1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48
49 /*
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
56 */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68 static struct shrinker deferred_split_shrinker;
69
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags,bool smaps,bool in_pf,bool enforce_sysfs)74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 if (!vma->vm_mm) /* vdso */
78 return false;
79
80 /*
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
83 * example, s390 kvm.
84 * */
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 return false;
88 /*
89 * If the hardware/firmware marked hugepage support disabled.
90 */
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 return false;
93
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 if (vma_is_dax(vma))
96 return in_pf;
97
98 /*
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
101 * VM_MIXEDMAP set.
102 */
103 if (vm_flags & VM_NO_KHUGEPAGED)
104 return false;
105
106 /*
107 * Check alignment for file vma and size for both file and anon vma.
108 *
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
111 */
112 if (!in_pf &&
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 return false;
115
116 /*
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
119 * own flags.
120 */
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 !enforce_sysfs, vma->vm_mm, vm_flags);
124
125 /* Enforce sysfs THP requirements as necessary */
126 if (enforce_sysfs &&
127 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 !hugepage_flags_always())))
129 return false;
130
131 /* Only regular file is valid */
132 if (!in_pf && file_thp_enabled(vma))
133 return true;
134
135 if (!vma_is_anonymous(vma))
136 return false;
137
138 if (vma_is_temporary_stack(vma))
139 return false;
140
141 /*
142 * THPeligible bit of smaps should show 1 for proper VMAs even
143 * though anon_vma is not initialized yet.
144 *
145 * Allow page fault since anon_vma may be not initialized until
146 * the first page fault.
147 */
148 if (!vma->anon_vma)
149 return (smaps || in_pf);
150
151 return true;
152 }
153
get_huge_zero_page(void)154 static bool get_huge_zero_page(void)
155 {
156 struct page *zero_page;
157 retry:
158 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 return true;
160
161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 HPAGE_PMD_ORDER);
163 if (!zero_page) {
164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 return false;
166 }
167 preempt_disable();
168 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 preempt_enable();
170 __free_pages(zero_page, compound_order(zero_page));
171 goto retry;
172 }
173 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174
175 /* We take additional reference here. It will be put back by shrinker */
176 atomic_set(&huge_zero_refcount, 2);
177 preempt_enable();
178 count_vm_event(THP_ZERO_PAGE_ALLOC);
179 return true;
180 }
181
put_huge_zero_page(void)182 static void put_huge_zero_page(void)
183 {
184 /*
185 * Counter should never go to zero here. Only shrinker can put
186 * last reference.
187 */
188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190
mm_get_huge_zero_page(struct mm_struct * mm)191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 return READ_ONCE(huge_zero_page);
195
196 if (!get_huge_zero_page())
197 return NULL;
198
199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 put_huge_zero_page();
201
202 return READ_ONCE(huge_zero_page);
203 }
204
mm_put_huge_zero_page(struct mm_struct * mm)205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 put_huge_zero_page();
209 }
210
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 struct shrink_control *sc)
213 {
214 /* we can free zero page only if last reference remains */
215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 struct shrink_control *sc)
220 {
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 WRITE_ONCE(huge_zero_pfn, ~0UL);
225 __free_pages(zero_page, compound_order(zero_page));
226 return HPAGE_PMD_NR;
227 }
228
229 return 0;
230 }
231
232 static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
236 };
237
238 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)239 static ssize_t enabled_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf)
241 {
242 const char *output;
243
244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 output = "[always] madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [madvise] never";
249 else
250 output = "always madvise [never]";
251
252 return sysfs_emit(buf, "%s\n", output);
253 }
254
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)255 static ssize_t enabled_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
258 {
259 ssize_t ret = count;
260
261 if (sysfs_streq(buf, "always")) {
262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 } else if (sysfs_streq(buf, "madvise")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 } else if (sysfs_streq(buf, "never")) {
268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else
271 ret = -EINVAL;
272
273 if (ret > 0) {
274 int err = start_stop_khugepaged();
275 if (err)
276 ret = err;
277 }
278 return ret;
279 }
280
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf,
285 enum transparent_hugepage_flag flag)
286 {
287 return sysfs_emit(buf, "%d\n",
288 !!test_bit(flag, &transparent_hugepage_flags));
289 }
290
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 struct kobj_attribute *attr,
293 const char *buf, size_t count,
294 enum transparent_hugepage_flag flag)
295 {
296 unsigned long value;
297 int ret;
298
299 ret = kstrtoul(buf, 10, &value);
300 if (ret < 0)
301 return ret;
302 if (value > 1)
303 return -EINVAL;
304
305 if (value)
306 set_bit(flag, &transparent_hugepage_flags);
307 else
308 clear_bit(flag, &transparent_hugepage_flags);
309
310 return count;
311 }
312
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)313 static ssize_t defrag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf)
315 {
316 const char *output;
317
318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 &transparent_hugepage_flags))
320 output = "[always] defer defer+madvise madvise never";
321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 &transparent_hugepage_flags))
323 output = "always [defer] defer+madvise madvise never";
324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 &transparent_hugepage_flags))
326 output = "always defer [defer+madvise] madvise never";
327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 &transparent_hugepage_flags))
329 output = "always defer defer+madvise [madvise] never";
330 else
331 output = "always defer defer+madvise madvise [never]";
332
333 return sysfs_emit(buf, "%s\n", output);
334 }
335
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)336 static ssize_t defrag_store(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 const char *buf, size_t count)
339 {
340 if (sysfs_streq(buf, "always")) {
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 } else if (sysfs_streq(buf, "defer+madvise")) {
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 } else if (sysfs_streq(buf, "defer")) {
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 } else if (sysfs_streq(buf, "madvise")) {
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 } else if (sysfs_streq(buf, "never")) {
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 } else
366 return -EINVAL;
367
368 return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
374 {
375 return single_hugepage_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 return single_hugepage_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 struct kobj_attribute *attr, char *buf)
388 {
389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 __ATTR_RO(hpage_pmd_size);
393
394 static struct attribute *hugepage_attr[] = {
395 &enabled_attr.attr,
396 &defrag_attr.attr,
397 &use_zero_page_attr.attr,
398 &hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 &shmem_enabled_attr.attr,
401 #endif
402 NULL,
403 };
404
405 static const struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
407 };
408
hugepage_init_sysfs(struct kobject ** hugepage_kobj)409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 int err;
412
413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 if (unlikely(!*hugepage_kobj)) {
415 pr_err("failed to create transparent hugepage kobject\n");
416 return -ENOMEM;
417 }
418
419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 if (err) {
421 pr_err("failed to register transparent hugepage group\n");
422 goto delete_obj;
423 }
424
425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 if (err) {
427 pr_err("failed to register transparent hugepage group\n");
428 goto remove_hp_group;
429 }
430
431 return 0;
432
433 remove_hp_group:
434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 kobject_put(*hugepage_kobj);
437 return err;
438 }
439
hugepage_exit_sysfs(struct kobject * hugepage_kobj)440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 kobject_put(hugepage_kobj);
445 }
446 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 return 0;
450 }
451
hugepage_exit_sysfs(struct kobject * hugepage_kobj)452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456
hugepage_init(void)457 static int __init hugepage_init(void)
458 {
459 int err;
460 struct kobject *hugepage_kobj;
461
462 if (!has_transparent_hugepage()) {
463 /*
464 * Hardware doesn't support hugepages, hence disable
465 * DAX PMD support.
466 */
467 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
468 return -EINVAL;
469 }
470
471 /*
472 * hugepages can't be allocated by the buddy allocator
473 */
474 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
475 /*
476 * we use page->mapping and page->index in second tail page
477 * as list_head: assuming THP order >= 2
478 */
479 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
480
481 err = hugepage_init_sysfs(&hugepage_kobj);
482 if (err)
483 goto err_sysfs;
484
485 err = khugepaged_init();
486 if (err)
487 goto err_slab;
488
489 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
490 if (err)
491 goto err_hzp_shrinker;
492 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
493 if (err)
494 goto err_split_shrinker;
495
496 /*
497 * By default disable transparent hugepages on smaller systems,
498 * where the extra memory used could hurt more than TLB overhead
499 * is likely to save. The admin can still enable it through /sys.
500 */
501 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
502 transparent_hugepage_flags = 0;
503 return 0;
504 }
505
506 err = start_stop_khugepaged();
507 if (err)
508 goto err_khugepaged;
509
510 return 0;
511 err_khugepaged:
512 unregister_shrinker(&deferred_split_shrinker);
513 err_split_shrinker:
514 unregister_shrinker(&huge_zero_page_shrinker);
515 err_hzp_shrinker:
516 khugepaged_destroy();
517 err_slab:
518 hugepage_exit_sysfs(hugepage_kobj);
519 err_sysfs:
520 return err;
521 }
522 subsys_initcall(hugepage_init);
523
setup_transparent_hugepage(char * str)524 static int __init setup_transparent_hugepage(char *str)
525 {
526 int ret = 0;
527 if (!str)
528 goto out;
529 if (!strcmp(str, "always")) {
530 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
531 &transparent_hugepage_flags);
532 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
533 &transparent_hugepage_flags);
534 ret = 1;
535 } else if (!strcmp(str, "madvise")) {
536 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
537 &transparent_hugepage_flags);
538 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
539 &transparent_hugepage_flags);
540 ret = 1;
541 } else if (!strcmp(str, "never")) {
542 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
543 &transparent_hugepage_flags);
544 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
545 &transparent_hugepage_flags);
546 ret = 1;
547 }
548 out:
549 if (!ret)
550 pr_warn("transparent_hugepage= cannot parse, ignored\n");
551 return ret;
552 }
553 __setup("transparent_hugepage=", setup_transparent_hugepage);
554
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
556 {
557 if (likely(vma->vm_flags & VM_WRITE))
558 pmd = pmd_mkwrite(pmd);
559 return pmd;
560 }
561
562 #ifdef CONFIG_MEMCG
563 static inline
get_deferred_split_queue(struct folio * folio)564 struct deferred_split *get_deferred_split_queue(struct folio *folio)
565 {
566 struct mem_cgroup *memcg = folio_memcg(folio);
567 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
568
569 if (memcg)
570 return &memcg->deferred_split_queue;
571 else
572 return &pgdat->deferred_split_queue;
573 }
574 #else
575 static inline
get_deferred_split_queue(struct folio * folio)576 struct deferred_split *get_deferred_split_queue(struct folio *folio)
577 {
578 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
579
580 return &pgdat->deferred_split_queue;
581 }
582 #endif
583
prep_transhuge_page(struct page * page)584 void prep_transhuge_page(struct page *page)
585 {
586 struct folio *folio = (struct folio *)page;
587
588 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
589 INIT_LIST_HEAD(&folio->_deferred_list);
590 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
591 }
592
is_transparent_hugepage(struct page * page)593 static inline bool is_transparent_hugepage(struct page *page)
594 {
595 struct folio *folio;
596
597 if (!PageCompound(page))
598 return false;
599
600 folio = page_folio(page);
601 return is_huge_zero_page(&folio->page) ||
602 folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
603 }
604
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)605 static unsigned long __thp_get_unmapped_area(struct file *filp,
606 unsigned long addr, unsigned long len,
607 loff_t off, unsigned long flags, unsigned long size)
608 {
609 loff_t off_end = off + len;
610 loff_t off_align = round_up(off, size);
611 unsigned long len_pad, ret;
612
613 if (off_end <= off_align || (off_end - off_align) < size)
614 return 0;
615
616 len_pad = len + size;
617 if (len_pad < len || (off + len_pad) < off)
618 return 0;
619
620 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
621 off >> PAGE_SHIFT, flags);
622
623 /*
624 * The failure might be due to length padding. The caller will retry
625 * without the padding.
626 */
627 if (IS_ERR_VALUE(ret))
628 return 0;
629
630 /*
631 * Do not try to align to THP boundary if allocation at the address
632 * hint succeeds.
633 */
634 if (ret == addr)
635 return addr;
636
637 ret += (off - ret) & (size - 1);
638 return ret;
639 }
640
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)641 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
642 unsigned long len, unsigned long pgoff, unsigned long flags)
643 {
644 unsigned long ret;
645 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
646
647 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
648 if (ret)
649 return ret;
650
651 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
652 }
653 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
654
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)655 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
656 struct page *page, gfp_t gfp)
657 {
658 struct vm_area_struct *vma = vmf->vma;
659 pgtable_t pgtable;
660 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
661 vm_fault_t ret = 0;
662
663 VM_BUG_ON_PAGE(!PageCompound(page), page);
664
665 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
666 put_page(page);
667 count_vm_event(THP_FAULT_FALLBACK);
668 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
669 return VM_FAULT_FALLBACK;
670 }
671 cgroup_throttle_swaprate(page, gfp);
672
673 pgtable = pte_alloc_one(vma->vm_mm);
674 if (unlikely(!pgtable)) {
675 ret = VM_FAULT_OOM;
676 goto release;
677 }
678
679 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
680 /*
681 * The memory barrier inside __SetPageUptodate makes sure that
682 * clear_huge_page writes become visible before the set_pmd_at()
683 * write.
684 */
685 __SetPageUptodate(page);
686
687 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
688 if (unlikely(!pmd_none(*vmf->pmd))) {
689 goto unlock_release;
690 } else {
691 pmd_t entry;
692
693 ret = check_stable_address_space(vma->vm_mm);
694 if (ret)
695 goto unlock_release;
696
697 /* Deliver the page fault to userland */
698 if (userfaultfd_missing(vma)) {
699 spin_unlock(vmf->ptl);
700 put_page(page);
701 pte_free(vma->vm_mm, pgtable);
702 ret = handle_userfault(vmf, VM_UFFD_MISSING);
703 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
704 return ret;
705 }
706
707 entry = mk_huge_pmd(page, vma->vm_page_prot);
708 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
709 page_add_new_anon_rmap(page, vma, haddr);
710 lru_cache_add_inactive_or_unevictable(page, vma);
711 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
712 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
713 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
714 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
715 mm_inc_nr_ptes(vma->vm_mm);
716 spin_unlock(vmf->ptl);
717 count_vm_event(THP_FAULT_ALLOC);
718 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
719 }
720
721 return 0;
722 unlock_release:
723 spin_unlock(vmf->ptl);
724 release:
725 if (pgtable)
726 pte_free(vma->vm_mm, pgtable);
727 put_page(page);
728 return ret;
729
730 }
731
732 /*
733 * always: directly stall for all thp allocations
734 * defer: wake kswapd and fail if not immediately available
735 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
736 * fail if not immediately available
737 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
738 * available
739 * never: never stall for any thp allocation
740 */
vma_thp_gfp_mask(struct vm_area_struct * vma)741 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
742 {
743 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
744
745 /* Always do synchronous compaction */
746 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
747 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
748
749 /* Kick kcompactd and fail quickly */
750 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
751 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
752
753 /* Synchronous compaction if madvised, otherwise kick kcompactd */
754 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
755 return GFP_TRANSHUGE_LIGHT |
756 (vma_madvised ? __GFP_DIRECT_RECLAIM :
757 __GFP_KSWAPD_RECLAIM);
758
759 /* Only do synchronous compaction if madvised */
760 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
761 return GFP_TRANSHUGE_LIGHT |
762 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
763
764 return GFP_TRANSHUGE_LIGHT;
765 }
766
767 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)768 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
769 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
770 struct page *zero_page)
771 {
772 pmd_t entry;
773 if (!pmd_none(*pmd))
774 return;
775 entry = mk_pmd(zero_page, vma->vm_page_prot);
776 entry = pmd_mkhuge(entry);
777 pgtable_trans_huge_deposit(mm, pmd, pgtable);
778 set_pmd_at(mm, haddr, pmd, entry);
779 mm_inc_nr_ptes(mm);
780 }
781
do_huge_pmd_anonymous_page(struct vm_fault * vmf)782 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
783 {
784 struct vm_area_struct *vma = vmf->vma;
785 gfp_t gfp;
786 struct folio *folio;
787 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
788
789 if (!transhuge_vma_suitable(vma, haddr))
790 return VM_FAULT_FALLBACK;
791 if (unlikely(anon_vma_prepare(vma)))
792 return VM_FAULT_OOM;
793 khugepaged_enter_vma(vma, vma->vm_flags);
794
795 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
796 !mm_forbids_zeropage(vma->vm_mm) &&
797 transparent_hugepage_use_zero_page()) {
798 pgtable_t pgtable;
799 struct page *zero_page;
800 vm_fault_t ret;
801 pgtable = pte_alloc_one(vma->vm_mm);
802 if (unlikely(!pgtable))
803 return VM_FAULT_OOM;
804 zero_page = mm_get_huge_zero_page(vma->vm_mm);
805 if (unlikely(!zero_page)) {
806 pte_free(vma->vm_mm, pgtable);
807 count_vm_event(THP_FAULT_FALLBACK);
808 return VM_FAULT_FALLBACK;
809 }
810 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
811 ret = 0;
812 if (pmd_none(*vmf->pmd)) {
813 ret = check_stable_address_space(vma->vm_mm);
814 if (ret) {
815 spin_unlock(vmf->ptl);
816 pte_free(vma->vm_mm, pgtable);
817 } else if (userfaultfd_missing(vma)) {
818 spin_unlock(vmf->ptl);
819 pte_free(vma->vm_mm, pgtable);
820 ret = handle_userfault(vmf, VM_UFFD_MISSING);
821 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
822 } else {
823 set_huge_zero_page(pgtable, vma->vm_mm, vma,
824 haddr, vmf->pmd, zero_page);
825 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
826 spin_unlock(vmf->ptl);
827 }
828 } else {
829 spin_unlock(vmf->ptl);
830 pte_free(vma->vm_mm, pgtable);
831 }
832 return ret;
833 }
834 gfp = vma_thp_gfp_mask(vma);
835 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
836 if (unlikely(!folio)) {
837 count_vm_event(THP_FAULT_FALLBACK);
838 return VM_FAULT_FALLBACK;
839 }
840 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
841 }
842
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)843 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
844 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
845 pgtable_t pgtable)
846 {
847 struct mm_struct *mm = vma->vm_mm;
848 pmd_t entry;
849 spinlock_t *ptl;
850
851 ptl = pmd_lock(mm, pmd);
852 if (!pmd_none(*pmd)) {
853 if (write) {
854 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
855 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
856 goto out_unlock;
857 }
858 entry = pmd_mkyoung(*pmd);
859 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
860 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
861 update_mmu_cache_pmd(vma, addr, pmd);
862 }
863
864 goto out_unlock;
865 }
866
867 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
868 if (pfn_t_devmap(pfn))
869 entry = pmd_mkdevmap(entry);
870 if (write) {
871 entry = pmd_mkyoung(pmd_mkdirty(entry));
872 entry = maybe_pmd_mkwrite(entry, vma);
873 }
874
875 if (pgtable) {
876 pgtable_trans_huge_deposit(mm, pmd, pgtable);
877 mm_inc_nr_ptes(mm);
878 pgtable = NULL;
879 }
880
881 set_pmd_at(mm, addr, pmd, entry);
882 update_mmu_cache_pmd(vma, addr, pmd);
883
884 out_unlock:
885 spin_unlock(ptl);
886 if (pgtable)
887 pte_free(mm, pgtable);
888 }
889
890 /**
891 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
892 * @vmf: Structure describing the fault
893 * @pfn: pfn to insert
894 * @pgprot: page protection to use
895 * @write: whether it's a write fault
896 *
897 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
898 * also consult the vmf_insert_mixed_prot() documentation when
899 * @pgprot != @vmf->vma->vm_page_prot.
900 *
901 * Return: vm_fault_t value.
902 */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)903 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
904 pgprot_t pgprot, bool write)
905 {
906 unsigned long addr = vmf->address & PMD_MASK;
907 struct vm_area_struct *vma = vmf->vma;
908 pgtable_t pgtable = NULL;
909
910 /*
911 * If we had pmd_special, we could avoid all these restrictions,
912 * but we need to be consistent with PTEs and architectures that
913 * can't support a 'special' bit.
914 */
915 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
916 !pfn_t_devmap(pfn));
917 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
918 (VM_PFNMAP|VM_MIXEDMAP));
919 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
920
921 if (addr < vma->vm_start || addr >= vma->vm_end)
922 return VM_FAULT_SIGBUS;
923
924 if (arch_needs_pgtable_deposit()) {
925 pgtable = pte_alloc_one(vma->vm_mm);
926 if (!pgtable)
927 return VM_FAULT_OOM;
928 }
929
930 track_pfn_insert(vma, &pgprot, pfn);
931
932 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
933 return VM_FAULT_NOPAGE;
934 }
935 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
936
937 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)938 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
939 {
940 if (likely(vma->vm_flags & VM_WRITE))
941 pud = pud_mkwrite(pud);
942 return pud;
943 }
944
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)945 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
946 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
947 {
948 struct mm_struct *mm = vma->vm_mm;
949 pud_t entry;
950 spinlock_t *ptl;
951
952 ptl = pud_lock(mm, pud);
953 if (!pud_none(*pud)) {
954 if (write) {
955 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
956 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
957 goto out_unlock;
958 }
959 entry = pud_mkyoung(*pud);
960 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
961 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
962 update_mmu_cache_pud(vma, addr, pud);
963 }
964 goto out_unlock;
965 }
966
967 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
968 if (pfn_t_devmap(pfn))
969 entry = pud_mkdevmap(entry);
970 if (write) {
971 entry = pud_mkyoung(pud_mkdirty(entry));
972 entry = maybe_pud_mkwrite(entry, vma);
973 }
974 set_pud_at(mm, addr, pud, entry);
975 update_mmu_cache_pud(vma, addr, pud);
976
977 out_unlock:
978 spin_unlock(ptl);
979 }
980
981 /**
982 * vmf_insert_pfn_pud_prot - insert a pud size pfn
983 * @vmf: Structure describing the fault
984 * @pfn: pfn to insert
985 * @pgprot: page protection to use
986 * @write: whether it's a write fault
987 *
988 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
989 * also consult the vmf_insert_mixed_prot() documentation when
990 * @pgprot != @vmf->vma->vm_page_prot.
991 *
992 * Return: vm_fault_t value.
993 */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)994 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
995 pgprot_t pgprot, bool write)
996 {
997 unsigned long addr = vmf->address & PUD_MASK;
998 struct vm_area_struct *vma = vmf->vma;
999
1000 /*
1001 * If we had pud_special, we could avoid all these restrictions,
1002 * but we need to be consistent with PTEs and architectures that
1003 * can't support a 'special' bit.
1004 */
1005 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1006 !pfn_t_devmap(pfn));
1007 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1008 (VM_PFNMAP|VM_MIXEDMAP));
1009 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1010
1011 if (addr < vma->vm_start || addr >= vma->vm_end)
1012 return VM_FAULT_SIGBUS;
1013
1014 track_pfn_insert(vma, &pgprot, pfn);
1015
1016 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1017 return VM_FAULT_NOPAGE;
1018 }
1019 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1020 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1021
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1022 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1023 pmd_t *pmd, bool write)
1024 {
1025 pmd_t _pmd;
1026
1027 _pmd = pmd_mkyoung(*pmd);
1028 if (write)
1029 _pmd = pmd_mkdirty(_pmd);
1030 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031 pmd, _pmd, write))
1032 update_mmu_cache_pmd(vma, addr, pmd);
1033 }
1034
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1035 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1037 {
1038 unsigned long pfn = pmd_pfn(*pmd);
1039 struct mm_struct *mm = vma->vm_mm;
1040 struct page *page;
1041 int ret;
1042
1043 assert_spin_locked(pmd_lockptr(mm, pmd));
1044
1045 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046 return NULL;
1047
1048 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049 /* pass */;
1050 else
1051 return NULL;
1052
1053 if (flags & FOLL_TOUCH)
1054 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1055
1056 /*
1057 * device mapped pages can only be returned if the
1058 * caller will manage the page reference count.
1059 */
1060 if (!(flags & (FOLL_GET | FOLL_PIN)))
1061 return ERR_PTR(-EEXIST);
1062
1063 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064 *pgmap = get_dev_pagemap(pfn, *pgmap);
1065 if (!*pgmap)
1066 return ERR_PTR(-EFAULT);
1067 page = pfn_to_page(pfn);
1068 ret = try_grab_page(page, flags);
1069 if (ret)
1070 page = ERR_PTR(ret);
1071
1072 return page;
1073 }
1074
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1078 {
1079 spinlock_t *dst_ptl, *src_ptl;
1080 struct page *src_page;
1081 pmd_t pmd;
1082 pgtable_t pgtable = NULL;
1083 int ret = -ENOMEM;
1084
1085 /* Skip if can be re-fill on fault */
1086 if (!vma_is_anonymous(dst_vma))
1087 return 0;
1088
1089 pgtable = pte_alloc_one(dst_mm);
1090 if (unlikely(!pgtable))
1091 goto out;
1092
1093 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1094 src_ptl = pmd_lockptr(src_mm, src_pmd);
1095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1096
1097 ret = -EAGAIN;
1098 pmd = *src_pmd;
1099
1100 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1101 if (unlikely(is_swap_pmd(pmd))) {
1102 swp_entry_t entry = pmd_to_swp_entry(pmd);
1103
1104 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1105 if (!is_readable_migration_entry(entry)) {
1106 entry = make_readable_migration_entry(
1107 swp_offset(entry));
1108 pmd = swp_entry_to_pmd(entry);
1109 if (pmd_swp_soft_dirty(*src_pmd))
1110 pmd = pmd_swp_mksoft_dirty(pmd);
1111 if (pmd_swp_uffd_wp(*src_pmd))
1112 pmd = pmd_swp_mkuffd_wp(pmd);
1113 set_pmd_at(src_mm, addr, src_pmd, pmd);
1114 }
1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 mm_inc_nr_ptes(dst_mm);
1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 if (!userfaultfd_wp(dst_vma))
1119 pmd = pmd_swp_clear_uffd_wp(pmd);
1120 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1121 ret = 0;
1122 goto out_unlock;
1123 }
1124 #endif
1125
1126 if (unlikely(!pmd_trans_huge(pmd))) {
1127 pte_free(dst_mm, pgtable);
1128 goto out_unlock;
1129 }
1130 /*
1131 * When page table lock is held, the huge zero pmd should not be
1132 * under splitting since we don't split the page itself, only pmd to
1133 * a page table.
1134 */
1135 if (is_huge_zero_pmd(pmd)) {
1136 /*
1137 * get_huge_zero_page() will never allocate a new page here,
1138 * since we already have a zero page to copy. It just takes a
1139 * reference.
1140 */
1141 mm_get_huge_zero_page(dst_mm);
1142 goto out_zero_page;
1143 }
1144
1145 src_page = pmd_page(pmd);
1146 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1147
1148 get_page(src_page);
1149 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1150 /* Page maybe pinned: split and retry the fault on PTEs. */
1151 put_page(src_page);
1152 pte_free(dst_mm, pgtable);
1153 spin_unlock(src_ptl);
1154 spin_unlock(dst_ptl);
1155 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1156 return -EAGAIN;
1157 }
1158 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1159 out_zero_page:
1160 mm_inc_nr_ptes(dst_mm);
1161 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1162 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1163 if (!userfaultfd_wp(dst_vma))
1164 pmd = pmd_clear_uffd_wp(pmd);
1165 pmd = pmd_mkold(pmd_wrprotect(pmd));
1166 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1167
1168 ret = 0;
1169 out_unlock:
1170 spin_unlock(src_ptl);
1171 spin_unlock(dst_ptl);
1172 out:
1173 return ret;
1174 }
1175
1176 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1177 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1178 pud_t *pud, bool write)
1179 {
1180 pud_t _pud;
1181
1182 _pud = pud_mkyoung(*pud);
1183 if (write)
1184 _pud = pud_mkdirty(_pud);
1185 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1186 pud, _pud, write))
1187 update_mmu_cache_pud(vma, addr, pud);
1188 }
1189
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1190 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1191 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1192 {
1193 unsigned long pfn = pud_pfn(*pud);
1194 struct mm_struct *mm = vma->vm_mm;
1195 struct page *page;
1196 int ret;
1197
1198 assert_spin_locked(pud_lockptr(mm, pud));
1199
1200 if (flags & FOLL_WRITE && !pud_write(*pud))
1201 return NULL;
1202
1203 if (pud_present(*pud) && pud_devmap(*pud))
1204 /* pass */;
1205 else
1206 return NULL;
1207
1208 if (flags & FOLL_TOUCH)
1209 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1210
1211 /*
1212 * device mapped pages can only be returned if the
1213 * caller will manage the page reference count.
1214 *
1215 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1216 */
1217 if (!(flags & (FOLL_GET | FOLL_PIN)))
1218 return ERR_PTR(-EEXIST);
1219
1220 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1221 *pgmap = get_dev_pagemap(pfn, *pgmap);
1222 if (!*pgmap)
1223 return ERR_PTR(-EFAULT);
1224 page = pfn_to_page(pfn);
1225
1226 ret = try_grab_page(page, flags);
1227 if (ret)
1228 page = ERR_PTR(ret);
1229
1230 return page;
1231 }
1232
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1233 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1235 struct vm_area_struct *vma)
1236 {
1237 spinlock_t *dst_ptl, *src_ptl;
1238 pud_t pud;
1239 int ret;
1240
1241 dst_ptl = pud_lock(dst_mm, dst_pud);
1242 src_ptl = pud_lockptr(src_mm, src_pud);
1243 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1244
1245 ret = -EAGAIN;
1246 pud = *src_pud;
1247 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1248 goto out_unlock;
1249
1250 /*
1251 * When page table lock is held, the huge zero pud should not be
1252 * under splitting since we don't split the page itself, only pud to
1253 * a page table.
1254 */
1255 if (is_huge_zero_pud(pud)) {
1256 /* No huge zero pud yet */
1257 }
1258
1259 /*
1260 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1261 * and split if duplicating fails.
1262 */
1263 pudp_set_wrprotect(src_mm, addr, src_pud);
1264 pud = pud_mkold(pud_wrprotect(pud));
1265 set_pud_at(dst_mm, addr, dst_pud, pud);
1266
1267 ret = 0;
1268 out_unlock:
1269 spin_unlock(src_ptl);
1270 spin_unlock(dst_ptl);
1271 return ret;
1272 }
1273
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1274 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1275 {
1276 bool write = vmf->flags & FAULT_FLAG_WRITE;
1277
1278 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1279 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1280 goto unlock;
1281
1282 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1283 unlock:
1284 spin_unlock(vmf->ptl);
1285 }
1286 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1287
huge_pmd_set_accessed(struct vm_fault * vmf)1288 void huge_pmd_set_accessed(struct vm_fault *vmf)
1289 {
1290 bool write = vmf->flags & FAULT_FLAG_WRITE;
1291
1292 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1293 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1294 goto unlock;
1295
1296 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1297
1298 unlock:
1299 spin_unlock(vmf->ptl);
1300 }
1301
do_huge_pmd_wp_page(struct vm_fault * vmf)1302 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1303 {
1304 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1305 struct vm_area_struct *vma = vmf->vma;
1306 struct folio *folio;
1307 struct page *page;
1308 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1309 pmd_t orig_pmd = vmf->orig_pmd;
1310
1311 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1312 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1313
1314 if (is_huge_zero_pmd(orig_pmd))
1315 goto fallback;
1316
1317 spin_lock(vmf->ptl);
1318
1319 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1320 spin_unlock(vmf->ptl);
1321 return 0;
1322 }
1323
1324 page = pmd_page(orig_pmd);
1325 folio = page_folio(page);
1326 VM_BUG_ON_PAGE(!PageHead(page), page);
1327
1328 /* Early check when only holding the PT lock. */
1329 if (PageAnonExclusive(page))
1330 goto reuse;
1331
1332 if (!folio_trylock(folio)) {
1333 folio_get(folio);
1334 spin_unlock(vmf->ptl);
1335 folio_lock(folio);
1336 spin_lock(vmf->ptl);
1337 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1338 spin_unlock(vmf->ptl);
1339 folio_unlock(folio);
1340 folio_put(folio);
1341 return 0;
1342 }
1343 folio_put(folio);
1344 }
1345
1346 /* Recheck after temporarily dropping the PT lock. */
1347 if (PageAnonExclusive(page)) {
1348 folio_unlock(folio);
1349 goto reuse;
1350 }
1351
1352 /*
1353 * See do_wp_page(): we can only reuse the folio exclusively if
1354 * there are no additional references. Note that we always drain
1355 * the LRU pagevecs immediately after adding a THP.
1356 */
1357 if (folio_ref_count(folio) >
1358 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1359 goto unlock_fallback;
1360 if (folio_test_swapcache(folio))
1361 folio_free_swap(folio);
1362 if (folio_ref_count(folio) == 1) {
1363 pmd_t entry;
1364
1365 page_move_anon_rmap(page, vma);
1366 folio_unlock(folio);
1367 reuse:
1368 if (unlikely(unshare)) {
1369 spin_unlock(vmf->ptl);
1370 return 0;
1371 }
1372 entry = pmd_mkyoung(orig_pmd);
1373 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1374 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1375 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1376 spin_unlock(vmf->ptl);
1377 return 0;
1378 }
1379
1380 unlock_fallback:
1381 folio_unlock(folio);
1382 spin_unlock(vmf->ptl);
1383 fallback:
1384 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1385 return VM_FAULT_FALLBACK;
1386 }
1387
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1388 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1389 unsigned long addr, pmd_t pmd)
1390 {
1391 struct page *page;
1392
1393 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1394 return false;
1395
1396 /* Don't touch entries that are not even readable (NUMA hinting). */
1397 if (pmd_protnone(pmd))
1398 return false;
1399
1400 /* Do we need write faults for softdirty tracking? */
1401 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1402 return false;
1403
1404 /* Do we need write faults for uffd-wp tracking? */
1405 if (userfaultfd_huge_pmd_wp(vma, pmd))
1406 return false;
1407
1408 if (!(vma->vm_flags & VM_SHARED)) {
1409 /* See can_change_pte_writable(). */
1410 page = vm_normal_page_pmd(vma, addr, pmd);
1411 return page && PageAnon(page) && PageAnonExclusive(page);
1412 }
1413
1414 /* See can_change_pte_writable(). */
1415 return pmd_dirty(pmd);
1416 }
1417
1418 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)1419 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1420 struct vm_area_struct *vma,
1421 unsigned int flags)
1422 {
1423 /* If the pmd is writable, we can write to the page. */
1424 if (pmd_write(pmd))
1425 return true;
1426
1427 /* Maybe FOLL_FORCE is set to override it? */
1428 if (!(flags & FOLL_FORCE))
1429 return false;
1430
1431 /* But FOLL_FORCE has no effect on shared mappings */
1432 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1433 return false;
1434
1435 /* ... or read-only private ones */
1436 if (!(vma->vm_flags & VM_MAYWRITE))
1437 return false;
1438
1439 /* ... or already writable ones that just need to take a write fault */
1440 if (vma->vm_flags & VM_WRITE)
1441 return false;
1442
1443 /*
1444 * See can_change_pte_writable(): we broke COW and could map the page
1445 * writable if we have an exclusive anonymous page ...
1446 */
1447 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1448 return false;
1449
1450 /* ... and a write-fault isn't required for other reasons. */
1451 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1452 return false;
1453 return !userfaultfd_huge_pmd_wp(vma, pmd);
1454 }
1455
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1456 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1457 unsigned long addr,
1458 pmd_t *pmd,
1459 unsigned int flags)
1460 {
1461 struct mm_struct *mm = vma->vm_mm;
1462 struct page *page;
1463 int ret;
1464
1465 assert_spin_locked(pmd_lockptr(mm, pmd));
1466
1467 page = pmd_page(*pmd);
1468 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1469
1470 if ((flags & FOLL_WRITE) &&
1471 !can_follow_write_pmd(*pmd, page, vma, flags))
1472 return NULL;
1473
1474 /* Avoid dumping huge zero page */
1475 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1476 return ERR_PTR(-EFAULT);
1477
1478 /* Full NUMA hinting faults to serialise migration in fault paths */
1479 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1480 return NULL;
1481
1482 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1483 return ERR_PTR(-EMLINK);
1484
1485 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1486 !PageAnonExclusive(page), page);
1487
1488 ret = try_grab_page(page, flags);
1489 if (ret)
1490 return ERR_PTR(ret);
1491
1492 if (flags & FOLL_TOUCH)
1493 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1494
1495 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1496 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1497
1498 return page;
1499 }
1500
1501 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1502 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1503 {
1504 struct vm_area_struct *vma = vmf->vma;
1505 pmd_t oldpmd = vmf->orig_pmd;
1506 pmd_t pmd;
1507 struct page *page;
1508 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1509 int page_nid = NUMA_NO_NODE;
1510 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1511 bool migrated = false, writable = false;
1512 int flags = 0;
1513
1514 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1515 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1516 spin_unlock(vmf->ptl);
1517 goto out;
1518 }
1519
1520 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1521
1522 /*
1523 * Detect now whether the PMD could be writable; this information
1524 * is only valid while holding the PT lock.
1525 */
1526 writable = pmd_write(pmd);
1527 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1528 can_change_pmd_writable(vma, vmf->address, pmd))
1529 writable = true;
1530
1531 page = vm_normal_page_pmd(vma, haddr, pmd);
1532 if (!page)
1533 goto out_map;
1534
1535 /* See similar comment in do_numa_page for explanation */
1536 if (!writable)
1537 flags |= TNF_NO_GROUP;
1538
1539 page_nid = page_to_nid(page);
1540 /*
1541 * For memory tiering mode, cpupid of slow memory page is used
1542 * to record page access time. So use default value.
1543 */
1544 if (node_is_toptier(page_nid))
1545 last_cpupid = page_cpupid_last(page);
1546 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1547 &flags);
1548
1549 if (target_nid == NUMA_NO_NODE) {
1550 put_page(page);
1551 goto out_map;
1552 }
1553
1554 spin_unlock(vmf->ptl);
1555 writable = false;
1556
1557 migrated = migrate_misplaced_page(page, vma, target_nid);
1558 if (migrated) {
1559 flags |= TNF_MIGRATED;
1560 page_nid = target_nid;
1561 } else {
1562 flags |= TNF_MIGRATE_FAIL;
1563 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1564 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1565 spin_unlock(vmf->ptl);
1566 goto out;
1567 }
1568 goto out_map;
1569 }
1570
1571 out:
1572 if (page_nid != NUMA_NO_NODE)
1573 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1574 flags);
1575
1576 return 0;
1577
1578 out_map:
1579 /* Restore the PMD */
1580 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1581 pmd = pmd_mkyoung(pmd);
1582 if (writable)
1583 pmd = pmd_mkwrite(pmd);
1584 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1585 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586 spin_unlock(vmf->ptl);
1587 goto out;
1588 }
1589
1590 /*
1591 * Return true if we do MADV_FREE successfully on entire pmd page.
1592 * Otherwise, return false.
1593 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1594 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1595 pmd_t *pmd, unsigned long addr, unsigned long next)
1596 {
1597 spinlock_t *ptl;
1598 pmd_t orig_pmd;
1599 struct folio *folio;
1600 struct mm_struct *mm = tlb->mm;
1601 bool ret = false;
1602
1603 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1604
1605 ptl = pmd_trans_huge_lock(pmd, vma);
1606 if (!ptl)
1607 goto out_unlocked;
1608
1609 orig_pmd = *pmd;
1610 if (is_huge_zero_pmd(orig_pmd))
1611 goto out;
1612
1613 if (unlikely(!pmd_present(orig_pmd))) {
1614 VM_BUG_ON(thp_migration_supported() &&
1615 !is_pmd_migration_entry(orig_pmd));
1616 goto out;
1617 }
1618
1619 folio = pfn_folio(pmd_pfn(orig_pmd));
1620 /*
1621 * If other processes are mapping this folio, we couldn't discard
1622 * the folio unless they all do MADV_FREE so let's skip the folio.
1623 */
1624 if (folio_mapcount(folio) != 1)
1625 goto out;
1626
1627 if (!folio_trylock(folio))
1628 goto out;
1629
1630 /*
1631 * If user want to discard part-pages of THP, split it so MADV_FREE
1632 * will deactivate only them.
1633 */
1634 if (next - addr != HPAGE_PMD_SIZE) {
1635 folio_get(folio);
1636 spin_unlock(ptl);
1637 split_folio(folio);
1638 folio_unlock(folio);
1639 folio_put(folio);
1640 goto out_unlocked;
1641 }
1642
1643 if (folio_test_dirty(folio))
1644 folio_clear_dirty(folio);
1645 folio_unlock(folio);
1646
1647 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1648 pmdp_invalidate(vma, addr, pmd);
1649 orig_pmd = pmd_mkold(orig_pmd);
1650 orig_pmd = pmd_mkclean(orig_pmd);
1651
1652 set_pmd_at(mm, addr, pmd, orig_pmd);
1653 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1654 }
1655
1656 folio_mark_lazyfree(folio);
1657 ret = true;
1658 out:
1659 spin_unlock(ptl);
1660 out_unlocked:
1661 return ret;
1662 }
1663
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1664 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1665 {
1666 pgtable_t pgtable;
1667
1668 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1669 pte_free(mm, pgtable);
1670 mm_dec_nr_ptes(mm);
1671 }
1672
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1673 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1674 pmd_t *pmd, unsigned long addr)
1675 {
1676 pmd_t orig_pmd;
1677 spinlock_t *ptl;
1678
1679 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1680
1681 ptl = __pmd_trans_huge_lock(pmd, vma);
1682 if (!ptl)
1683 return 0;
1684 /*
1685 * For architectures like ppc64 we look at deposited pgtable
1686 * when calling pmdp_huge_get_and_clear. So do the
1687 * pgtable_trans_huge_withdraw after finishing pmdp related
1688 * operations.
1689 */
1690 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1691 tlb->fullmm);
1692 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1693 if (vma_is_special_huge(vma)) {
1694 if (arch_needs_pgtable_deposit())
1695 zap_deposited_table(tlb->mm, pmd);
1696 spin_unlock(ptl);
1697 } else if (is_huge_zero_pmd(orig_pmd)) {
1698 zap_deposited_table(tlb->mm, pmd);
1699 spin_unlock(ptl);
1700 } else {
1701 struct page *page = NULL;
1702 int flush_needed = 1;
1703
1704 if (pmd_present(orig_pmd)) {
1705 page = pmd_page(orig_pmd);
1706 page_remove_rmap(page, vma, true);
1707 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1708 VM_BUG_ON_PAGE(!PageHead(page), page);
1709 } else if (thp_migration_supported()) {
1710 swp_entry_t entry;
1711
1712 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1713 entry = pmd_to_swp_entry(orig_pmd);
1714 page = pfn_swap_entry_to_page(entry);
1715 flush_needed = 0;
1716 } else
1717 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1718
1719 if (PageAnon(page)) {
1720 zap_deposited_table(tlb->mm, pmd);
1721 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1722 } else {
1723 if (arch_needs_pgtable_deposit())
1724 zap_deposited_table(tlb->mm, pmd);
1725 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1726 }
1727
1728 spin_unlock(ptl);
1729 if (flush_needed)
1730 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1731 }
1732 return 1;
1733 }
1734
1735 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1736 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1737 spinlock_t *old_pmd_ptl,
1738 struct vm_area_struct *vma)
1739 {
1740 /*
1741 * With split pmd lock we also need to move preallocated
1742 * PTE page table if new_pmd is on different PMD page table.
1743 *
1744 * We also don't deposit and withdraw tables for file pages.
1745 */
1746 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1747 }
1748 #endif
1749
move_soft_dirty_pmd(pmd_t pmd)1750 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1751 {
1752 #ifdef CONFIG_MEM_SOFT_DIRTY
1753 if (unlikely(is_pmd_migration_entry(pmd)))
1754 pmd = pmd_swp_mksoft_dirty(pmd);
1755 else if (pmd_present(pmd))
1756 pmd = pmd_mksoft_dirty(pmd);
1757 #endif
1758 return pmd;
1759 }
1760
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1761 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1762 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1763 {
1764 spinlock_t *old_ptl, *new_ptl;
1765 pmd_t pmd;
1766 struct mm_struct *mm = vma->vm_mm;
1767 bool force_flush = false;
1768
1769 /*
1770 * The destination pmd shouldn't be established, free_pgtables()
1771 * should have release it.
1772 */
1773 if (WARN_ON(!pmd_none(*new_pmd))) {
1774 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1775 return false;
1776 }
1777
1778 /*
1779 * We don't have to worry about the ordering of src and dst
1780 * ptlocks because exclusive mmap_lock prevents deadlock.
1781 */
1782 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1783 if (old_ptl) {
1784 new_ptl = pmd_lockptr(mm, new_pmd);
1785 if (new_ptl != old_ptl)
1786 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1787 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1788 if (pmd_present(pmd))
1789 force_flush = true;
1790 VM_BUG_ON(!pmd_none(*new_pmd));
1791
1792 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1793 pgtable_t pgtable;
1794 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1795 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1796 }
1797 pmd = move_soft_dirty_pmd(pmd);
1798 set_pmd_at(mm, new_addr, new_pmd, pmd);
1799 if (force_flush)
1800 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1801 if (new_ptl != old_ptl)
1802 spin_unlock(new_ptl);
1803 spin_unlock(old_ptl);
1804 return true;
1805 }
1806 return false;
1807 }
1808
1809 /*
1810 * Returns
1811 * - 0 if PMD could not be locked
1812 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1813 * or if prot_numa but THP migration is not supported
1814 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1815 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1816 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1817 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1818 unsigned long cp_flags)
1819 {
1820 struct mm_struct *mm = vma->vm_mm;
1821 spinlock_t *ptl;
1822 pmd_t oldpmd, entry;
1823 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1824 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1825 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1826 int ret = 1;
1827
1828 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1829
1830 if (prot_numa && !thp_migration_supported())
1831 return 1;
1832
1833 ptl = __pmd_trans_huge_lock(pmd, vma);
1834 if (!ptl)
1835 return 0;
1836
1837 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1838 if (is_swap_pmd(*pmd)) {
1839 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1840 struct page *page = pfn_swap_entry_to_page(entry);
1841
1842 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1843 if (is_writable_migration_entry(entry)) {
1844 pmd_t newpmd;
1845 /*
1846 * A protection check is difficult so
1847 * just be safe and disable write
1848 */
1849 if (PageAnon(page))
1850 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1851 else
1852 entry = make_readable_migration_entry(swp_offset(entry));
1853 newpmd = swp_entry_to_pmd(entry);
1854 if (pmd_swp_soft_dirty(*pmd))
1855 newpmd = pmd_swp_mksoft_dirty(newpmd);
1856 if (pmd_swp_uffd_wp(*pmd))
1857 newpmd = pmd_swp_mkuffd_wp(newpmd);
1858 set_pmd_at(mm, addr, pmd, newpmd);
1859 }
1860 goto unlock;
1861 }
1862 #endif
1863
1864 if (prot_numa) {
1865 struct page *page;
1866 bool toptier;
1867 /*
1868 * Avoid trapping faults against the zero page. The read-only
1869 * data is likely to be read-cached on the local CPU and
1870 * local/remote hits to the zero page are not interesting.
1871 */
1872 if (is_huge_zero_pmd(*pmd))
1873 goto unlock;
1874
1875 if (pmd_protnone(*pmd))
1876 goto unlock;
1877
1878 page = pmd_page(*pmd);
1879 toptier = node_is_toptier(page_to_nid(page));
1880 /*
1881 * Skip scanning top tier node if normal numa
1882 * balancing is disabled
1883 */
1884 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1885 toptier)
1886 goto unlock;
1887
1888 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1889 !toptier)
1890 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1891 }
1892 /*
1893 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1894 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895 * which is also under mmap_read_lock(mm):
1896 *
1897 * CPU0: CPU1:
1898 * change_huge_pmd(prot_numa=1)
1899 * pmdp_huge_get_and_clear_notify()
1900 * madvise_dontneed()
1901 * zap_pmd_range()
1902 * pmd_trans_huge(*pmd) == 0 (without ptl)
1903 * // skip the pmd
1904 * set_pmd_at();
1905 * // pmd is re-established
1906 *
1907 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908 * which may break userspace.
1909 *
1910 * pmdp_invalidate_ad() is required to make sure we don't miss
1911 * dirty/young flags set by hardware.
1912 */
1913 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1914
1915 entry = pmd_modify(oldpmd, newprot);
1916 if (uffd_wp)
1917 entry = pmd_mkuffd_wp(entry);
1918 else if (uffd_wp_resolve)
1919 /*
1920 * Leave the write bit to be handled by PF interrupt
1921 * handler, then things like COW could be properly
1922 * handled.
1923 */
1924 entry = pmd_clear_uffd_wp(entry);
1925
1926 /* See change_pte_range(). */
1927 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1928 can_change_pmd_writable(vma, addr, entry))
1929 entry = pmd_mkwrite(entry);
1930
1931 ret = HPAGE_PMD_NR;
1932 set_pmd_at(mm, addr, pmd, entry);
1933
1934 if (huge_pmd_needs_flush(oldpmd, entry))
1935 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1936 unlock:
1937 spin_unlock(ptl);
1938 return ret;
1939 }
1940
1941 /*
1942 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1943 *
1944 * Note that if it returns page table lock pointer, this routine returns without
1945 * unlocking page table lock. So callers must unlock it.
1946 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1947 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1948 {
1949 spinlock_t *ptl;
1950 ptl = pmd_lock(vma->vm_mm, pmd);
1951 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1952 pmd_devmap(*pmd)))
1953 return ptl;
1954 spin_unlock(ptl);
1955 return NULL;
1956 }
1957
1958 /*
1959 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1960 *
1961 * Note that if it returns page table lock pointer, this routine returns without
1962 * unlocking page table lock. So callers must unlock it.
1963 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1964 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1965 {
1966 spinlock_t *ptl;
1967
1968 ptl = pud_lock(vma->vm_mm, pud);
1969 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1970 return ptl;
1971 spin_unlock(ptl);
1972 return NULL;
1973 }
1974
1975 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1976 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1977 pud_t *pud, unsigned long addr)
1978 {
1979 spinlock_t *ptl;
1980
1981 ptl = __pud_trans_huge_lock(pud, vma);
1982 if (!ptl)
1983 return 0;
1984
1985 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1986 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1987 if (vma_is_special_huge(vma)) {
1988 spin_unlock(ptl);
1989 /* No zero page support yet */
1990 } else {
1991 /* No support for anonymous PUD pages yet */
1992 BUG();
1993 }
1994 return 1;
1995 }
1996
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1997 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1998 unsigned long haddr)
1999 {
2000 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2001 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2002 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2003 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2004
2005 count_vm_event(THP_SPLIT_PUD);
2006
2007 pudp_huge_clear_flush_notify(vma, haddr, pud);
2008 }
2009
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2010 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2011 unsigned long address)
2012 {
2013 spinlock_t *ptl;
2014 struct mmu_notifier_range range;
2015
2016 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2017 address & HPAGE_PUD_MASK,
2018 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2019 mmu_notifier_invalidate_range_start(&range);
2020 ptl = pud_lock(vma->vm_mm, pud);
2021 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2022 goto out;
2023 __split_huge_pud_locked(vma, pud, range.start);
2024
2025 out:
2026 spin_unlock(ptl);
2027 /*
2028 * No need to double call mmu_notifier->invalidate_range() callback as
2029 * the above pudp_huge_clear_flush_notify() did already call it.
2030 */
2031 mmu_notifier_invalidate_range_only_end(&range);
2032 }
2033 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2034
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2035 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2036 unsigned long haddr, pmd_t *pmd)
2037 {
2038 struct mm_struct *mm = vma->vm_mm;
2039 pgtable_t pgtable;
2040 pmd_t _pmd;
2041 int i;
2042
2043 /*
2044 * Leave pmd empty until pte is filled note that it is fine to delay
2045 * notification until mmu_notifier_invalidate_range_end() as we are
2046 * replacing a zero pmd write protected page with a zero pte write
2047 * protected page.
2048 *
2049 * See Documentation/mm/mmu_notifier.rst
2050 */
2051 pmdp_huge_clear_flush(vma, haddr, pmd);
2052
2053 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2054 pmd_populate(mm, &_pmd, pgtable);
2055
2056 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2057 pte_t *pte, entry;
2058 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2059 entry = pte_mkspecial(entry);
2060 pte = pte_offset_map(&_pmd, haddr);
2061 VM_BUG_ON(!pte_none(*pte));
2062 set_pte_at(mm, haddr, pte, entry);
2063 pte_unmap(pte);
2064 }
2065 smp_wmb(); /* make pte visible before pmd */
2066 pmd_populate(mm, pmd, pgtable);
2067 }
2068
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2069 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2070 unsigned long haddr, bool freeze)
2071 {
2072 struct mm_struct *mm = vma->vm_mm;
2073 struct page *page;
2074 pgtable_t pgtable;
2075 pmd_t old_pmd, _pmd;
2076 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2077 bool anon_exclusive = false, dirty = false;
2078 unsigned long addr;
2079 int i;
2080
2081 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2082 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2083 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2084 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2085 && !pmd_devmap(*pmd));
2086
2087 count_vm_event(THP_SPLIT_PMD);
2088
2089 if (!vma_is_anonymous(vma)) {
2090 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2091 /*
2092 * We are going to unmap this huge page. So
2093 * just go ahead and zap it
2094 */
2095 if (arch_needs_pgtable_deposit())
2096 zap_deposited_table(mm, pmd);
2097 if (vma_is_special_huge(vma))
2098 return;
2099 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2100 swp_entry_t entry;
2101
2102 entry = pmd_to_swp_entry(old_pmd);
2103 page = pfn_swap_entry_to_page(entry);
2104 } else {
2105 page = pmd_page(old_pmd);
2106 if (!PageDirty(page) && pmd_dirty(old_pmd))
2107 set_page_dirty(page);
2108 if (!PageReferenced(page) && pmd_young(old_pmd))
2109 SetPageReferenced(page);
2110 page_remove_rmap(page, vma, true);
2111 put_page(page);
2112 }
2113 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2114 return;
2115 }
2116
2117 if (is_huge_zero_pmd(*pmd)) {
2118 /*
2119 * FIXME: Do we want to invalidate secondary mmu by calling
2120 * mmu_notifier_invalidate_range() see comments below inside
2121 * __split_huge_pmd() ?
2122 *
2123 * We are going from a zero huge page write protected to zero
2124 * small page also write protected so it does not seems useful
2125 * to invalidate secondary mmu at this time.
2126 */
2127 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2128 }
2129
2130 /*
2131 * Up to this point the pmd is present and huge and userland has the
2132 * whole access to the hugepage during the split (which happens in
2133 * place). If we overwrite the pmd with the not-huge version pointing
2134 * to the pte here (which of course we could if all CPUs were bug
2135 * free), userland could trigger a small page size TLB miss on the
2136 * small sized TLB while the hugepage TLB entry is still established in
2137 * the huge TLB. Some CPU doesn't like that.
2138 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2139 * 383 on page 105. Intel should be safe but is also warns that it's
2140 * only safe if the permission and cache attributes of the two entries
2141 * loaded in the two TLB is identical (which should be the case here).
2142 * But it is generally safer to never allow small and huge TLB entries
2143 * for the same virtual address to be loaded simultaneously. So instead
2144 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2145 * current pmd notpresent (atomically because here the pmd_trans_huge
2146 * must remain set at all times on the pmd until the split is complete
2147 * for this pmd), then we flush the SMP TLB and finally we write the
2148 * non-huge version of the pmd entry with pmd_populate.
2149 */
2150 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2151
2152 pmd_migration = is_pmd_migration_entry(old_pmd);
2153 if (unlikely(pmd_migration)) {
2154 swp_entry_t entry;
2155
2156 entry = pmd_to_swp_entry(old_pmd);
2157 page = pfn_swap_entry_to_page(entry);
2158 write = is_writable_migration_entry(entry);
2159 if (PageAnon(page))
2160 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2161 young = is_migration_entry_young(entry);
2162 dirty = is_migration_entry_dirty(entry);
2163 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2164 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2165 } else {
2166 page = pmd_page(old_pmd);
2167 if (pmd_dirty(old_pmd)) {
2168 dirty = true;
2169 SetPageDirty(page);
2170 }
2171 write = pmd_write(old_pmd);
2172 young = pmd_young(old_pmd);
2173 soft_dirty = pmd_soft_dirty(old_pmd);
2174 uffd_wp = pmd_uffd_wp(old_pmd);
2175
2176 VM_BUG_ON_PAGE(!page_count(page), page);
2177
2178 /*
2179 * Without "freeze", we'll simply split the PMD, propagating the
2180 * PageAnonExclusive() flag for each PTE by setting it for
2181 * each subpage -- no need to (temporarily) clear.
2182 *
2183 * With "freeze" we want to replace mapped pages by
2184 * migration entries right away. This is only possible if we
2185 * managed to clear PageAnonExclusive() -- see
2186 * set_pmd_migration_entry().
2187 *
2188 * In case we cannot clear PageAnonExclusive(), split the PMD
2189 * only and let try_to_migrate_one() fail later.
2190 *
2191 * See page_try_share_anon_rmap(): invalidate PMD first.
2192 */
2193 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2194 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2195 freeze = false;
2196 if (!freeze)
2197 page_ref_add(page, HPAGE_PMD_NR - 1);
2198 }
2199
2200 /*
2201 * Withdraw the table only after we mark the pmd entry invalid.
2202 * This's critical for some architectures (Power).
2203 */
2204 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2205 pmd_populate(mm, &_pmd, pgtable);
2206
2207 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2208 pte_t entry, *pte;
2209 /*
2210 * Note that NUMA hinting access restrictions are not
2211 * transferred to avoid any possibility of altering
2212 * permissions across VMAs.
2213 */
2214 if (freeze || pmd_migration) {
2215 swp_entry_t swp_entry;
2216 if (write)
2217 swp_entry = make_writable_migration_entry(
2218 page_to_pfn(page + i));
2219 else if (anon_exclusive)
2220 swp_entry = make_readable_exclusive_migration_entry(
2221 page_to_pfn(page + i));
2222 else
2223 swp_entry = make_readable_migration_entry(
2224 page_to_pfn(page + i));
2225 if (young)
2226 swp_entry = make_migration_entry_young(swp_entry);
2227 if (dirty)
2228 swp_entry = make_migration_entry_dirty(swp_entry);
2229 entry = swp_entry_to_pte(swp_entry);
2230 if (soft_dirty)
2231 entry = pte_swp_mksoft_dirty(entry);
2232 if (uffd_wp)
2233 entry = pte_swp_mkuffd_wp(entry);
2234 } else {
2235 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2236 entry = maybe_mkwrite(entry, vma);
2237 if (anon_exclusive)
2238 SetPageAnonExclusive(page + i);
2239 if (!young)
2240 entry = pte_mkold(entry);
2241 /* NOTE: this may set soft-dirty too on some archs */
2242 if (dirty)
2243 entry = pte_mkdirty(entry);
2244 /*
2245 * NOTE: this needs to happen after pte_mkdirty,
2246 * because some archs (sparc64, loongarch) could
2247 * set hw write bit when mkdirty.
2248 */
2249 if (!write)
2250 entry = pte_wrprotect(entry);
2251 if (soft_dirty)
2252 entry = pte_mksoft_dirty(entry);
2253 if (uffd_wp)
2254 entry = pte_mkuffd_wp(entry);
2255 page_add_anon_rmap(page + i, vma, addr, false);
2256 }
2257 pte = pte_offset_map(&_pmd, addr);
2258 BUG_ON(!pte_none(*pte));
2259 set_pte_at(mm, addr, pte, entry);
2260 pte_unmap(pte);
2261 }
2262
2263 if (!pmd_migration)
2264 page_remove_rmap(page, vma, true);
2265 if (freeze)
2266 put_page(page);
2267
2268 smp_wmb(); /* make pte visible before pmd */
2269 pmd_populate(mm, pmd, pgtable);
2270 }
2271
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2272 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2273 unsigned long address, bool freeze, struct folio *folio)
2274 {
2275 spinlock_t *ptl;
2276 struct mmu_notifier_range range;
2277
2278 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2279 address & HPAGE_PMD_MASK,
2280 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2281 mmu_notifier_invalidate_range_start(&range);
2282 ptl = pmd_lock(vma->vm_mm, pmd);
2283
2284 /*
2285 * If caller asks to setup a migration entry, we need a folio to check
2286 * pmd against. Otherwise we can end up replacing wrong folio.
2287 */
2288 VM_BUG_ON(freeze && !folio);
2289 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2290
2291 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2292 is_pmd_migration_entry(*pmd)) {
2293 /*
2294 * It's safe to call pmd_page when folio is set because it's
2295 * guaranteed that pmd is present.
2296 */
2297 if (folio && folio != page_folio(pmd_page(*pmd)))
2298 goto out;
2299 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2300 }
2301
2302 out:
2303 spin_unlock(ptl);
2304 /*
2305 * No need to double call mmu_notifier->invalidate_range() callback.
2306 * They are 3 cases to consider inside __split_huge_pmd_locked():
2307 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2308 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2309 * fault will trigger a flush_notify before pointing to a new page
2310 * (it is fine if the secondary mmu keeps pointing to the old zero
2311 * page in the meantime)
2312 * 3) Split a huge pmd into pte pointing to the same page. No need
2313 * to invalidate secondary tlb entry they are all still valid.
2314 * any further changes to individual pte will notify. So no need
2315 * to call mmu_notifier->invalidate_range()
2316 */
2317 mmu_notifier_invalidate_range_only_end(&range);
2318 }
2319
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2320 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2321 bool freeze, struct folio *folio)
2322 {
2323 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2324
2325 if (!pmd)
2326 return;
2327
2328 __split_huge_pmd(vma, pmd, address, freeze, folio);
2329 }
2330
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2331 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2332 {
2333 /*
2334 * If the new address isn't hpage aligned and it could previously
2335 * contain an hugepage: check if we need to split an huge pmd.
2336 */
2337 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2338 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2339 ALIGN(address, HPAGE_PMD_SIZE)))
2340 split_huge_pmd_address(vma, address, false, NULL);
2341 }
2342
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2343 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2344 unsigned long start,
2345 unsigned long end,
2346 long adjust_next)
2347 {
2348 /* Check if we need to split start first. */
2349 split_huge_pmd_if_needed(vma, start);
2350
2351 /* Check if we need to split end next. */
2352 split_huge_pmd_if_needed(vma, end);
2353
2354 /*
2355 * If we're also updating the next vma vm_start,
2356 * check if we need to split it.
2357 */
2358 if (adjust_next > 0) {
2359 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2360 unsigned long nstart = next->vm_start;
2361 nstart += adjust_next;
2362 split_huge_pmd_if_needed(next, nstart);
2363 }
2364 }
2365
unmap_folio(struct folio * folio)2366 static void unmap_folio(struct folio *folio)
2367 {
2368 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2369 TTU_SYNC;
2370
2371 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2372
2373 /*
2374 * Anon pages need migration entries to preserve them, but file
2375 * pages can simply be left unmapped, then faulted back on demand.
2376 * If that is ever changed (perhaps for mlock), update remap_page().
2377 */
2378 if (folio_test_anon(folio))
2379 try_to_migrate(folio, ttu_flags);
2380 else
2381 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2382 }
2383
remap_page(struct folio * folio,unsigned long nr)2384 static void remap_page(struct folio *folio, unsigned long nr)
2385 {
2386 int i = 0;
2387
2388 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2389 if (!folio_test_anon(folio))
2390 return;
2391 for (;;) {
2392 remove_migration_ptes(folio, folio, true);
2393 i += folio_nr_pages(folio);
2394 if (i >= nr)
2395 break;
2396 folio = folio_next(folio);
2397 }
2398 }
2399
lru_add_page_tail(struct page * head,struct page * tail,struct lruvec * lruvec,struct list_head * list)2400 static void lru_add_page_tail(struct page *head, struct page *tail,
2401 struct lruvec *lruvec, struct list_head *list)
2402 {
2403 VM_BUG_ON_PAGE(!PageHead(head), head);
2404 VM_BUG_ON_PAGE(PageCompound(tail), head);
2405 VM_BUG_ON_PAGE(PageLRU(tail), head);
2406 lockdep_assert_held(&lruvec->lru_lock);
2407
2408 if (list) {
2409 /* page reclaim is reclaiming a huge page */
2410 VM_WARN_ON(PageLRU(head));
2411 get_page(tail);
2412 list_add_tail(&tail->lru, list);
2413 } else {
2414 /* head is still on lru (and we have it frozen) */
2415 VM_WARN_ON(!PageLRU(head));
2416 if (PageUnevictable(tail))
2417 tail->mlock_count = 0;
2418 else
2419 list_add_tail(&tail->lru, &head->lru);
2420 SetPageLRU(tail);
2421 }
2422 }
2423
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2424 static void __split_huge_page_tail(struct page *head, int tail,
2425 struct lruvec *lruvec, struct list_head *list)
2426 {
2427 struct page *page_tail = head + tail;
2428
2429 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2430
2431 /*
2432 * Clone page flags before unfreezing refcount.
2433 *
2434 * After successful get_page_unless_zero() might follow flags change,
2435 * for example lock_page() which set PG_waiters.
2436 *
2437 * Note that for mapped sub-pages of an anonymous THP,
2438 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2439 * the migration entry instead from where remap_page() will restore it.
2440 * We can still have PG_anon_exclusive set on effectively unmapped and
2441 * unreferenced sub-pages of an anonymous THP: we can simply drop
2442 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2443 */
2444 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2445 page_tail->flags |= (head->flags &
2446 ((1L << PG_referenced) |
2447 (1L << PG_swapbacked) |
2448 (1L << PG_swapcache) |
2449 (1L << PG_mlocked) |
2450 (1L << PG_uptodate) |
2451 (1L << PG_active) |
2452 (1L << PG_workingset) |
2453 (1L << PG_locked) |
2454 (1L << PG_unevictable) |
2455 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2456 (1L << PG_arch_2) |
2457 (1L << PG_arch_3) |
2458 #endif
2459 (1L << PG_dirty) |
2460 LRU_GEN_MASK | LRU_REFS_MASK));
2461
2462 /* ->mapping in first and second tail page is replaced by other uses */
2463 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2464 page_tail);
2465 page_tail->mapping = head->mapping;
2466 page_tail->index = head->index + tail;
2467
2468 /*
2469 * page->private should not be set in tail pages with the exception
2470 * of swap cache pages that store the swp_entry_t in tail pages.
2471 * Fix up and warn once if private is unexpectedly set.
2472 *
2473 * What of 32-bit systems, on which folio->_pincount overlays
2474 * head[1].private? No problem: THP_SWAP is not enabled on 32-bit, and
2475 * pincount must be 0 for folio_ref_freeze() to have succeeded.
2476 */
2477 if (!folio_test_swapcache(page_folio(head))) {
2478 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2479 page_tail->private = 0;
2480 }
2481
2482 /* Page flags must be visible before we make the page non-compound. */
2483 smp_wmb();
2484
2485 /*
2486 * Clear PageTail before unfreezing page refcount.
2487 *
2488 * After successful get_page_unless_zero() might follow put_page()
2489 * which needs correct compound_head().
2490 */
2491 clear_compound_head(page_tail);
2492
2493 /* Finally unfreeze refcount. Additional reference from page cache. */
2494 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2495 PageSwapCache(head)));
2496
2497 if (page_is_young(head))
2498 set_page_young(page_tail);
2499 if (page_is_idle(head))
2500 set_page_idle(page_tail);
2501
2502 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2503
2504 /*
2505 * always add to the tail because some iterators expect new
2506 * pages to show after the currently processed elements - e.g.
2507 * migrate_pages
2508 */
2509 lru_add_page_tail(head, page_tail, lruvec, list);
2510 }
2511
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end)2512 static void __split_huge_page(struct page *page, struct list_head *list,
2513 pgoff_t end)
2514 {
2515 struct folio *folio = page_folio(page);
2516 struct page *head = &folio->page;
2517 struct lruvec *lruvec;
2518 struct address_space *swap_cache = NULL;
2519 unsigned long offset = 0;
2520 unsigned int nr = thp_nr_pages(head);
2521 int i;
2522
2523 /* complete memcg works before add pages to LRU */
2524 split_page_memcg(head, nr);
2525
2526 if (PageAnon(head) && PageSwapCache(head)) {
2527 swp_entry_t entry = { .val = page_private(head) };
2528
2529 offset = swp_offset(entry);
2530 swap_cache = swap_address_space(entry);
2531 xa_lock(&swap_cache->i_pages);
2532 }
2533
2534 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2535 lruvec = folio_lruvec_lock(folio);
2536
2537 ClearPageHasHWPoisoned(head);
2538
2539 for (i = nr - 1; i >= 1; i--) {
2540 __split_huge_page_tail(head, i, lruvec, list);
2541 /* Some pages can be beyond EOF: drop them from page cache */
2542 if (head[i].index >= end) {
2543 struct folio *tail = page_folio(head + i);
2544
2545 if (shmem_mapping(head->mapping))
2546 shmem_uncharge(head->mapping->host, 1);
2547 else if (folio_test_clear_dirty(tail))
2548 folio_account_cleaned(tail,
2549 inode_to_wb(folio->mapping->host));
2550 __filemap_remove_folio(tail, NULL);
2551 folio_put(tail);
2552 } else if (!PageAnon(page)) {
2553 __xa_store(&head->mapping->i_pages, head[i].index,
2554 head + i, 0);
2555 } else if (swap_cache) {
2556 __xa_store(&swap_cache->i_pages, offset + i,
2557 head + i, 0);
2558 }
2559 }
2560
2561 ClearPageCompound(head);
2562 unlock_page_lruvec(lruvec);
2563 /* Caller disabled irqs, so they are still disabled here */
2564
2565 split_page_owner(head, nr);
2566
2567 /* See comment in __split_huge_page_tail() */
2568 if (PageAnon(head)) {
2569 /* Additional pin to swap cache */
2570 if (PageSwapCache(head)) {
2571 page_ref_add(head, 2);
2572 xa_unlock(&swap_cache->i_pages);
2573 } else {
2574 page_ref_inc(head);
2575 }
2576 } else {
2577 /* Additional pin to page cache */
2578 page_ref_add(head, 2);
2579 xa_unlock(&head->mapping->i_pages);
2580 }
2581 local_irq_enable();
2582
2583 remap_page(folio, nr);
2584
2585 if (PageSwapCache(head)) {
2586 swp_entry_t entry = { .val = page_private(head) };
2587
2588 split_swap_cluster(entry);
2589 }
2590
2591 for (i = 0; i < nr; i++) {
2592 struct page *subpage = head + i;
2593 if (subpage == page)
2594 continue;
2595 unlock_page(subpage);
2596
2597 /*
2598 * Subpages may be freed if there wasn't any mapping
2599 * like if add_to_swap() is running on a lru page that
2600 * had its mapping zapped. And freeing these pages
2601 * requires taking the lru_lock so we do the put_page
2602 * of the tail pages after the split is complete.
2603 */
2604 free_page_and_swap_cache(subpage);
2605 }
2606 }
2607
2608 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int * pextra_pins)2609 bool can_split_folio(struct folio *folio, int *pextra_pins)
2610 {
2611 int extra_pins;
2612
2613 /* Additional pins from page cache */
2614 if (folio_test_anon(folio))
2615 extra_pins = folio_test_swapcache(folio) ?
2616 folio_nr_pages(folio) : 0;
2617 else
2618 extra_pins = folio_nr_pages(folio);
2619 if (pextra_pins)
2620 *pextra_pins = extra_pins;
2621 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2622 }
2623
2624 /*
2625 * This function splits huge page into normal pages. @page can point to any
2626 * subpage of huge page to split. Split doesn't change the position of @page.
2627 *
2628 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2629 * The huge page must be locked.
2630 *
2631 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2632 *
2633 * Both head page and tail pages will inherit mapping, flags, and so on from
2634 * the hugepage.
2635 *
2636 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2637 * they are not mapped.
2638 *
2639 * Returns 0 if the hugepage is split successfully.
2640 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2641 * us.
2642 */
split_huge_page_to_list(struct page * page,struct list_head * list)2643 int split_huge_page_to_list(struct page *page, struct list_head *list)
2644 {
2645 struct folio *folio = page_folio(page);
2646 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2647 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2648 struct anon_vma *anon_vma = NULL;
2649 struct address_space *mapping = NULL;
2650 int extra_pins, ret;
2651 pgoff_t end;
2652 bool is_hzp;
2653
2654 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2655 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2656
2657 is_hzp = is_huge_zero_page(&folio->page);
2658 VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2659 if (is_hzp)
2660 return -EBUSY;
2661
2662 if (folio_test_writeback(folio))
2663 return -EBUSY;
2664
2665 if (folio_test_anon(folio)) {
2666 /*
2667 * The caller does not necessarily hold an mmap_lock that would
2668 * prevent the anon_vma disappearing so we first we take a
2669 * reference to it and then lock the anon_vma for write. This
2670 * is similar to folio_lock_anon_vma_read except the write lock
2671 * is taken to serialise against parallel split or collapse
2672 * operations.
2673 */
2674 anon_vma = folio_get_anon_vma(folio);
2675 if (!anon_vma) {
2676 ret = -EBUSY;
2677 goto out;
2678 }
2679 end = -1;
2680 mapping = NULL;
2681 anon_vma_lock_write(anon_vma);
2682 } else {
2683 gfp_t gfp;
2684
2685 mapping = folio->mapping;
2686
2687 /* Truncated ? */
2688 if (!mapping) {
2689 ret = -EBUSY;
2690 goto out;
2691 }
2692
2693 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2694 GFP_RECLAIM_MASK);
2695
2696 if (folio_test_private(folio) &&
2697 !filemap_release_folio(folio, gfp)) {
2698 ret = -EBUSY;
2699 goto out;
2700 }
2701
2702 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2703 if (xas_error(&xas)) {
2704 ret = xas_error(&xas);
2705 goto out;
2706 }
2707
2708 anon_vma = NULL;
2709 i_mmap_lock_read(mapping);
2710
2711 /*
2712 *__split_huge_page() may need to trim off pages beyond EOF:
2713 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2714 * which cannot be nested inside the page tree lock. So note
2715 * end now: i_size itself may be changed at any moment, but
2716 * folio lock is good enough to serialize the trimming.
2717 */
2718 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2719 if (shmem_mapping(mapping))
2720 end = shmem_fallocend(mapping->host, end);
2721 }
2722
2723 /*
2724 * Racy check if we can split the page, before unmap_folio() will
2725 * split PMDs
2726 */
2727 if (!can_split_folio(folio, &extra_pins)) {
2728 ret = -EAGAIN;
2729 goto out_unlock;
2730 }
2731
2732 unmap_folio(folio);
2733
2734 /* block interrupt reentry in xa_lock and spinlock */
2735 local_irq_disable();
2736 if (mapping) {
2737 /*
2738 * Check if the folio is present in page cache.
2739 * We assume all tail are present too, if folio is there.
2740 */
2741 xas_lock(&xas);
2742 xas_reset(&xas);
2743 if (xas_load(&xas) != folio)
2744 goto fail;
2745 }
2746
2747 /* Prevent deferred_split_scan() touching ->_refcount */
2748 spin_lock(&ds_queue->split_queue_lock);
2749 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2750 if (!list_empty(&folio->_deferred_list)) {
2751 ds_queue->split_queue_len--;
2752 list_del(&folio->_deferred_list);
2753 }
2754 spin_unlock(&ds_queue->split_queue_lock);
2755 if (mapping) {
2756 int nr = folio_nr_pages(folio);
2757
2758 xas_split(&xas, folio, folio_order(folio));
2759 if (folio_test_swapbacked(folio)) {
2760 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2761 -nr);
2762 } else {
2763 __lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2764 -nr);
2765 filemap_nr_thps_dec(mapping);
2766 }
2767 }
2768
2769 __split_huge_page(page, list, end);
2770 ret = 0;
2771 } else {
2772 spin_unlock(&ds_queue->split_queue_lock);
2773 fail:
2774 if (mapping)
2775 xas_unlock(&xas);
2776 local_irq_enable();
2777 remap_page(folio, folio_nr_pages(folio));
2778 ret = -EAGAIN;
2779 }
2780
2781 out_unlock:
2782 if (anon_vma) {
2783 anon_vma_unlock_write(anon_vma);
2784 put_anon_vma(anon_vma);
2785 }
2786 if (mapping)
2787 i_mmap_unlock_read(mapping);
2788 out:
2789 xas_destroy(&xas);
2790 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2791 return ret;
2792 }
2793
free_transhuge_page(struct page * page)2794 void free_transhuge_page(struct page *page)
2795 {
2796 struct folio *folio = (struct folio *)page;
2797 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2798 unsigned long flags;
2799
2800 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2801 if (!list_empty(&folio->_deferred_list)) {
2802 ds_queue->split_queue_len--;
2803 list_del(&folio->_deferred_list);
2804 }
2805 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2806 free_compound_page(page);
2807 }
2808
deferred_split_folio(struct folio * folio)2809 void deferred_split_folio(struct folio *folio)
2810 {
2811 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2812 #ifdef CONFIG_MEMCG
2813 struct mem_cgroup *memcg = folio_memcg(folio);
2814 #endif
2815 unsigned long flags;
2816
2817 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2818
2819 /*
2820 * The try_to_unmap() in page reclaim path might reach here too,
2821 * this may cause a race condition to corrupt deferred split queue.
2822 * And, if page reclaim is already handling the same folio, it is
2823 * unnecessary to handle it again in shrinker.
2824 *
2825 * Check the swapcache flag to determine if the folio is being
2826 * handled by page reclaim since THP swap would add the folio into
2827 * swap cache before calling try_to_unmap().
2828 */
2829 if (folio_test_swapcache(folio))
2830 return;
2831
2832 if (!list_empty(&folio->_deferred_list))
2833 return;
2834
2835 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2836 if (list_empty(&folio->_deferred_list)) {
2837 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2838 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2839 ds_queue->split_queue_len++;
2840 #ifdef CONFIG_MEMCG
2841 if (memcg)
2842 set_shrinker_bit(memcg, folio_nid(folio),
2843 deferred_split_shrinker.id);
2844 #endif
2845 }
2846 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2847 }
2848
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2849 static unsigned long deferred_split_count(struct shrinker *shrink,
2850 struct shrink_control *sc)
2851 {
2852 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2853 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2854
2855 #ifdef CONFIG_MEMCG
2856 if (sc->memcg)
2857 ds_queue = &sc->memcg->deferred_split_queue;
2858 #endif
2859 return READ_ONCE(ds_queue->split_queue_len);
2860 }
2861
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2862 static unsigned long deferred_split_scan(struct shrinker *shrink,
2863 struct shrink_control *sc)
2864 {
2865 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2866 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2867 unsigned long flags;
2868 LIST_HEAD(list);
2869 struct folio *folio, *next;
2870 int split = 0;
2871
2872 #ifdef CONFIG_MEMCG
2873 if (sc->memcg)
2874 ds_queue = &sc->memcg->deferred_split_queue;
2875 #endif
2876
2877 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2878 /* Take pin on all head pages to avoid freeing them under us */
2879 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2880 _deferred_list) {
2881 if (folio_try_get(folio)) {
2882 list_move(&folio->_deferred_list, &list);
2883 } else {
2884 /* We lost race with folio_put() */
2885 list_del_init(&folio->_deferred_list);
2886 ds_queue->split_queue_len--;
2887 }
2888 if (!--sc->nr_to_scan)
2889 break;
2890 }
2891 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2892
2893 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2894 if (!folio_trylock(folio))
2895 goto next;
2896 /* split_huge_page() removes page from list on success */
2897 if (!split_folio(folio))
2898 split++;
2899 folio_unlock(folio);
2900 next:
2901 folio_put(folio);
2902 }
2903
2904 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2905 list_splice_tail(&list, &ds_queue->split_queue);
2906 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2907
2908 /*
2909 * Stop shrinker if we didn't split any page, but the queue is empty.
2910 * This can happen if pages were freed under us.
2911 */
2912 if (!split && list_empty(&ds_queue->split_queue))
2913 return SHRINK_STOP;
2914 return split;
2915 }
2916
2917 static struct shrinker deferred_split_shrinker = {
2918 .count_objects = deferred_split_count,
2919 .scan_objects = deferred_split_scan,
2920 .seeks = DEFAULT_SEEKS,
2921 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2922 SHRINKER_NONSLAB,
2923 };
2924
2925 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)2926 static void split_huge_pages_all(void)
2927 {
2928 struct zone *zone;
2929 struct page *page;
2930 struct folio *folio;
2931 unsigned long pfn, max_zone_pfn;
2932 unsigned long total = 0, split = 0;
2933
2934 pr_debug("Split all THPs\n");
2935 for_each_zone(zone) {
2936 if (!managed_zone(zone))
2937 continue;
2938 max_zone_pfn = zone_end_pfn(zone);
2939 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2940 int nr_pages;
2941
2942 page = pfn_to_online_page(pfn);
2943 if (!page || PageTail(page))
2944 continue;
2945 folio = page_folio(page);
2946 if (!folio_try_get(folio))
2947 continue;
2948
2949 if (unlikely(page_folio(page) != folio))
2950 goto next;
2951
2952 if (zone != folio_zone(folio))
2953 goto next;
2954
2955 if (!folio_test_large(folio)
2956 || folio_test_hugetlb(folio)
2957 || !folio_test_lru(folio))
2958 goto next;
2959
2960 total++;
2961 folio_lock(folio);
2962 nr_pages = folio_nr_pages(folio);
2963 if (!split_folio(folio))
2964 split++;
2965 pfn += nr_pages - 1;
2966 folio_unlock(folio);
2967 next:
2968 folio_put(folio);
2969 cond_resched();
2970 }
2971 }
2972
2973 pr_debug("%lu of %lu THP split\n", split, total);
2974 }
2975
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)2976 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2977 {
2978 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2979 is_vm_hugetlb_page(vma);
2980 }
2981
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end)2982 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2983 unsigned long vaddr_end)
2984 {
2985 int ret = 0;
2986 struct task_struct *task;
2987 struct mm_struct *mm;
2988 unsigned long total = 0, split = 0;
2989 unsigned long addr;
2990
2991 vaddr_start &= PAGE_MASK;
2992 vaddr_end &= PAGE_MASK;
2993
2994 /* Find the task_struct from pid */
2995 rcu_read_lock();
2996 task = find_task_by_vpid(pid);
2997 if (!task) {
2998 rcu_read_unlock();
2999 ret = -ESRCH;
3000 goto out;
3001 }
3002 get_task_struct(task);
3003 rcu_read_unlock();
3004
3005 /* Find the mm_struct */
3006 mm = get_task_mm(task);
3007 put_task_struct(task);
3008
3009 if (!mm) {
3010 ret = -EINVAL;
3011 goto out;
3012 }
3013
3014 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3015 pid, vaddr_start, vaddr_end);
3016
3017 mmap_read_lock(mm);
3018 /*
3019 * always increase addr by PAGE_SIZE, since we could have a PTE page
3020 * table filled with PTE-mapped THPs, each of which is distinct.
3021 */
3022 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3023 struct vm_area_struct *vma = vma_lookup(mm, addr);
3024 struct page *page;
3025
3026 if (!vma)
3027 break;
3028
3029 /* skip special VMA and hugetlb VMA */
3030 if (vma_not_suitable_for_thp_split(vma)) {
3031 addr = vma->vm_end;
3032 continue;
3033 }
3034
3035 /* FOLL_DUMP to ignore special (like zero) pages */
3036 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3037
3038 if (IS_ERR_OR_NULL(page))
3039 continue;
3040
3041 if (!is_transparent_hugepage(page))
3042 goto next;
3043
3044 total++;
3045 if (!can_split_folio(page_folio(page), NULL))
3046 goto next;
3047
3048 if (!trylock_page(page))
3049 goto next;
3050
3051 if (!split_huge_page(page))
3052 split++;
3053
3054 unlock_page(page);
3055 next:
3056 put_page(page);
3057 cond_resched();
3058 }
3059 mmap_read_unlock(mm);
3060 mmput(mm);
3061
3062 pr_debug("%lu of %lu THP split\n", split, total);
3063
3064 out:
3065 return ret;
3066 }
3067
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end)3068 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3069 pgoff_t off_end)
3070 {
3071 struct filename *file;
3072 struct file *candidate;
3073 struct address_space *mapping;
3074 int ret = -EINVAL;
3075 pgoff_t index;
3076 int nr_pages = 1;
3077 unsigned long total = 0, split = 0;
3078
3079 file = getname_kernel(file_path);
3080 if (IS_ERR(file))
3081 return ret;
3082
3083 candidate = file_open_name(file, O_RDONLY, 0);
3084 if (IS_ERR(candidate))
3085 goto out;
3086
3087 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3088 file_path, off_start, off_end);
3089
3090 mapping = candidate->f_mapping;
3091
3092 for (index = off_start; index < off_end; index += nr_pages) {
3093 struct folio *folio = __filemap_get_folio(mapping, index,
3094 FGP_ENTRY, 0);
3095
3096 nr_pages = 1;
3097 if (xa_is_value(folio) || !folio)
3098 continue;
3099
3100 if (!folio_test_large(folio))
3101 goto next;
3102
3103 total++;
3104 nr_pages = folio_nr_pages(folio);
3105
3106 if (!folio_trylock(folio))
3107 goto next;
3108
3109 if (!split_folio(folio))
3110 split++;
3111
3112 folio_unlock(folio);
3113 next:
3114 folio_put(folio);
3115 cond_resched();
3116 }
3117
3118 filp_close(candidate, NULL);
3119 ret = 0;
3120
3121 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3122 out:
3123 putname(file);
3124 return ret;
3125 }
3126
3127 #define MAX_INPUT_BUF_SZ 255
3128
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)3129 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3130 size_t count, loff_t *ppops)
3131 {
3132 static DEFINE_MUTEX(split_debug_mutex);
3133 ssize_t ret;
3134 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3135 char input_buf[MAX_INPUT_BUF_SZ];
3136 int pid;
3137 unsigned long vaddr_start, vaddr_end;
3138
3139 ret = mutex_lock_interruptible(&split_debug_mutex);
3140 if (ret)
3141 return ret;
3142
3143 ret = -EFAULT;
3144
3145 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3146 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3147 goto out;
3148
3149 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3150
3151 if (input_buf[0] == '/') {
3152 char *tok;
3153 char *buf = input_buf;
3154 char file_path[MAX_INPUT_BUF_SZ];
3155 pgoff_t off_start = 0, off_end = 0;
3156 size_t input_len = strlen(input_buf);
3157
3158 tok = strsep(&buf, ",");
3159 if (tok) {
3160 strcpy(file_path, tok);
3161 } else {
3162 ret = -EINVAL;
3163 goto out;
3164 }
3165
3166 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3167 if (ret != 2) {
3168 ret = -EINVAL;
3169 goto out;
3170 }
3171 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3172 if (!ret)
3173 ret = input_len;
3174
3175 goto out;
3176 }
3177
3178 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3179 if (ret == 1 && pid == 1) {
3180 split_huge_pages_all();
3181 ret = strlen(input_buf);
3182 goto out;
3183 } else if (ret != 3) {
3184 ret = -EINVAL;
3185 goto out;
3186 }
3187
3188 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3189 if (!ret)
3190 ret = strlen(input_buf);
3191 out:
3192 mutex_unlock(&split_debug_mutex);
3193 return ret;
3194
3195 }
3196
3197 static const struct file_operations split_huge_pages_fops = {
3198 .owner = THIS_MODULE,
3199 .write = split_huge_pages_write,
3200 .llseek = no_llseek,
3201 };
3202
split_huge_pages_debugfs(void)3203 static int __init split_huge_pages_debugfs(void)
3204 {
3205 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3206 &split_huge_pages_fops);
3207 return 0;
3208 }
3209 late_initcall(split_huge_pages_debugfs);
3210 #endif
3211
3212 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3213 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3214 struct page *page)
3215 {
3216 struct vm_area_struct *vma = pvmw->vma;
3217 struct mm_struct *mm = vma->vm_mm;
3218 unsigned long address = pvmw->address;
3219 bool anon_exclusive;
3220 pmd_t pmdval;
3221 swp_entry_t entry;
3222 pmd_t pmdswp;
3223
3224 if (!(pvmw->pmd && !pvmw->pte))
3225 return 0;
3226
3227 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3228 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3229
3230 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3231 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3232 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3233 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3234 return -EBUSY;
3235 }
3236
3237 if (pmd_dirty(pmdval))
3238 set_page_dirty(page);
3239 if (pmd_write(pmdval))
3240 entry = make_writable_migration_entry(page_to_pfn(page));
3241 else if (anon_exclusive)
3242 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3243 else
3244 entry = make_readable_migration_entry(page_to_pfn(page));
3245 if (pmd_young(pmdval))
3246 entry = make_migration_entry_young(entry);
3247 if (pmd_dirty(pmdval))
3248 entry = make_migration_entry_dirty(entry);
3249 pmdswp = swp_entry_to_pmd(entry);
3250 if (pmd_soft_dirty(pmdval))
3251 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3252 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3253 page_remove_rmap(page, vma, true);
3254 put_page(page);
3255 trace_set_migration_pmd(address, pmd_val(pmdswp));
3256
3257 return 0;
3258 }
3259
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3260 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3261 {
3262 struct vm_area_struct *vma = pvmw->vma;
3263 struct mm_struct *mm = vma->vm_mm;
3264 unsigned long address = pvmw->address;
3265 unsigned long haddr = address & HPAGE_PMD_MASK;
3266 pmd_t pmde;
3267 swp_entry_t entry;
3268
3269 if (!(pvmw->pmd && !pvmw->pte))
3270 return;
3271
3272 entry = pmd_to_swp_entry(*pvmw->pmd);
3273 get_page(new);
3274 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3275 if (pmd_swp_soft_dirty(*pvmw->pmd))
3276 pmde = pmd_mksoft_dirty(pmde);
3277 if (pmd_swp_uffd_wp(*pvmw->pmd))
3278 pmde = pmd_mkuffd_wp(pmde);
3279 if (!is_migration_entry_young(entry))
3280 pmde = pmd_mkold(pmde);
3281 /* NOTE: this may contain setting soft-dirty on some archs */
3282 if (PageDirty(new) && is_migration_entry_dirty(entry))
3283 pmde = pmd_mkdirty(pmde);
3284 if (is_writable_migration_entry(entry))
3285 pmde = maybe_pmd_mkwrite(pmde, vma);
3286 else
3287 pmde = pmd_wrprotect(pmde);
3288
3289 if (PageAnon(new)) {
3290 rmap_t rmap_flags = RMAP_COMPOUND;
3291
3292 if (!is_readable_migration_entry(entry))
3293 rmap_flags |= RMAP_EXCLUSIVE;
3294
3295 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3296 } else {
3297 page_add_file_rmap(new, vma, true);
3298 }
3299 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3300 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3301
3302 /* No need to invalidate - it was non-present before */
3303 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3304 trace_remove_migration_pmd(address, pmd_val(pmde));
3305 }
3306 #endif
3307