1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34
35 #define DM_MSG_PREFIX "core"
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 /*
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
48 */
49 #define REQ_DM_POLL_LIST REQ_DRV
50
51 static const char *_name = DM_NAME;
52
53 static unsigned int major;
54 static unsigned int _major;
55
56 static DEFINE_IDR(_minor_idr);
57
58 static DEFINE_SPINLOCK(_minor_lock);
59
60 static void do_deferred_remove(struct work_struct *w);
61
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63
64 static struct workqueue_struct *deferred_remove_workqueue;
65
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68
dm_issue_global_event(void)69 void dm_issue_global_event(void)
70 {
71 atomic_inc(&dm_global_event_nr);
72 wake_up(&dm_global_eventq);
73 }
74
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78
79 /*
80 * One of these is allocated (on-stack) per original bio.
81 */
82 struct clone_info {
83 struct dm_table *map;
84 struct bio *bio;
85 struct dm_io *io;
86 sector_t sector;
87 unsigned int sector_count;
88 bool is_abnormal_io:1;
89 bool submit_as_polled:1;
90 };
91
clone_to_tio(struct bio * clone)92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 return container_of(clone, struct dm_target_io, clone);
95 }
96
dm_per_bio_data(struct bio * bio,size_t data_size)97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104
dm_bio_from_per_bio_data(void * data,size_t data_size)105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108
109 if (io->magic == DM_IO_MAGIC)
110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 BUG_ON(io->magic != DM_TIO_MAGIC);
112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115
dm_bio_get_target_bio_nr(const struct bio * bio)116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121
122 #define MINOR_ALLOCED ((void *)-1)
123
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126
127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)129 static int get_swap_bios(void)
130 {
131 int latch = READ_ONCE(swap_bios);
132
133 if (unlikely(latch <= 0))
134 latch = DEFAULT_SWAP_BIOS;
135 return latch;
136 }
137
138 struct table_device {
139 struct list_head list;
140 refcount_t count;
141 struct dm_dev dm_dev;
142 };
143
144 /*
145 * Bio-based DM's mempools' reserved IOs set by the user.
146 */
147 #define RESERVED_BIO_BASED_IOS 16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149
__dm_get_module_param_int(int * module_param,int min,int max)150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 int param = READ_ONCE(*module_param);
153 int modified_param = 0;
154 bool modified = true;
155
156 if (param < min)
157 modified_param = min;
158 else if (param > max)
159 modified_param = max;
160 else
161 modified = false;
162
163 if (modified) {
164 (void)cmpxchg(module_param, param, modified_param);
165 param = modified_param;
166 }
167
168 return param;
169 }
170
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 unsigned int param = READ_ONCE(*module_param);
174 unsigned int modified_param = 0;
175
176 if (!param)
177 modified_param = def;
178 else if (param > max)
179 modified_param = max;
180
181 if (modified_param) {
182 (void)cmpxchg(module_param, param, modified_param);
183 param = modified_param;
184 }
185
186 return param;
187 }
188
dm_get_reserved_bio_based_ios(void)189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 return __dm_get_module_param(&reserved_bio_based_ios,
192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195
dm_get_numa_node(void)196 static unsigned int dm_get_numa_node(void)
197 {
198 return __dm_get_module_param_int(&dm_numa_node,
199 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201
local_init(void)202 static int __init local_init(void)
203 {
204 int r;
205
206 r = dm_uevent_init();
207 if (r)
208 return r;
209
210 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
211 if (!deferred_remove_workqueue) {
212 r = -ENOMEM;
213 goto out_uevent_exit;
214 }
215
216 _major = major;
217 r = register_blkdev(_major, _name);
218 if (r < 0)
219 goto out_free_workqueue;
220
221 if (!_major)
222 _major = r;
223
224 return 0;
225
226 out_free_workqueue:
227 destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 dm_uevent_exit();
230
231 return r;
232 }
233
local_exit(void)234 static void local_exit(void)
235 {
236 destroy_workqueue(deferred_remove_workqueue);
237
238 unregister_blkdev(_major, _name);
239 dm_uevent_exit();
240
241 _major = 0;
242
243 DMINFO("cleaned up");
244 }
245
246 static int (*_inits[])(void) __initdata = {
247 local_init,
248 dm_target_init,
249 dm_linear_init,
250 dm_stripe_init,
251 dm_io_init,
252 dm_kcopyd_init,
253 dm_interface_init,
254 dm_statistics_init,
255 };
256
257 static void (*_exits[])(void) = {
258 local_exit,
259 dm_target_exit,
260 dm_linear_exit,
261 dm_stripe_exit,
262 dm_io_exit,
263 dm_kcopyd_exit,
264 dm_interface_exit,
265 dm_statistics_exit,
266 };
267
dm_init(void)268 static int __init dm_init(void)
269 {
270 const int count = ARRAY_SIZE(_inits);
271 int r, i;
272
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277
278 for (i = 0; i < count; i++) {
279 r = _inits[i]();
280 if (r)
281 goto bad;
282 }
283
284 return 0;
285 bad:
286 while (i--)
287 _exits[i]();
288
289 return r;
290 }
291
dm_exit(void)292 static void __exit dm_exit(void)
293 {
294 int i = ARRAY_SIZE(_exits);
295
296 while (i--)
297 _exits[i]();
298
299 /*
300 * Should be empty by this point.
301 */
302 idr_destroy(&_minor_idr);
303 }
304
305 /*
306 * Block device functions
307 */
dm_deleting_md(struct mapped_device * md)308 int dm_deleting_md(struct mapped_device *md)
309 {
310 return test_bit(DMF_DELETING, &md->flags);
311 }
312
dm_blk_open(struct block_device * bdev,fmode_t mode)313 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
314 {
315 struct mapped_device *md;
316
317 spin_lock(&_minor_lock);
318
319 md = bdev->bd_disk->private_data;
320 if (!md)
321 goto out;
322
323 if (test_bit(DMF_FREEING, &md->flags) ||
324 dm_deleting_md(md)) {
325 md = NULL;
326 goto out;
327 }
328
329 dm_get(md);
330 atomic_inc(&md->open_count);
331 out:
332 spin_unlock(&_minor_lock);
333
334 return md ? 0 : -ENXIO;
335 }
336
dm_blk_close(struct gendisk * disk,fmode_t mode)337 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
338 {
339 struct mapped_device *md;
340
341 spin_lock(&_minor_lock);
342
343 md = disk->private_data;
344 if (WARN_ON(!md))
345 goto out;
346
347 if (atomic_dec_and_test(&md->open_count) &&
348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 queue_work(deferred_remove_workqueue, &deferred_remove_work);
350
351 dm_put(md);
352 out:
353 spin_unlock(&_minor_lock);
354 }
355
dm_open_count(struct mapped_device * md)356 int dm_open_count(struct mapped_device *md)
357 {
358 return atomic_read(&md->open_count);
359 }
360
361 /*
362 * Guarantees nothing is using the device before it's deleted.
363 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 int r = 0;
367
368 spin_lock(&_minor_lock);
369
370 if (dm_open_count(md)) {
371 r = -EBUSY;
372 if (mark_deferred)
373 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 r = -EEXIST;
376 else
377 set_bit(DMF_DELETING, &md->flags);
378
379 spin_unlock(&_minor_lock);
380
381 return r;
382 }
383
dm_cancel_deferred_remove(struct mapped_device * md)384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 int r = 0;
387
388 spin_lock(&_minor_lock);
389
390 if (test_bit(DMF_DELETING, &md->flags))
391 r = -EBUSY;
392 else
393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394
395 spin_unlock(&_minor_lock);
396
397 return r;
398 }
399
do_deferred_remove(struct work_struct * w)400 static void do_deferred_remove(struct work_struct *w)
401 {
402 dm_deferred_remove();
403 }
404
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 struct mapped_device *md = bdev->bd_disk->private_data;
408
409 return dm_get_geometry(md, geo);
410 }
411
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 struct block_device **bdev)
414 {
415 struct dm_target *ti;
416 struct dm_table *map;
417 int r;
418
419 retry:
420 r = -ENOTTY;
421 map = dm_get_live_table(md, srcu_idx);
422 if (!map || !dm_table_get_size(map))
423 return r;
424
425 /* We only support devices that have a single target */
426 if (map->num_targets != 1)
427 return r;
428
429 ti = dm_table_get_target(map, 0);
430 if (!ti->type->prepare_ioctl)
431 return r;
432
433 if (dm_suspended_md(md))
434 return -EAGAIN;
435
436 r = ti->type->prepare_ioctl(ti, bdev);
437 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 dm_put_live_table(md, *srcu_idx);
439 fsleep(10000);
440 goto retry;
441 }
442
443 return r;
444 }
445
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 dm_put_live_table(md, srcu_idx);
449 }
450
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
452 unsigned int cmd, unsigned long arg)
453 {
454 struct mapped_device *md = bdev->bd_disk->private_data;
455 int r, srcu_idx;
456
457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 if (r < 0)
459 goto out;
460
461 if (r > 0) {
462 /*
463 * Target determined this ioctl is being issued against a
464 * subset of the parent bdev; require extra privileges.
465 */
466 if (!capable(CAP_SYS_RAWIO)) {
467 DMDEBUG_LIMIT(
468 "%s: sending ioctl %x to DM device without required privilege.",
469 current->comm, cmd);
470 r = -ENOIOCTLCMD;
471 goto out;
472 }
473 }
474
475 if (!bdev->bd_disk->fops->ioctl)
476 r = -ENOTTY;
477 else
478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 dm_unprepare_ioctl(md, srcu_idx);
481 return r;
482 }
483
dm_start_time_ns_from_clone(struct bio * bio)484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489
bio_is_flush_with_data(struct bio * bio)490 static bool bio_is_flush_with_data(struct bio *bio)
491 {
492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494
dm_io_acct(struct dm_io * io,bool end)495 static void dm_io_acct(struct dm_io *io, bool end)
496 {
497 struct dm_stats_aux *stats_aux = &io->stats_aux;
498 unsigned long start_time = io->start_time;
499 struct mapped_device *md = io->md;
500 struct bio *bio = io->orig_bio;
501 unsigned int sectors;
502
503 /*
504 * If REQ_PREFLUSH set, don't account payload, it will be
505 * submitted (and accounted) after this flush completes.
506 */
507 if (bio_is_flush_with_data(bio))
508 sectors = 0;
509 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
510 sectors = bio_sectors(bio);
511 else
512 sectors = io->sectors;
513
514 if (!end)
515 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
516 start_time);
517 else
518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
519
520 if (static_branch_unlikely(&stats_enabled) &&
521 unlikely(dm_stats_used(&md->stats))) {
522 sector_t sector;
523
524 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 sector = bio->bi_iter.bi_sector;
526 else
527 sector = bio_end_sector(bio) - io->sector_offset;
528
529 dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 sector, sectors,
531 end, start_time, stats_aux);
532 }
533 }
534
__dm_start_io_acct(struct dm_io * io)535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 dm_io_acct(io, false);
538 }
539
dm_start_io_acct(struct dm_io * io,struct bio * clone)540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 /*
543 * Ensure IO accounting is only ever started once.
544 */
545 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 return;
547
548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 } else {
552 unsigned long flags;
553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 spin_lock_irqsave(&io->lock, flags);
555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 spin_unlock_irqrestore(&io->lock, flags);
557 return;
558 }
559 dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 spin_unlock_irqrestore(&io->lock, flags);
561 }
562
563 __dm_start_io_acct(io);
564 }
565
dm_end_io_acct(struct dm_io * io)566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 dm_io_acct(io, true);
569 }
570
alloc_io(struct mapped_device * md,struct bio * bio)571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
572 {
573 struct dm_io *io;
574 struct dm_target_io *tio;
575 struct bio *clone;
576
577 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
578 tio = clone_to_tio(clone);
579 tio->flags = 0;
580 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
581 tio->io = NULL;
582
583 io = container_of(tio, struct dm_io, tio);
584 io->magic = DM_IO_MAGIC;
585 io->status = BLK_STS_OK;
586
587 /* one ref is for submission, the other is for completion */
588 atomic_set(&io->io_count, 2);
589 this_cpu_inc(*md->pending_io);
590 io->orig_bio = bio;
591 io->md = md;
592 spin_lock_init(&io->lock);
593 io->start_time = jiffies;
594 io->flags = 0;
595
596 if (static_branch_unlikely(&stats_enabled))
597 dm_stats_record_start(&md->stats, &io->stats_aux);
598
599 return io;
600 }
601
free_io(struct dm_io * io)602 static void free_io(struct dm_io *io)
603 {
604 bio_put(&io->tio.clone);
605 }
606
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
608 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
609 {
610 struct mapped_device *md = ci->io->md;
611 struct dm_target_io *tio;
612 struct bio *clone;
613
614 if (!ci->io->tio.io) {
615 /* the dm_target_io embedded in ci->io is available */
616 tio = &ci->io->tio;
617 /* alloc_io() already initialized embedded clone */
618 clone = &tio->clone;
619 } else {
620 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
621 &md->mempools->bs);
622 if (!clone)
623 return NULL;
624
625 /* REQ_DM_POLL_LIST shouldn't be inherited */
626 clone->bi_opf &= ~REQ_DM_POLL_LIST;
627
628 tio = clone_to_tio(clone);
629 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
630 }
631
632 tio->magic = DM_TIO_MAGIC;
633 tio->io = ci->io;
634 tio->ti = ti;
635 tio->target_bio_nr = target_bio_nr;
636 tio->len_ptr = len;
637 tio->old_sector = 0;
638
639 /* Set default bdev, but target must bio_set_dev() before issuing IO */
640 clone->bi_bdev = md->disk->part0;
641 if (unlikely(ti->needs_bio_set_dev))
642 bio_set_dev(clone, md->disk->part0);
643
644 if (len) {
645 clone->bi_iter.bi_size = to_bytes(*len);
646 if (bio_integrity(clone))
647 bio_integrity_trim(clone);
648 }
649
650 return clone;
651 }
652
free_tio(struct bio * clone)653 static void free_tio(struct bio *clone)
654 {
655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 return;
657 bio_put(clone);
658 }
659
660 /*
661 * Add the bio to the list of deferred io.
662 */
queue_io(struct mapped_device * md,struct bio * bio)663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 unsigned long flags;
666
667 spin_lock_irqsave(&md->deferred_lock, flags);
668 bio_list_add(&md->deferred, bio);
669 spin_unlock_irqrestore(&md->deferred_lock, flags);
670 queue_work(md->wq, &md->work);
671 }
672
673 /*
674 * Everyone (including functions in this file), should use this
675 * function to access the md->map field, and make sure they call
676 * dm_put_live_table() when finished.
677 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 int *srcu_idx) __acquires(md->io_barrier)
680 {
681 *srcu_idx = srcu_read_lock(&md->io_barrier);
682
683 return srcu_dereference(md->map, &md->io_barrier);
684 }
685
dm_put_live_table(struct mapped_device * md,int srcu_idx)686 void dm_put_live_table(struct mapped_device *md,
687 int srcu_idx) __releases(md->io_barrier)
688 {
689 srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691
dm_sync_table(struct mapped_device * md)692 void dm_sync_table(struct mapped_device *md)
693 {
694 synchronize_srcu(&md->io_barrier);
695 synchronize_rcu_expedited();
696 }
697
698 /*
699 * A fast alternative to dm_get_live_table/dm_put_live_table.
700 * The caller must not block between these two functions.
701 */
dm_get_live_table_fast(struct mapped_device * md)702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 rcu_read_lock();
705 return rcu_dereference(md->map);
706 }
707
dm_put_live_table_fast(struct mapped_device * md)708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 rcu_read_unlock();
711 }
712
dm_get_live_table_bio(struct mapped_device * md,int * srcu_idx,blk_opf_t bio_opf)713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 int *srcu_idx, blk_opf_t bio_opf)
715 {
716 if (bio_opf & REQ_NOWAIT)
717 return dm_get_live_table_fast(md);
718 else
719 return dm_get_live_table(md, srcu_idx);
720 }
721
dm_put_live_table_bio(struct mapped_device * md,int srcu_idx,blk_opf_t bio_opf)722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 blk_opf_t bio_opf)
724 {
725 if (bio_opf & REQ_NOWAIT)
726 dm_put_live_table_fast(md);
727 else
728 dm_put_live_table(md, srcu_idx);
729 }
730
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732
733 /*
734 * Open a table device so we can use it as a map destination.
735 */
open_table_device(struct mapped_device * md,dev_t dev,fmode_t mode)736 static struct table_device *open_table_device(struct mapped_device *md,
737 dev_t dev, fmode_t mode)
738 {
739 struct table_device *td;
740 struct block_device *bdev;
741 u64 part_off;
742 int r;
743
744 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
745 if (!td)
746 return ERR_PTR(-ENOMEM);
747 refcount_set(&td->count, 1);
748
749 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
750 if (IS_ERR(bdev)) {
751 r = PTR_ERR(bdev);
752 goto out_free_td;
753 }
754
755 /*
756 * We can be called before the dm disk is added. In that case we can't
757 * register the holder relation here. It will be done once add_disk was
758 * called.
759 */
760 if (md->disk->slave_dir) {
761 r = bd_link_disk_holder(bdev, md->disk);
762 if (r)
763 goto out_blkdev_put;
764 }
765
766 td->dm_dev.mode = mode;
767 td->dm_dev.bdev = bdev;
768 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
769 format_dev_t(td->dm_dev.name, dev);
770 list_add(&td->list, &md->table_devices);
771 return td;
772
773 out_blkdev_put:
774 blkdev_put(bdev, mode | FMODE_EXCL);
775 out_free_td:
776 kfree(td);
777 return ERR_PTR(r);
778 }
779
780 /*
781 * Close a table device that we've been using.
782 */
close_table_device(struct table_device * td,struct mapped_device * md)783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 if (md->disk->slave_dir)
786 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
787 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
788 put_dax(td->dm_dev.dax_dev);
789 list_del(&td->list);
790 kfree(td);
791 }
792
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 fmode_t mode)
795 {
796 struct table_device *td;
797
798 list_for_each_entry(td, l, list)
799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 return td;
801
802 return NULL;
803 }
804
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
806 struct dm_dev **result)
807 {
808 struct table_device *td;
809
810 mutex_lock(&md->table_devices_lock);
811 td = find_table_device(&md->table_devices, dev, mode);
812 if (!td) {
813 td = open_table_device(md, dev, mode);
814 if (IS_ERR(td)) {
815 mutex_unlock(&md->table_devices_lock);
816 return PTR_ERR(td);
817 }
818 } else {
819 refcount_inc(&td->count);
820 }
821 mutex_unlock(&md->table_devices_lock);
822
823 *result = &td->dm_dev;
824 return 0;
825 }
826
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 struct table_device *td = container_of(d, struct table_device, dm_dev);
830
831 mutex_lock(&md->table_devices_lock);
832 if (refcount_dec_and_test(&td->count))
833 close_table_device(td, md);
834 mutex_unlock(&md->table_devices_lock);
835 }
836
837 /*
838 * Get the geometry associated with a dm device
839 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 *geo = md->geometry;
843
844 return 0;
845 }
846
847 /*
848 * Set the geometry of a device.
849 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853
854 if (geo->start > sz) {
855 DMERR("Start sector is beyond the geometry limits.");
856 return -EINVAL;
857 }
858
859 md->geometry = *geo;
860
861 return 0;
862 }
863
__noflush_suspending(struct mapped_device * md)864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868
dm_requeue_add_io(struct dm_io * io,bool first_stage)869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 struct mapped_device *md = io->md;
872
873 if (first_stage) {
874 struct dm_io *next = md->requeue_list;
875
876 md->requeue_list = io;
877 io->next = next;
878 } else {
879 bio_list_add_head(&md->deferred, io->orig_bio);
880 }
881 }
882
dm_kick_requeue(struct mapped_device * md,bool first_stage)883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 if (first_stage)
886 queue_work(md->wq, &md->requeue_work);
887 else
888 queue_work(md->wq, &md->work);
889 }
890
891 /*
892 * Return true if the dm_io's original bio is requeued.
893 * io->status is updated with error if requeue disallowed.
894 */
dm_handle_requeue(struct dm_io * io,bool first_stage)895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 struct bio *bio = io->orig_bio;
898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 (bio->bi_opf & REQ_POLLED));
901 struct mapped_device *md = io->md;
902 bool requeued = false;
903
904 if (handle_requeue || handle_polled_eagain) {
905 unsigned long flags;
906
907 if (bio->bi_opf & REQ_POLLED) {
908 /*
909 * Upper layer won't help us poll split bio
910 * (io->orig_bio may only reflect a subset of the
911 * pre-split original) so clear REQ_POLLED.
912 */
913 bio_clear_polled(bio);
914 }
915
916 /*
917 * Target requested pushing back the I/O or
918 * polled IO hit BLK_STS_AGAIN.
919 */
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if ((__noflush_suspending(md) &&
922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 handle_polled_eagain || first_stage) {
924 dm_requeue_add_io(io, first_stage);
925 requeued = true;
926 } else {
927 /*
928 * noflush suspend was interrupted or this is
929 * a write to a zoned target.
930 */
931 io->status = BLK_STS_IOERR;
932 }
933 spin_unlock_irqrestore(&md->deferred_lock, flags);
934 }
935
936 if (requeued)
937 dm_kick_requeue(md, first_stage);
938
939 return requeued;
940 }
941
__dm_io_complete(struct dm_io * io,bool first_stage)942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 struct bio *bio = io->orig_bio;
945 struct mapped_device *md = io->md;
946 blk_status_t io_error;
947 bool requeued;
948
949 requeued = dm_handle_requeue(io, first_stage);
950 if (requeued && first_stage)
951 return;
952
953 io_error = io->status;
954 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 dm_end_io_acct(io);
956 else if (!io_error) {
957 /*
958 * Must handle target that DM_MAPIO_SUBMITTED only to
959 * then bio_endio() rather than dm_submit_bio_remap()
960 */
961 __dm_start_io_acct(io);
962 dm_end_io_acct(io);
963 }
964 free_io(io);
965 smp_wmb();
966 this_cpu_dec(*md->pending_io);
967
968 /* nudge anyone waiting on suspend queue */
969 if (unlikely(wq_has_sleeper(&md->wait)))
970 wake_up(&md->wait);
971
972 /* Return early if the original bio was requeued */
973 if (requeued)
974 return;
975
976 if (bio_is_flush_with_data(bio)) {
977 /*
978 * Preflush done for flush with data, reissue
979 * without REQ_PREFLUSH.
980 */
981 bio->bi_opf &= ~REQ_PREFLUSH;
982 queue_io(md, bio);
983 } else {
984 /* done with normal IO or empty flush */
985 if (io_error)
986 bio->bi_status = io_error;
987 bio_endio(bio);
988 }
989 }
990
dm_wq_requeue_work(struct work_struct * work)991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 struct mapped_device *md = container_of(work, struct mapped_device,
994 requeue_work);
995 unsigned long flags;
996 struct dm_io *io;
997
998 /* reuse deferred lock to simplify dm_handle_requeue */
999 spin_lock_irqsave(&md->deferred_lock, flags);
1000 io = md->requeue_list;
1001 md->requeue_list = NULL;
1002 spin_unlock_irqrestore(&md->deferred_lock, flags);
1003
1004 while (io) {
1005 struct dm_io *next = io->next;
1006
1007 dm_io_rewind(io, &md->disk->bio_split);
1008
1009 io->next = NULL;
1010 __dm_io_complete(io, false);
1011 io = next;
1012 cond_resched();
1013 }
1014 }
1015
1016 /*
1017 * Two staged requeue:
1018 *
1019 * 1) io->orig_bio points to the real original bio, and the part mapped to
1020 * this io must be requeued, instead of other parts of the original bio.
1021 *
1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023 */
dm_io_complete(struct dm_io * io)1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 bool first_requeue;
1027
1028 /*
1029 * Only dm_io that has been split needs two stage requeue, otherwise
1030 * we may run into long bio clone chain during suspend and OOM could
1031 * be triggered.
1032 *
1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 * also aren't handled via the first stage requeue.
1035 */
1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 first_requeue = true;
1038 else
1039 first_requeue = false;
1040
1041 __dm_io_complete(io, first_requeue);
1042 }
1043
1044 /*
1045 * Decrements the number of outstanding ios that a bio has been
1046 * cloned into, completing the original io if necc.
1047 */
__dm_io_dec_pending(struct dm_io * io)1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 if (atomic_dec_and_test(&io->io_count))
1051 dm_io_complete(io);
1052 }
1053
dm_io_set_error(struct dm_io * io,blk_status_t error)1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 unsigned long flags;
1057
1058 /* Push-back supersedes any I/O errors */
1059 spin_lock_irqsave(&io->lock, flags);
1060 if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 __noflush_suspending(io->md))) {
1062 io->status = error;
1063 }
1064 spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 if (unlikely(error))
1070 dm_io_set_error(io, error);
1071
1072 __dm_io_dec_pending(io);
1073 }
1074
disable_discard(struct mapped_device * md)1075 void disable_discard(struct mapped_device *md)
1076 {
1077 struct queue_limits *limits = dm_get_queue_limits(md);
1078
1079 /* device doesn't really support DISCARD, disable it */
1080 limits->max_discard_sectors = 0;
1081 }
1082
disable_write_zeroes(struct mapped_device * md)1083 void disable_write_zeroes(struct mapped_device *md)
1084 {
1085 struct queue_limits *limits = dm_get_queue_limits(md);
1086
1087 /* device doesn't really support WRITE ZEROES, disable it */
1088 limits->max_write_zeroes_sectors = 0;
1089 }
1090
swap_bios_limit(struct dm_target * ti,struct bio * bio)1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092 {
1093 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094 }
1095
clone_endio(struct bio * bio)1096 static void clone_endio(struct bio *bio)
1097 {
1098 blk_status_t error = bio->bi_status;
1099 struct dm_target_io *tio = clone_to_tio(bio);
1100 struct dm_target *ti = tio->ti;
1101 dm_endio_fn endio = ti->type->end_io;
1102 struct dm_io *io = tio->io;
1103 struct mapped_device *md = io->md;
1104
1105 if (unlikely(error == BLK_STS_TARGET)) {
1106 if (bio_op(bio) == REQ_OP_DISCARD &&
1107 !bdev_max_discard_sectors(bio->bi_bdev))
1108 disable_discard(md);
1109 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111 disable_write_zeroes(md);
1112 }
1113
1114 if (static_branch_unlikely(&zoned_enabled) &&
1115 unlikely(bdev_is_zoned(bio->bi_bdev)))
1116 dm_zone_endio(io, bio);
1117
1118 if (endio) {
1119 int r = endio(ti, bio, &error);
1120
1121 switch (r) {
1122 case DM_ENDIO_REQUEUE:
1123 if (static_branch_unlikely(&zoned_enabled)) {
1124 /*
1125 * Requeuing writes to a sequential zone of a zoned
1126 * target will break the sequential write pattern:
1127 * fail such IO.
1128 */
1129 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130 error = BLK_STS_IOERR;
1131 else
1132 error = BLK_STS_DM_REQUEUE;
1133 } else
1134 error = BLK_STS_DM_REQUEUE;
1135 fallthrough;
1136 case DM_ENDIO_DONE:
1137 break;
1138 case DM_ENDIO_INCOMPLETE:
1139 /* The target will handle the io */
1140 return;
1141 default:
1142 DMCRIT("unimplemented target endio return value: %d", r);
1143 BUG();
1144 }
1145 }
1146
1147 if (static_branch_unlikely(&swap_bios_enabled) &&
1148 unlikely(swap_bios_limit(ti, bio)))
1149 up(&md->swap_bios_semaphore);
1150
1151 free_tio(bio);
1152 dm_io_dec_pending(io, error);
1153 }
1154
1155 /*
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1157 * target boundary.
1158 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160 sector_t target_offset)
1161 {
1162 return ti->len - target_offset;
1163 }
1164
max_io_len(struct dm_target * ti,sector_t sector)1165 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1166 {
1167 sector_t target_offset = dm_target_offset(ti, sector);
1168 sector_t len = max_io_len_target_boundary(ti, target_offset);
1169
1170 /*
1171 * Does the target need to split IO even further?
1172 * - varied (per target) IO splitting is a tenet of DM; this
1173 * explains why stacked chunk_sectors based splitting via
1174 * bio_split_to_limits() isn't possible here.
1175 */
1176 if (!ti->max_io_len)
1177 return len;
1178 return min_t(sector_t, len,
1179 min(queue_max_sectors(ti->table->md->queue),
1180 blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1181 }
1182
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1183 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1184 {
1185 if (len > UINT_MAX) {
1186 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1187 (unsigned long long)len, UINT_MAX);
1188 ti->error = "Maximum size of target IO is too large";
1189 return -EINVAL;
1190 }
1191
1192 ti->max_io_len = (uint32_t) len;
1193
1194 return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1197
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1198 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1199 sector_t sector, int *srcu_idx)
1200 __acquires(md->io_barrier)
1201 {
1202 struct dm_table *map;
1203 struct dm_target *ti;
1204
1205 map = dm_get_live_table(md, srcu_idx);
1206 if (!map)
1207 return NULL;
1208
1209 ti = dm_table_find_target(map, sector);
1210 if (!ti)
1211 return NULL;
1212
1213 return ti;
1214 }
1215
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1216 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1217 long nr_pages, enum dax_access_mode mode, void **kaddr,
1218 pfn_t *pfn)
1219 {
1220 struct mapped_device *md = dax_get_private(dax_dev);
1221 sector_t sector = pgoff * PAGE_SECTORS;
1222 struct dm_target *ti;
1223 long len, ret = -EIO;
1224 int srcu_idx;
1225
1226 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1227
1228 if (!ti)
1229 goto out;
1230 if (!ti->type->direct_access)
1231 goto out;
1232 len = max_io_len(ti, sector) / PAGE_SECTORS;
1233 if (len < 1)
1234 goto out;
1235 nr_pages = min(len, nr_pages);
1236 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1237
1238 out:
1239 dm_put_live_table(md, srcu_idx);
1240
1241 return ret;
1242 }
1243
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1244 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1245 size_t nr_pages)
1246 {
1247 struct mapped_device *md = dax_get_private(dax_dev);
1248 sector_t sector = pgoff * PAGE_SECTORS;
1249 struct dm_target *ti;
1250 int ret = -EIO;
1251 int srcu_idx;
1252
1253 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1254
1255 if (!ti)
1256 goto out;
1257 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1258 /*
1259 * ->zero_page_range() is mandatory dax operation. If we are
1260 * here, something is wrong.
1261 */
1262 goto out;
1263 }
1264 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1265 out:
1266 dm_put_live_table(md, srcu_idx);
1267
1268 return ret;
1269 }
1270
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1271 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1272 void *addr, size_t bytes, struct iov_iter *i)
1273 {
1274 struct mapped_device *md = dax_get_private(dax_dev);
1275 sector_t sector = pgoff * PAGE_SECTORS;
1276 struct dm_target *ti;
1277 int srcu_idx;
1278 long ret = 0;
1279
1280 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1281 if (!ti || !ti->type->dax_recovery_write)
1282 goto out;
1283
1284 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1285 out:
1286 dm_put_live_table(md, srcu_idx);
1287 return ret;
1288 }
1289
1290 /*
1291 * A target may call dm_accept_partial_bio only from the map routine. It is
1292 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1293 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1294 * __send_duplicate_bios().
1295 *
1296 * dm_accept_partial_bio informs the dm that the target only wants to process
1297 * additional n_sectors sectors of the bio and the rest of the data should be
1298 * sent in a next bio.
1299 *
1300 * A diagram that explains the arithmetics:
1301 * +--------------------+---------------+-------+
1302 * | 1 | 2 | 3 |
1303 * +--------------------+---------------+-------+
1304 *
1305 * <-------------- *tio->len_ptr --------------->
1306 * <----- bio_sectors ----->
1307 * <-- n_sectors -->
1308 *
1309 * Region 1 was already iterated over with bio_advance or similar function.
1310 * (it may be empty if the target doesn't use bio_advance)
1311 * Region 2 is the remaining bio size that the target wants to process.
1312 * (it may be empty if region 1 is non-empty, although there is no reason
1313 * to make it empty)
1314 * The target requires that region 3 is to be sent in the next bio.
1315 *
1316 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1317 * the partially processed part (the sum of regions 1+2) must be the same for all
1318 * copies of the bio.
1319 */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1320 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1321 {
1322 struct dm_target_io *tio = clone_to_tio(bio);
1323 struct dm_io *io = tio->io;
1324 unsigned int bio_sectors = bio_sectors(bio);
1325
1326 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1327 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1328 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1329 BUG_ON(bio_sectors > *tio->len_ptr);
1330 BUG_ON(n_sectors > bio_sectors);
1331
1332 *tio->len_ptr -= bio_sectors - n_sectors;
1333 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1334
1335 /*
1336 * __split_and_process_bio() may have already saved mapped part
1337 * for accounting but it is being reduced so update accordingly.
1338 */
1339 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1340 io->sectors = n_sectors;
1341 io->sector_offset = bio_sectors(io->orig_bio);
1342 }
1343 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1344
1345 /*
1346 * @clone: clone bio that DM core passed to target's .map function
1347 * @tgt_clone: clone of @clone bio that target needs submitted
1348 *
1349 * Targets should use this interface to submit bios they take
1350 * ownership of when returning DM_MAPIO_SUBMITTED.
1351 *
1352 * Target should also enable ti->accounts_remapped_io
1353 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1354 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1355 {
1356 struct dm_target_io *tio = clone_to_tio(clone);
1357 struct dm_io *io = tio->io;
1358
1359 /* establish bio that will get submitted */
1360 if (!tgt_clone)
1361 tgt_clone = clone;
1362
1363 /*
1364 * Account io->origin_bio to DM dev on behalf of target
1365 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1366 */
1367 dm_start_io_acct(io, clone);
1368
1369 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1370 tio->old_sector);
1371 submit_bio_noacct(tgt_clone);
1372 }
1373 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1374
__set_swap_bios_limit(struct mapped_device * md,int latch)1375 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1376 {
1377 mutex_lock(&md->swap_bios_lock);
1378 while (latch < md->swap_bios) {
1379 cond_resched();
1380 down(&md->swap_bios_semaphore);
1381 md->swap_bios--;
1382 }
1383 while (latch > md->swap_bios) {
1384 cond_resched();
1385 up(&md->swap_bios_semaphore);
1386 md->swap_bios++;
1387 }
1388 mutex_unlock(&md->swap_bios_lock);
1389 }
1390
__map_bio(struct bio * clone)1391 static void __map_bio(struct bio *clone)
1392 {
1393 struct dm_target_io *tio = clone_to_tio(clone);
1394 struct dm_target *ti = tio->ti;
1395 struct dm_io *io = tio->io;
1396 struct mapped_device *md = io->md;
1397 int r;
1398
1399 clone->bi_end_io = clone_endio;
1400
1401 /*
1402 * Map the clone.
1403 */
1404 tio->old_sector = clone->bi_iter.bi_sector;
1405
1406 if (static_branch_unlikely(&swap_bios_enabled) &&
1407 unlikely(swap_bios_limit(ti, clone))) {
1408 int latch = get_swap_bios();
1409
1410 if (unlikely(latch != md->swap_bios))
1411 __set_swap_bios_limit(md, latch);
1412 down(&md->swap_bios_semaphore);
1413 }
1414
1415 if (static_branch_unlikely(&zoned_enabled)) {
1416 /*
1417 * Check if the IO needs a special mapping due to zone append
1418 * emulation on zoned target. In this case, dm_zone_map_bio()
1419 * calls the target map operation.
1420 */
1421 if (unlikely(dm_emulate_zone_append(md)))
1422 r = dm_zone_map_bio(tio);
1423 else
1424 r = ti->type->map(ti, clone);
1425 } else
1426 r = ti->type->map(ti, clone);
1427
1428 switch (r) {
1429 case DM_MAPIO_SUBMITTED:
1430 /* target has assumed ownership of this io */
1431 if (!ti->accounts_remapped_io)
1432 dm_start_io_acct(io, clone);
1433 break;
1434 case DM_MAPIO_REMAPPED:
1435 dm_submit_bio_remap(clone, NULL);
1436 break;
1437 case DM_MAPIO_KILL:
1438 case DM_MAPIO_REQUEUE:
1439 if (static_branch_unlikely(&swap_bios_enabled) &&
1440 unlikely(swap_bios_limit(ti, clone)))
1441 up(&md->swap_bios_semaphore);
1442 free_tio(clone);
1443 if (r == DM_MAPIO_KILL)
1444 dm_io_dec_pending(io, BLK_STS_IOERR);
1445 else
1446 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1447 break;
1448 default:
1449 DMCRIT("unimplemented target map return value: %d", r);
1450 BUG();
1451 }
1452 }
1453
setup_split_accounting(struct clone_info * ci,unsigned int len)1454 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1455 {
1456 struct dm_io *io = ci->io;
1457
1458 if (ci->sector_count > len) {
1459 /*
1460 * Split needed, save the mapped part for accounting.
1461 * NOTE: dm_accept_partial_bio() will update accordingly.
1462 */
1463 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1464 io->sectors = len;
1465 io->sector_offset = bio_sectors(ci->bio);
1466 }
1467 }
1468
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios)1469 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1470 struct dm_target *ti, unsigned int num_bios)
1471 {
1472 struct bio *bio;
1473 int try;
1474
1475 for (try = 0; try < 2; try++) {
1476 int bio_nr;
1477
1478 if (try)
1479 mutex_lock(&ci->io->md->table_devices_lock);
1480 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1481 bio = alloc_tio(ci, ti, bio_nr, NULL,
1482 try ? GFP_NOIO : GFP_NOWAIT);
1483 if (!bio)
1484 break;
1485
1486 bio_list_add(blist, bio);
1487 }
1488 if (try)
1489 mutex_unlock(&ci->io->md->table_devices_lock);
1490 if (bio_nr == num_bios)
1491 return;
1492
1493 while ((bio = bio_list_pop(blist)))
1494 free_tio(bio);
1495 }
1496 }
1497
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len)1498 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1499 unsigned int num_bios, unsigned int *len)
1500 {
1501 struct bio_list blist = BIO_EMPTY_LIST;
1502 struct bio *clone;
1503 unsigned int ret = 0;
1504
1505 switch (num_bios) {
1506 case 0:
1507 break;
1508 case 1:
1509 if (len)
1510 setup_split_accounting(ci, *len);
1511 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1512 __map_bio(clone);
1513 ret = 1;
1514 break;
1515 default:
1516 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1517 alloc_multiple_bios(&blist, ci, ti, num_bios);
1518 while ((clone = bio_list_pop(&blist))) {
1519 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1520 __map_bio(clone);
1521 ret += 1;
1522 }
1523 break;
1524 }
1525
1526 return ret;
1527 }
1528
__send_empty_flush(struct clone_info * ci)1529 static void __send_empty_flush(struct clone_info *ci)
1530 {
1531 struct dm_table *t = ci->map;
1532 struct bio flush_bio;
1533
1534 /*
1535 * Use an on-stack bio for this, it's safe since we don't
1536 * need to reference it after submit. It's just used as
1537 * the basis for the clone(s).
1538 */
1539 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1540 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1541
1542 ci->bio = &flush_bio;
1543 ci->sector_count = 0;
1544 ci->io->tio.clone.bi_iter.bi_size = 0;
1545
1546 for (unsigned int i = 0; i < t->num_targets; i++) {
1547 unsigned int bios;
1548 struct dm_target *ti = dm_table_get_target(t, i);
1549
1550 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1551 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1552 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1553 }
1554
1555 /*
1556 * alloc_io() takes one extra reference for submission, so the
1557 * reference won't reach 0 without the following subtraction
1558 */
1559 atomic_sub(1, &ci->io->io_count);
1560
1561 bio_uninit(ci->bio);
1562 }
1563
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios)1564 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1565 unsigned int num_bios)
1566 {
1567 unsigned int len, bios;
1568
1569 len = min_t(sector_t, ci->sector_count,
1570 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1571
1572 atomic_add(num_bios, &ci->io->io_count);
1573 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1574 /*
1575 * alloc_io() takes one extra reference for submission, so the
1576 * reference won't reach 0 without the following (+1) subtraction
1577 */
1578 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1579
1580 ci->sector += len;
1581 ci->sector_count -= len;
1582 }
1583
is_abnormal_io(struct bio * bio)1584 static bool is_abnormal_io(struct bio *bio)
1585 {
1586 enum req_op op = bio_op(bio);
1587
1588 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1589 switch (op) {
1590 case REQ_OP_DISCARD:
1591 case REQ_OP_SECURE_ERASE:
1592 case REQ_OP_WRITE_ZEROES:
1593 return true;
1594 default:
1595 break;
1596 }
1597 }
1598
1599 return false;
1600 }
1601
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1602 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1603 struct dm_target *ti)
1604 {
1605 unsigned int num_bios = 0;
1606
1607 switch (bio_op(ci->bio)) {
1608 case REQ_OP_DISCARD:
1609 num_bios = ti->num_discard_bios;
1610 break;
1611 case REQ_OP_SECURE_ERASE:
1612 num_bios = ti->num_secure_erase_bios;
1613 break;
1614 case REQ_OP_WRITE_ZEROES:
1615 num_bios = ti->num_write_zeroes_bios;
1616 break;
1617 default:
1618 break;
1619 }
1620
1621 /*
1622 * Even though the device advertised support for this type of
1623 * request, that does not mean every target supports it, and
1624 * reconfiguration might also have changed that since the
1625 * check was performed.
1626 */
1627 if (unlikely(!num_bios))
1628 return BLK_STS_NOTSUPP;
1629
1630 __send_changing_extent_only(ci, ti, num_bios);
1631 return BLK_STS_OK;
1632 }
1633
1634 /*
1635 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1636 * associated with this bio, and this bio's bi_private needs to be
1637 * stored in dm_io->data before the reuse.
1638 *
1639 * bio->bi_private is owned by fs or upper layer, so block layer won't
1640 * touch it after splitting. Meantime it won't be changed by anyone after
1641 * bio is submitted. So this reuse is safe.
1642 */
dm_poll_list_head(struct bio * bio)1643 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1644 {
1645 return (struct dm_io **)&bio->bi_private;
1646 }
1647
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1648 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1649 {
1650 struct dm_io **head = dm_poll_list_head(bio);
1651
1652 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1653 bio->bi_opf |= REQ_DM_POLL_LIST;
1654 /*
1655 * Save .bi_private into dm_io, so that we can reuse
1656 * .bi_private as dm_io list head for storing dm_io list
1657 */
1658 io->data = bio->bi_private;
1659
1660 /* tell block layer to poll for completion */
1661 bio->bi_cookie = ~BLK_QC_T_NONE;
1662
1663 io->next = NULL;
1664 } else {
1665 /*
1666 * bio recursed due to split, reuse original poll list,
1667 * and save bio->bi_private too.
1668 */
1669 io->data = (*head)->data;
1670 io->next = *head;
1671 }
1672
1673 *head = io;
1674 }
1675
1676 /*
1677 * Select the correct strategy for processing a non-flush bio.
1678 */
__split_and_process_bio(struct clone_info * ci)1679 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1680 {
1681 struct bio *clone;
1682 struct dm_target *ti;
1683 unsigned int len;
1684
1685 ti = dm_table_find_target(ci->map, ci->sector);
1686 if (unlikely(!ti))
1687 return BLK_STS_IOERR;
1688
1689 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1690 unlikely(!dm_target_supports_nowait(ti->type)))
1691 return BLK_STS_NOTSUPP;
1692
1693 if (unlikely(ci->is_abnormal_io))
1694 return __process_abnormal_io(ci, ti);
1695
1696 /*
1697 * Only support bio polling for normal IO, and the target io is
1698 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1699 */
1700 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1701
1702 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1703 setup_split_accounting(ci, len);
1704 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1705 __map_bio(clone);
1706
1707 ci->sector += len;
1708 ci->sector_count -= len;
1709
1710 return BLK_STS_OK;
1711 }
1712
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio,bool is_abnormal)1713 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1714 struct dm_table *map, struct bio *bio, bool is_abnormal)
1715 {
1716 ci->map = map;
1717 ci->io = alloc_io(md, bio);
1718 ci->bio = bio;
1719 ci->is_abnormal_io = is_abnormal;
1720 ci->submit_as_polled = false;
1721 ci->sector = bio->bi_iter.bi_sector;
1722 ci->sector_count = bio_sectors(bio);
1723
1724 /* Shouldn't happen but sector_count was being set to 0 so... */
1725 if (static_branch_unlikely(&zoned_enabled) &&
1726 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1727 ci->sector_count = 0;
1728 }
1729
1730 /*
1731 * Entry point to split a bio into clones and submit them to the targets.
1732 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1733 static void dm_split_and_process_bio(struct mapped_device *md,
1734 struct dm_table *map, struct bio *bio)
1735 {
1736 struct clone_info ci;
1737 struct dm_io *io;
1738 blk_status_t error = BLK_STS_OK;
1739 bool is_abnormal;
1740
1741 is_abnormal = is_abnormal_io(bio);
1742 if (unlikely(is_abnormal)) {
1743 /*
1744 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1745 * otherwise associated queue_limits won't be imposed.
1746 */
1747 bio = bio_split_to_limits(bio);
1748 if (!bio)
1749 return;
1750 }
1751
1752 init_clone_info(&ci, md, map, bio, is_abnormal);
1753 io = ci.io;
1754
1755 if (bio->bi_opf & REQ_PREFLUSH) {
1756 __send_empty_flush(&ci);
1757 /* dm_io_complete submits any data associated with flush */
1758 goto out;
1759 }
1760
1761 error = __split_and_process_bio(&ci);
1762 if (error || !ci.sector_count)
1763 goto out;
1764 /*
1765 * Remainder must be passed to submit_bio_noacct() so it gets handled
1766 * *after* bios already submitted have been completely processed.
1767 */
1768 bio_trim(bio, io->sectors, ci.sector_count);
1769 trace_block_split(bio, bio->bi_iter.bi_sector);
1770 bio_inc_remaining(bio);
1771 submit_bio_noacct(bio);
1772 out:
1773 /*
1774 * Drop the extra reference count for non-POLLED bio, and hold one
1775 * reference for POLLED bio, which will be released in dm_poll_bio
1776 *
1777 * Add every dm_io instance into the dm_io list head which is stored
1778 * in bio->bi_private, so that dm_poll_bio can poll them all.
1779 */
1780 if (error || !ci.submit_as_polled) {
1781 /*
1782 * In case of submission failure, the extra reference for
1783 * submitting io isn't consumed yet
1784 */
1785 if (error)
1786 atomic_dec(&io->io_count);
1787 dm_io_dec_pending(io, error);
1788 } else
1789 dm_queue_poll_io(bio, io);
1790 }
1791
dm_submit_bio(struct bio * bio)1792 static void dm_submit_bio(struct bio *bio)
1793 {
1794 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1795 int srcu_idx;
1796 struct dm_table *map;
1797 blk_opf_t bio_opf = bio->bi_opf;
1798
1799 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1800
1801 /* If suspended, or map not yet available, queue this IO for later */
1802 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1803 unlikely(!map)) {
1804 if (bio->bi_opf & REQ_NOWAIT)
1805 bio_wouldblock_error(bio);
1806 else if (bio->bi_opf & REQ_RAHEAD)
1807 bio_io_error(bio);
1808 else
1809 queue_io(md, bio);
1810 goto out;
1811 }
1812
1813 dm_split_and_process_bio(md, map, bio);
1814 out:
1815 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1816 }
1817
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)1818 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1819 unsigned int flags)
1820 {
1821 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1822
1823 /* don't poll if the mapped io is done */
1824 if (atomic_read(&io->io_count) > 1)
1825 bio_poll(&io->tio.clone, iob, flags);
1826
1827 /* bio_poll holds the last reference */
1828 return atomic_read(&io->io_count) == 1;
1829 }
1830
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)1831 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1832 unsigned int flags)
1833 {
1834 struct dm_io **head = dm_poll_list_head(bio);
1835 struct dm_io *list = *head;
1836 struct dm_io *tmp = NULL;
1837 struct dm_io *curr, *next;
1838
1839 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1840 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1841 return 0;
1842
1843 WARN_ON_ONCE(!list);
1844
1845 /*
1846 * Restore .bi_private before possibly completing dm_io.
1847 *
1848 * bio_poll() is only possible once @bio has been completely
1849 * submitted via submit_bio_noacct()'s depth-first submission.
1850 * So there is no dm_queue_poll_io() race associated with
1851 * clearing REQ_DM_POLL_LIST here.
1852 */
1853 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1854 bio->bi_private = list->data;
1855
1856 for (curr = list, next = curr->next; curr; curr = next, next =
1857 curr ? curr->next : NULL) {
1858 if (dm_poll_dm_io(curr, iob, flags)) {
1859 /*
1860 * clone_endio() has already occurred, so no
1861 * error handling is needed here.
1862 */
1863 __dm_io_dec_pending(curr);
1864 } else {
1865 curr->next = tmp;
1866 tmp = curr;
1867 }
1868 }
1869
1870 /* Not done? */
1871 if (tmp) {
1872 bio->bi_opf |= REQ_DM_POLL_LIST;
1873 /* Reset bio->bi_private to dm_io list head */
1874 *head = tmp;
1875 return 0;
1876 }
1877 return 1;
1878 }
1879
1880 /*
1881 *---------------------------------------------------------------
1882 * An IDR is used to keep track of allocated minor numbers.
1883 *---------------------------------------------------------------
1884 */
free_minor(int minor)1885 static void free_minor(int minor)
1886 {
1887 spin_lock(&_minor_lock);
1888 idr_remove(&_minor_idr, minor);
1889 spin_unlock(&_minor_lock);
1890 }
1891
1892 /*
1893 * See if the device with a specific minor # is free.
1894 */
specific_minor(int minor)1895 static int specific_minor(int minor)
1896 {
1897 int r;
1898
1899 if (minor >= (1 << MINORBITS))
1900 return -EINVAL;
1901
1902 idr_preload(GFP_KERNEL);
1903 spin_lock(&_minor_lock);
1904
1905 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1906
1907 spin_unlock(&_minor_lock);
1908 idr_preload_end();
1909 if (r < 0)
1910 return r == -ENOSPC ? -EBUSY : r;
1911 return 0;
1912 }
1913
next_free_minor(int * minor)1914 static int next_free_minor(int *minor)
1915 {
1916 int r;
1917
1918 idr_preload(GFP_KERNEL);
1919 spin_lock(&_minor_lock);
1920
1921 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1922
1923 spin_unlock(&_minor_lock);
1924 idr_preload_end();
1925 if (r < 0)
1926 return r;
1927 *minor = r;
1928 return 0;
1929 }
1930
1931 static const struct block_device_operations dm_blk_dops;
1932 static const struct block_device_operations dm_rq_blk_dops;
1933 static const struct dax_operations dm_dax_ops;
1934
1935 static void dm_wq_work(struct work_struct *work);
1936
1937 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)1938 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1939 {
1940 dm_destroy_crypto_profile(q->crypto_profile);
1941 }
1942
1943 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1944
dm_queue_destroy_crypto_profile(struct request_queue * q)1945 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1946 {
1947 }
1948 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1949
cleanup_mapped_device(struct mapped_device * md)1950 static void cleanup_mapped_device(struct mapped_device *md)
1951 {
1952 if (md->wq)
1953 destroy_workqueue(md->wq);
1954 dm_free_md_mempools(md->mempools);
1955
1956 if (md->dax_dev) {
1957 dax_remove_host(md->disk);
1958 kill_dax(md->dax_dev);
1959 put_dax(md->dax_dev);
1960 md->dax_dev = NULL;
1961 }
1962
1963 dm_cleanup_zoned_dev(md);
1964 if (md->disk) {
1965 spin_lock(&_minor_lock);
1966 md->disk->private_data = NULL;
1967 spin_unlock(&_minor_lock);
1968 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1969 struct table_device *td;
1970
1971 dm_sysfs_exit(md);
1972 list_for_each_entry(td, &md->table_devices, list) {
1973 bd_unlink_disk_holder(td->dm_dev.bdev,
1974 md->disk);
1975 }
1976
1977 /*
1978 * Hold lock to make sure del_gendisk() won't concurrent
1979 * with open/close_table_device().
1980 */
1981 mutex_lock(&md->table_devices_lock);
1982 del_gendisk(md->disk);
1983 mutex_unlock(&md->table_devices_lock);
1984 }
1985 dm_queue_destroy_crypto_profile(md->queue);
1986 put_disk(md->disk);
1987 }
1988
1989 if (md->pending_io) {
1990 free_percpu(md->pending_io);
1991 md->pending_io = NULL;
1992 }
1993
1994 cleanup_srcu_struct(&md->io_barrier);
1995
1996 mutex_destroy(&md->suspend_lock);
1997 mutex_destroy(&md->type_lock);
1998 mutex_destroy(&md->table_devices_lock);
1999 mutex_destroy(&md->swap_bios_lock);
2000
2001 dm_mq_cleanup_mapped_device(md);
2002 }
2003
2004 /*
2005 * Allocate and initialise a blank device with a given minor.
2006 */
alloc_dev(int minor)2007 static struct mapped_device *alloc_dev(int minor)
2008 {
2009 int r, numa_node_id = dm_get_numa_node();
2010 struct mapped_device *md;
2011 void *old_md;
2012
2013 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2014 if (!md) {
2015 DMERR("unable to allocate device, out of memory.");
2016 return NULL;
2017 }
2018
2019 if (!try_module_get(THIS_MODULE))
2020 goto bad_module_get;
2021
2022 /* get a minor number for the dev */
2023 if (minor == DM_ANY_MINOR)
2024 r = next_free_minor(&minor);
2025 else
2026 r = specific_minor(minor);
2027 if (r < 0)
2028 goto bad_minor;
2029
2030 r = init_srcu_struct(&md->io_barrier);
2031 if (r < 0)
2032 goto bad_io_barrier;
2033
2034 md->numa_node_id = numa_node_id;
2035 md->init_tio_pdu = false;
2036 md->type = DM_TYPE_NONE;
2037 mutex_init(&md->suspend_lock);
2038 mutex_init(&md->type_lock);
2039 mutex_init(&md->table_devices_lock);
2040 spin_lock_init(&md->deferred_lock);
2041 atomic_set(&md->holders, 1);
2042 atomic_set(&md->open_count, 0);
2043 atomic_set(&md->event_nr, 0);
2044 atomic_set(&md->uevent_seq, 0);
2045 INIT_LIST_HEAD(&md->uevent_list);
2046 INIT_LIST_HEAD(&md->table_devices);
2047 spin_lock_init(&md->uevent_lock);
2048
2049 /*
2050 * default to bio-based until DM table is loaded and md->type
2051 * established. If request-based table is loaded: blk-mq will
2052 * override accordingly.
2053 */
2054 md->disk = blk_alloc_disk(md->numa_node_id);
2055 if (!md->disk)
2056 goto bad;
2057 md->queue = md->disk->queue;
2058
2059 init_waitqueue_head(&md->wait);
2060 INIT_WORK(&md->work, dm_wq_work);
2061 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2062 init_waitqueue_head(&md->eventq);
2063 init_completion(&md->kobj_holder.completion);
2064
2065 md->requeue_list = NULL;
2066 md->swap_bios = get_swap_bios();
2067 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2068 mutex_init(&md->swap_bios_lock);
2069
2070 md->disk->major = _major;
2071 md->disk->first_minor = minor;
2072 md->disk->minors = 1;
2073 md->disk->flags |= GENHD_FL_NO_PART;
2074 md->disk->fops = &dm_blk_dops;
2075 md->disk->private_data = md;
2076 sprintf(md->disk->disk_name, "dm-%d", minor);
2077
2078 if (IS_ENABLED(CONFIG_FS_DAX)) {
2079 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2080 if (IS_ERR(md->dax_dev)) {
2081 md->dax_dev = NULL;
2082 goto bad;
2083 }
2084 set_dax_nocache(md->dax_dev);
2085 set_dax_nomc(md->dax_dev);
2086 if (dax_add_host(md->dax_dev, md->disk))
2087 goto bad;
2088 }
2089
2090 format_dev_t(md->name, MKDEV(_major, minor));
2091
2092 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2093 if (!md->wq)
2094 goto bad;
2095
2096 md->pending_io = alloc_percpu(unsigned long);
2097 if (!md->pending_io)
2098 goto bad;
2099
2100 dm_stats_init(&md->stats);
2101
2102 /* Populate the mapping, nobody knows we exist yet */
2103 spin_lock(&_minor_lock);
2104 old_md = idr_replace(&_minor_idr, md, minor);
2105 spin_unlock(&_minor_lock);
2106
2107 BUG_ON(old_md != MINOR_ALLOCED);
2108
2109 return md;
2110
2111 bad:
2112 cleanup_mapped_device(md);
2113 bad_io_barrier:
2114 free_minor(minor);
2115 bad_minor:
2116 module_put(THIS_MODULE);
2117 bad_module_get:
2118 kvfree(md);
2119 return NULL;
2120 }
2121
2122 static void unlock_fs(struct mapped_device *md);
2123
free_dev(struct mapped_device * md)2124 static void free_dev(struct mapped_device *md)
2125 {
2126 int minor = MINOR(disk_devt(md->disk));
2127
2128 unlock_fs(md);
2129
2130 cleanup_mapped_device(md);
2131
2132 WARN_ON_ONCE(!list_empty(&md->table_devices));
2133 dm_stats_cleanup(&md->stats);
2134 free_minor(minor);
2135
2136 module_put(THIS_MODULE);
2137 kvfree(md);
2138 }
2139
2140 /*
2141 * Bind a table to the device.
2142 */
event_callback(void * context)2143 static void event_callback(void *context)
2144 {
2145 unsigned long flags;
2146 LIST_HEAD(uevents);
2147 struct mapped_device *md = context;
2148
2149 spin_lock_irqsave(&md->uevent_lock, flags);
2150 list_splice_init(&md->uevent_list, &uevents);
2151 spin_unlock_irqrestore(&md->uevent_lock, flags);
2152
2153 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2154
2155 atomic_inc(&md->event_nr);
2156 wake_up(&md->eventq);
2157 dm_issue_global_event();
2158 }
2159
2160 /*
2161 * Returns old map, which caller must destroy.
2162 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2163 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2164 struct queue_limits *limits)
2165 {
2166 struct dm_table *old_map;
2167 sector_t size;
2168 int ret;
2169
2170 lockdep_assert_held(&md->suspend_lock);
2171
2172 size = dm_table_get_size(t);
2173
2174 /*
2175 * Wipe any geometry if the size of the table changed.
2176 */
2177 if (size != dm_get_size(md))
2178 memset(&md->geometry, 0, sizeof(md->geometry));
2179
2180 set_capacity(md->disk, size);
2181
2182 dm_table_event_callback(t, event_callback, md);
2183
2184 if (dm_table_request_based(t)) {
2185 /*
2186 * Leverage the fact that request-based DM targets are
2187 * immutable singletons - used to optimize dm_mq_queue_rq.
2188 */
2189 md->immutable_target = dm_table_get_immutable_target(t);
2190
2191 /*
2192 * There is no need to reload with request-based dm because the
2193 * size of front_pad doesn't change.
2194 *
2195 * Note for future: If you are to reload bioset, prep-ed
2196 * requests in the queue may refer to bio from the old bioset,
2197 * so you must walk through the queue to unprep.
2198 */
2199 if (!md->mempools) {
2200 md->mempools = t->mempools;
2201 t->mempools = NULL;
2202 }
2203 } else {
2204 /*
2205 * The md may already have mempools that need changing.
2206 * If so, reload bioset because front_pad may have changed
2207 * because a different table was loaded.
2208 */
2209 dm_free_md_mempools(md->mempools);
2210 md->mempools = t->mempools;
2211 t->mempools = NULL;
2212 }
2213
2214 ret = dm_table_set_restrictions(t, md->queue, limits);
2215 if (ret) {
2216 old_map = ERR_PTR(ret);
2217 goto out;
2218 }
2219
2220 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2221 rcu_assign_pointer(md->map, (void *)t);
2222 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2223
2224 if (old_map)
2225 dm_sync_table(md);
2226 out:
2227 return old_map;
2228 }
2229
2230 /*
2231 * Returns unbound table for the caller to free.
2232 */
__unbind(struct mapped_device * md)2233 static struct dm_table *__unbind(struct mapped_device *md)
2234 {
2235 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2236
2237 if (!map)
2238 return NULL;
2239
2240 dm_table_event_callback(map, NULL, NULL);
2241 RCU_INIT_POINTER(md->map, NULL);
2242 dm_sync_table(md);
2243
2244 return map;
2245 }
2246
2247 /*
2248 * Constructor for a new device.
2249 */
dm_create(int minor,struct mapped_device ** result)2250 int dm_create(int minor, struct mapped_device **result)
2251 {
2252 struct mapped_device *md;
2253
2254 md = alloc_dev(minor);
2255 if (!md)
2256 return -ENXIO;
2257
2258 dm_ima_reset_data(md);
2259
2260 *result = md;
2261 return 0;
2262 }
2263
2264 /*
2265 * Functions to manage md->type.
2266 * All are required to hold md->type_lock.
2267 */
dm_lock_md_type(struct mapped_device * md)2268 void dm_lock_md_type(struct mapped_device *md)
2269 {
2270 mutex_lock(&md->type_lock);
2271 }
2272
dm_unlock_md_type(struct mapped_device * md)2273 void dm_unlock_md_type(struct mapped_device *md)
2274 {
2275 mutex_unlock(&md->type_lock);
2276 }
2277
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2278 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2279 {
2280 BUG_ON(!mutex_is_locked(&md->type_lock));
2281 md->type = type;
2282 }
2283
dm_get_md_type(struct mapped_device * md)2284 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2285 {
2286 return md->type;
2287 }
2288
dm_get_immutable_target_type(struct mapped_device * md)2289 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2290 {
2291 return md->immutable_target_type;
2292 }
2293
2294 /*
2295 * The queue_limits are only valid as long as you have a reference
2296 * count on 'md'.
2297 */
dm_get_queue_limits(struct mapped_device * md)2298 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2299 {
2300 BUG_ON(!atomic_read(&md->holders));
2301 return &md->queue->limits;
2302 }
2303 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2304
2305 /*
2306 * Setup the DM device's queue based on md's type
2307 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2308 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2309 {
2310 enum dm_queue_mode type = dm_table_get_type(t);
2311 struct queue_limits limits;
2312 struct table_device *td;
2313 int r;
2314
2315 switch (type) {
2316 case DM_TYPE_REQUEST_BASED:
2317 md->disk->fops = &dm_rq_blk_dops;
2318 r = dm_mq_init_request_queue(md, t);
2319 if (r) {
2320 DMERR("Cannot initialize queue for request-based dm mapped device");
2321 return r;
2322 }
2323 break;
2324 case DM_TYPE_BIO_BASED:
2325 case DM_TYPE_DAX_BIO_BASED:
2326 break;
2327 case DM_TYPE_NONE:
2328 WARN_ON_ONCE(true);
2329 break;
2330 }
2331
2332 r = dm_calculate_queue_limits(t, &limits);
2333 if (r) {
2334 DMERR("Cannot calculate initial queue limits");
2335 return r;
2336 }
2337 r = dm_table_set_restrictions(t, md->queue, &limits);
2338 if (r)
2339 return r;
2340
2341 /*
2342 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2343 * with open_table_device() and close_table_device().
2344 */
2345 mutex_lock(&md->table_devices_lock);
2346 r = add_disk(md->disk);
2347 mutex_unlock(&md->table_devices_lock);
2348 if (r)
2349 return r;
2350
2351 /*
2352 * Register the holder relationship for devices added before the disk
2353 * was live.
2354 */
2355 list_for_each_entry(td, &md->table_devices, list) {
2356 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2357 if (r)
2358 goto out_undo_holders;
2359 }
2360
2361 r = dm_sysfs_init(md);
2362 if (r)
2363 goto out_undo_holders;
2364
2365 md->type = type;
2366 return 0;
2367
2368 out_undo_holders:
2369 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2370 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2371 mutex_lock(&md->table_devices_lock);
2372 del_gendisk(md->disk);
2373 mutex_unlock(&md->table_devices_lock);
2374 return r;
2375 }
2376
dm_get_md(dev_t dev)2377 struct mapped_device *dm_get_md(dev_t dev)
2378 {
2379 struct mapped_device *md;
2380 unsigned int minor = MINOR(dev);
2381
2382 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2383 return NULL;
2384
2385 spin_lock(&_minor_lock);
2386
2387 md = idr_find(&_minor_idr, minor);
2388 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2389 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2390 md = NULL;
2391 goto out;
2392 }
2393 dm_get(md);
2394 out:
2395 spin_unlock(&_minor_lock);
2396
2397 return md;
2398 }
2399 EXPORT_SYMBOL_GPL(dm_get_md);
2400
dm_get_mdptr(struct mapped_device * md)2401 void *dm_get_mdptr(struct mapped_device *md)
2402 {
2403 return md->interface_ptr;
2404 }
2405
dm_set_mdptr(struct mapped_device * md,void * ptr)2406 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2407 {
2408 md->interface_ptr = ptr;
2409 }
2410
dm_get(struct mapped_device * md)2411 void dm_get(struct mapped_device *md)
2412 {
2413 atomic_inc(&md->holders);
2414 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2415 }
2416
dm_hold(struct mapped_device * md)2417 int dm_hold(struct mapped_device *md)
2418 {
2419 spin_lock(&_minor_lock);
2420 if (test_bit(DMF_FREEING, &md->flags)) {
2421 spin_unlock(&_minor_lock);
2422 return -EBUSY;
2423 }
2424 dm_get(md);
2425 spin_unlock(&_minor_lock);
2426 return 0;
2427 }
2428 EXPORT_SYMBOL_GPL(dm_hold);
2429
dm_device_name(struct mapped_device * md)2430 const char *dm_device_name(struct mapped_device *md)
2431 {
2432 return md->name;
2433 }
2434 EXPORT_SYMBOL_GPL(dm_device_name);
2435
__dm_destroy(struct mapped_device * md,bool wait)2436 static void __dm_destroy(struct mapped_device *md, bool wait)
2437 {
2438 struct dm_table *map;
2439 int srcu_idx;
2440
2441 might_sleep();
2442
2443 spin_lock(&_minor_lock);
2444 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2445 set_bit(DMF_FREEING, &md->flags);
2446 spin_unlock(&_minor_lock);
2447
2448 blk_mark_disk_dead(md->disk);
2449
2450 /*
2451 * Take suspend_lock so that presuspend and postsuspend methods
2452 * do not race with internal suspend.
2453 */
2454 mutex_lock(&md->suspend_lock);
2455 map = dm_get_live_table(md, &srcu_idx);
2456 if (!dm_suspended_md(md)) {
2457 dm_table_presuspend_targets(map);
2458 set_bit(DMF_SUSPENDED, &md->flags);
2459 set_bit(DMF_POST_SUSPENDING, &md->flags);
2460 dm_table_postsuspend_targets(map);
2461 }
2462 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2463 dm_put_live_table(md, srcu_idx);
2464 mutex_unlock(&md->suspend_lock);
2465
2466 /*
2467 * Rare, but there may be I/O requests still going to complete,
2468 * for example. Wait for all references to disappear.
2469 * No one should increment the reference count of the mapped_device,
2470 * after the mapped_device state becomes DMF_FREEING.
2471 */
2472 if (wait)
2473 while (atomic_read(&md->holders))
2474 fsleep(1000);
2475 else if (atomic_read(&md->holders))
2476 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2477 dm_device_name(md), atomic_read(&md->holders));
2478
2479 dm_table_destroy(__unbind(md));
2480 free_dev(md);
2481 }
2482
dm_destroy(struct mapped_device * md)2483 void dm_destroy(struct mapped_device *md)
2484 {
2485 __dm_destroy(md, true);
2486 }
2487
dm_destroy_immediate(struct mapped_device * md)2488 void dm_destroy_immediate(struct mapped_device *md)
2489 {
2490 __dm_destroy(md, false);
2491 }
2492
dm_put(struct mapped_device * md)2493 void dm_put(struct mapped_device *md)
2494 {
2495 atomic_dec(&md->holders);
2496 }
2497 EXPORT_SYMBOL_GPL(dm_put);
2498
dm_in_flight_bios(struct mapped_device * md)2499 static bool dm_in_flight_bios(struct mapped_device *md)
2500 {
2501 int cpu;
2502 unsigned long sum = 0;
2503
2504 for_each_possible_cpu(cpu)
2505 sum += *per_cpu_ptr(md->pending_io, cpu);
2506
2507 return sum != 0;
2508 }
2509
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2510 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2511 {
2512 int r = 0;
2513 DEFINE_WAIT(wait);
2514
2515 while (true) {
2516 prepare_to_wait(&md->wait, &wait, task_state);
2517
2518 if (!dm_in_flight_bios(md))
2519 break;
2520
2521 if (signal_pending_state(task_state, current)) {
2522 r = -EINTR;
2523 break;
2524 }
2525
2526 io_schedule();
2527 }
2528 finish_wait(&md->wait, &wait);
2529
2530 smp_rmb();
2531
2532 return r;
2533 }
2534
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2535 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2536 {
2537 int r = 0;
2538
2539 if (!queue_is_mq(md->queue))
2540 return dm_wait_for_bios_completion(md, task_state);
2541
2542 while (true) {
2543 if (!blk_mq_queue_inflight(md->queue))
2544 break;
2545
2546 if (signal_pending_state(task_state, current)) {
2547 r = -EINTR;
2548 break;
2549 }
2550
2551 fsleep(5000);
2552 }
2553
2554 return r;
2555 }
2556
2557 /*
2558 * Process the deferred bios
2559 */
dm_wq_work(struct work_struct * work)2560 static void dm_wq_work(struct work_struct *work)
2561 {
2562 struct mapped_device *md = container_of(work, struct mapped_device, work);
2563 struct bio *bio;
2564
2565 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2566 spin_lock_irq(&md->deferred_lock);
2567 bio = bio_list_pop(&md->deferred);
2568 spin_unlock_irq(&md->deferred_lock);
2569
2570 if (!bio)
2571 break;
2572
2573 submit_bio_noacct(bio);
2574 cond_resched();
2575 }
2576 }
2577
dm_queue_flush(struct mapped_device * md)2578 static void dm_queue_flush(struct mapped_device *md)
2579 {
2580 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2581 smp_mb__after_atomic();
2582 queue_work(md->wq, &md->work);
2583 }
2584
2585 /*
2586 * Swap in a new table, returning the old one for the caller to destroy.
2587 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2588 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2589 {
2590 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2591 struct queue_limits limits;
2592 int r;
2593
2594 mutex_lock(&md->suspend_lock);
2595
2596 /* device must be suspended */
2597 if (!dm_suspended_md(md))
2598 goto out;
2599
2600 /*
2601 * If the new table has no data devices, retain the existing limits.
2602 * This helps multipath with queue_if_no_path if all paths disappear,
2603 * then new I/O is queued based on these limits, and then some paths
2604 * reappear.
2605 */
2606 if (dm_table_has_no_data_devices(table)) {
2607 live_map = dm_get_live_table_fast(md);
2608 if (live_map)
2609 limits = md->queue->limits;
2610 dm_put_live_table_fast(md);
2611 }
2612
2613 if (!live_map) {
2614 r = dm_calculate_queue_limits(table, &limits);
2615 if (r) {
2616 map = ERR_PTR(r);
2617 goto out;
2618 }
2619 }
2620
2621 map = __bind(md, table, &limits);
2622 dm_issue_global_event();
2623
2624 out:
2625 mutex_unlock(&md->suspend_lock);
2626 return map;
2627 }
2628
2629 /*
2630 * Functions to lock and unlock any filesystem running on the
2631 * device.
2632 */
lock_fs(struct mapped_device * md)2633 static int lock_fs(struct mapped_device *md)
2634 {
2635 int r;
2636
2637 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2638
2639 r = freeze_bdev(md->disk->part0);
2640 if (!r)
2641 set_bit(DMF_FROZEN, &md->flags);
2642 return r;
2643 }
2644
unlock_fs(struct mapped_device * md)2645 static void unlock_fs(struct mapped_device *md)
2646 {
2647 if (!test_bit(DMF_FROZEN, &md->flags))
2648 return;
2649 thaw_bdev(md->disk->part0);
2650 clear_bit(DMF_FROZEN, &md->flags);
2651 }
2652
2653 /*
2654 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2655 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2656 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2657 *
2658 * If __dm_suspend returns 0, the device is completely quiescent
2659 * now. There is no request-processing activity. All new requests
2660 * are being added to md->deferred list.
2661 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2662 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2663 unsigned int suspend_flags, unsigned int task_state,
2664 int dmf_suspended_flag)
2665 {
2666 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2667 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2668 int r;
2669
2670 lockdep_assert_held(&md->suspend_lock);
2671
2672 /*
2673 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2674 * This flag is cleared before dm_suspend returns.
2675 */
2676 if (noflush)
2677 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2678 else
2679 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2680
2681 /*
2682 * This gets reverted if there's an error later and the targets
2683 * provide the .presuspend_undo hook.
2684 */
2685 dm_table_presuspend_targets(map);
2686
2687 /*
2688 * Flush I/O to the device.
2689 * Any I/O submitted after lock_fs() may not be flushed.
2690 * noflush takes precedence over do_lockfs.
2691 * (lock_fs() flushes I/Os and waits for them to complete.)
2692 */
2693 if (!noflush && do_lockfs) {
2694 r = lock_fs(md);
2695 if (r) {
2696 dm_table_presuspend_undo_targets(map);
2697 return r;
2698 }
2699 }
2700
2701 /*
2702 * Here we must make sure that no processes are submitting requests
2703 * to target drivers i.e. no one may be executing
2704 * dm_split_and_process_bio from dm_submit_bio.
2705 *
2706 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2707 * we take the write lock. To prevent any process from reentering
2708 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2709 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2710 * flush_workqueue(md->wq).
2711 */
2712 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2713 if (map)
2714 synchronize_srcu(&md->io_barrier);
2715
2716 /*
2717 * Stop md->queue before flushing md->wq in case request-based
2718 * dm defers requests to md->wq from md->queue.
2719 */
2720 if (dm_request_based(md))
2721 dm_stop_queue(md->queue);
2722
2723 flush_workqueue(md->wq);
2724
2725 /*
2726 * At this point no more requests are entering target request routines.
2727 * We call dm_wait_for_completion to wait for all existing requests
2728 * to finish.
2729 */
2730 r = dm_wait_for_completion(md, task_state);
2731 if (!r)
2732 set_bit(dmf_suspended_flag, &md->flags);
2733
2734 if (noflush)
2735 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2736 if (map)
2737 synchronize_srcu(&md->io_barrier);
2738
2739 /* were we interrupted ? */
2740 if (r < 0) {
2741 dm_queue_flush(md);
2742
2743 if (dm_request_based(md))
2744 dm_start_queue(md->queue);
2745
2746 unlock_fs(md);
2747 dm_table_presuspend_undo_targets(map);
2748 /* pushback list is already flushed, so skip flush */
2749 }
2750
2751 return r;
2752 }
2753
2754 /*
2755 * We need to be able to change a mapping table under a mounted
2756 * filesystem. For example we might want to move some data in
2757 * the background. Before the table can be swapped with
2758 * dm_bind_table, dm_suspend must be called to flush any in
2759 * flight bios and ensure that any further io gets deferred.
2760 */
2761 /*
2762 * Suspend mechanism in request-based dm.
2763 *
2764 * 1. Flush all I/Os by lock_fs() if needed.
2765 * 2. Stop dispatching any I/O by stopping the request_queue.
2766 * 3. Wait for all in-flight I/Os to be completed or requeued.
2767 *
2768 * To abort suspend, start the request_queue.
2769 */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)2770 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2771 {
2772 struct dm_table *map = NULL;
2773 int r = 0;
2774
2775 retry:
2776 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2777
2778 if (dm_suspended_md(md)) {
2779 r = -EINVAL;
2780 goto out_unlock;
2781 }
2782
2783 if (dm_suspended_internally_md(md)) {
2784 /* already internally suspended, wait for internal resume */
2785 mutex_unlock(&md->suspend_lock);
2786 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2787 if (r)
2788 return r;
2789 goto retry;
2790 }
2791
2792 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2793
2794 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2795 if (r)
2796 goto out_unlock;
2797
2798 set_bit(DMF_POST_SUSPENDING, &md->flags);
2799 dm_table_postsuspend_targets(map);
2800 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2801
2802 out_unlock:
2803 mutex_unlock(&md->suspend_lock);
2804 return r;
2805 }
2806
__dm_resume(struct mapped_device * md,struct dm_table * map)2807 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2808 {
2809 if (map) {
2810 int r = dm_table_resume_targets(map);
2811
2812 if (r)
2813 return r;
2814 }
2815
2816 dm_queue_flush(md);
2817
2818 /*
2819 * Flushing deferred I/Os must be done after targets are resumed
2820 * so that mapping of targets can work correctly.
2821 * Request-based dm is queueing the deferred I/Os in its request_queue.
2822 */
2823 if (dm_request_based(md))
2824 dm_start_queue(md->queue);
2825
2826 unlock_fs(md);
2827
2828 return 0;
2829 }
2830
dm_resume(struct mapped_device * md)2831 int dm_resume(struct mapped_device *md)
2832 {
2833 int r;
2834 struct dm_table *map = NULL;
2835
2836 retry:
2837 r = -EINVAL;
2838 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2839
2840 if (!dm_suspended_md(md))
2841 goto out;
2842
2843 if (dm_suspended_internally_md(md)) {
2844 /* already internally suspended, wait for internal resume */
2845 mutex_unlock(&md->suspend_lock);
2846 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2847 if (r)
2848 return r;
2849 goto retry;
2850 }
2851
2852 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2853 if (!map || !dm_table_get_size(map))
2854 goto out;
2855
2856 r = __dm_resume(md, map);
2857 if (r)
2858 goto out;
2859
2860 clear_bit(DMF_SUSPENDED, &md->flags);
2861 out:
2862 mutex_unlock(&md->suspend_lock);
2863
2864 return r;
2865 }
2866
2867 /*
2868 * Internal suspend/resume works like userspace-driven suspend. It waits
2869 * until all bios finish and prevents issuing new bios to the target drivers.
2870 * It may be used only from the kernel.
2871 */
2872
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)2873 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2874 {
2875 struct dm_table *map = NULL;
2876
2877 lockdep_assert_held(&md->suspend_lock);
2878
2879 if (md->internal_suspend_count++)
2880 return; /* nested internal suspend */
2881
2882 if (dm_suspended_md(md)) {
2883 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2884 return; /* nest suspend */
2885 }
2886
2887 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2888
2889 /*
2890 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2891 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2892 * would require changing .presuspend to return an error -- avoid this
2893 * until there is a need for more elaborate variants of internal suspend.
2894 */
2895 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2896 DMF_SUSPENDED_INTERNALLY);
2897
2898 set_bit(DMF_POST_SUSPENDING, &md->flags);
2899 dm_table_postsuspend_targets(map);
2900 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2901 }
2902
__dm_internal_resume(struct mapped_device * md)2903 static void __dm_internal_resume(struct mapped_device *md)
2904 {
2905 BUG_ON(!md->internal_suspend_count);
2906
2907 if (--md->internal_suspend_count)
2908 return; /* resume from nested internal suspend */
2909
2910 if (dm_suspended_md(md))
2911 goto done; /* resume from nested suspend */
2912
2913 /*
2914 * NOTE: existing callers don't need to call dm_table_resume_targets
2915 * (which may fail -- so best to avoid it for now by passing NULL map)
2916 */
2917 (void) __dm_resume(md, NULL);
2918
2919 done:
2920 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2921 smp_mb__after_atomic();
2922 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2923 }
2924
dm_internal_suspend_noflush(struct mapped_device * md)2925 void dm_internal_suspend_noflush(struct mapped_device *md)
2926 {
2927 mutex_lock(&md->suspend_lock);
2928 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2929 mutex_unlock(&md->suspend_lock);
2930 }
2931 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2932
dm_internal_resume(struct mapped_device * md)2933 void dm_internal_resume(struct mapped_device *md)
2934 {
2935 mutex_lock(&md->suspend_lock);
2936 __dm_internal_resume(md);
2937 mutex_unlock(&md->suspend_lock);
2938 }
2939 EXPORT_SYMBOL_GPL(dm_internal_resume);
2940
2941 /*
2942 * Fast variants of internal suspend/resume hold md->suspend_lock,
2943 * which prevents interaction with userspace-driven suspend.
2944 */
2945
dm_internal_suspend_fast(struct mapped_device * md)2946 void dm_internal_suspend_fast(struct mapped_device *md)
2947 {
2948 mutex_lock(&md->suspend_lock);
2949 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2950 return;
2951
2952 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2953 synchronize_srcu(&md->io_barrier);
2954 flush_workqueue(md->wq);
2955 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2956 }
2957 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2958
dm_internal_resume_fast(struct mapped_device * md)2959 void dm_internal_resume_fast(struct mapped_device *md)
2960 {
2961 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2962 goto done;
2963
2964 dm_queue_flush(md);
2965
2966 done:
2967 mutex_unlock(&md->suspend_lock);
2968 }
2969 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2970
2971 /*
2972 *---------------------------------------------------------------
2973 * Event notification.
2974 *---------------------------------------------------------------
2975 */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)2976 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2977 unsigned int cookie, bool need_resize_uevent)
2978 {
2979 int r;
2980 unsigned int noio_flag;
2981 char udev_cookie[DM_COOKIE_LENGTH];
2982 char *envp[3] = { NULL, NULL, NULL };
2983 char **envpp = envp;
2984 if (cookie) {
2985 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2986 DM_COOKIE_ENV_VAR_NAME, cookie);
2987 *envpp++ = udev_cookie;
2988 }
2989 if (need_resize_uevent) {
2990 *envpp++ = "RESIZE=1";
2991 }
2992
2993 noio_flag = memalloc_noio_save();
2994
2995 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2996
2997 memalloc_noio_restore(noio_flag);
2998
2999 return r;
3000 }
3001
dm_next_uevent_seq(struct mapped_device * md)3002 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3003 {
3004 return atomic_add_return(1, &md->uevent_seq);
3005 }
3006
dm_get_event_nr(struct mapped_device * md)3007 uint32_t dm_get_event_nr(struct mapped_device *md)
3008 {
3009 return atomic_read(&md->event_nr);
3010 }
3011
dm_wait_event(struct mapped_device * md,int event_nr)3012 int dm_wait_event(struct mapped_device *md, int event_nr)
3013 {
3014 return wait_event_interruptible(md->eventq,
3015 (event_nr != atomic_read(&md->event_nr)));
3016 }
3017
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3018 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3019 {
3020 unsigned long flags;
3021
3022 spin_lock_irqsave(&md->uevent_lock, flags);
3023 list_add(elist, &md->uevent_list);
3024 spin_unlock_irqrestore(&md->uevent_lock, flags);
3025 }
3026
3027 /*
3028 * The gendisk is only valid as long as you have a reference
3029 * count on 'md'.
3030 */
dm_disk(struct mapped_device * md)3031 struct gendisk *dm_disk(struct mapped_device *md)
3032 {
3033 return md->disk;
3034 }
3035 EXPORT_SYMBOL_GPL(dm_disk);
3036
dm_kobject(struct mapped_device * md)3037 struct kobject *dm_kobject(struct mapped_device *md)
3038 {
3039 return &md->kobj_holder.kobj;
3040 }
3041
dm_get_from_kobject(struct kobject * kobj)3042 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3043 {
3044 struct mapped_device *md;
3045
3046 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3047
3048 spin_lock(&_minor_lock);
3049 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3050 md = NULL;
3051 goto out;
3052 }
3053 dm_get(md);
3054 out:
3055 spin_unlock(&_minor_lock);
3056
3057 return md;
3058 }
3059
dm_suspended_md(struct mapped_device * md)3060 int dm_suspended_md(struct mapped_device *md)
3061 {
3062 return test_bit(DMF_SUSPENDED, &md->flags);
3063 }
3064
dm_post_suspending_md(struct mapped_device * md)3065 static int dm_post_suspending_md(struct mapped_device *md)
3066 {
3067 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3068 }
3069
dm_suspended_internally_md(struct mapped_device * md)3070 int dm_suspended_internally_md(struct mapped_device *md)
3071 {
3072 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3073 }
3074
dm_test_deferred_remove_flag(struct mapped_device * md)3075 int dm_test_deferred_remove_flag(struct mapped_device *md)
3076 {
3077 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3078 }
3079
dm_suspended(struct dm_target * ti)3080 int dm_suspended(struct dm_target *ti)
3081 {
3082 return dm_suspended_md(ti->table->md);
3083 }
3084 EXPORT_SYMBOL_GPL(dm_suspended);
3085
dm_post_suspending(struct dm_target * ti)3086 int dm_post_suspending(struct dm_target *ti)
3087 {
3088 return dm_post_suspending_md(ti->table->md);
3089 }
3090 EXPORT_SYMBOL_GPL(dm_post_suspending);
3091
dm_noflush_suspending(struct dm_target * ti)3092 int dm_noflush_suspending(struct dm_target *ti)
3093 {
3094 return __noflush_suspending(ti->table->md);
3095 }
3096 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3097
dm_free_md_mempools(struct dm_md_mempools * pools)3098 void dm_free_md_mempools(struct dm_md_mempools *pools)
3099 {
3100 if (!pools)
3101 return;
3102
3103 bioset_exit(&pools->bs);
3104 bioset_exit(&pools->io_bs);
3105
3106 kfree(pools);
3107 }
3108
3109 struct dm_pr {
3110 u64 old_key;
3111 u64 new_key;
3112 u32 flags;
3113 bool abort;
3114 bool fail_early;
3115 int ret;
3116 enum pr_type type;
3117 };
3118
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3119 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3120 struct dm_pr *pr)
3121 {
3122 struct mapped_device *md = bdev->bd_disk->private_data;
3123 struct dm_table *table;
3124 struct dm_target *ti;
3125 int ret = -ENOTTY, srcu_idx;
3126
3127 table = dm_get_live_table(md, &srcu_idx);
3128 if (!table || !dm_table_get_size(table))
3129 goto out;
3130
3131 /* We only support devices that have a single target */
3132 if (table->num_targets != 1)
3133 goto out;
3134 ti = dm_table_get_target(table, 0);
3135
3136 if (dm_suspended_md(md)) {
3137 ret = -EAGAIN;
3138 goto out;
3139 }
3140
3141 ret = -EINVAL;
3142 if (!ti->type->iterate_devices)
3143 goto out;
3144
3145 ti->type->iterate_devices(ti, fn, pr);
3146 ret = 0;
3147 out:
3148 dm_put_live_table(md, srcu_idx);
3149 return ret;
3150 }
3151
3152 /*
3153 * For register / unregister we need to manually call out to every path.
3154 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3155 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3156 sector_t start, sector_t len, void *data)
3157 {
3158 struct dm_pr *pr = data;
3159 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3160 int ret;
3161
3162 if (!ops || !ops->pr_register) {
3163 pr->ret = -EOPNOTSUPP;
3164 return -1;
3165 }
3166
3167 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3168 if (!ret)
3169 return 0;
3170
3171 if (!pr->ret)
3172 pr->ret = ret;
3173
3174 if (pr->fail_early)
3175 return -1;
3176
3177 return 0;
3178 }
3179
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3180 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3181 u32 flags)
3182 {
3183 struct dm_pr pr = {
3184 .old_key = old_key,
3185 .new_key = new_key,
3186 .flags = flags,
3187 .fail_early = true,
3188 .ret = 0,
3189 };
3190 int ret;
3191
3192 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3193 if (ret) {
3194 /* Didn't even get to register a path */
3195 return ret;
3196 }
3197
3198 if (!pr.ret)
3199 return 0;
3200 ret = pr.ret;
3201
3202 if (!new_key)
3203 return ret;
3204
3205 /* unregister all paths if we failed to register any path */
3206 pr.old_key = new_key;
3207 pr.new_key = 0;
3208 pr.flags = 0;
3209 pr.fail_early = false;
3210 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3211 return ret;
3212 }
3213
3214
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3215 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3216 sector_t start, sector_t len, void *data)
3217 {
3218 struct dm_pr *pr = data;
3219 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3220
3221 if (!ops || !ops->pr_reserve) {
3222 pr->ret = -EOPNOTSUPP;
3223 return -1;
3224 }
3225
3226 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3227 if (!pr->ret)
3228 return -1;
3229
3230 return 0;
3231 }
3232
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3233 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3234 u32 flags)
3235 {
3236 struct dm_pr pr = {
3237 .old_key = key,
3238 .flags = flags,
3239 .type = type,
3240 .fail_early = false,
3241 .ret = 0,
3242 };
3243 int ret;
3244
3245 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3246 if (ret)
3247 return ret;
3248
3249 return pr.ret;
3250 }
3251
3252 /*
3253 * If there is a non-All Registrants type of reservation, the release must be
3254 * sent down the holding path. For the cases where there is no reservation or
3255 * the path is not the holder the device will also return success, so we must
3256 * try each path to make sure we got the correct path.
3257 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3258 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3259 sector_t start, sector_t len, void *data)
3260 {
3261 struct dm_pr *pr = data;
3262 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3263
3264 if (!ops || !ops->pr_release) {
3265 pr->ret = -EOPNOTSUPP;
3266 return -1;
3267 }
3268
3269 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3270 if (pr->ret)
3271 return -1;
3272
3273 return 0;
3274 }
3275
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3276 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3277 {
3278 struct dm_pr pr = {
3279 .old_key = key,
3280 .type = type,
3281 .fail_early = false,
3282 };
3283 int ret;
3284
3285 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3286 if (ret)
3287 return ret;
3288
3289 return pr.ret;
3290 }
3291
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3292 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3293 sector_t start, sector_t len, void *data)
3294 {
3295 struct dm_pr *pr = data;
3296 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3297
3298 if (!ops || !ops->pr_preempt) {
3299 pr->ret = -EOPNOTSUPP;
3300 return -1;
3301 }
3302
3303 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3304 pr->abort);
3305 if (!pr->ret)
3306 return -1;
3307
3308 return 0;
3309 }
3310
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3311 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3312 enum pr_type type, bool abort)
3313 {
3314 struct dm_pr pr = {
3315 .new_key = new_key,
3316 .old_key = old_key,
3317 .type = type,
3318 .fail_early = false,
3319 };
3320 int ret;
3321
3322 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3323 if (ret)
3324 return ret;
3325
3326 return pr.ret;
3327 }
3328
dm_pr_clear(struct block_device * bdev,u64 key)3329 static int dm_pr_clear(struct block_device *bdev, u64 key)
3330 {
3331 struct mapped_device *md = bdev->bd_disk->private_data;
3332 const struct pr_ops *ops;
3333 int r, srcu_idx;
3334
3335 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3336 if (r < 0)
3337 goto out;
3338
3339 ops = bdev->bd_disk->fops->pr_ops;
3340 if (ops && ops->pr_clear)
3341 r = ops->pr_clear(bdev, key);
3342 else
3343 r = -EOPNOTSUPP;
3344 out:
3345 dm_unprepare_ioctl(md, srcu_idx);
3346 return r;
3347 }
3348
3349 static const struct pr_ops dm_pr_ops = {
3350 .pr_register = dm_pr_register,
3351 .pr_reserve = dm_pr_reserve,
3352 .pr_release = dm_pr_release,
3353 .pr_preempt = dm_pr_preempt,
3354 .pr_clear = dm_pr_clear,
3355 };
3356
3357 static const struct block_device_operations dm_blk_dops = {
3358 .submit_bio = dm_submit_bio,
3359 .poll_bio = dm_poll_bio,
3360 .open = dm_blk_open,
3361 .release = dm_blk_close,
3362 .ioctl = dm_blk_ioctl,
3363 .getgeo = dm_blk_getgeo,
3364 .report_zones = dm_blk_report_zones,
3365 .pr_ops = &dm_pr_ops,
3366 .owner = THIS_MODULE
3367 };
3368
3369 static const struct block_device_operations dm_rq_blk_dops = {
3370 .open = dm_blk_open,
3371 .release = dm_blk_close,
3372 .ioctl = dm_blk_ioctl,
3373 .getgeo = dm_blk_getgeo,
3374 .pr_ops = &dm_pr_ops,
3375 .owner = THIS_MODULE
3376 };
3377
3378 static const struct dax_operations dm_dax_ops = {
3379 .direct_access = dm_dax_direct_access,
3380 .zero_page_range = dm_dax_zero_page_range,
3381 .recovery_write = dm_dax_recovery_write,
3382 };
3383
3384 /*
3385 * module hooks
3386 */
3387 module_init(dm_init);
3388 module_exit(dm_exit);
3389
3390 module_param(major, uint, 0);
3391 MODULE_PARM_DESC(major, "The major number of the device mapper");
3392
3393 module_param(reserved_bio_based_ios, uint, 0644);
3394 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3395
3396 module_param(dm_numa_node, int, 0644);
3397 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3398
3399 module_param(swap_bios, int, 0644);
3400 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3401
3402 MODULE_DESCRIPTION(DM_NAME " driver");
3403 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3404 MODULE_LICENSE("GPL");
3405