warn and error if any of the
2753 * attribute files being created already exist.
2754 *
2755 * Returns 0 on success or error code from sysfs_create_group on failure.
2756 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2757 int devm_device_add_groups(struct device *dev,
2758 const struct attribute_group **groups)
2759 {
2760 union device_attr_group_devres *devres;
2761 int error;
2762
2763 devres = devres_alloc(devm_attr_groups_remove,
2764 sizeof(*devres), GFP_KERNEL);
2765 if (!devres)
2766 return -ENOMEM;
2767
2768 error = sysfs_create_groups(&dev->kobj, groups);
2769 if (error) {
2770 devres_free(devres);
2771 return error;
2772 }
2773
2774 devres->groups = groups;
2775 devres_add(dev, devres);
2776 return 0;
2777 }
2778 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2779
device_add_attrs(struct device * dev)2780 static int device_add_attrs(struct device *dev)
2781 {
2782 struct class *class = dev->class;
2783 const struct device_type *type = dev->type;
2784 int error;
2785
2786 if (class) {
2787 error = device_add_groups(dev, class->dev_groups);
2788 if (error)
2789 return error;
2790 }
2791
2792 if (type) {
2793 error = device_add_groups(dev, type->groups);
2794 if (error)
2795 goto err_remove_class_groups;
2796 }
2797
2798 error = device_add_groups(dev, dev->groups);
2799 if (error)
2800 goto err_remove_type_groups;
2801
2802 if (device_supports_offline(dev) && !dev->offline_disabled) {
2803 error = device_create_file(dev, &dev_attr_online);
2804 if (error)
2805 goto err_remove_dev_groups;
2806 }
2807
2808 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2809 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2810 if (error)
2811 goto err_remove_dev_online;
2812 }
2813
2814 if (dev_removable_is_valid(dev)) {
2815 error = device_create_file(dev, &dev_attr_removable);
2816 if (error)
2817 goto err_remove_dev_waiting_for_supplier;
2818 }
2819
2820 if (dev_add_physical_location(dev)) {
2821 error = device_add_group(dev,
2822 &dev_attr_physical_location_group);
2823 if (error)
2824 goto err_remove_dev_removable;
2825 }
2826
2827 return 0;
2828
2829 err_remove_dev_removable:
2830 device_remove_file(dev, &dev_attr_removable);
2831 err_remove_dev_waiting_for_supplier:
2832 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2833 err_remove_dev_online:
2834 device_remove_file(dev, &dev_attr_online);
2835 err_remove_dev_groups:
2836 device_remove_groups(dev, dev->groups);
2837 err_remove_type_groups:
2838 if (type)
2839 device_remove_groups(dev, type->groups);
2840 err_remove_class_groups:
2841 if (class)
2842 device_remove_groups(dev, class->dev_groups);
2843
2844 return error;
2845 }
2846
device_remove_attrs(struct device * dev)2847 static void device_remove_attrs(struct device *dev)
2848 {
2849 struct class *class = dev->class;
2850 const struct device_type *type = dev->type;
2851
2852 if (dev->physical_location) {
2853 device_remove_group(dev, &dev_attr_physical_location_group);
2854 kfree(dev->physical_location);
2855 }
2856
2857 device_remove_file(dev, &dev_attr_removable);
2858 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2859 device_remove_file(dev, &dev_attr_online);
2860 device_remove_groups(dev, dev->groups);
2861
2862 if (type)
2863 device_remove_groups(dev, type->groups);
2864
2865 if (class)
2866 device_remove_groups(dev, class->dev_groups);
2867 }
2868
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2869 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2870 char *buf)
2871 {
2872 return print_dev_t(buf, dev->devt);
2873 }
2874 static DEVICE_ATTR_RO(dev);
2875
2876 /* /sys/devices/ */
2877 struct kset *devices_kset;
2878
2879 /**
2880 * devices_kset_move_before - Move device in the devices_kset's list.
2881 * @deva: Device to move.
2882 * @devb: Device @deva should come before.
2883 */
devices_kset_move_before(struct device * deva,struct device * devb)2884 static void devices_kset_move_before(struct device *deva, struct device *devb)
2885 {
2886 if (!devices_kset)
2887 return;
2888 pr_debug("devices_kset: Moving %s before %s\n",
2889 dev_name(deva), dev_name(devb));
2890 spin_lock(&devices_kset->list_lock);
2891 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2892 spin_unlock(&devices_kset->list_lock);
2893 }
2894
2895 /**
2896 * devices_kset_move_after - Move device in the devices_kset's list.
2897 * @deva: Device to move
2898 * @devb: Device @deva should come after.
2899 */
devices_kset_move_after(struct device * deva,struct device * devb)2900 static void devices_kset_move_after(struct device *deva, struct device *devb)
2901 {
2902 if (!devices_kset)
2903 return;
2904 pr_debug("devices_kset: Moving %s after %s\n",
2905 dev_name(deva), dev_name(devb));
2906 spin_lock(&devices_kset->list_lock);
2907 list_move(&deva->kobj.entry, &devb->kobj.entry);
2908 spin_unlock(&devices_kset->list_lock);
2909 }
2910
2911 /**
2912 * devices_kset_move_last - move the device to the end of devices_kset's list.
2913 * @dev: device to move
2914 */
devices_kset_move_last(struct device * dev)2915 void devices_kset_move_last(struct device *dev)
2916 {
2917 if (!devices_kset)
2918 return;
2919 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2920 spin_lock(&devices_kset->list_lock);
2921 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2922 spin_unlock(&devices_kset->list_lock);
2923 }
2924
2925 /**
2926 * device_create_file - create sysfs attribute file for device.
2927 * @dev: device.
2928 * @attr: device attribute descriptor.
2929 */
device_create_file(struct device * dev,const struct device_attribute * attr)2930 int device_create_file(struct device *dev,
2931 const struct device_attribute *attr)
2932 {
2933 int error = 0;
2934
2935 if (dev) {
2936 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2937 "Attribute %s: write permission without 'store'\n",
2938 attr->attr.name);
2939 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2940 "Attribute %s: read permission without 'show'\n",
2941 attr->attr.name);
2942 error = sysfs_create_file(&dev->kobj, &attr->attr);
2943 }
2944
2945 return error;
2946 }
2947 EXPORT_SYMBOL_GPL(device_create_file);
2948
2949 /**
2950 * device_remove_file - remove sysfs attribute file.
2951 * @dev: device.
2952 * @attr: device attribute descriptor.
2953 */
device_remove_file(struct device * dev,const struct device_attribute * attr)2954 void device_remove_file(struct device *dev,
2955 const struct device_attribute *attr)
2956 {
2957 if (dev)
2958 sysfs_remove_file(&dev->kobj, &attr->attr);
2959 }
2960 EXPORT_SYMBOL_GPL(device_remove_file);
2961
2962 /**
2963 * device_remove_file_self - remove sysfs attribute file from its own method.
2964 * @dev: device.
2965 * @attr: device attribute descriptor.
2966 *
2967 * See kernfs_remove_self() for details.
2968 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2969 bool device_remove_file_self(struct device *dev,
2970 const struct device_attribute *attr)
2971 {
2972 if (dev)
2973 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2974 else
2975 return false;
2976 }
2977 EXPORT_SYMBOL_GPL(device_remove_file_self);
2978
2979 /**
2980 * device_create_bin_file - create sysfs binary attribute file for device.
2981 * @dev: device.
2982 * @attr: device binary attribute descriptor.
2983 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2984 int device_create_bin_file(struct device *dev,
2985 const struct bin_attribute *attr)
2986 {
2987 int error = -EINVAL;
2988 if (dev)
2989 error = sysfs_create_bin_file(&dev->kobj, attr);
2990 return error;
2991 }
2992 EXPORT_SYMBOL_GPL(device_create_bin_file);
2993
2994 /**
2995 * device_remove_bin_file - remove sysfs binary attribute file
2996 * @dev: device.
2997 * @attr: device binary attribute descriptor.
2998 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2999 void device_remove_bin_file(struct device *dev,
3000 const struct bin_attribute *attr)
3001 {
3002 if (dev)
3003 sysfs_remove_bin_file(&dev->kobj, attr);
3004 }
3005 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3006
klist_children_get(struct klist_node * n)3007 static void klist_children_get(struct klist_node *n)
3008 {
3009 struct device_private *p = to_device_private_parent(n);
3010 struct device *dev = p->device;
3011
3012 get_device(dev);
3013 }
3014
klist_children_put(struct klist_node * n)3015 static void klist_children_put(struct klist_node *n)
3016 {
3017 struct device_private *p = to_device_private_parent(n);
3018 struct device *dev = p->device;
3019
3020 put_device(dev);
3021 }
3022
3023 /**
3024 * device_initialize - init device structure.
3025 * @dev: device.
3026 *
3027 * This prepares the device for use by other layers by initializing
3028 * its fields.
3029 * It is the first half of device_register(), if called by
3030 * that function, though it can also be called separately, so one
3031 * may use @dev's fields. In particular, get_device()/put_device()
3032 * may be used for reference counting of @dev after calling this
3033 * function.
3034 *
3035 * All fields in @dev must be initialized by the caller to 0, except
3036 * for those explicitly set to some other value. The simplest
3037 * approach is to use kzalloc() to allocate the structure containing
3038 * @dev.
3039 *
3040 * NOTE: Use put_device() to give up your reference instead of freeing
3041 * @dev directly once you have called this function.
3042 */
device_initialize(struct device * dev)3043 void device_initialize(struct device *dev)
3044 {
3045 dev->kobj.kset = devices_kset;
3046 kobject_init(&dev->kobj, &device_ktype);
3047 INIT_LIST_HEAD(&dev->dma_pools);
3048 mutex_init(&dev->mutex);
3049 lockdep_set_novalidate_class(&dev->mutex);
3050 spin_lock_init(&dev->devres_lock);
3051 INIT_LIST_HEAD(&dev->devres_head);
3052 device_pm_init(dev);
3053 set_dev_node(dev, NUMA_NO_NODE);
3054 INIT_LIST_HEAD(&dev->links.consumers);
3055 INIT_LIST_HEAD(&dev->links.suppliers);
3056 INIT_LIST_HEAD(&dev->links.defer_sync);
3057 dev->links.status = DL_DEV_NO_DRIVER;
3058 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3059 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3060 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3061 dev->dma_coherent = dma_default_coherent;
3062 #endif
3063 #ifdef CONFIG_SWIOTLB
3064 dev->dma_io_tlb_mem = &io_tlb_default_mem;
3065 #endif
3066 }
3067 EXPORT_SYMBOL_GPL(device_initialize);
3068
virtual_device_parent(struct device * dev)3069 struct kobject *virtual_device_parent(struct device *dev)
3070 {
3071 static struct kobject *virtual_dir = NULL;
3072
3073 if (!virtual_dir)
3074 virtual_dir = kobject_create_and_add("virtual",
3075 &devices_kset->kobj);
3076
3077 return virtual_dir;
3078 }
3079
3080 struct class_dir {
3081 struct kobject kobj;
3082 struct class *class;
3083 };
3084
3085 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3086
class_dir_release(struct kobject * kobj)3087 static void class_dir_release(struct kobject *kobj)
3088 {
3089 struct class_dir *dir = to_class_dir(kobj);
3090 kfree(dir);
3091 }
3092
3093 static const
class_dir_child_ns_type(const struct kobject * kobj)3094 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3095 {
3096 const struct class_dir *dir = to_class_dir(kobj);
3097 return dir->class->ns_type;
3098 }
3099
3100 static const struct kobj_type class_dir_ktype = {
3101 .release = class_dir_release,
3102 .sysfs_ops = &kobj_sysfs_ops,
3103 .child_ns_type = class_dir_child_ns_type
3104 };
3105
3106 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)3107 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3108 {
3109 struct class_dir *dir;
3110 int retval;
3111
3112 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3113 if (!dir)
3114 return ERR_PTR(-ENOMEM);
3115
3116 dir->class = class;
3117 kobject_init(&dir->kobj, &class_dir_ktype);
3118
3119 dir->kobj.kset = &class->p->glue_dirs;
3120
3121 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3122 if (retval < 0) {
3123 kobject_put(&dir->kobj);
3124 return ERR_PTR(retval);
3125 }
3126 return &dir->kobj;
3127 }
3128
3129 static DEFINE_MUTEX(gdp_mutex);
3130
get_device_parent(struct device * dev,struct device * parent)3131 static struct kobject *get_device_parent(struct device *dev,
3132 struct device *parent)
3133 {
3134 struct kobject *kobj = NULL;
3135
3136 if (dev->class) {
3137 struct kobject *parent_kobj;
3138 struct kobject *k;
3139
3140 #ifdef CONFIG_BLOCK
3141 /* block disks show up in /sys/block */
3142 if (sysfs_deprecated && dev->class == &block_class) {
3143 if (parent && parent->class == &block_class)
3144 return &parent->kobj;
3145 return &block_class.p->subsys.kobj;
3146 }
3147 #endif
3148
3149 /*
3150 * If we have no parent, we live in "virtual".
3151 * Class-devices with a non class-device as parent, live
3152 * in a "glue" directory to prevent namespace collisions.
3153 */
3154 if (parent == NULL)
3155 parent_kobj = virtual_device_parent(dev);
3156 else if (parent->class && !dev->class->ns_type)
3157 return &parent->kobj;
3158 else
3159 parent_kobj = &parent->kobj;
3160
3161 mutex_lock(&gdp_mutex);
3162
3163 /* find our class-directory at the parent and reference it */
3164 spin_lock(&dev->class->p->glue_dirs.list_lock);
3165 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3166 if (k->parent == parent_kobj) {
3167 kobj = kobject_get(k);
3168 break;
3169 }
3170 spin_unlock(&dev->class->p->glue_dirs.list_lock);
3171 if (kobj) {
3172 mutex_unlock(&gdp_mutex);
3173 return kobj;
3174 }
3175
3176 /* or create a new class-directory at the parent device */
3177 k = class_dir_create_and_add(dev->class, parent_kobj);
3178 /* do not emit an uevent for this simple "glue" directory */
3179 mutex_unlock(&gdp_mutex);
3180 return k;
3181 }
3182
3183 /* subsystems can specify a default root directory for their devices */
3184 if (!parent && dev->bus) {
3185 struct device *dev_root = bus_get_dev_root(dev->bus);
3186
3187 if (dev_root) {
3188 kobj = &dev_root->kobj;
3189 put_device(dev_root);
3190 return kobj;
3191 }
3192 }
3193
3194 if (parent)
3195 return &parent->kobj;
3196 return NULL;
3197 }
3198
live_in_glue_dir(struct kobject * kobj,struct device * dev)3199 static inline bool live_in_glue_dir(struct kobject *kobj,
3200 struct device *dev)
3201 {
3202 if (!kobj || !dev->class ||
3203 kobj->kset != &dev->class->p->glue_dirs)
3204 return false;
3205 return true;
3206 }
3207
get_glue_dir(struct device * dev)3208 static inline struct kobject *get_glue_dir(struct device *dev)
3209 {
3210 return dev->kobj.parent;
3211 }
3212
3213 /**
3214 * kobject_has_children - Returns whether a kobject has children.
3215 * @kobj: the object to test
3216 *
3217 * This will return whether a kobject has other kobjects as children.
3218 *
3219 * It does NOT account for the presence of attribute files, only sub
3220 * directories. It also assumes there is no concurrent addition or
3221 * removal of such children, and thus relies on external locking.
3222 */
kobject_has_children(struct kobject * kobj)3223 static inline bool kobject_has_children(struct kobject *kobj)
3224 {
3225 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3226
3227 return kobj->sd && kobj->sd->dir.subdirs;
3228 }
3229
3230 /*
3231 * make sure cleaning up dir as the last step, we need to make
3232 * sure .release handler of kobject is run with holding the
3233 * global lock
3234 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3235 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3236 {
3237 unsigned int ref;
3238
3239 /* see if we live in a "glue" directory */
3240 if (!live_in_glue_dir(glue_dir, dev))
3241 return;
3242
3243 mutex_lock(&gdp_mutex);
3244 /**
3245 * There is a race condition between removing glue directory
3246 * and adding a new device under the glue directory.
3247 *
3248 * CPU1: CPU2:
3249 *
3250 * device_add()
3251 * get_device_parent()
3252 * class_dir_create_and_add()
3253 * kobject_add_internal()
3254 * create_dir() // create glue_dir
3255 *
3256 * device_add()
3257 * get_device_parent()
3258 * kobject_get() // get glue_dir
3259 *
3260 * device_del()
3261 * cleanup_glue_dir()
3262 * kobject_del(glue_dir)
3263 *
3264 * kobject_add()
3265 * kobject_add_internal()
3266 * create_dir() // in glue_dir
3267 * sysfs_create_dir_ns()
3268 * kernfs_create_dir_ns(sd)
3269 *
3270 * sysfs_remove_dir() // glue_dir->sd=NULL
3271 * sysfs_put() // free glue_dir->sd
3272 *
3273 * // sd is freed
3274 * kernfs_new_node(sd)
3275 * kernfs_get(glue_dir)
3276 * kernfs_add_one()
3277 * kernfs_put()
3278 *
3279 * Before CPU1 remove last child device under glue dir, if CPU2 add
3280 * a new device under glue dir, the glue_dir kobject reference count
3281 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3282 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3283 * and sysfs_put(). This result in glue_dir->sd is freed.
3284 *
3285 * Then the CPU2 will see a stale "empty" but still potentially used
3286 * glue dir around in kernfs_new_node().
3287 *
3288 * In order to avoid this happening, we also should make sure that
3289 * kernfs_node for glue_dir is released in CPU1 only when refcount
3290 * for glue_dir kobj is 1.
3291 */
3292 ref = kref_read(&glue_dir->kref);
3293 if (!kobject_has_children(glue_dir) && !--ref)
3294 kobject_del(glue_dir);
3295 kobject_put(glue_dir);
3296 mutex_unlock(&gdp_mutex);
3297 }
3298
device_add_class_symlinks(struct device * dev)3299 static int device_add_class_symlinks(struct device *dev)
3300 {
3301 struct device_node *of_node = dev_of_node(dev);
3302 int error;
3303
3304 if (of_node) {
3305 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3306 if (error)
3307 dev_warn(dev, "Error %d creating of_node link\n",error);
3308 /* An error here doesn't warrant bringing down the device */
3309 }
3310
3311 if (!dev->class)
3312 return 0;
3313
3314 error = sysfs_create_link(&dev->kobj,
3315 &dev->class->p->subsys.kobj,
3316 "subsystem");
3317 if (error)
3318 goto out_devnode;
3319
3320 if (dev->parent && device_is_not_partition(dev)) {
3321 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3322 "device");
3323 if (error)
3324 goto out_subsys;
3325 }
3326
3327 #ifdef CONFIG_BLOCK
3328 /* /sys/block has directories and does not need symlinks */
3329 if (sysfs_deprecated && dev->class == &block_class)
3330 return 0;
3331 #endif
3332
3333 /* link in the class directory pointing to the device */
3334 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3335 &dev->kobj, dev_name(dev));
3336 if (error)
3337 goto out_device;
3338
3339 return 0;
3340
3341 out_device:
3342 sysfs_remove_link(&dev->kobj, "device");
3343
3344 out_subsys:
3345 sysfs_remove_link(&dev->kobj, "subsystem");
3346 out_devnode:
3347 sysfs_remove_link(&dev->kobj, "of_node");
3348 return error;
3349 }
3350
device_remove_class_symlinks(struct device * dev)3351 static void device_remove_class_symlinks(struct device *dev)
3352 {
3353 if (dev_of_node(dev))
3354 sysfs_remove_link(&dev->kobj, "of_node");
3355
3356 if (!dev->class)
3357 return;
3358
3359 if (dev->parent && device_is_not_partition(dev))
3360 sysfs_remove_link(&dev->kobj, "device");
3361 sysfs_remove_link(&dev->kobj, "subsystem");
3362 #ifdef CONFIG_BLOCK
3363 if (sysfs_deprecated && dev->class == &block_class)
3364 return;
3365 #endif
3366 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3367 }
3368
3369 /**
3370 * dev_set_name - set a device name
3371 * @dev: device
3372 * @fmt: format string for the device's name
3373 */
dev_set_name(struct device * dev,const char * fmt,...)3374 int dev_set_name(struct device *dev, const char *fmt, ...)
3375 {
3376 va_list vargs;
3377 int err;
3378
3379 va_start(vargs, fmt);
3380 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3381 va_end(vargs);
3382 return err;
3383 }
3384 EXPORT_SYMBOL_GPL(dev_set_name);
3385
3386 /**
3387 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3388 * @dev: device
3389 *
3390 * By default we select char/ for new entries. Setting class->dev_obj
3391 * to NULL prevents an entry from being created. class->dev_kobj must
3392 * be set (or cleared) before any devices are registered to the class
3393 * otherwise device_create_sys_dev_entry() and
3394 * device_remove_sys_dev_entry() will disagree about the presence of
3395 * the link.
3396 */
device_to_dev_kobj(struct device * dev)3397 static struct kobject *device_to_dev_kobj(struct device *dev)
3398 {
3399 struct kobject *kobj;
3400
3401 if (dev->class)
3402 kobj = dev->class->dev_kobj;
3403 else
3404 kobj = sysfs_dev_char_kobj;
3405
3406 return kobj;
3407 }
3408
device_create_sys_dev_entry(struct device * dev)3409 static int device_create_sys_dev_entry(struct device *dev)
3410 {
3411 struct kobject *kobj = device_to_dev_kobj(dev);
3412 int error = 0;
3413 char devt_str[15];
3414
3415 if (kobj) {
3416 format_dev_t(devt_str, dev->devt);
3417 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3418 }
3419
3420 return error;
3421 }
3422
device_remove_sys_dev_entry(struct device * dev)3423 static void device_remove_sys_dev_entry(struct device *dev)
3424 {
3425 struct kobject *kobj = device_to_dev_kobj(dev);
3426 char devt_str[15];
3427
3428 if (kobj) {
3429 format_dev_t(devt_str, dev->devt);
3430 sysfs_remove_link(kobj, devt_str);
3431 }
3432 }
3433
device_private_init(struct device * dev)3434 static int device_private_init(struct device *dev)
3435 {
3436 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3437 if (!dev->p)
3438 return -ENOMEM;
3439 dev->p->device = dev;
3440 klist_init(&dev->p->klist_children, klist_children_get,
3441 klist_children_put);
3442 INIT_LIST_HEAD(&dev->p->deferred_probe);
3443 return 0;
3444 }
3445
3446 /**
3447 * device_add - add device to device hierarchy.
3448 * @dev: device.
3449 *
3450 * This is part 2 of device_register(), though may be called
3451 * separately _iff_ device_initialize() has been called separately.
3452 *
3453 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3454 * to the global and sibling lists for the device, then
3455 * adds it to the other relevant subsystems of the driver model.
3456 *
3457 * Do not call this routine or device_register() more than once for
3458 * any device structure. The driver model core is not designed to work
3459 * with devices that get unregistered and then spring back to life.
3460 * (Among other things, it's very hard to guarantee that all references
3461 * to the previous incarnation of @dev have been dropped.) Allocate
3462 * and register a fresh new struct device instead.
3463 *
3464 * NOTE: _Never_ directly free @dev after calling this function, even
3465 * if it returned an error! Always use put_device() to give up your
3466 * reference instead.
3467 *
3468 * Rule of thumb is: if device_add() succeeds, you should call
3469 * device_del() when you want to get rid of it. If device_add() has
3470 * *not* succeeded, use *only* put_device() to drop the reference
3471 * count.
3472 */
device_add(struct device * dev)3473 int device_add(struct device *dev)
3474 {
3475 struct device *parent;
3476 struct kobject *kobj;
3477 struct class_interface *class_intf;
3478 int error = -EINVAL;
3479 struct kobject *glue_dir = NULL;
3480
3481 dev = get_device(dev);
3482 if (!dev)
3483 goto done;
3484
3485 if (!dev->p) {
3486 error = device_private_init(dev);
3487 if (error)
3488 goto done;
3489 }
3490
3491 /*
3492 * for statically allocated devices, which should all be converted
3493 * some day, we need to initialize the name. We prevent reading back
3494 * the name, and force the use of dev_name()
3495 */
3496 if (dev->init_name) {
3497 dev_set_name(dev, "%s", dev->init_name);
3498 dev->init_name = NULL;
3499 }
3500
3501 /* subsystems can specify simple device enumeration */
3502 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3503 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3504
3505 if (!dev_name(dev)) {
3506 error = -EINVAL;
3507 goto name_error;
3508 }
3509
3510 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3511
3512 parent = get_device(dev->parent);
3513 kobj = get_device_parent(dev, parent);
3514 if (IS_ERR(kobj)) {
3515 error = PTR_ERR(kobj);
3516 goto parent_error;
3517 }
3518 if (kobj)
3519 dev->kobj.parent = kobj;
3520
3521 /* use parent numa_node */
3522 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3523 set_dev_node(dev, dev_to_node(parent));
3524
3525 /* first, register with generic layer. */
3526 /* we require the name to be set before, and pass NULL */
3527 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3528 if (error) {
3529 glue_dir = kobj;
3530 goto Error;
3531 }
3532
3533 /* notify platform of device entry */
3534 device_platform_notify(dev);
3535
3536 error = device_create_file(dev, &dev_attr_uevent);
3537 if (error)
3538 goto attrError;
3539
3540 error = device_add_class_symlinks(dev);
3541 if (error)
3542 goto SymlinkError;
3543 error = device_add_attrs(dev);
3544 if (error)
3545 goto AttrsError;
3546 error = bus_add_device(dev);
3547 if (error)
3548 goto BusError;
3549 error = dpm_sysfs_add(dev);
3550 if (error)
3551 goto DPMError;
3552 device_pm_add(dev);
3553
3554 if (MAJOR(dev->devt)) {
3555 error = device_create_file(dev, &dev_attr_dev);
3556 if (error)
3557 goto DevAttrError;
3558
3559 error = device_create_sys_dev_entry(dev);
3560 if (error)
3561 goto SysEntryError;
3562
3563 devtmpfs_create_node(dev);
3564 }
3565
3566 /* Notify clients of device addition. This call must come
3567 * after dpm_sysfs_add() and before kobject_uevent().
3568 */
3569 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3570 kobject_uevent(&dev->kobj, KOBJ_ADD);
3571
3572 /*
3573 * Check if any of the other devices (consumers) have been waiting for
3574 * this device (supplier) to be added so that they can create a device
3575 * link to it.
3576 *
3577 * This needs to happen after device_pm_add() because device_link_add()
3578 * requires the supplier be registered before it's called.
3579 *
3580 * But this also needs to happen before bus_probe_device() to make sure
3581 * waiting consumers can link to it before the driver is bound to the
3582 * device and the driver sync_state callback is called for this device.
3583 */
3584 if (dev->fwnode && !dev->fwnode->dev) {
3585 dev->fwnode->dev = dev;
3586 fw_devlink_link_device(dev);
3587 }
3588
3589 bus_probe_device(dev);
3590
3591 /*
3592 * If all driver registration is done and a newly added device doesn't
3593 * match with any driver, don't block its consumers from probing in
3594 * case the consumer device is able to operate without this supplier.
3595 */
3596 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3597 fw_devlink_unblock_consumers(dev);
3598
3599 if (parent)
3600 klist_add_tail(&dev->p->knode_parent,
3601 &parent->p->klist_children);
3602
3603 if (dev->class) {
3604 mutex_lock(&dev->class->p->mutex);
3605 /* tie the class to the device */
3606 klist_add_tail(&dev->p->knode_class,
3607 &dev->class->p->klist_devices);
3608
3609 /* notify any interfaces that the device is here */
3610 list_for_each_entry(class_intf,
3611 &dev->class->p->interfaces, node)
3612 if (class_intf->add_dev)
3613 class_intf->add_dev(dev, class_intf);
3614 mutex_unlock(&dev->class->p->mutex);
3615 }
3616 done:
3617 put_device(dev);
3618 return error;
3619 SysEntryError:
3620 if (MAJOR(dev->devt))
3621 device_remove_file(dev, &dev_attr_dev);
3622 DevAttrError:
3623 device_pm_remove(dev);
3624 dpm_sysfs_remove(dev);
3625 DPMError:
3626 dev->driver = NULL;
3627 bus_remove_device(dev);
3628 BusError:
3629 device_remove_attrs(dev);
3630 AttrsError:
3631 device_remove_class_symlinks(dev);
3632 SymlinkError:
3633 device_remove_file(dev, &dev_attr_uevent);
3634 attrError:
3635 device_platform_notify_remove(dev);
3636 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3637 glue_dir = get_glue_dir(dev);
3638 kobject_del(&dev->kobj);
3639 Error:
3640 cleanup_glue_dir(dev, glue_dir);
3641 parent_error:
3642 put_device(parent);
3643 name_error:
3644 kfree(dev->p);
3645 dev->p = NULL;
3646 goto done;
3647 }
3648 EXPORT_SYMBOL_GPL(device_add);
3649
3650 /**
3651 * device_register - register a device with the system.
3652 * @dev: pointer to the device structure
3653 *
3654 * This happens in two clean steps - initialize the device
3655 * and add it to the system. The two steps can be called
3656 * separately, but this is the easiest and most common.
3657 * I.e. you should only call the two helpers separately if
3658 * have a clearly defined need to use and refcount the device
3659 * before it is added to the hierarchy.
3660 *
3661 * For more information, see the kerneldoc for device_initialize()
3662 * and device_add().
3663 *
3664 * NOTE: _Never_ directly free @dev after calling this function, even
3665 * if it returned an error! Always use put_device() to give up the
3666 * reference initialized in this function instead.
3667 */
device_register(struct device * dev)3668 int device_register(struct device *dev)
3669 {
3670 device_initialize(dev);
3671 return device_add(dev);
3672 }
3673 EXPORT_SYMBOL_GPL(device_register);
3674
3675 /**
3676 * get_device - increment reference count for device.
3677 * @dev: device.
3678 *
3679 * This simply forwards the call to kobject_get(), though
3680 * we do take care to provide for the case that we get a NULL
3681 * pointer passed in.
3682 */
get_device(struct device * dev)3683 struct device *get_device(struct device *dev)
3684 {
3685 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3686 }
3687 EXPORT_SYMBOL_GPL(get_device);
3688
3689 /**
3690 * put_device - decrement reference count.
3691 * @dev: device in question.
3692 */
put_device(struct device * dev)3693 void put_device(struct device *dev)
3694 {
3695 /* might_sleep(); */
3696 if (dev)
3697 kobject_put(&dev->kobj);
3698 }
3699 EXPORT_SYMBOL_GPL(put_device);
3700
kill_device(struct device * dev)3701 bool kill_device(struct device *dev)
3702 {
3703 /*
3704 * Require the device lock and set the "dead" flag to guarantee that
3705 * the update behavior is consistent with the other bitfields near
3706 * it and that we cannot have an asynchronous probe routine trying
3707 * to run while we are tearing out the bus/class/sysfs from
3708 * underneath the device.
3709 */
3710 device_lock_assert(dev);
3711
3712 if (dev->p->dead)
3713 return false;
3714 dev->p->dead = true;
3715 return true;
3716 }
3717 EXPORT_SYMBOL_GPL(kill_device);
3718
3719 /**
3720 * device_del - delete device from system.
3721 * @dev: device.
3722 *
3723 * This is the first part of the device unregistration
3724 * sequence. This removes the device from the lists we control
3725 * from here, has it removed from the other driver model
3726 * subsystems it was added to in device_add(), and removes it
3727 * from the kobject hierarchy.
3728 *
3729 * NOTE: this should be called manually _iff_ device_add() was
3730 * also called manually.
3731 */
device_del(struct device * dev)3732 void device_del(struct device *dev)
3733 {
3734 struct device *parent = dev->parent;
3735 struct kobject *glue_dir = NULL;
3736 struct class_interface *class_intf;
3737 unsigned int noio_flag;
3738
3739 device_lock(dev);
3740 kill_device(dev);
3741 device_unlock(dev);
3742
3743 if (dev->fwnode && dev->fwnode->dev == dev)
3744 dev->fwnode->dev = NULL;
3745
3746 /* Notify clients of device removal. This call must come
3747 * before dpm_sysfs_remove().
3748 */
3749 noio_flag = memalloc_noio_save();
3750 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3751
3752 dpm_sysfs_remove(dev);
3753 if (parent)
3754 klist_del(&dev->p->knode_parent);
3755 if (MAJOR(dev->devt)) {
3756 devtmpfs_delete_node(dev);
3757 device_remove_sys_dev_entry(dev);
3758 device_remove_file(dev, &dev_attr_dev);
3759 }
3760 if (dev->class) {
3761 device_remove_class_symlinks(dev);
3762
3763 mutex_lock(&dev->class->p->mutex);
3764 /* notify any interfaces that the device is now gone */
3765 list_for_each_entry(class_intf,
3766 &dev->class->p->interfaces, node)
3767 if (class_intf->remove_dev)
3768 class_intf->remove_dev(dev, class_intf);
3769 /* remove the device from the class list */
3770 klist_del(&dev->p->knode_class);
3771 mutex_unlock(&dev->class->p->mutex);
3772 }
3773 device_remove_file(dev, &dev_attr_uevent);
3774 device_remove_attrs(dev);
3775 bus_remove_device(dev);
3776 device_pm_remove(dev);
3777 driver_deferred_probe_del(dev);
3778 device_platform_notify_remove(dev);
3779 device_links_purge(dev);
3780
3781 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3782 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3783 glue_dir = get_glue_dir(dev);
3784 kobject_del(&dev->kobj);
3785 cleanup_glue_dir(dev, glue_dir);
3786 memalloc_noio_restore(noio_flag);
3787 put_device(parent);
3788 }
3789 EXPORT_SYMBOL_GPL(device_del);
3790
3791 /**
3792 * device_unregister - unregister device from system.
3793 * @dev: device going away.
3794 *
3795 * We do this in two parts, like we do device_register(). First,
3796 * we remove it from all the subsystems with device_del(), then
3797 * we decrement the reference count via put_device(). If that
3798 * is the final reference count, the device will be cleaned up
3799 * via device_release() above. Otherwise, the structure will
3800 * stick around until the final reference to the device is dropped.
3801 */
device_unregister(struct device * dev)3802 void device_unregister(struct device *dev)
3803 {
3804 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3805 device_del(dev);
3806 put_device(dev);
3807 }
3808 EXPORT_SYMBOL_GPL(device_unregister);
3809
prev_device(struct klist_iter * i)3810 static struct device *prev_device(struct klist_iter *i)
3811 {
3812 struct klist_node *n = klist_prev(i);
3813 struct device *dev = NULL;
3814 struct device_private *p;
3815
3816 if (n) {
3817 p = to_device_private_parent(n);
3818 dev = p->device;
3819 }
3820 return dev;
3821 }
3822
next_device(struct klist_iter * i)3823 static struct device *next_device(struct klist_iter *i)
3824 {
3825 struct klist_node *n = klist_next(i);
3826 struct device *dev = NULL;
3827 struct device_private *p;
3828
3829 if (n) {
3830 p = to_device_private_parent(n);
3831 dev = p->device;
3832 }
3833 return dev;
3834 }
3835
3836 /**
3837 * device_get_devnode - path of device node file
3838 * @dev: device
3839 * @mode: returned file access mode
3840 * @uid: returned file owner
3841 * @gid: returned file group
3842 * @tmp: possibly allocated string
3843 *
3844 * Return the relative path of a possible device node.
3845 * Non-default names may need to allocate a memory to compose
3846 * a name. This memory is returned in tmp and needs to be
3847 * freed by the caller.
3848 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3849 const char *device_get_devnode(const struct device *dev,
3850 umode_t *mode, kuid_t *uid, kgid_t *gid,
3851 const char **tmp)
3852 {
3853 char *s;
3854
3855 *tmp = NULL;
3856
3857 /* the device type may provide a specific name */
3858 if (dev->type && dev->type->devnode)
3859 *tmp = dev->type->devnode(dev, mode, uid, gid);
3860 if (*tmp)
3861 return *tmp;
3862
3863 /* the class may provide a specific name */
3864 if (dev->class && dev->class->devnode)
3865 *tmp = dev->class->devnode(dev, mode);
3866 if (*tmp)
3867 return *tmp;
3868
3869 /* return name without allocation, tmp == NULL */
3870 if (strchr(dev_name(dev), '!') == NULL)
3871 return dev_name(dev);
3872
3873 /* replace '!' in the name with '/' */
3874 s = kstrdup(dev_name(dev), GFP_KERNEL);
3875 if (!s)
3876 return NULL;
3877 strreplace(s, '!', '/');
3878 return *tmp = s;
3879 }
3880
3881 /**
3882 * device_for_each_child - device child iterator.
3883 * @parent: parent struct device.
3884 * @fn: function to be called for each device.
3885 * @data: data for the callback.
3886 *
3887 * Iterate over @parent's child devices, and call @fn for each,
3888 * passing it @data.
3889 *
3890 * We check the return of @fn each time. If it returns anything
3891 * other than 0, we break out and return that value.
3892 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3893 int device_for_each_child(struct device *parent, void *data,
3894 int (*fn)(struct device *dev, void *data))
3895 {
3896 struct klist_iter i;
3897 struct device *child;
3898 int error = 0;
3899
3900 if (!parent->p)
3901 return 0;
3902
3903 klist_iter_init(&parent->p->klist_children, &i);
3904 while (!error && (child = next_device(&i)))
3905 error = fn(child, data);
3906 klist_iter_exit(&i);
3907 return error;
3908 }
3909 EXPORT_SYMBOL_GPL(device_for_each_child);
3910
3911 /**
3912 * device_for_each_child_reverse - device child iterator in reversed order.
3913 * @parent: parent struct device.
3914 * @fn: function to be called for each device.
3915 * @data: data for the callback.
3916 *
3917 * Iterate over @parent's child devices, and call @fn for each,
3918 * passing it @data.
3919 *
3920 * We check the return of @fn each time. If it returns anything
3921 * other than 0, we break out and return that value.
3922 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3923 int device_for_each_child_reverse(struct device *parent, void *data,
3924 int (*fn)(struct device *dev, void *data))
3925 {
3926 struct klist_iter i;
3927 struct device *child;
3928 int error = 0;
3929
3930 if (!parent->p)
3931 return 0;
3932
3933 klist_iter_init(&parent->p->klist_children, &i);
3934 while ((child = prev_device(&i)) && !error)
3935 error = fn(child, data);
3936 klist_iter_exit(&i);
3937 return error;
3938 }
3939 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3940
3941 /**
3942 * device_find_child - device iterator for locating a particular device.
3943 * @parent: parent struct device
3944 * @match: Callback function to check device
3945 * @data: Data to pass to match function
3946 *
3947 * This is similar to the device_for_each_child() function above, but it
3948 * returns a reference to a device that is 'found' for later use, as
3949 * determined by the @match callback.
3950 *
3951 * The callback should return 0 if the device doesn't match and non-zero
3952 * if it does. If the callback returns non-zero and a reference to the
3953 * current device can be obtained, this function will return to the caller
3954 * and not iterate over any more devices.
3955 *
3956 * NOTE: you will need to drop the reference with put_device() after use.
3957 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3958 struct device *device_find_child(struct device *parent, void *data,
3959 int (*match)(struct device *dev, void *data))
3960 {
3961 struct klist_iter i;
3962 struct device *child;
3963
3964 if (!parent)
3965 return NULL;
3966
3967 klist_iter_init(&parent->p->klist_children, &i);
3968 while ((child = next_device(&i)))
3969 if (match(child, data) && get_device(child))
3970 break;
3971 klist_iter_exit(&i);
3972 return child;
3973 }
3974 EXPORT_SYMBOL_GPL(device_find_child);
3975
3976 /**
3977 * device_find_child_by_name - device iterator for locating a child device.
3978 * @parent: parent struct device
3979 * @name: name of the child device
3980 *
3981 * This is similar to the device_find_child() function above, but it
3982 * returns a reference to a device that has the name @name.
3983 *
3984 * NOTE: you will need to drop the reference with put_device() after use.
3985 */
device_find_child_by_name(struct device * parent,const char * name)3986 struct device *device_find_child_by_name(struct device *parent,
3987 const char *name)
3988 {
3989 struct klist_iter i;
3990 struct device *child;
3991
3992 if (!parent)
3993 return NULL;
3994
3995 klist_iter_init(&parent->p->klist_children, &i);
3996 while ((child = next_device(&i)))
3997 if (sysfs_streq(dev_name(child), name) && get_device(child))
3998 break;
3999 klist_iter_exit(&i);
4000 return child;
4001 }
4002 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4003
match_any(struct device * dev,void * unused)4004 static int match_any(struct device *dev, void *unused)
4005 {
4006 return 1;
4007 }
4008
4009 /**
4010 * device_find_any_child - device iterator for locating a child device, if any.
4011 * @parent: parent struct device
4012 *
4013 * This is similar to the device_find_child() function above, but it
4014 * returns a reference to a child device, if any.
4015 *
4016 * NOTE: you will need to drop the reference with put_device() after use.
4017 */
device_find_any_child(struct device * parent)4018 struct device *device_find_any_child(struct device *parent)
4019 {
4020 return device_find_child(parent, NULL, match_any);
4021 }
4022 EXPORT_SYMBOL_GPL(device_find_any_child);
4023
devices_init(void)4024 int __init devices_init(void)
4025 {
4026 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4027 if (!devices_kset)
4028 return -ENOMEM;
4029 dev_kobj = kobject_create_and_add("dev", NULL);
4030 if (!dev_kobj)
4031 goto dev_kobj_err;
4032 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4033 if (!sysfs_dev_block_kobj)
4034 goto block_kobj_err;
4035 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4036 if (!sysfs_dev_char_kobj)
4037 goto char_kobj_err;
4038
4039 return 0;
4040
4041 char_kobj_err:
4042 kobject_put(sysfs_dev_block_kobj);
4043 block_kobj_err:
4044 kobject_put(dev_kobj);
4045 dev_kobj_err:
4046 kset_unregister(devices_kset);
4047 return -ENOMEM;
4048 }
4049
device_check_offline(struct device * dev,void * not_used)4050 static int device_check_offline(struct device *dev, void *not_used)
4051 {
4052 int ret;
4053
4054 ret = device_for_each_child(dev, NULL, device_check_offline);
4055 if (ret)
4056 return ret;
4057
4058 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4059 }
4060
4061 /**
4062 * device_offline - Prepare the device for hot-removal.
4063 * @dev: Device to be put offline.
4064 *
4065 * Execute the device bus type's .offline() callback, if present, to prepare
4066 * the device for a subsequent hot-removal. If that succeeds, the device must
4067 * not be used until either it is removed or its bus type's .online() callback
4068 * is executed.
4069 *
4070 * Call under device_hotplug_lock.
4071 */
device_offline(struct device * dev)4072 int device_offline(struct device *dev)
4073 {
4074 int ret;
4075
4076 if (dev->offline_disabled)
4077 return -EPERM;
4078
4079 ret = device_for_each_child(dev, NULL, device_check_offline);
4080 if (ret)
4081 return ret;
4082
4083 device_lock(dev);
4084 if (device_supports_offline(dev)) {
4085 if (dev->offline) {
4086 ret = 1;
4087 } else {
4088 ret = dev->bus->offline(dev);
4089 if (!ret) {
4090 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4091 dev->offline = true;
4092 }
4093 }
4094 }
4095 device_unlock(dev);
4096
4097 return ret;
4098 }
4099
4100 /**
4101 * device_online - Put the device back online after successful device_offline().
4102 * @dev: Device to be put back online.
4103 *
4104 * If device_offline() has been successfully executed for @dev, but the device
4105 * has not been removed subsequently, execute its bus type's .online() callback
4106 * to indicate that the device can be used again.
4107 *
4108 * Call under device_hotplug_lock.
4109 */
device_online(struct device * dev)4110 int device_online(struct device *dev)
4111 {
4112 int ret = 0;
4113
4114 device_lock(dev);
4115 if (device_supports_offline(dev)) {
4116 if (dev->offline) {
4117 ret = dev->bus->online(dev);
4118 if (!ret) {
4119 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4120 dev->offline = false;
4121 }
4122 } else {
4123 ret = 1;
4124 }
4125 }
4126 device_unlock(dev);
4127
4128 return ret;
4129 }
4130
4131 struct root_device {
4132 struct device dev;
4133 struct module *owner;
4134 };
4135
to_root_device(struct device * d)4136 static inline struct root_device *to_root_device(struct device *d)
4137 {
4138 return container_of(d, struct root_device, dev);
4139 }
4140
root_device_release(struct device * dev)4141 static void root_device_release(struct device *dev)
4142 {
4143 kfree(to_root_device(dev));
4144 }
4145
4146 /**
4147 * __root_device_register - allocate and register a root device
4148 * @name: root device name
4149 * @owner: owner module of the root device, usually THIS_MODULE
4150 *
4151 * This function allocates a root device and registers it
4152 * using device_register(). In order to free the returned
4153 * device, use root_device_unregister().
4154 *
4155 * Root devices are dummy devices which allow other devices
4156 * to be grouped under /sys/devices. Use this function to
4157 * allocate a root device and then use it as the parent of
4158 * any device which should appear under /sys/devices/{name}
4159 *
4160 * The /sys/devices/{name} directory will also contain a
4161 * 'module' symlink which points to the @owner directory
4162 * in sysfs.
4163 *
4164 * Returns &struct device pointer on success, or ERR_PTR() on error.
4165 *
4166 * Note: You probably want to use root_device_register().
4167 */
__root_device_register(const char * name,struct module * owner)4168 struct device *__root_device_register(const char *name, struct module *owner)
4169 {
4170 struct root_device *root;
4171 int err = -ENOMEM;
4172
4173 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4174 if (!root)
4175 return ERR_PTR(err);
4176
4177 err = dev_set_name(&root->dev, "%s", name);
4178 if (err) {
4179 kfree(root);
4180 return ERR_PTR(err);
4181 }
4182
4183 root->dev.release = root_device_release;
4184
4185 err = device_register(&root->dev);
4186 if (err) {
4187 put_device(&root->dev);
4188 return ERR_PTR(err);
4189 }
4190
4191 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4192 if (owner) {
4193 struct module_kobject *mk = &owner->mkobj;
4194
4195 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4196 if (err) {
4197 device_unregister(&root->dev);
4198 return ERR_PTR(err);
4199 }
4200 root->owner = owner;
4201 }
4202 #endif
4203
4204 return &root->dev;
4205 }
4206 EXPORT_SYMBOL_GPL(__root_device_register);
4207
4208 /**
4209 * root_device_unregister - unregister and free a root device
4210 * @dev: device going away
4211 *
4212 * This function unregisters and cleans up a device that was created by
4213 * root_device_register().
4214 */
root_device_unregister(struct device * dev)4215 void root_device_unregister(struct device *dev)
4216 {
4217 struct root_device *root = to_root_device(dev);
4218
4219 if (root->owner)
4220 sysfs_remove_link(&root->dev.kobj, "module");
4221
4222 device_unregister(dev);
4223 }
4224 EXPORT_SYMBOL_GPL(root_device_unregister);
4225
4226
device_create_release(struct device * dev)4227 static void device_create_release(struct device *dev)
4228 {
4229 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4230 kfree(dev);
4231 }
4232
4233 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4234 device_create_groups_vargs(struct class *class, struct device *parent,
4235 dev_t devt, void *drvdata,
4236 const struct attribute_group **groups,
4237 const char *fmt, va_list args)
4238 {
4239 struct device *dev = NULL;
4240 int retval = -ENODEV;
4241
4242 if (IS_ERR_OR_NULL(class))
4243 goto error;
4244
4245 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4246 if (!dev) {
4247 retval = -ENOMEM;
4248 goto error;
4249 }
4250
4251 device_initialize(dev);
4252 dev->devt = devt;
4253 dev->class = class;
4254 dev->parent = parent;
4255 dev->groups = groups;
4256 dev->release = device_create_release;
4257 dev_set_drvdata(dev, drvdata);
4258
4259 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4260 if (retval)
4261 goto error;
4262
4263 retval = device_add(dev);
4264 if (retval)
4265 goto error;
4266
4267 return dev;
4268
4269 error:
4270 put_device(dev);
4271 return ERR_PTR(retval);
4272 }
4273
4274 /**
4275 * device_create - creates a device and registers it with sysfs
4276 * @class: pointer to the struct class that this device should be registered to
4277 * @parent: pointer to the parent struct device of this new device, if any
4278 * @devt: the dev_t for the char device to be added
4279 * @drvdata: the data to be added to the device for callbacks
4280 * @fmt: string for the device's name
4281 *
4282 * This function can be used by char device classes. A struct device
4283 * will be created in sysfs, registered to the specified class.
4284 *
4285 * A "dev" file will be created, showing the dev_t for the device, if
4286 * the dev_t is not 0,0.
4287 * If a pointer to a parent struct device is passed in, the newly created
4288 * struct device will be a child of that device in sysfs.
4289 * The pointer to the struct device will be returned from the call.
4290 * Any further sysfs files that might be required can be created using this
4291 * pointer.
4292 *
4293 * Returns &struct device pointer on success, or ERR_PTR() on error.
4294 *
4295 * Note: the struct class passed to this function must have previously
4296 * been created with a call to class_create().
4297 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4298 struct device *device_create(struct class *class, struct device *parent,
4299 dev_t devt, void *drvdata, const char *fmt, ...)
4300 {
4301 va_list vargs;
4302 struct device *dev;
4303
4304 va_start(vargs, fmt);
4305 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4306 fmt, vargs);
4307 va_end(vargs);
4308 return dev;
4309 }
4310 EXPORT_SYMBOL_GPL(device_create);
4311
4312 /**
4313 * device_create_with_groups - creates a device and registers it with sysfs
4314 * @class: pointer to the struct class that this device should be registered to
4315 * @parent: pointer to the parent struct device of this new device, if any
4316 * @devt: the dev_t for the char device to be added
4317 * @drvdata: the data to be added to the device for callbacks
4318 * @groups: NULL-terminated list of attribute groups to be created
4319 * @fmt: string for the device's name
4320 *
4321 * This function can be used by char device classes. A struct device
4322 * will be created in sysfs, registered to the specified class.
4323 * Additional attributes specified in the groups parameter will also
4324 * be created automatically.
4325 *
4326 * A "dev" file will be created, showing the dev_t for the device, if
4327 * the dev_t is not 0,0.
4328 * If a pointer to a parent struct device is passed in, the newly created
4329 * struct device will be a child of that device in sysfs.
4330 * The pointer to the struct device will be returned from the call.
4331 * Any further sysfs files that might be required can be created using this
4332 * pointer.
4333 *
4334 * Returns &struct device pointer on success, or ERR_PTR() on error.
4335 *
4336 * Note: the struct class passed to this function must have previously
4337 * been created with a call to class_create().
4338 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4339 struct device *device_create_with_groups(struct class *class,
4340 struct device *parent, dev_t devt,
4341 void *drvdata,
4342 const struct attribute_group **groups,
4343 const char *fmt, ...)
4344 {
4345 va_list vargs;
4346 struct device *dev;
4347
4348 va_start(vargs, fmt);
4349 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4350 fmt, vargs);
4351 va_end(vargs);
4352 return dev;
4353 }
4354 EXPORT_SYMBOL_GPL(device_create_with_groups);
4355
4356 /**
4357 * device_destroy - removes a device that was created with device_create()
4358 * @class: pointer to the struct class that this device was registered with
4359 * @devt: the dev_t of the device that was previously registered
4360 *
4361 * This call unregisters and cleans up a device that was created with a
4362 * call to device_create().
4363 */
device_destroy(struct class * class,dev_t devt)4364 void device_destroy(struct class *class, dev_t devt)
4365 {
4366 struct device *dev;
4367
4368 dev = class_find_device_by_devt(class, devt);
4369 if (dev) {
4370 put_device(dev);
4371 device_unregister(dev);
4372 }
4373 }
4374 EXPORT_SYMBOL_GPL(device_destroy);
4375
4376 /**
4377 * device_rename - renames a device
4378 * @dev: the pointer to the struct device to be renamed
4379 * @new_name: the new name of the device
4380 *
4381 * It is the responsibility of the caller to provide mutual
4382 * exclusion between two different calls of device_rename
4383 * on the same device to ensure that new_name is valid and
4384 * won't conflict with other devices.
4385 *
4386 * Note: Don't call this function. Currently, the networking layer calls this
4387 * function, but that will change. The following text from Kay Sievers offers
4388 * some insight:
4389 *
4390 * Renaming devices is racy at many levels, symlinks and other stuff are not
4391 * replaced atomically, and you get a "move" uevent, but it's not easy to
4392 * connect the event to the old and new device. Device nodes are not renamed at
4393 * all, there isn't even support for that in the kernel now.
4394 *
4395 * In the meantime, during renaming, your target name might be taken by another
4396 * driver, creating conflicts. Or the old name is taken directly after you
4397 * renamed it -- then you get events for the same DEVPATH, before you even see
4398 * the "move" event. It's just a mess, and nothing new should ever rely on
4399 * kernel device renaming. Besides that, it's not even implemented now for
4400 * other things than (driver-core wise very simple) network devices.
4401 *
4402 * We are currently about to change network renaming in udev to completely
4403 * disallow renaming of devices in the same namespace as the kernel uses,
4404 * because we can't solve the problems properly, that arise with swapping names
4405 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4406 * be allowed to some other name than eth[0-9]*, for the aforementioned
4407 * reasons.
4408 *
4409 * Make up a "real" name in the driver before you register anything, or add
4410 * some other attributes for userspace to find the device, or use udev to add
4411 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4412 * don't even want to get into that and try to implement the missing pieces in
4413 * the core. We really have other pieces to fix in the driver core mess. :)
4414 */
device_rename(struct device * dev,const char * new_name)4415 int device_rename(struct device *dev, const char *new_name)
4416 {
4417 struct kobject *kobj = &dev->kobj;
4418 char *old_device_name = NULL;
4419 int error;
4420
4421 dev = get_device(dev);
4422 if (!dev)
4423 return -EINVAL;
4424
4425 dev_dbg(dev, "renaming to %s\n", new_name);
4426
4427 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4428 if (!old_device_name) {
4429 error = -ENOMEM;
4430 goto out;
4431 }
4432
4433 if (dev->class) {
4434 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4435 kobj, old_device_name,
4436 new_name, kobject_namespace(kobj));
4437 if (error)
4438 goto out;
4439 }
4440
4441 error = kobject_rename(kobj, new_name);
4442 if (error)
4443 goto out;
4444
4445 out:
4446 put_device(dev);
4447
4448 kfree(old_device_name);
4449
4450 return error;
4451 }
4452 EXPORT_SYMBOL_GPL(device_rename);
4453
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4454 static int device_move_class_links(struct device *dev,
4455 struct device *old_parent,
4456 struct device *new_parent)
4457 {
4458 int error = 0;
4459
4460 if (old_parent)
4461 sysfs_remove_link(&dev->kobj, "device");
4462 if (new_parent)
4463 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4464 "device");
4465 return error;
4466 }
4467
4468 /**
4469 * device_move - moves a device to a new parent
4470 * @dev: the pointer to the struct device to be moved
4471 * @new_parent: the new parent of the device (can be NULL)
4472 * @dpm_order: how to reorder the dpm_list
4473 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4474 int device_move(struct device *dev, struct device *new_parent,
4475 enum dpm_order dpm_order)
4476 {
4477 int error;
4478 struct device *old_parent;
4479 struct kobject *new_parent_kobj;
4480
4481 dev = get_device(dev);
4482 if (!dev)
4483 return -EINVAL;
4484
4485 device_pm_lock();
4486 new_parent = get_device(new_parent);
4487 new_parent_kobj = get_device_parent(dev, new_parent);
4488 if (IS_ERR(new_parent_kobj)) {
4489 error = PTR_ERR(new_parent_kobj);
4490 put_device(new_parent);
4491 goto out;
4492 }
4493
4494 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4495 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4496 error = kobject_move(&dev->kobj, new_parent_kobj);
4497 if (error) {
4498 cleanup_glue_dir(dev, new_parent_kobj);
4499 put_device(new_parent);
4500 goto out;
4501 }
4502 old_parent = dev->parent;
4503 dev->parent = new_parent;
4504 if (old_parent)
4505 klist_remove(&dev->p->knode_parent);
4506 if (new_parent) {
4507 klist_add_tail(&dev->p->knode_parent,
4508 &new_parent->p->klist_children);
4509 set_dev_node(dev, dev_to_node(new_parent));
4510 }
4511
4512 if (dev->class) {
4513 error = device_move_class_links(dev, old_parent, new_parent);
4514 if (error) {
4515 /* We ignore errors on cleanup since we're hosed anyway... */
4516 device_move_class_links(dev, new_parent, old_parent);
4517 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4518 if (new_parent)
4519 klist_remove(&dev->p->knode_parent);
4520 dev->parent = old_parent;
4521 if (old_parent) {
4522 klist_add_tail(&dev->p->knode_parent,
4523 &old_parent->p->klist_children);
4524 set_dev_node(dev, dev_to_node(old_parent));
4525 }
4526 }
4527 cleanup_glue_dir(dev, new_parent_kobj);
4528 put_device(new_parent);
4529 goto out;
4530 }
4531 }
4532 switch (dpm_order) {
4533 case DPM_ORDER_NONE:
4534 break;
4535 case DPM_ORDER_DEV_AFTER_PARENT:
4536 device_pm_move_after(dev, new_parent);
4537 devices_kset_move_after(dev, new_parent);
4538 break;
4539 case DPM_ORDER_PARENT_BEFORE_DEV:
4540 device_pm_move_before(new_parent, dev);
4541 devices_kset_move_before(new_parent, dev);
4542 break;
4543 case DPM_ORDER_DEV_LAST:
4544 device_pm_move_last(dev);
4545 devices_kset_move_last(dev);
4546 break;
4547 }
4548
4549 put_device(old_parent);
4550 out:
4551 device_pm_unlock();
4552 put_device(dev);
4553 return error;
4554 }
4555 EXPORT_SYMBOL_GPL(device_move);
4556
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4557 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4558 kgid_t kgid)
4559 {
4560 struct kobject *kobj = &dev->kobj;
4561 struct class *class = dev->class;
4562 const struct device_type *type = dev->type;
4563 int error;
4564
4565 if (class) {
4566 /*
4567 * Change the device groups of the device class for @dev to
4568 * @kuid/@kgid.
4569 */
4570 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4571 kgid);
4572 if (error)
4573 return error;
4574 }
4575
4576 if (type) {
4577 /*
4578 * Change the device groups of the device type for @dev to
4579 * @kuid/@kgid.
4580 */
4581 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4582 kgid);
4583 if (error)
4584 return error;
4585 }
4586
4587 /* Change the device groups of @dev to @kuid/@kgid. */
4588 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4589 if (error)
4590 return error;
4591
4592 if (device_supports_offline(dev) && !dev->offline_disabled) {
4593 /* Change online device attributes of @dev to @kuid/@kgid. */
4594 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4595 kuid, kgid);
4596 if (error)
4597 return error;
4598 }
4599
4600 return 0;
4601 }
4602
4603 /**
4604 * device_change_owner - change the owner of an existing device.
4605 * @dev: device.
4606 * @kuid: new owner's kuid
4607 * @kgid: new owner's kgid
4608 *
4609 * This changes the owner of @dev and its corresponding sysfs entries to
4610 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4611 * core.
4612 *
4613 * Returns 0 on success or error code on failure.
4614 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4615 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4616 {
4617 int error;
4618 struct kobject *kobj = &dev->kobj;
4619
4620 dev = get_device(dev);
4621 if (!dev)
4622 return -EINVAL;
4623
4624 /*
4625 * Change the kobject and the default attributes and groups of the
4626 * ktype associated with it to @kuid/@kgid.
4627 */
4628 error = sysfs_change_owner(kobj, kuid, kgid);
4629 if (error)
4630 goto out;
4631
4632 /*
4633 * Change the uevent file for @dev to the new owner. The uevent file
4634 * was created in a separate step when @dev got added and we mirror
4635 * that step here.
4636 */
4637 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4638 kgid);
4639 if (error)
4640 goto out;
4641
4642 /*
4643 * Change the device groups, the device groups associated with the
4644 * device class, and the groups associated with the device type of @dev
4645 * to @kuid/@kgid.
4646 */
4647 error = device_attrs_change_owner(dev, kuid, kgid);
4648 if (error)
4649 goto out;
4650
4651 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4652 if (error)
4653 goto out;
4654
4655 #ifdef CONFIG_BLOCK
4656 if (sysfs_deprecated && dev->class == &block_class)
4657 goto out;
4658 #endif
4659
4660 /*
4661 * Change the owner of the symlink located in the class directory of
4662 * the device class associated with @dev which points to the actual
4663 * directory entry for @dev to @kuid/@kgid. This ensures that the
4664 * symlink shows the same permissions as its target.
4665 */
4666 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4667 dev_name(dev), kuid, kgid);
4668 if (error)
4669 goto out;
4670
4671 out:
4672 put_device(dev);
4673 return error;
4674 }
4675 EXPORT_SYMBOL_GPL(device_change_owner);
4676
4677 /**
4678 * device_shutdown - call ->shutdown() on each device to shutdown.
4679 */
device_shutdown(void)4680 void device_shutdown(void)
4681 {
4682 struct device *dev, *parent;
4683
4684 wait_for_device_probe();
4685 device_block_probing();
4686
4687 cpufreq_suspend();
4688
4689 spin_lock(&devices_kset->list_lock);
4690 /*
4691 * Walk the devices list backward, shutting down each in turn.
4692 * Beware that device unplug events may also start pulling
4693 * devices offline, even as the system is shutting down.
4694 */
4695 while (!list_empty(&devices_kset->list)) {
4696 dev = list_entry(devices_kset->list.prev, struct device,
4697 kobj.entry);
4698
4699 /*
4700 * hold reference count of device's parent to
4701 * prevent it from being freed because parent's
4702 * lock is to be held
4703 */
4704 parent = get_device(dev->parent);
4705 get_device(dev);
4706 /*
4707 * Make sure the device is off the kset list, in the
4708 * event that dev->*->shutdown() doesn't remove it.
4709 */
4710 list_del_init(&dev->kobj.entry);
4711 spin_unlock(&devices_kset->list_lock);
4712
4713 /* hold lock to avoid race with probe/release */
4714 if (parent)
4715 device_lock(parent);
4716 device_lock(dev);
4717
4718 /* Don't allow any more runtime suspends */
4719 pm_runtime_get_noresume(dev);
4720 pm_runtime_barrier(dev);
4721
4722 if (dev->class && dev->class->shutdown_pre) {
4723 if (initcall_debug)
4724 dev_info(dev, "shutdown_pre\n");
4725 dev->class->shutdown_pre(dev);
4726 }
4727 if (dev->bus && dev->bus->shutdown) {
4728 if (initcall_debug)
4729 dev_info(dev, "shutdown\n");
4730 dev->bus->shutdown(dev);
4731 } else if (dev->driver && dev->driver->shutdown) {
4732 if (initcall_debug)
4733 dev_info(dev, "shutdown\n");
4734 dev->driver->shutdown(dev);
4735 }
4736
4737 device_unlock(dev);
4738 if (parent)
4739 device_unlock(parent);
4740
4741 put_device(dev);
4742 put_device(parent);
4743
4744 spin_lock(&devices_kset->list_lock);
4745 }
4746 spin_unlock(&devices_kset->list_lock);
4747 }
4748
4749 /*
4750 * Device logging functions
4751 */
4752
4753 #ifdef CONFIG_PRINTK
4754 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4755 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4756 {
4757 const char *subsys;
4758
4759 memset(dev_info, 0, sizeof(*dev_info));
4760
4761 if (dev->class)
4762 subsys = dev->class->name;
4763 else if (dev->bus)
4764 subsys = dev->bus->name;
4765 else
4766 return;
4767
4768 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4769
4770 /*
4771 * Add device identifier DEVICE=:
4772 * b12:8 block dev_t
4773 * c127:3 char dev_t
4774 * n8 netdev ifindex
4775 * +sound:card0 subsystem:devname
4776 */
4777 if (MAJOR(dev->devt)) {
4778 char c;
4779
4780 if (strcmp(subsys, "block") == 0)
4781 c = 'b';
4782 else
4783 c = 'c';
4784
4785 snprintf(dev_info->device, sizeof(dev_info->device),
4786 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4787 } else if (strcmp(subsys, "net") == 0) {
4788 struct net_device *net = to_net_dev(dev);
4789
4790 snprintf(dev_info->device, sizeof(dev_info->device),
4791 "n%u", net->ifindex);
4792 } else {
4793 snprintf(dev_info->device, sizeof(dev_info->device),
4794 "+%s:%s", subsys, dev_name(dev));
4795 }
4796 }
4797
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4798 int dev_vprintk_emit(int level, const struct device *dev,
4799 const char *fmt, va_list args)
4800 {
4801 struct dev_printk_info dev_info;
4802
4803 set_dev_info(dev, &dev_info);
4804
4805 return vprintk_emit(0, level, &dev_info, fmt, args);
4806 }
4807 EXPORT_SYMBOL(dev_vprintk_emit);
4808
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4809 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4810 {
4811 va_list args;
4812 int r;
4813
4814 va_start(args, fmt);
4815
4816 r = dev_vprintk_emit(level, dev, fmt, args);
4817
4818 va_end(args);
4819
4820 return r;
4821 }
4822 EXPORT_SYMBOL(dev_printk_emit);
4823
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4824 static void __dev_printk(const char *level, const struct device *dev,
4825 struct va_format *vaf)
4826 {
4827 if (dev)
4828 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4829 dev_driver_string(dev), dev_name(dev), vaf);
4830 else
4831 printk("%s(NULL device *): %pV", level, vaf);
4832 }
4833
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4834 void _dev_printk(const char *level, const struct device *dev,
4835 const char *fmt, ...)
4836 {
4837 struct va_format vaf;
4838 va_list args;
4839
4840 va_start(args, fmt);
4841
4842 vaf.fmt = fmt;
4843 vaf.va = &args;
4844
4845 __dev_printk(level, dev, &vaf);
4846
4847 va_end(args);
4848 }
4849 EXPORT_SYMBOL(_dev_printk);
4850
4851 #define define_dev_printk_level(func, kern_level) \
4852 void func(const struct device *dev, const char *fmt, ...) \
4853 { \
4854 struct va_format vaf; \
4855 va_list args; \
4856 \
4857 va_start(args, fmt); \
4858 \
4859 vaf.fmt = fmt; \
4860 vaf.va = &args; \
4861 \
4862 __dev_printk(kern_level, dev, &vaf); \
4863 \
4864 va_end(args); \
4865 } \
4866 EXPORT_SYMBOL(func);
4867
4868 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4869 define_dev_printk_level(_dev_alert, KERN_ALERT);
4870 define_dev_printk_level(_dev_crit, KERN_CRIT);
4871 define_dev_printk_level(_dev_err, KERN_ERR);
4872 define_dev_printk_level(_dev_warn, KERN_WARNING);
4873 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4874 define_dev_printk_level(_dev_info, KERN_INFO);
4875
4876 #endif
4877
4878 /**
4879 * dev_err_probe - probe error check and log helper
4880 * @dev: the pointer to the struct device
4881 * @err: error value to test
4882 * @fmt: printf-style format string
4883 * @...: arguments as specified in the format string
4884 *
4885 * This helper implements common pattern present in probe functions for error
4886 * checking: print debug or error message depending if the error value is
4887 * -EPROBE_DEFER and propagate error upwards.
4888 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4889 * checked later by reading devices_deferred debugfs attribute.
4890 * It replaces code sequence::
4891 *
4892 * if (err != -EPROBE_DEFER)
4893 * dev_err(dev, ...);
4894 * else
4895 * dev_dbg(dev, ...);
4896 * return err;
4897 *
4898 * with::
4899 *
4900 * return dev_err_probe(dev, err, ...);
4901 *
4902 * Note that it is deemed acceptable to use this function for error
4903 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4904 * The benefit compared to a normal dev_err() is the standardized format
4905 * of the error code and the fact that the error code is returned.
4906 *
4907 * Returns @err.
4908 *
4909 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4910 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4911 {
4912 struct va_format vaf;
4913 va_list args;
4914
4915 va_start(args, fmt);
4916 vaf.fmt = fmt;
4917 vaf.va = &args;
4918
4919 if (err != -EPROBE_DEFER) {
4920 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4921 } else {
4922 device_set_deferred_probe_reason(dev, &vaf);
4923 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4924 }
4925
4926 va_end(args);
4927
4928 return err;
4929 }
4930 EXPORT_SYMBOL_GPL(dev_err_probe);
4931
fwnode_is_primary(struct fwnode_handle * fwnode)4932 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4933 {
4934 return fwnode && !IS_ERR(fwnode->secondary);
4935 }
4936
4937 /**
4938 * set_primary_fwnode - Change the primary firmware node of a given device.
4939 * @dev: Device to handle.
4940 * @fwnode: New primary firmware node of the device.
4941 *
4942 * Set the device's firmware node pointer to @fwnode, but if a secondary
4943 * firmware node of the device is present, preserve it.
4944 *
4945 * Valid fwnode cases are:
4946 * - primary --> secondary --> -ENODEV
4947 * - primary --> NULL
4948 * - secondary --> -ENODEV
4949 * - NULL
4950 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4951 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4952 {
4953 struct device *parent = dev->parent;
4954 struct fwnode_handle *fn = dev->fwnode;
4955
4956 if (fwnode) {
4957 if (fwnode_is_primary(fn))
4958 fn = fn->secondary;
4959
4960 if (fn) {
4961 WARN_ON(fwnode->secondary);
4962 fwnode->secondary = fn;
4963 }
4964 dev->fwnode = fwnode;
4965 } else {
4966 if (fwnode_is_primary(fn)) {
4967 dev->fwnode = fn->secondary;
4968 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4969 if (!(parent && fn == parent->fwnode))
4970 fn->secondary = NULL;
4971 } else {
4972 dev->fwnode = NULL;
4973 }
4974 }
4975 }
4976 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4977
4978 /**
4979 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4980 * @dev: Device to handle.
4981 * @fwnode: New secondary firmware node of the device.
4982 *
4983 * If a primary firmware node of the device is present, set its secondary
4984 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4985 * @fwnode.
4986 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4987 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4988 {
4989 if (fwnode)
4990 fwnode->secondary = ERR_PTR(-ENODEV);
4991
4992 if (fwnode_is_primary(dev->fwnode))
4993 dev->fwnode->secondary = fwnode;
4994 else
4995 dev->fwnode = fwnode;
4996 }
4997 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4998
4999 /**
5000 * device_set_of_node_from_dev - reuse device-tree node of another device
5001 * @dev: device whose device-tree node is being set
5002 * @dev2: device whose device-tree node is being reused
5003 *
5004 * Takes another reference to the new device-tree node after first dropping
5005 * any reference held to the old node.
5006 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5007 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5008 {
5009 of_node_put(dev->of_node);
5010 dev->of_node = of_node_get(dev2->of_node);
5011 dev->of_node_reused = true;
5012 }
5013 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5014
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5015 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5016 {
5017 dev->fwnode = fwnode;
5018 dev->of_node = to_of_node(fwnode);
5019 }
5020 EXPORT_SYMBOL_GPL(device_set_node);
5021
device_match_name(struct device * dev,const void * name)5022 int device_match_name(struct device *dev, const void *name)
5023 {
5024 return sysfs_streq(dev_name(dev), name);
5025 }
5026 EXPORT_SYMBOL_GPL(device_match_name);
5027
device_match_of_node(struct device * dev,const void * np)5028 int device_match_of_node(struct device *dev, const void *np)
5029 {
5030 return dev->of_node == np;
5031 }
5032 EXPORT_SYMBOL_GPL(device_match_of_node);
5033
device_match_fwnode(struct device * dev,const void * fwnode)5034 int device_match_fwnode(struct device *dev, const void *fwnode)
5035 {
5036 return dev_fwnode(dev) == fwnode;
5037 }
5038 EXPORT_SYMBOL_GPL(device_match_fwnode);
5039
device_match_devt(struct device * dev,const void * pdevt)5040 int device_match_devt(struct device *dev, const void *pdevt)
5041 {
5042 return dev->devt == *(dev_t *)pdevt;
5043 }
5044 EXPORT_SYMBOL_GPL(device_match_devt);
5045
device_match_acpi_dev(struct device * dev,const void * adev)5046 int device_match_acpi_dev(struct device *dev, const void *adev)
5047 {
5048 return ACPI_COMPANION(dev) == adev;
5049 }
5050 EXPORT_SYMBOL(device_match_acpi_dev);
5051
device_match_acpi_handle(struct device * dev,const void * handle)5052 int device_match_acpi_handle(struct device *dev, const void *handle)
5053 {
5054 return ACPI_HANDLE(dev) == handle;
5055 }
5056 EXPORT_SYMBOL(device_match_acpi_handle);
5057
device_match_any(struct device * dev,const void * unused)5058 int device_match_any(struct device *dev, const void *unused)
5059 {
5060 return 1;
5061 }
5062 EXPORT_SYMBOL_GPL(device_match_any);
5063