1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
39
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42
43 /*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49 static DEFINE_MUTEX(input_mutex);
50
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53 static const unsigned int input_max_code[EV_CNT] = {
54 [EV_KEY] = KEY_MAX,
55 [EV_REL] = REL_MAX,
56 [EV_ABS] = ABS_MAX,
57 [EV_MSC] = MSC_MAX,
58 [EV_SW] = SW_MAX,
59 [EV_LED] = LED_MAX,
60 [EV_SND] = SND_MAX,
61 [EV_FF] = FF_MAX,
62 };
63
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)64 static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
66 {
67 return code <= max && test_bit(code, bm);
68 }
69
input_defuzz_abs_event(int value,int old_val,int fuzz)70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 if (fuzz) {
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 return old_val;
75
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
78
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
81 }
82
83 return value;
84 }
85
input_start_autorepeat(struct input_dev * dev,int code)86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 }
95 }
96
input_stop_autorepeat(struct input_dev * dev)97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 del_timer(&dev->timer);
100 }
101
102 /*
103 * Pass event first through all filters and then, if event has not been
104 * filtered out, through all open handles. This function is called with
105 * dev->event_lock held and interrupts disabled.
106 */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)107 static unsigned int input_to_handler(struct input_handle *handle,
108 struct input_value *vals, unsigned int count)
109 {
110 struct input_handler *handler = handle->handler;
111 struct input_value *end = vals;
112 struct input_value *v;
113
114 if (handler->filter) {
115 for (v = vals; v != vals + count; v++) {
116 if (handler->filter(handle, v->type, v->code, v->value))
117 continue;
118 if (end != v)
119 *end = *v;
120 end++;
121 }
122 count = end - vals;
123 }
124
125 if (!count)
126 return 0;
127
128 if (handler->events)
129 handler->events(handle, vals, count);
130 else if (handler->event)
131 for (v = vals; v != vals + count; v++)
132 handler->event(handle, v->type, v->code, v->value);
133
134 return count;
135 }
136
137 /*
138 * Pass values first through all filters and then, if event has not been
139 * filtered out, through all open handles. This function is called with
140 * dev->event_lock held and interrupts disabled.
141 */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)142 static void input_pass_values(struct input_dev *dev,
143 struct input_value *vals, unsigned int count)
144 {
145 struct input_handle *handle;
146 struct input_value *v;
147
148 lockdep_assert_held(&dev->event_lock);
149
150 if (!count)
151 return;
152
153 rcu_read_lock();
154
155 handle = rcu_dereference(dev->grab);
156 if (handle) {
157 count = input_to_handler(handle, vals, count);
158 } else {
159 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
160 if (handle->open) {
161 count = input_to_handler(handle, vals, count);
162 if (!count)
163 break;
164 }
165 }
166
167 rcu_read_unlock();
168
169 /* trigger auto repeat for key events */
170 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
171 for (v = vals; v != vals + count; v++) {
172 if (v->type == EV_KEY && v->value != 2) {
173 if (v->value)
174 input_start_autorepeat(dev, v->code);
175 else
176 input_stop_autorepeat(dev);
177 }
178 }
179 }
180 }
181
182 #define INPUT_IGNORE_EVENT 0
183 #define INPUT_PASS_TO_HANDLERS 1
184 #define INPUT_PASS_TO_DEVICE 2
185 #define INPUT_SLOT 4
186 #define INPUT_FLUSH 8
187 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
188
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)189 static int input_handle_abs_event(struct input_dev *dev,
190 unsigned int code, int *pval)
191 {
192 struct input_mt *mt = dev->mt;
193 bool is_mt_event;
194 int *pold;
195
196 if (code == ABS_MT_SLOT) {
197 /*
198 * "Stage" the event; we'll flush it later, when we
199 * get actual touch data.
200 */
201 if (mt && *pval >= 0 && *pval < mt->num_slots)
202 mt->slot = *pval;
203
204 return INPUT_IGNORE_EVENT;
205 }
206
207 is_mt_event = input_is_mt_value(code);
208
209 if (!is_mt_event) {
210 pold = &dev->absinfo[code].value;
211 } else if (mt) {
212 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
213 } else {
214 /*
215 * Bypass filtering for multi-touch events when
216 * not employing slots.
217 */
218 pold = NULL;
219 }
220
221 if (pold) {
222 *pval = input_defuzz_abs_event(*pval, *pold,
223 dev->absinfo[code].fuzz);
224 if (*pold == *pval)
225 return INPUT_IGNORE_EVENT;
226
227 *pold = *pval;
228 }
229
230 /* Flush pending "slot" event */
231 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
232 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
233 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
234 }
235
236 return INPUT_PASS_TO_HANDLERS;
237 }
238
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)239 static int input_get_disposition(struct input_dev *dev,
240 unsigned int type, unsigned int code, int *pval)
241 {
242 int disposition = INPUT_IGNORE_EVENT;
243 int value = *pval;
244
245 /* filter-out events from inhibited devices */
246 if (dev->inhibited)
247 return INPUT_IGNORE_EVENT;
248
249 switch (type) {
250
251 case EV_SYN:
252 switch (code) {
253 case SYN_CONFIG:
254 disposition = INPUT_PASS_TO_ALL;
255 break;
256
257 case SYN_REPORT:
258 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
259 break;
260 case SYN_MT_REPORT:
261 disposition = INPUT_PASS_TO_HANDLERS;
262 break;
263 }
264 break;
265
266 case EV_KEY:
267 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
268
269 /* auto-repeat bypasses state updates */
270 if (value == 2) {
271 disposition = INPUT_PASS_TO_HANDLERS;
272 break;
273 }
274
275 if (!!test_bit(code, dev->key) != !!value) {
276
277 __change_bit(code, dev->key);
278 disposition = INPUT_PASS_TO_HANDLERS;
279 }
280 }
281 break;
282
283 case EV_SW:
284 if (is_event_supported(code, dev->swbit, SW_MAX) &&
285 !!test_bit(code, dev->sw) != !!value) {
286
287 __change_bit(code, dev->sw);
288 disposition = INPUT_PASS_TO_HANDLERS;
289 }
290 break;
291
292 case EV_ABS:
293 if (is_event_supported(code, dev->absbit, ABS_MAX))
294 disposition = input_handle_abs_event(dev, code, &value);
295
296 break;
297
298 case EV_REL:
299 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
300 disposition = INPUT_PASS_TO_HANDLERS;
301
302 break;
303
304 case EV_MSC:
305 if (is_event_supported(code, dev->mscbit, MSC_MAX))
306 disposition = INPUT_PASS_TO_ALL;
307
308 break;
309
310 case EV_LED:
311 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
312 !!test_bit(code, dev->led) != !!value) {
313
314 __change_bit(code, dev->led);
315 disposition = INPUT_PASS_TO_ALL;
316 }
317 break;
318
319 case EV_SND:
320 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
321
322 if (!!test_bit(code, dev->snd) != !!value)
323 __change_bit(code, dev->snd);
324 disposition = INPUT_PASS_TO_ALL;
325 }
326 break;
327
328 case EV_REP:
329 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
330 dev->rep[code] = value;
331 disposition = INPUT_PASS_TO_ALL;
332 }
333 break;
334
335 case EV_FF:
336 if (value >= 0)
337 disposition = INPUT_PASS_TO_ALL;
338 break;
339
340 case EV_PWR:
341 disposition = INPUT_PASS_TO_ALL;
342 break;
343 }
344
345 *pval = value;
346 return disposition;
347 }
348
input_event_dispose(struct input_dev * dev,int disposition,unsigned int type,unsigned int code,int value)349 static void input_event_dispose(struct input_dev *dev, int disposition,
350 unsigned int type, unsigned int code, int value)
351 {
352 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
353 dev->event(dev, type, code, value);
354
355 if (!dev->vals)
356 return;
357
358 if (disposition & INPUT_PASS_TO_HANDLERS) {
359 struct input_value *v;
360
361 if (disposition & INPUT_SLOT) {
362 v = &dev->vals[dev->num_vals++];
363 v->type = EV_ABS;
364 v->code = ABS_MT_SLOT;
365 v->value = dev->mt->slot;
366 }
367
368 v = &dev->vals[dev->num_vals++];
369 v->type = type;
370 v->code = code;
371 v->value = value;
372 }
373
374 if (disposition & INPUT_FLUSH) {
375 if (dev->num_vals >= 2)
376 input_pass_values(dev, dev->vals, dev->num_vals);
377 dev->num_vals = 0;
378 /*
379 * Reset the timestamp on flush so we won't end up
380 * with a stale one. Note we only need to reset the
381 * monolithic one as we use its presence when deciding
382 * whether to generate a synthetic timestamp.
383 */
384 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
385 } else if (dev->num_vals >= dev->max_vals - 2) {
386 dev->vals[dev->num_vals++] = input_value_sync;
387 input_pass_values(dev, dev->vals, dev->num_vals);
388 dev->num_vals = 0;
389 }
390 }
391
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)392 void input_handle_event(struct input_dev *dev,
393 unsigned int type, unsigned int code, int value)
394 {
395 int disposition;
396
397 lockdep_assert_held(&dev->event_lock);
398
399 disposition = input_get_disposition(dev, type, code, &value);
400 if (disposition != INPUT_IGNORE_EVENT) {
401 if (type != EV_SYN)
402 add_input_randomness(type, code, value);
403
404 input_event_dispose(dev, disposition, type, code, value);
405 }
406 }
407
408 /**
409 * input_event() - report new input event
410 * @dev: device that generated the event
411 * @type: type of the event
412 * @code: event code
413 * @value: value of the event
414 *
415 * This function should be used by drivers implementing various input
416 * devices to report input events. See also input_inject_event().
417 *
418 * NOTE: input_event() may be safely used right after input device was
419 * allocated with input_allocate_device(), even before it is registered
420 * with input_register_device(), but the event will not reach any of the
421 * input handlers. Such early invocation of input_event() may be used
422 * to 'seed' initial state of a switch or initial position of absolute
423 * axis, etc.
424 */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)425 void input_event(struct input_dev *dev,
426 unsigned int type, unsigned int code, int value)
427 {
428 unsigned long flags;
429
430 if (is_event_supported(type, dev->evbit, EV_MAX)) {
431
432 spin_lock_irqsave(&dev->event_lock, flags);
433 input_handle_event(dev, type, code, value);
434 spin_unlock_irqrestore(&dev->event_lock, flags);
435 }
436 }
437 EXPORT_SYMBOL(input_event);
438
439 /**
440 * input_inject_event() - send input event from input handler
441 * @handle: input handle to send event through
442 * @type: type of the event
443 * @code: event code
444 * @value: value of the event
445 *
446 * Similar to input_event() but will ignore event if device is
447 * "grabbed" and handle injecting event is not the one that owns
448 * the device.
449 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)450 void input_inject_event(struct input_handle *handle,
451 unsigned int type, unsigned int code, int value)
452 {
453 struct input_dev *dev = handle->dev;
454 struct input_handle *grab;
455 unsigned long flags;
456
457 if (is_event_supported(type, dev->evbit, EV_MAX)) {
458 spin_lock_irqsave(&dev->event_lock, flags);
459
460 rcu_read_lock();
461 grab = rcu_dereference(dev->grab);
462 if (!grab || grab == handle)
463 input_handle_event(dev, type, code, value);
464 rcu_read_unlock();
465
466 spin_unlock_irqrestore(&dev->event_lock, flags);
467 }
468 }
469 EXPORT_SYMBOL(input_inject_event);
470
471 /**
472 * input_alloc_absinfo - allocates array of input_absinfo structs
473 * @dev: the input device emitting absolute events
474 *
475 * If the absinfo struct the caller asked for is already allocated, this
476 * functions will not do anything.
477 */
input_alloc_absinfo(struct input_dev * dev)478 void input_alloc_absinfo(struct input_dev *dev)
479 {
480 if (dev->absinfo)
481 return;
482
483 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
484 if (!dev->absinfo) {
485 dev_err(dev->dev.parent ?: &dev->dev,
486 "%s: unable to allocate memory\n", __func__);
487 /*
488 * We will handle this allocation failure in
489 * input_register_device() when we refuse to register input
490 * device with ABS bits but without absinfo.
491 */
492 }
493 }
494 EXPORT_SYMBOL(input_alloc_absinfo);
495
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)496 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
497 int min, int max, int fuzz, int flat)
498 {
499 struct input_absinfo *absinfo;
500
501 __set_bit(EV_ABS, dev->evbit);
502 __set_bit(axis, dev->absbit);
503
504 input_alloc_absinfo(dev);
505 if (!dev->absinfo)
506 return;
507
508 absinfo = &dev->absinfo[axis];
509 absinfo->minimum = min;
510 absinfo->maximum = max;
511 absinfo->fuzz = fuzz;
512 absinfo->flat = flat;
513 }
514 EXPORT_SYMBOL(input_set_abs_params);
515
516 /**
517 * input_copy_abs - Copy absinfo from one input_dev to another
518 * @dst: Destination input device to copy the abs settings to
519 * @dst_axis: ABS_* value selecting the destination axis
520 * @src: Source input device to copy the abs settings from
521 * @src_axis: ABS_* value selecting the source axis
522 *
523 * Set absinfo for the selected destination axis by copying it from
524 * the specified source input device's source axis.
525 * This is useful to e.g. setup a pen/stylus input-device for combined
526 * touchscreen/pen hardware where the pen uses the same coordinates as
527 * the touchscreen.
528 */
input_copy_abs(struct input_dev * dst,unsigned int dst_axis,const struct input_dev * src,unsigned int src_axis)529 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
530 const struct input_dev *src, unsigned int src_axis)
531 {
532 /* src must have EV_ABS and src_axis set */
533 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
534 test_bit(src_axis, src->absbit))))
535 return;
536
537 /*
538 * input_alloc_absinfo() may have failed for the source. Our caller is
539 * expected to catch this when registering the input devices, which may
540 * happen after the input_copy_abs() call.
541 */
542 if (!src->absinfo)
543 return;
544
545 input_set_capability(dst, EV_ABS, dst_axis);
546 if (!dst->absinfo)
547 return;
548
549 dst->absinfo[dst_axis] = src->absinfo[src_axis];
550 }
551 EXPORT_SYMBOL(input_copy_abs);
552
553 /**
554 * input_grab_device - grabs device for exclusive use
555 * @handle: input handle that wants to own the device
556 *
557 * When a device is grabbed by an input handle all events generated by
558 * the device are delivered only to this handle. Also events injected
559 * by other input handles are ignored while device is grabbed.
560 */
input_grab_device(struct input_handle * handle)561 int input_grab_device(struct input_handle *handle)
562 {
563 struct input_dev *dev = handle->dev;
564 int retval;
565
566 retval = mutex_lock_interruptible(&dev->mutex);
567 if (retval)
568 return retval;
569
570 if (dev->grab) {
571 retval = -EBUSY;
572 goto out;
573 }
574
575 rcu_assign_pointer(dev->grab, handle);
576
577 out:
578 mutex_unlock(&dev->mutex);
579 return retval;
580 }
581 EXPORT_SYMBOL(input_grab_device);
582
__input_release_device(struct input_handle * handle)583 static void __input_release_device(struct input_handle *handle)
584 {
585 struct input_dev *dev = handle->dev;
586 struct input_handle *grabber;
587
588 grabber = rcu_dereference_protected(dev->grab,
589 lockdep_is_held(&dev->mutex));
590 if (grabber == handle) {
591 rcu_assign_pointer(dev->grab, NULL);
592 /* Make sure input_pass_values() notices that grab is gone */
593 synchronize_rcu();
594
595 list_for_each_entry(handle, &dev->h_list, d_node)
596 if (handle->open && handle->handler->start)
597 handle->handler->start(handle);
598 }
599 }
600
601 /**
602 * input_release_device - release previously grabbed device
603 * @handle: input handle that owns the device
604 *
605 * Releases previously grabbed device so that other input handles can
606 * start receiving input events. Upon release all handlers attached
607 * to the device have their start() method called so they have a change
608 * to synchronize device state with the rest of the system.
609 */
input_release_device(struct input_handle * handle)610 void input_release_device(struct input_handle *handle)
611 {
612 struct input_dev *dev = handle->dev;
613
614 mutex_lock(&dev->mutex);
615 __input_release_device(handle);
616 mutex_unlock(&dev->mutex);
617 }
618 EXPORT_SYMBOL(input_release_device);
619
620 /**
621 * input_open_device - open input device
622 * @handle: handle through which device is being accessed
623 *
624 * This function should be called by input handlers when they
625 * want to start receive events from given input device.
626 */
input_open_device(struct input_handle * handle)627 int input_open_device(struct input_handle *handle)
628 {
629 struct input_dev *dev = handle->dev;
630 int retval;
631
632 retval = mutex_lock_interruptible(&dev->mutex);
633 if (retval)
634 return retval;
635
636 if (dev->going_away) {
637 retval = -ENODEV;
638 goto out;
639 }
640
641 handle->open++;
642
643 if (dev->users++ || dev->inhibited) {
644 /*
645 * Device is already opened and/or inhibited,
646 * so we can exit immediately and report success.
647 */
648 goto out;
649 }
650
651 if (dev->open) {
652 retval = dev->open(dev);
653 if (retval) {
654 dev->users--;
655 handle->open--;
656 /*
657 * Make sure we are not delivering any more events
658 * through this handle
659 */
660 synchronize_rcu();
661 goto out;
662 }
663 }
664
665 if (dev->poller)
666 input_dev_poller_start(dev->poller);
667
668 out:
669 mutex_unlock(&dev->mutex);
670 return retval;
671 }
672 EXPORT_SYMBOL(input_open_device);
673
input_flush_device(struct input_handle * handle,struct file * file)674 int input_flush_device(struct input_handle *handle, struct file *file)
675 {
676 struct input_dev *dev = handle->dev;
677 int retval;
678
679 retval = mutex_lock_interruptible(&dev->mutex);
680 if (retval)
681 return retval;
682
683 if (dev->flush)
684 retval = dev->flush(dev, file);
685
686 mutex_unlock(&dev->mutex);
687 return retval;
688 }
689 EXPORT_SYMBOL(input_flush_device);
690
691 /**
692 * input_close_device - close input device
693 * @handle: handle through which device is being accessed
694 *
695 * This function should be called by input handlers when they
696 * want to stop receive events from given input device.
697 */
input_close_device(struct input_handle * handle)698 void input_close_device(struct input_handle *handle)
699 {
700 struct input_dev *dev = handle->dev;
701
702 mutex_lock(&dev->mutex);
703
704 __input_release_device(handle);
705
706 if (!dev->inhibited && !--dev->users) {
707 if (dev->poller)
708 input_dev_poller_stop(dev->poller);
709 if (dev->close)
710 dev->close(dev);
711 }
712
713 if (!--handle->open) {
714 /*
715 * synchronize_rcu() makes sure that input_pass_values()
716 * completed and that no more input events are delivered
717 * through this handle
718 */
719 synchronize_rcu();
720 }
721
722 mutex_unlock(&dev->mutex);
723 }
724 EXPORT_SYMBOL(input_close_device);
725
726 /*
727 * Simulate keyup events for all keys that are marked as pressed.
728 * The function must be called with dev->event_lock held.
729 */
input_dev_release_keys(struct input_dev * dev)730 static bool input_dev_release_keys(struct input_dev *dev)
731 {
732 bool need_sync = false;
733 int code;
734
735 lockdep_assert_held(&dev->event_lock);
736
737 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
738 for_each_set_bit(code, dev->key, KEY_CNT) {
739 input_handle_event(dev, EV_KEY, code, 0);
740 need_sync = true;
741 }
742 }
743
744 return need_sync;
745 }
746
747 /*
748 * Prepare device for unregistering
749 */
input_disconnect_device(struct input_dev * dev)750 static void input_disconnect_device(struct input_dev *dev)
751 {
752 struct input_handle *handle;
753
754 /*
755 * Mark device as going away. Note that we take dev->mutex here
756 * not to protect access to dev->going_away but rather to ensure
757 * that there are no threads in the middle of input_open_device()
758 */
759 mutex_lock(&dev->mutex);
760 dev->going_away = true;
761 mutex_unlock(&dev->mutex);
762
763 spin_lock_irq(&dev->event_lock);
764
765 /*
766 * Simulate keyup events for all pressed keys so that handlers
767 * are not left with "stuck" keys. The driver may continue
768 * generate events even after we done here but they will not
769 * reach any handlers.
770 */
771 if (input_dev_release_keys(dev))
772 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
773
774 list_for_each_entry(handle, &dev->h_list, d_node)
775 handle->open = 0;
776
777 spin_unlock_irq(&dev->event_lock);
778 }
779
780 /**
781 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
782 * @ke: keymap entry containing scancode to be converted.
783 * @scancode: pointer to the location where converted scancode should
784 * be stored.
785 *
786 * This function is used to convert scancode stored in &struct keymap_entry
787 * into scalar form understood by legacy keymap handling methods. These
788 * methods expect scancodes to be represented as 'unsigned int'.
789 */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)790 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
791 unsigned int *scancode)
792 {
793 switch (ke->len) {
794 case 1:
795 *scancode = *((u8 *)ke->scancode);
796 break;
797
798 case 2:
799 *scancode = *((u16 *)ke->scancode);
800 break;
801
802 case 4:
803 *scancode = *((u32 *)ke->scancode);
804 break;
805
806 default:
807 return -EINVAL;
808 }
809
810 return 0;
811 }
812 EXPORT_SYMBOL(input_scancode_to_scalar);
813
814 /*
815 * Those routines handle the default case where no [gs]etkeycode() is
816 * defined. In this case, an array indexed by the scancode is used.
817 */
818
input_fetch_keycode(struct input_dev * dev,unsigned int index)819 static unsigned int input_fetch_keycode(struct input_dev *dev,
820 unsigned int index)
821 {
822 switch (dev->keycodesize) {
823 case 1:
824 return ((u8 *)dev->keycode)[index];
825
826 case 2:
827 return ((u16 *)dev->keycode)[index];
828
829 default:
830 return ((u32 *)dev->keycode)[index];
831 }
832 }
833
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)834 static int input_default_getkeycode(struct input_dev *dev,
835 struct input_keymap_entry *ke)
836 {
837 unsigned int index;
838 int error;
839
840 if (!dev->keycodesize)
841 return -EINVAL;
842
843 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
844 index = ke->index;
845 else {
846 error = input_scancode_to_scalar(ke, &index);
847 if (error)
848 return error;
849 }
850
851 if (index >= dev->keycodemax)
852 return -EINVAL;
853
854 ke->keycode = input_fetch_keycode(dev, index);
855 ke->index = index;
856 ke->len = sizeof(index);
857 memcpy(ke->scancode, &index, sizeof(index));
858
859 return 0;
860 }
861
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)862 static int input_default_setkeycode(struct input_dev *dev,
863 const struct input_keymap_entry *ke,
864 unsigned int *old_keycode)
865 {
866 unsigned int index;
867 int error;
868 int i;
869
870 if (!dev->keycodesize)
871 return -EINVAL;
872
873 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
874 index = ke->index;
875 } else {
876 error = input_scancode_to_scalar(ke, &index);
877 if (error)
878 return error;
879 }
880
881 if (index >= dev->keycodemax)
882 return -EINVAL;
883
884 if (dev->keycodesize < sizeof(ke->keycode) &&
885 (ke->keycode >> (dev->keycodesize * 8)))
886 return -EINVAL;
887
888 switch (dev->keycodesize) {
889 case 1: {
890 u8 *k = (u8 *)dev->keycode;
891 *old_keycode = k[index];
892 k[index] = ke->keycode;
893 break;
894 }
895 case 2: {
896 u16 *k = (u16 *)dev->keycode;
897 *old_keycode = k[index];
898 k[index] = ke->keycode;
899 break;
900 }
901 default: {
902 u32 *k = (u32 *)dev->keycode;
903 *old_keycode = k[index];
904 k[index] = ke->keycode;
905 break;
906 }
907 }
908
909 if (*old_keycode <= KEY_MAX) {
910 __clear_bit(*old_keycode, dev->keybit);
911 for (i = 0; i < dev->keycodemax; i++) {
912 if (input_fetch_keycode(dev, i) == *old_keycode) {
913 __set_bit(*old_keycode, dev->keybit);
914 /* Setting the bit twice is useless, so break */
915 break;
916 }
917 }
918 }
919
920 __set_bit(ke->keycode, dev->keybit);
921 return 0;
922 }
923
924 /**
925 * input_get_keycode - retrieve keycode currently mapped to a given scancode
926 * @dev: input device which keymap is being queried
927 * @ke: keymap entry
928 *
929 * This function should be called by anyone interested in retrieving current
930 * keymap. Presently evdev handlers use it.
931 */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)932 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
933 {
934 unsigned long flags;
935 int retval;
936
937 spin_lock_irqsave(&dev->event_lock, flags);
938 retval = dev->getkeycode(dev, ke);
939 spin_unlock_irqrestore(&dev->event_lock, flags);
940
941 return retval;
942 }
943 EXPORT_SYMBOL(input_get_keycode);
944
945 /**
946 * input_set_keycode - attribute a keycode to a given scancode
947 * @dev: input device which keymap is being updated
948 * @ke: new keymap entry
949 *
950 * This function should be called by anyone needing to update current
951 * keymap. Presently keyboard and evdev handlers use it.
952 */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)953 int input_set_keycode(struct input_dev *dev,
954 const struct input_keymap_entry *ke)
955 {
956 unsigned long flags;
957 unsigned int old_keycode;
958 int retval;
959
960 if (ke->keycode > KEY_MAX)
961 return -EINVAL;
962
963 spin_lock_irqsave(&dev->event_lock, flags);
964
965 retval = dev->setkeycode(dev, ke, &old_keycode);
966 if (retval)
967 goto out;
968
969 /* Make sure KEY_RESERVED did not get enabled. */
970 __clear_bit(KEY_RESERVED, dev->keybit);
971
972 /*
973 * Simulate keyup event if keycode is not present
974 * in the keymap anymore
975 */
976 if (old_keycode > KEY_MAX) {
977 dev_warn(dev->dev.parent ?: &dev->dev,
978 "%s: got too big old keycode %#x\n",
979 __func__, old_keycode);
980 } else if (test_bit(EV_KEY, dev->evbit) &&
981 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
982 __test_and_clear_bit(old_keycode, dev->key)) {
983 /*
984 * We have to use input_event_dispose() here directly instead
985 * of input_handle_event() because the key we want to release
986 * here is considered no longer supported by the device and
987 * input_handle_event() will ignore it.
988 */
989 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
990 EV_KEY, old_keycode, 0);
991 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
992 EV_SYN, SYN_REPORT, 1);
993 }
994
995 out:
996 spin_unlock_irqrestore(&dev->event_lock, flags);
997
998 return retval;
999 }
1000 EXPORT_SYMBOL(input_set_keycode);
1001
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)1002 bool input_match_device_id(const struct input_dev *dev,
1003 const struct input_device_id *id)
1004 {
1005 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1006 if (id->bustype != dev->id.bustype)
1007 return false;
1008
1009 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1010 if (id->vendor != dev->id.vendor)
1011 return false;
1012
1013 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1014 if (id->product != dev->id.product)
1015 return false;
1016
1017 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1018 if (id->version != dev->id.version)
1019 return false;
1020
1021 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1022 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1023 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1024 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1025 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1026 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1027 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1028 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1029 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1030 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1031 return false;
1032 }
1033
1034 return true;
1035 }
1036 EXPORT_SYMBOL(input_match_device_id);
1037
input_match_device(struct input_handler * handler,struct input_dev * dev)1038 static const struct input_device_id *input_match_device(struct input_handler *handler,
1039 struct input_dev *dev)
1040 {
1041 const struct input_device_id *id;
1042
1043 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1044 if (input_match_device_id(dev, id) &&
1045 (!handler->match || handler->match(handler, dev))) {
1046 return id;
1047 }
1048 }
1049
1050 return NULL;
1051 }
1052
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1053 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1054 {
1055 const struct input_device_id *id;
1056 int error;
1057
1058 id = input_match_device(handler, dev);
1059 if (!id)
1060 return -ENODEV;
1061
1062 error = handler->connect(handler, dev, id);
1063 if (error && error != -ENODEV)
1064 pr_err("failed to attach handler %s to device %s, error: %d\n",
1065 handler->name, kobject_name(&dev->dev.kobj), error);
1066
1067 return error;
1068 }
1069
1070 #ifdef CONFIG_COMPAT
1071
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1072 static int input_bits_to_string(char *buf, int buf_size,
1073 unsigned long bits, bool skip_empty)
1074 {
1075 int len = 0;
1076
1077 if (in_compat_syscall()) {
1078 u32 dword = bits >> 32;
1079 if (dword || !skip_empty)
1080 len += snprintf(buf, buf_size, "%x ", dword);
1081
1082 dword = bits & 0xffffffffUL;
1083 if (dword || !skip_empty || len)
1084 len += snprintf(buf + len, max(buf_size - len, 0),
1085 "%x", dword);
1086 } else {
1087 if (bits || !skip_empty)
1088 len += snprintf(buf, buf_size, "%lx", bits);
1089 }
1090
1091 return len;
1092 }
1093
1094 #else /* !CONFIG_COMPAT */
1095
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1096 static int input_bits_to_string(char *buf, int buf_size,
1097 unsigned long bits, bool skip_empty)
1098 {
1099 return bits || !skip_empty ?
1100 snprintf(buf, buf_size, "%lx", bits) : 0;
1101 }
1102
1103 #endif
1104
1105 #ifdef CONFIG_PROC_FS
1106
1107 static struct proc_dir_entry *proc_bus_input_dir;
1108 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1109 static int input_devices_state;
1110
input_wakeup_procfs_readers(void)1111 static inline void input_wakeup_procfs_readers(void)
1112 {
1113 input_devices_state++;
1114 wake_up(&input_devices_poll_wait);
1115 }
1116
input_proc_devices_poll(struct file * file,poll_table * wait)1117 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1118 {
1119 poll_wait(file, &input_devices_poll_wait, wait);
1120 if (file->f_version != input_devices_state) {
1121 file->f_version = input_devices_state;
1122 return EPOLLIN | EPOLLRDNORM;
1123 }
1124
1125 return 0;
1126 }
1127
1128 union input_seq_state {
1129 struct {
1130 unsigned short pos;
1131 bool mutex_acquired;
1132 };
1133 void *p;
1134 };
1135
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1136 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1137 {
1138 union input_seq_state *state = (union input_seq_state *)&seq->private;
1139 int error;
1140
1141 /* We need to fit into seq->private pointer */
1142 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1143
1144 error = mutex_lock_interruptible(&input_mutex);
1145 if (error) {
1146 state->mutex_acquired = false;
1147 return ERR_PTR(error);
1148 }
1149
1150 state->mutex_acquired = true;
1151
1152 return seq_list_start(&input_dev_list, *pos);
1153 }
1154
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1155 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1156 {
1157 return seq_list_next(v, &input_dev_list, pos);
1158 }
1159
input_seq_stop(struct seq_file * seq,void * v)1160 static void input_seq_stop(struct seq_file *seq, void *v)
1161 {
1162 union input_seq_state *state = (union input_seq_state *)&seq->private;
1163
1164 if (state->mutex_acquired)
1165 mutex_unlock(&input_mutex);
1166 }
1167
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1168 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1169 unsigned long *bitmap, int max)
1170 {
1171 int i;
1172 bool skip_empty = true;
1173 char buf[18];
1174
1175 seq_printf(seq, "B: %s=", name);
1176
1177 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1178 if (input_bits_to_string(buf, sizeof(buf),
1179 bitmap[i], skip_empty)) {
1180 skip_empty = false;
1181 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1182 }
1183 }
1184
1185 /*
1186 * If no output was produced print a single 0.
1187 */
1188 if (skip_empty)
1189 seq_putc(seq, '0');
1190
1191 seq_putc(seq, '\n');
1192 }
1193
input_devices_seq_show(struct seq_file * seq,void * v)1194 static int input_devices_seq_show(struct seq_file *seq, void *v)
1195 {
1196 struct input_dev *dev = container_of(v, struct input_dev, node);
1197 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1198 struct input_handle *handle;
1199
1200 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1201 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1202
1203 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1204 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1205 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1206 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1207 seq_puts(seq, "H: Handlers=");
1208
1209 list_for_each_entry(handle, &dev->h_list, d_node)
1210 seq_printf(seq, "%s ", handle->name);
1211 seq_putc(seq, '\n');
1212
1213 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1214
1215 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1216 if (test_bit(EV_KEY, dev->evbit))
1217 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1218 if (test_bit(EV_REL, dev->evbit))
1219 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1220 if (test_bit(EV_ABS, dev->evbit))
1221 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1222 if (test_bit(EV_MSC, dev->evbit))
1223 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1224 if (test_bit(EV_LED, dev->evbit))
1225 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1226 if (test_bit(EV_SND, dev->evbit))
1227 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1228 if (test_bit(EV_FF, dev->evbit))
1229 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1230 if (test_bit(EV_SW, dev->evbit))
1231 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1232
1233 seq_putc(seq, '\n');
1234
1235 kfree(path);
1236 return 0;
1237 }
1238
1239 static const struct seq_operations input_devices_seq_ops = {
1240 .start = input_devices_seq_start,
1241 .next = input_devices_seq_next,
1242 .stop = input_seq_stop,
1243 .show = input_devices_seq_show,
1244 };
1245
input_proc_devices_open(struct inode * inode,struct file * file)1246 static int input_proc_devices_open(struct inode *inode, struct file *file)
1247 {
1248 return seq_open(file, &input_devices_seq_ops);
1249 }
1250
1251 static const struct proc_ops input_devices_proc_ops = {
1252 .proc_open = input_proc_devices_open,
1253 .proc_poll = input_proc_devices_poll,
1254 .proc_read = seq_read,
1255 .proc_lseek = seq_lseek,
1256 .proc_release = seq_release,
1257 };
1258
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1259 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1260 {
1261 union input_seq_state *state = (union input_seq_state *)&seq->private;
1262 int error;
1263
1264 /* We need to fit into seq->private pointer */
1265 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1266
1267 error = mutex_lock_interruptible(&input_mutex);
1268 if (error) {
1269 state->mutex_acquired = false;
1270 return ERR_PTR(error);
1271 }
1272
1273 state->mutex_acquired = true;
1274 state->pos = *pos;
1275
1276 return seq_list_start(&input_handler_list, *pos);
1277 }
1278
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1279 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1280 {
1281 union input_seq_state *state = (union input_seq_state *)&seq->private;
1282
1283 state->pos = *pos + 1;
1284 return seq_list_next(v, &input_handler_list, pos);
1285 }
1286
input_handlers_seq_show(struct seq_file * seq,void * v)1287 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1288 {
1289 struct input_handler *handler = container_of(v, struct input_handler, node);
1290 union input_seq_state *state = (union input_seq_state *)&seq->private;
1291
1292 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1293 if (handler->filter)
1294 seq_puts(seq, " (filter)");
1295 if (handler->legacy_minors)
1296 seq_printf(seq, " Minor=%d", handler->minor);
1297 seq_putc(seq, '\n');
1298
1299 return 0;
1300 }
1301
1302 static const struct seq_operations input_handlers_seq_ops = {
1303 .start = input_handlers_seq_start,
1304 .next = input_handlers_seq_next,
1305 .stop = input_seq_stop,
1306 .show = input_handlers_seq_show,
1307 };
1308
input_proc_handlers_open(struct inode * inode,struct file * file)1309 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1310 {
1311 return seq_open(file, &input_handlers_seq_ops);
1312 }
1313
1314 static const struct proc_ops input_handlers_proc_ops = {
1315 .proc_open = input_proc_handlers_open,
1316 .proc_read = seq_read,
1317 .proc_lseek = seq_lseek,
1318 .proc_release = seq_release,
1319 };
1320
input_proc_init(void)1321 static int __init input_proc_init(void)
1322 {
1323 struct proc_dir_entry *entry;
1324
1325 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1326 if (!proc_bus_input_dir)
1327 return -ENOMEM;
1328
1329 entry = proc_create("devices", 0, proc_bus_input_dir,
1330 &input_devices_proc_ops);
1331 if (!entry)
1332 goto fail1;
1333
1334 entry = proc_create("handlers", 0, proc_bus_input_dir,
1335 &input_handlers_proc_ops);
1336 if (!entry)
1337 goto fail2;
1338
1339 return 0;
1340
1341 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1342 fail1: remove_proc_entry("bus/input", NULL);
1343 return -ENOMEM;
1344 }
1345
input_proc_exit(void)1346 static void input_proc_exit(void)
1347 {
1348 remove_proc_entry("devices", proc_bus_input_dir);
1349 remove_proc_entry("handlers", proc_bus_input_dir);
1350 remove_proc_entry("bus/input", NULL);
1351 }
1352
1353 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1354 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1355 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1356 static inline void input_proc_exit(void) { }
1357 #endif
1358
1359 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1360 static ssize_t input_dev_show_##name(struct device *dev, \
1361 struct device_attribute *attr, \
1362 char *buf) \
1363 { \
1364 struct input_dev *input_dev = to_input_dev(dev); \
1365 \
1366 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1367 input_dev->name ? input_dev->name : ""); \
1368 } \
1369 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1370
1371 INPUT_DEV_STRING_ATTR_SHOW(name);
1372 INPUT_DEV_STRING_ATTR_SHOW(phys);
1373 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1374
input_print_modalias_bits(char * buf,int size,char name,const unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1375 static int input_print_modalias_bits(char *buf, int size,
1376 char name, const unsigned long *bm,
1377 unsigned int min_bit, unsigned int max_bit)
1378 {
1379 int len = 0, i;
1380
1381 len += snprintf(buf, max(size, 0), "%c", name);
1382 for (i = min_bit; i < max_bit; i++)
1383 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1384 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1385 return len;
1386 }
1387
input_print_modalias(char * buf,int size,const struct input_dev * id,int add_cr)1388 static int input_print_modalias(char *buf, int size, const struct input_dev *id,
1389 int add_cr)
1390 {
1391 int len;
1392
1393 len = snprintf(buf, max(size, 0),
1394 "input:b%04Xv%04Xp%04Xe%04X-",
1395 id->id.bustype, id->id.vendor,
1396 id->id.product, id->id.version);
1397
1398 len += input_print_modalias_bits(buf + len, size - len,
1399 'e', id->evbit, 0, EV_MAX);
1400 len += input_print_modalias_bits(buf + len, size - len,
1401 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1402 len += input_print_modalias_bits(buf + len, size - len,
1403 'r', id->relbit, 0, REL_MAX);
1404 len += input_print_modalias_bits(buf + len, size - len,
1405 'a', id->absbit, 0, ABS_MAX);
1406 len += input_print_modalias_bits(buf + len, size - len,
1407 'm', id->mscbit, 0, MSC_MAX);
1408 len += input_print_modalias_bits(buf + len, size - len,
1409 'l', id->ledbit, 0, LED_MAX);
1410 len += input_print_modalias_bits(buf + len, size - len,
1411 's', id->sndbit, 0, SND_MAX);
1412 len += input_print_modalias_bits(buf + len, size - len,
1413 'f', id->ffbit, 0, FF_MAX);
1414 len += input_print_modalias_bits(buf + len, size - len,
1415 'w', id->swbit, 0, SW_MAX);
1416
1417 if (add_cr)
1418 len += snprintf(buf + len, max(size - len, 0), "\n");
1419
1420 return len;
1421 }
1422
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1423 static ssize_t input_dev_show_modalias(struct device *dev,
1424 struct device_attribute *attr,
1425 char *buf)
1426 {
1427 struct input_dev *id = to_input_dev(dev);
1428 ssize_t len;
1429
1430 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1431
1432 return min_t(int, len, PAGE_SIZE);
1433 }
1434 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1435
1436 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1437 int max, int add_cr);
1438
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1439 static ssize_t input_dev_show_properties(struct device *dev,
1440 struct device_attribute *attr,
1441 char *buf)
1442 {
1443 struct input_dev *input_dev = to_input_dev(dev);
1444 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1445 INPUT_PROP_MAX, true);
1446 return min_t(int, len, PAGE_SIZE);
1447 }
1448 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1449
1450 static int input_inhibit_device(struct input_dev *dev);
1451 static int input_uninhibit_device(struct input_dev *dev);
1452
inhibited_show(struct device * dev,struct device_attribute * attr,char * buf)1453 static ssize_t inhibited_show(struct device *dev,
1454 struct device_attribute *attr,
1455 char *buf)
1456 {
1457 struct input_dev *input_dev = to_input_dev(dev);
1458
1459 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1460 }
1461
inhibited_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1462 static ssize_t inhibited_store(struct device *dev,
1463 struct device_attribute *attr, const char *buf,
1464 size_t len)
1465 {
1466 struct input_dev *input_dev = to_input_dev(dev);
1467 ssize_t rv;
1468 bool inhibited;
1469
1470 if (kstrtobool(buf, &inhibited))
1471 return -EINVAL;
1472
1473 if (inhibited)
1474 rv = input_inhibit_device(input_dev);
1475 else
1476 rv = input_uninhibit_device(input_dev);
1477
1478 if (rv != 0)
1479 return rv;
1480
1481 return len;
1482 }
1483
1484 static DEVICE_ATTR_RW(inhibited);
1485
1486 static struct attribute *input_dev_attrs[] = {
1487 &dev_attr_name.attr,
1488 &dev_attr_phys.attr,
1489 &dev_attr_uniq.attr,
1490 &dev_attr_modalias.attr,
1491 &dev_attr_properties.attr,
1492 &dev_attr_inhibited.attr,
1493 NULL
1494 };
1495
1496 static const struct attribute_group input_dev_attr_group = {
1497 .attrs = input_dev_attrs,
1498 };
1499
1500 #define INPUT_DEV_ID_ATTR(name) \
1501 static ssize_t input_dev_show_id_##name(struct device *dev, \
1502 struct device_attribute *attr, \
1503 char *buf) \
1504 { \
1505 struct input_dev *input_dev = to_input_dev(dev); \
1506 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1507 } \
1508 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1509
1510 INPUT_DEV_ID_ATTR(bustype);
1511 INPUT_DEV_ID_ATTR(vendor);
1512 INPUT_DEV_ID_ATTR(product);
1513 INPUT_DEV_ID_ATTR(version);
1514
1515 static struct attribute *input_dev_id_attrs[] = {
1516 &dev_attr_bustype.attr,
1517 &dev_attr_vendor.attr,
1518 &dev_attr_product.attr,
1519 &dev_attr_version.attr,
1520 NULL
1521 };
1522
1523 static const struct attribute_group input_dev_id_attr_group = {
1524 .name = "id",
1525 .attrs = input_dev_id_attrs,
1526 };
1527
input_print_bitmap(char * buf,int buf_size,const unsigned long * bitmap,int max,int add_cr)1528 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1529 int max, int add_cr)
1530 {
1531 int i;
1532 int len = 0;
1533 bool skip_empty = true;
1534
1535 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1536 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1537 bitmap[i], skip_empty);
1538 if (len) {
1539 skip_empty = false;
1540 if (i > 0)
1541 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1542 }
1543 }
1544
1545 /*
1546 * If no output was produced print a single 0.
1547 */
1548 if (len == 0)
1549 len = snprintf(buf, buf_size, "%d", 0);
1550
1551 if (add_cr)
1552 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1553
1554 return len;
1555 }
1556
1557 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1558 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1559 struct device_attribute *attr, \
1560 char *buf) \
1561 { \
1562 struct input_dev *input_dev = to_input_dev(dev); \
1563 int len = input_print_bitmap(buf, PAGE_SIZE, \
1564 input_dev->bm##bit, ev##_MAX, \
1565 true); \
1566 return min_t(int, len, PAGE_SIZE); \
1567 } \
1568 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1569
1570 INPUT_DEV_CAP_ATTR(EV, ev);
1571 INPUT_DEV_CAP_ATTR(KEY, key);
1572 INPUT_DEV_CAP_ATTR(REL, rel);
1573 INPUT_DEV_CAP_ATTR(ABS, abs);
1574 INPUT_DEV_CAP_ATTR(MSC, msc);
1575 INPUT_DEV_CAP_ATTR(LED, led);
1576 INPUT_DEV_CAP_ATTR(SND, snd);
1577 INPUT_DEV_CAP_ATTR(FF, ff);
1578 INPUT_DEV_CAP_ATTR(SW, sw);
1579
1580 static struct attribute *input_dev_caps_attrs[] = {
1581 &dev_attr_ev.attr,
1582 &dev_attr_key.attr,
1583 &dev_attr_rel.attr,
1584 &dev_attr_abs.attr,
1585 &dev_attr_msc.attr,
1586 &dev_attr_led.attr,
1587 &dev_attr_snd.attr,
1588 &dev_attr_ff.attr,
1589 &dev_attr_sw.attr,
1590 NULL
1591 };
1592
1593 static const struct attribute_group input_dev_caps_attr_group = {
1594 .name = "capabilities",
1595 .attrs = input_dev_caps_attrs,
1596 };
1597
1598 static const struct attribute_group *input_dev_attr_groups[] = {
1599 &input_dev_attr_group,
1600 &input_dev_id_attr_group,
1601 &input_dev_caps_attr_group,
1602 &input_poller_attribute_group,
1603 NULL
1604 };
1605
input_dev_release(struct device * device)1606 static void input_dev_release(struct device *device)
1607 {
1608 struct input_dev *dev = to_input_dev(device);
1609
1610 input_ff_destroy(dev);
1611 input_mt_destroy_slots(dev);
1612 kfree(dev->poller);
1613 kfree(dev->absinfo);
1614 kfree(dev->vals);
1615 kfree(dev);
1616
1617 module_put(THIS_MODULE);
1618 }
1619
1620 /*
1621 * Input uevent interface - loading event handlers based on
1622 * device bitfields.
1623 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,const unsigned long * bitmap,int max)1624 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1625 const char *name, const unsigned long *bitmap, int max)
1626 {
1627 int len;
1628
1629 if (add_uevent_var(env, "%s", name))
1630 return -ENOMEM;
1631
1632 len = input_print_bitmap(&env->buf[env->buflen - 1],
1633 sizeof(env->buf) - env->buflen,
1634 bitmap, max, false);
1635 if (len >= (sizeof(env->buf) - env->buflen))
1636 return -ENOMEM;
1637
1638 env->buflen += len;
1639 return 0;
1640 }
1641
input_add_uevent_modalias_var(struct kobj_uevent_env * env,const struct input_dev * dev)1642 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1643 const struct input_dev *dev)
1644 {
1645 int len;
1646
1647 if (add_uevent_var(env, "MODALIAS="))
1648 return -ENOMEM;
1649
1650 len = input_print_modalias(&env->buf[env->buflen - 1],
1651 sizeof(env->buf) - env->buflen,
1652 dev, 0);
1653 if (len >= (sizeof(env->buf) - env->buflen))
1654 return -ENOMEM;
1655
1656 env->buflen += len;
1657 return 0;
1658 }
1659
1660 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1661 do { \
1662 int err = add_uevent_var(env, fmt, val); \
1663 if (err) \
1664 return err; \
1665 } while (0)
1666
1667 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1668 do { \
1669 int err = input_add_uevent_bm_var(env, name, bm, max); \
1670 if (err) \
1671 return err; \
1672 } while (0)
1673
1674 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1675 do { \
1676 int err = input_add_uevent_modalias_var(env, dev); \
1677 if (err) \
1678 return err; \
1679 } while (0)
1680
input_dev_uevent(const struct device * device,struct kobj_uevent_env * env)1681 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1682 {
1683 const struct input_dev *dev = to_input_dev(device);
1684
1685 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1686 dev->id.bustype, dev->id.vendor,
1687 dev->id.product, dev->id.version);
1688 if (dev->name)
1689 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1690 if (dev->phys)
1691 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1692 if (dev->uniq)
1693 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1694
1695 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1696
1697 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1698 if (test_bit(EV_KEY, dev->evbit))
1699 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1700 if (test_bit(EV_REL, dev->evbit))
1701 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1702 if (test_bit(EV_ABS, dev->evbit))
1703 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1704 if (test_bit(EV_MSC, dev->evbit))
1705 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1706 if (test_bit(EV_LED, dev->evbit))
1707 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1708 if (test_bit(EV_SND, dev->evbit))
1709 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1710 if (test_bit(EV_FF, dev->evbit))
1711 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1712 if (test_bit(EV_SW, dev->evbit))
1713 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1714
1715 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1716
1717 return 0;
1718 }
1719
1720 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1721 do { \
1722 int i; \
1723 bool active; \
1724 \
1725 if (!test_bit(EV_##type, dev->evbit)) \
1726 break; \
1727 \
1728 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1729 active = test_bit(i, dev->bits); \
1730 if (!active && !on) \
1731 continue; \
1732 \
1733 dev->event(dev, EV_##type, i, on ? active : 0); \
1734 } \
1735 } while (0)
1736
input_dev_toggle(struct input_dev * dev,bool activate)1737 static void input_dev_toggle(struct input_dev *dev, bool activate)
1738 {
1739 if (!dev->event)
1740 return;
1741
1742 INPUT_DO_TOGGLE(dev, LED, led, activate);
1743 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1744
1745 if (activate && test_bit(EV_REP, dev->evbit)) {
1746 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1747 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1748 }
1749 }
1750
1751 /**
1752 * input_reset_device() - reset/restore the state of input device
1753 * @dev: input device whose state needs to be reset
1754 *
1755 * This function tries to reset the state of an opened input device and
1756 * bring internal state and state if the hardware in sync with each other.
1757 * We mark all keys as released, restore LED state, repeat rate, etc.
1758 */
input_reset_device(struct input_dev * dev)1759 void input_reset_device(struct input_dev *dev)
1760 {
1761 unsigned long flags;
1762
1763 mutex_lock(&dev->mutex);
1764 spin_lock_irqsave(&dev->event_lock, flags);
1765
1766 input_dev_toggle(dev, true);
1767 if (input_dev_release_keys(dev))
1768 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1769
1770 spin_unlock_irqrestore(&dev->event_lock, flags);
1771 mutex_unlock(&dev->mutex);
1772 }
1773 EXPORT_SYMBOL(input_reset_device);
1774
input_inhibit_device(struct input_dev * dev)1775 static int input_inhibit_device(struct input_dev *dev)
1776 {
1777 mutex_lock(&dev->mutex);
1778
1779 if (dev->inhibited)
1780 goto out;
1781
1782 if (dev->users) {
1783 if (dev->close)
1784 dev->close(dev);
1785 if (dev->poller)
1786 input_dev_poller_stop(dev->poller);
1787 }
1788
1789 spin_lock_irq(&dev->event_lock);
1790 input_mt_release_slots(dev);
1791 input_dev_release_keys(dev);
1792 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1793 input_dev_toggle(dev, false);
1794 spin_unlock_irq(&dev->event_lock);
1795
1796 dev->inhibited = true;
1797
1798 out:
1799 mutex_unlock(&dev->mutex);
1800 return 0;
1801 }
1802
input_uninhibit_device(struct input_dev * dev)1803 static int input_uninhibit_device(struct input_dev *dev)
1804 {
1805 int ret = 0;
1806
1807 mutex_lock(&dev->mutex);
1808
1809 if (!dev->inhibited)
1810 goto out;
1811
1812 if (dev->users) {
1813 if (dev->open) {
1814 ret = dev->open(dev);
1815 if (ret)
1816 goto out;
1817 }
1818 if (dev->poller)
1819 input_dev_poller_start(dev->poller);
1820 }
1821
1822 dev->inhibited = false;
1823 spin_lock_irq(&dev->event_lock);
1824 input_dev_toggle(dev, true);
1825 spin_unlock_irq(&dev->event_lock);
1826
1827 out:
1828 mutex_unlock(&dev->mutex);
1829 return ret;
1830 }
1831
input_dev_suspend(struct device * dev)1832 static int input_dev_suspend(struct device *dev)
1833 {
1834 struct input_dev *input_dev = to_input_dev(dev);
1835
1836 spin_lock_irq(&input_dev->event_lock);
1837
1838 /*
1839 * Keys that are pressed now are unlikely to be
1840 * still pressed when we resume.
1841 */
1842 if (input_dev_release_keys(input_dev))
1843 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1844
1845 /* Turn off LEDs and sounds, if any are active. */
1846 input_dev_toggle(input_dev, false);
1847
1848 spin_unlock_irq(&input_dev->event_lock);
1849
1850 return 0;
1851 }
1852
input_dev_resume(struct device * dev)1853 static int input_dev_resume(struct device *dev)
1854 {
1855 struct input_dev *input_dev = to_input_dev(dev);
1856
1857 spin_lock_irq(&input_dev->event_lock);
1858
1859 /* Restore state of LEDs and sounds, if any were active. */
1860 input_dev_toggle(input_dev, true);
1861
1862 spin_unlock_irq(&input_dev->event_lock);
1863
1864 return 0;
1865 }
1866
input_dev_freeze(struct device * dev)1867 static int input_dev_freeze(struct device *dev)
1868 {
1869 struct input_dev *input_dev = to_input_dev(dev);
1870
1871 spin_lock_irq(&input_dev->event_lock);
1872
1873 /*
1874 * Keys that are pressed now are unlikely to be
1875 * still pressed when we resume.
1876 */
1877 if (input_dev_release_keys(input_dev))
1878 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1879
1880 spin_unlock_irq(&input_dev->event_lock);
1881
1882 return 0;
1883 }
1884
input_dev_poweroff(struct device * dev)1885 static int input_dev_poweroff(struct device *dev)
1886 {
1887 struct input_dev *input_dev = to_input_dev(dev);
1888
1889 spin_lock_irq(&input_dev->event_lock);
1890
1891 /* Turn off LEDs and sounds, if any are active. */
1892 input_dev_toggle(input_dev, false);
1893
1894 spin_unlock_irq(&input_dev->event_lock);
1895
1896 return 0;
1897 }
1898
1899 static const struct dev_pm_ops input_dev_pm_ops = {
1900 .suspend = input_dev_suspend,
1901 .resume = input_dev_resume,
1902 .freeze = input_dev_freeze,
1903 .poweroff = input_dev_poweroff,
1904 .restore = input_dev_resume,
1905 };
1906
1907 static const struct device_type input_dev_type = {
1908 .groups = input_dev_attr_groups,
1909 .release = input_dev_release,
1910 .uevent = input_dev_uevent,
1911 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1912 };
1913
input_devnode(const struct device * dev,umode_t * mode)1914 static char *input_devnode(const struct device *dev, umode_t *mode)
1915 {
1916 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1917 }
1918
1919 struct class input_class = {
1920 .name = "input",
1921 .devnode = input_devnode,
1922 };
1923 EXPORT_SYMBOL_GPL(input_class);
1924
1925 /**
1926 * input_allocate_device - allocate memory for new input device
1927 *
1928 * Returns prepared struct input_dev or %NULL.
1929 *
1930 * NOTE: Use input_free_device() to free devices that have not been
1931 * registered; input_unregister_device() should be used for already
1932 * registered devices.
1933 */
input_allocate_device(void)1934 struct input_dev *input_allocate_device(void)
1935 {
1936 static atomic_t input_no = ATOMIC_INIT(-1);
1937 struct input_dev *dev;
1938
1939 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1940 if (dev) {
1941 dev->dev.type = &input_dev_type;
1942 dev->dev.class = &input_class;
1943 device_initialize(&dev->dev);
1944 mutex_init(&dev->mutex);
1945 spin_lock_init(&dev->event_lock);
1946 timer_setup(&dev->timer, NULL, 0);
1947 INIT_LIST_HEAD(&dev->h_list);
1948 INIT_LIST_HEAD(&dev->node);
1949
1950 dev_set_name(&dev->dev, "input%lu",
1951 (unsigned long)atomic_inc_return(&input_no));
1952
1953 __module_get(THIS_MODULE);
1954 }
1955
1956 return dev;
1957 }
1958 EXPORT_SYMBOL(input_allocate_device);
1959
1960 struct input_devres {
1961 struct input_dev *input;
1962 };
1963
devm_input_device_match(struct device * dev,void * res,void * data)1964 static int devm_input_device_match(struct device *dev, void *res, void *data)
1965 {
1966 struct input_devres *devres = res;
1967
1968 return devres->input == data;
1969 }
1970
devm_input_device_release(struct device * dev,void * res)1971 static void devm_input_device_release(struct device *dev, void *res)
1972 {
1973 struct input_devres *devres = res;
1974 struct input_dev *input = devres->input;
1975
1976 dev_dbg(dev, "%s: dropping reference to %s\n",
1977 __func__, dev_name(&input->dev));
1978 input_put_device(input);
1979 }
1980
1981 /**
1982 * devm_input_allocate_device - allocate managed input device
1983 * @dev: device owning the input device being created
1984 *
1985 * Returns prepared struct input_dev or %NULL.
1986 *
1987 * Managed input devices do not need to be explicitly unregistered or
1988 * freed as it will be done automatically when owner device unbinds from
1989 * its driver (or binding fails). Once managed input device is allocated,
1990 * it is ready to be set up and registered in the same fashion as regular
1991 * input device. There are no special devm_input_device_[un]register()
1992 * variants, regular ones work with both managed and unmanaged devices,
1993 * should you need them. In most cases however, managed input device need
1994 * not be explicitly unregistered or freed.
1995 *
1996 * NOTE: the owner device is set up as parent of input device and users
1997 * should not override it.
1998 */
devm_input_allocate_device(struct device * dev)1999 struct input_dev *devm_input_allocate_device(struct device *dev)
2000 {
2001 struct input_dev *input;
2002 struct input_devres *devres;
2003
2004 devres = devres_alloc(devm_input_device_release,
2005 sizeof(*devres), GFP_KERNEL);
2006 if (!devres)
2007 return NULL;
2008
2009 input = input_allocate_device();
2010 if (!input) {
2011 devres_free(devres);
2012 return NULL;
2013 }
2014
2015 input->dev.parent = dev;
2016 input->devres_managed = true;
2017
2018 devres->input = input;
2019 devres_add(dev, devres);
2020
2021 return input;
2022 }
2023 EXPORT_SYMBOL(devm_input_allocate_device);
2024
2025 /**
2026 * input_free_device - free memory occupied by input_dev structure
2027 * @dev: input device to free
2028 *
2029 * This function should only be used if input_register_device()
2030 * was not called yet or if it failed. Once device was registered
2031 * use input_unregister_device() and memory will be freed once last
2032 * reference to the device is dropped.
2033 *
2034 * Device should be allocated by input_allocate_device().
2035 *
2036 * NOTE: If there are references to the input device then memory
2037 * will not be freed until last reference is dropped.
2038 */
input_free_device(struct input_dev * dev)2039 void input_free_device(struct input_dev *dev)
2040 {
2041 if (dev) {
2042 if (dev->devres_managed)
2043 WARN_ON(devres_destroy(dev->dev.parent,
2044 devm_input_device_release,
2045 devm_input_device_match,
2046 dev));
2047 input_put_device(dev);
2048 }
2049 }
2050 EXPORT_SYMBOL(input_free_device);
2051
2052 /**
2053 * input_set_timestamp - set timestamp for input events
2054 * @dev: input device to set timestamp for
2055 * @timestamp: the time at which the event has occurred
2056 * in CLOCK_MONOTONIC
2057 *
2058 * This function is intended to provide to the input system a more
2059 * accurate time of when an event actually occurred. The driver should
2060 * call this function as soon as a timestamp is acquired ensuring
2061 * clock conversions in input_set_timestamp are done correctly.
2062 *
2063 * The system entering suspend state between timestamp acquisition and
2064 * calling input_set_timestamp can result in inaccurate conversions.
2065 */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)2066 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2067 {
2068 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2069 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2070 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2071 TK_OFFS_BOOT);
2072 }
2073 EXPORT_SYMBOL(input_set_timestamp);
2074
2075 /**
2076 * input_get_timestamp - get timestamp for input events
2077 * @dev: input device to get timestamp from
2078 *
2079 * A valid timestamp is a timestamp of non-zero value.
2080 */
input_get_timestamp(struct input_dev * dev)2081 ktime_t *input_get_timestamp(struct input_dev *dev)
2082 {
2083 const ktime_t invalid_timestamp = ktime_set(0, 0);
2084
2085 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2086 input_set_timestamp(dev, ktime_get());
2087
2088 return dev->timestamp;
2089 }
2090 EXPORT_SYMBOL(input_get_timestamp);
2091
2092 /**
2093 * input_set_capability - mark device as capable of a certain event
2094 * @dev: device that is capable of emitting or accepting event
2095 * @type: type of the event (EV_KEY, EV_REL, etc...)
2096 * @code: event code
2097 *
2098 * In addition to setting up corresponding bit in appropriate capability
2099 * bitmap the function also adjusts dev->evbit.
2100 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)2101 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2102 {
2103 if (type < EV_CNT && input_max_code[type] &&
2104 code > input_max_code[type]) {
2105 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2106 type);
2107 dump_stack();
2108 return;
2109 }
2110
2111 switch (type) {
2112 case EV_KEY:
2113 __set_bit(code, dev->keybit);
2114 break;
2115
2116 case EV_REL:
2117 __set_bit(code, dev->relbit);
2118 break;
2119
2120 case EV_ABS:
2121 input_alloc_absinfo(dev);
2122 __set_bit(code, dev->absbit);
2123 break;
2124
2125 case EV_MSC:
2126 __set_bit(code, dev->mscbit);
2127 break;
2128
2129 case EV_SW:
2130 __set_bit(code, dev->swbit);
2131 break;
2132
2133 case EV_LED:
2134 __set_bit(code, dev->ledbit);
2135 break;
2136
2137 case EV_SND:
2138 __set_bit(code, dev->sndbit);
2139 break;
2140
2141 case EV_FF:
2142 __set_bit(code, dev->ffbit);
2143 break;
2144
2145 case EV_PWR:
2146 /* do nothing */
2147 break;
2148
2149 default:
2150 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2151 dump_stack();
2152 return;
2153 }
2154
2155 __set_bit(type, dev->evbit);
2156 }
2157 EXPORT_SYMBOL(input_set_capability);
2158
input_estimate_events_per_packet(struct input_dev * dev)2159 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2160 {
2161 int mt_slots;
2162 int i;
2163 unsigned int events;
2164
2165 if (dev->mt) {
2166 mt_slots = dev->mt->num_slots;
2167 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2168 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2169 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2170 mt_slots = clamp(mt_slots, 2, 32);
2171 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2172 mt_slots = 2;
2173 } else {
2174 mt_slots = 0;
2175 }
2176
2177 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2178
2179 if (test_bit(EV_ABS, dev->evbit))
2180 for_each_set_bit(i, dev->absbit, ABS_CNT)
2181 events += input_is_mt_axis(i) ? mt_slots : 1;
2182
2183 if (test_bit(EV_REL, dev->evbit))
2184 events += bitmap_weight(dev->relbit, REL_CNT);
2185
2186 /* Make room for KEY and MSC events */
2187 events += 7;
2188
2189 return events;
2190 }
2191
2192 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2193 do { \
2194 if (!test_bit(EV_##type, dev->evbit)) \
2195 memset(dev->bits##bit, 0, \
2196 sizeof(dev->bits##bit)); \
2197 } while (0)
2198
input_cleanse_bitmasks(struct input_dev * dev)2199 static void input_cleanse_bitmasks(struct input_dev *dev)
2200 {
2201 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2202 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2203 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2204 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2205 INPUT_CLEANSE_BITMASK(dev, LED, led);
2206 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2207 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2208 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2209 }
2210
__input_unregister_device(struct input_dev * dev)2211 static void __input_unregister_device(struct input_dev *dev)
2212 {
2213 struct input_handle *handle, *next;
2214
2215 input_disconnect_device(dev);
2216
2217 mutex_lock(&input_mutex);
2218
2219 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2220 handle->handler->disconnect(handle);
2221 WARN_ON(!list_empty(&dev->h_list));
2222
2223 del_timer_sync(&dev->timer);
2224 list_del_init(&dev->node);
2225
2226 input_wakeup_procfs_readers();
2227
2228 mutex_unlock(&input_mutex);
2229
2230 device_del(&dev->dev);
2231 }
2232
devm_input_device_unregister(struct device * dev,void * res)2233 static void devm_input_device_unregister(struct device *dev, void *res)
2234 {
2235 struct input_devres *devres = res;
2236 struct input_dev *input = devres->input;
2237
2238 dev_dbg(dev, "%s: unregistering device %s\n",
2239 __func__, dev_name(&input->dev));
2240 __input_unregister_device(input);
2241 }
2242
2243 /*
2244 * Generate software autorepeat event. Note that we take
2245 * dev->event_lock here to avoid racing with input_event
2246 * which may cause keys get "stuck".
2247 */
input_repeat_key(struct timer_list * t)2248 static void input_repeat_key(struct timer_list *t)
2249 {
2250 struct input_dev *dev = from_timer(dev, t, timer);
2251 unsigned long flags;
2252
2253 spin_lock_irqsave(&dev->event_lock, flags);
2254
2255 if (!dev->inhibited &&
2256 test_bit(dev->repeat_key, dev->key) &&
2257 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2258
2259 input_set_timestamp(dev, ktime_get());
2260 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2261 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2262
2263 if (dev->rep[REP_PERIOD])
2264 mod_timer(&dev->timer, jiffies +
2265 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2266 }
2267
2268 spin_unlock_irqrestore(&dev->event_lock, flags);
2269 }
2270
2271 /**
2272 * input_enable_softrepeat - enable software autorepeat
2273 * @dev: input device
2274 * @delay: repeat delay
2275 * @period: repeat period
2276 *
2277 * Enable software autorepeat on the input device.
2278 */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2279 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2280 {
2281 dev->timer.function = input_repeat_key;
2282 dev->rep[REP_DELAY] = delay;
2283 dev->rep[REP_PERIOD] = period;
2284 }
2285 EXPORT_SYMBOL(input_enable_softrepeat);
2286
input_device_enabled(struct input_dev * dev)2287 bool input_device_enabled(struct input_dev *dev)
2288 {
2289 lockdep_assert_held(&dev->mutex);
2290
2291 return !dev->inhibited && dev->users > 0;
2292 }
2293 EXPORT_SYMBOL_GPL(input_device_enabled);
2294
2295 /**
2296 * input_register_device - register device with input core
2297 * @dev: device to be registered
2298 *
2299 * This function registers device with input core. The device must be
2300 * allocated with input_allocate_device() and all it's capabilities
2301 * set up before registering.
2302 * If function fails the device must be freed with input_free_device().
2303 * Once device has been successfully registered it can be unregistered
2304 * with input_unregister_device(); input_free_device() should not be
2305 * called in this case.
2306 *
2307 * Note that this function is also used to register managed input devices
2308 * (ones allocated with devm_input_allocate_device()). Such managed input
2309 * devices need not be explicitly unregistered or freed, their tear down
2310 * is controlled by the devres infrastructure. It is also worth noting
2311 * that tear down of managed input devices is internally a 2-step process:
2312 * registered managed input device is first unregistered, but stays in
2313 * memory and can still handle input_event() calls (although events will
2314 * not be delivered anywhere). The freeing of managed input device will
2315 * happen later, when devres stack is unwound to the point where device
2316 * allocation was made.
2317 */
input_register_device(struct input_dev * dev)2318 int input_register_device(struct input_dev *dev)
2319 {
2320 struct input_devres *devres = NULL;
2321 struct input_handler *handler;
2322 unsigned int packet_size;
2323 const char *path;
2324 int error;
2325
2326 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2327 dev_err(&dev->dev,
2328 "Absolute device without dev->absinfo, refusing to register\n");
2329 return -EINVAL;
2330 }
2331
2332 if (dev->devres_managed) {
2333 devres = devres_alloc(devm_input_device_unregister,
2334 sizeof(*devres), GFP_KERNEL);
2335 if (!devres)
2336 return -ENOMEM;
2337
2338 devres->input = dev;
2339 }
2340
2341 /* Every input device generates EV_SYN/SYN_REPORT events. */
2342 __set_bit(EV_SYN, dev->evbit);
2343
2344 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2345 __clear_bit(KEY_RESERVED, dev->keybit);
2346
2347 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2348 input_cleanse_bitmasks(dev);
2349
2350 packet_size = input_estimate_events_per_packet(dev);
2351 if (dev->hint_events_per_packet < packet_size)
2352 dev->hint_events_per_packet = packet_size;
2353
2354 dev->max_vals = dev->hint_events_per_packet + 2;
2355 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2356 if (!dev->vals) {
2357 error = -ENOMEM;
2358 goto err_devres_free;
2359 }
2360
2361 /*
2362 * If delay and period are pre-set by the driver, then autorepeating
2363 * is handled by the driver itself and we don't do it in input.c.
2364 */
2365 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2366 input_enable_softrepeat(dev, 250, 33);
2367
2368 if (!dev->getkeycode)
2369 dev->getkeycode = input_default_getkeycode;
2370
2371 if (!dev->setkeycode)
2372 dev->setkeycode = input_default_setkeycode;
2373
2374 if (dev->poller)
2375 input_dev_poller_finalize(dev->poller);
2376
2377 error = device_add(&dev->dev);
2378 if (error)
2379 goto err_free_vals;
2380
2381 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2382 pr_info("%s as %s\n",
2383 dev->name ? dev->name : "Unspecified device",
2384 path ? path : "N/A");
2385 kfree(path);
2386
2387 error = mutex_lock_interruptible(&input_mutex);
2388 if (error)
2389 goto err_device_del;
2390
2391 list_add_tail(&dev->node, &input_dev_list);
2392
2393 list_for_each_entry(handler, &input_handler_list, node)
2394 input_attach_handler(dev, handler);
2395
2396 input_wakeup_procfs_readers();
2397
2398 mutex_unlock(&input_mutex);
2399
2400 if (dev->devres_managed) {
2401 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2402 __func__, dev_name(&dev->dev));
2403 devres_add(dev->dev.parent, devres);
2404 }
2405 return 0;
2406
2407 err_device_del:
2408 device_del(&dev->dev);
2409 err_free_vals:
2410 kfree(dev->vals);
2411 dev->vals = NULL;
2412 err_devres_free:
2413 devres_free(devres);
2414 return error;
2415 }
2416 EXPORT_SYMBOL(input_register_device);
2417
2418 /**
2419 * input_unregister_device - unregister previously registered device
2420 * @dev: device to be unregistered
2421 *
2422 * This function unregisters an input device. Once device is unregistered
2423 * the caller should not try to access it as it may get freed at any moment.
2424 */
input_unregister_device(struct input_dev * dev)2425 void input_unregister_device(struct input_dev *dev)
2426 {
2427 if (dev->devres_managed) {
2428 WARN_ON(devres_destroy(dev->dev.parent,
2429 devm_input_device_unregister,
2430 devm_input_device_match,
2431 dev));
2432 __input_unregister_device(dev);
2433 /*
2434 * We do not do input_put_device() here because it will be done
2435 * when 2nd devres fires up.
2436 */
2437 } else {
2438 __input_unregister_device(dev);
2439 input_put_device(dev);
2440 }
2441 }
2442 EXPORT_SYMBOL(input_unregister_device);
2443
2444 /**
2445 * input_register_handler - register a new input handler
2446 * @handler: handler to be registered
2447 *
2448 * This function registers a new input handler (interface) for input
2449 * devices in the system and attaches it to all input devices that
2450 * are compatible with the handler.
2451 */
input_register_handler(struct input_handler * handler)2452 int input_register_handler(struct input_handler *handler)
2453 {
2454 struct input_dev *dev;
2455 int error;
2456
2457 error = mutex_lock_interruptible(&input_mutex);
2458 if (error)
2459 return error;
2460
2461 INIT_LIST_HEAD(&handler->h_list);
2462
2463 list_add_tail(&handler->node, &input_handler_list);
2464
2465 list_for_each_entry(dev, &input_dev_list, node)
2466 input_attach_handler(dev, handler);
2467
2468 input_wakeup_procfs_readers();
2469
2470 mutex_unlock(&input_mutex);
2471 return 0;
2472 }
2473 EXPORT_SYMBOL(input_register_handler);
2474
2475 /**
2476 * input_unregister_handler - unregisters an input handler
2477 * @handler: handler to be unregistered
2478 *
2479 * This function disconnects a handler from its input devices and
2480 * removes it from lists of known handlers.
2481 */
input_unregister_handler(struct input_handler * handler)2482 void input_unregister_handler(struct input_handler *handler)
2483 {
2484 struct input_handle *handle, *next;
2485
2486 mutex_lock(&input_mutex);
2487
2488 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2489 handler->disconnect(handle);
2490 WARN_ON(!list_empty(&handler->h_list));
2491
2492 list_del_init(&handler->node);
2493
2494 input_wakeup_procfs_readers();
2495
2496 mutex_unlock(&input_mutex);
2497 }
2498 EXPORT_SYMBOL(input_unregister_handler);
2499
2500 /**
2501 * input_handler_for_each_handle - handle iterator
2502 * @handler: input handler to iterate
2503 * @data: data for the callback
2504 * @fn: function to be called for each handle
2505 *
2506 * Iterate over @bus's list of devices, and call @fn for each, passing
2507 * it @data and stop when @fn returns a non-zero value. The function is
2508 * using RCU to traverse the list and therefore may be using in atomic
2509 * contexts. The @fn callback is invoked from RCU critical section and
2510 * thus must not sleep.
2511 */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2512 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2513 int (*fn)(struct input_handle *, void *))
2514 {
2515 struct input_handle *handle;
2516 int retval = 0;
2517
2518 rcu_read_lock();
2519
2520 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2521 retval = fn(handle, data);
2522 if (retval)
2523 break;
2524 }
2525
2526 rcu_read_unlock();
2527
2528 return retval;
2529 }
2530 EXPORT_SYMBOL(input_handler_for_each_handle);
2531
2532 /**
2533 * input_register_handle - register a new input handle
2534 * @handle: handle to register
2535 *
2536 * This function puts a new input handle onto device's
2537 * and handler's lists so that events can flow through
2538 * it once it is opened using input_open_device().
2539 *
2540 * This function is supposed to be called from handler's
2541 * connect() method.
2542 */
input_register_handle(struct input_handle * handle)2543 int input_register_handle(struct input_handle *handle)
2544 {
2545 struct input_handler *handler = handle->handler;
2546 struct input_dev *dev = handle->dev;
2547 int error;
2548
2549 /*
2550 * We take dev->mutex here to prevent race with
2551 * input_release_device().
2552 */
2553 error = mutex_lock_interruptible(&dev->mutex);
2554 if (error)
2555 return error;
2556
2557 /*
2558 * Filters go to the head of the list, normal handlers
2559 * to the tail.
2560 */
2561 if (handler->filter)
2562 list_add_rcu(&handle->d_node, &dev->h_list);
2563 else
2564 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2565
2566 mutex_unlock(&dev->mutex);
2567
2568 /*
2569 * Since we are supposed to be called from ->connect()
2570 * which is mutually exclusive with ->disconnect()
2571 * we can't be racing with input_unregister_handle()
2572 * and so separate lock is not needed here.
2573 */
2574 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2575
2576 if (handler->start)
2577 handler->start(handle);
2578
2579 return 0;
2580 }
2581 EXPORT_SYMBOL(input_register_handle);
2582
2583 /**
2584 * input_unregister_handle - unregister an input handle
2585 * @handle: handle to unregister
2586 *
2587 * This function removes input handle from device's
2588 * and handler's lists.
2589 *
2590 * This function is supposed to be called from handler's
2591 * disconnect() method.
2592 */
input_unregister_handle(struct input_handle * handle)2593 void input_unregister_handle(struct input_handle *handle)
2594 {
2595 struct input_dev *dev = handle->dev;
2596
2597 list_del_rcu(&handle->h_node);
2598
2599 /*
2600 * Take dev->mutex to prevent race with input_release_device().
2601 */
2602 mutex_lock(&dev->mutex);
2603 list_del_rcu(&handle->d_node);
2604 mutex_unlock(&dev->mutex);
2605
2606 synchronize_rcu();
2607 }
2608 EXPORT_SYMBOL(input_unregister_handle);
2609
2610 /**
2611 * input_get_new_minor - allocates a new input minor number
2612 * @legacy_base: beginning or the legacy range to be searched
2613 * @legacy_num: size of legacy range
2614 * @allow_dynamic: whether we can also take ID from the dynamic range
2615 *
2616 * This function allocates a new device minor for from input major namespace.
2617 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2618 * parameters and whether ID can be allocated from dynamic range if there are
2619 * no free IDs in legacy range.
2620 */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2621 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2622 bool allow_dynamic)
2623 {
2624 /*
2625 * This function should be called from input handler's ->connect()
2626 * methods, which are serialized with input_mutex, so no additional
2627 * locking is needed here.
2628 */
2629 if (legacy_base >= 0) {
2630 int minor = ida_simple_get(&input_ida,
2631 legacy_base,
2632 legacy_base + legacy_num,
2633 GFP_KERNEL);
2634 if (minor >= 0 || !allow_dynamic)
2635 return minor;
2636 }
2637
2638 return ida_simple_get(&input_ida,
2639 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2640 GFP_KERNEL);
2641 }
2642 EXPORT_SYMBOL(input_get_new_minor);
2643
2644 /**
2645 * input_free_minor - release previously allocated minor
2646 * @minor: minor to be released
2647 *
2648 * This function releases previously allocated input minor so that it can be
2649 * reused later.
2650 */
input_free_minor(unsigned int minor)2651 void input_free_minor(unsigned int minor)
2652 {
2653 ida_simple_remove(&input_ida, minor);
2654 }
2655 EXPORT_SYMBOL(input_free_minor);
2656
input_init(void)2657 static int __init input_init(void)
2658 {
2659 int err;
2660
2661 err = class_register(&input_class);
2662 if (err) {
2663 pr_err("unable to register input_dev class\n");
2664 return err;
2665 }
2666
2667 err = input_proc_init();
2668 if (err)
2669 goto fail1;
2670
2671 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2672 INPUT_MAX_CHAR_DEVICES, "input");
2673 if (err) {
2674 pr_err("unable to register char major %d", INPUT_MAJOR);
2675 goto fail2;
2676 }
2677
2678 return 0;
2679
2680 fail2: input_proc_exit();
2681 fail1: class_unregister(&input_class);
2682 return err;
2683 }
2684
input_exit(void)2685 static void __exit input_exit(void)
2686 {
2687 input_proc_exit();
2688 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2689 INPUT_MAX_CHAR_DEVICES);
2690 class_unregister(&input_class);
2691 }
2692
2693 subsys_initcall(input_init);
2694 module_exit(input_exit);
2695