1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020 Intel
4 *
5 * Based on drivers/base/devres.c
6 */
7
8 #include <drm/drm_managed.h>
9
10 #include <linux/list.h>
11 #include <linux/mutex.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14
15 #include <drm/drm_device.h>
16 #include <drm/drm_print.h>
17
18 #include "drm_internal.h"
19
20 /**
21 * DOC: managed resources
22 *
23 * Inspired by struct &device managed resources, but tied to the lifetime of
24 * struct &drm_device, which can outlive the underlying physical device, usually
25 * when userspace has some open files and other handles to resources still open.
26 *
27 * Release actions can be added with drmm_add_action(), memory allocations can
28 * be done directly with drmm_kmalloc() and the related functions. Everything
29 * will be released on the final drm_dev_put() in reverse order of how the
30 * release actions have been added and memory has been allocated since driver
31 * loading started with devm_drm_dev_alloc().
32 *
33 * Note that release actions and managed memory can also be added and removed
34 * during the lifetime of the driver, all the functions are fully concurrent
35 * safe. But it is recommended to use managed resources only for resources that
36 * change rarely, if ever, during the lifetime of the &drm_device instance.
37 */
38
39 struct drmres_node {
40 struct list_head entry;
41 drmres_release_t release;
42 const char *name;
43 size_t size;
44 };
45
46 struct drmres {
47 struct drmres_node node;
48 /*
49 * Some archs want to perform DMA into kmalloc caches
50 * and need a guaranteed alignment larger than
51 * the alignment of a 64-bit integer.
52 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
53 * buffer alignment as if it was allocated by plain kmalloc().
54 */
55 u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
56 };
57
free_dr(struct drmres * dr)58 static void free_dr(struct drmres *dr)
59 {
60 kfree_const(dr->node.name);
61 kfree(dr);
62 }
63
drm_managed_release(struct drm_device * dev)64 void drm_managed_release(struct drm_device *dev)
65 {
66 struct drmres *dr, *tmp;
67
68 drm_dbg_drmres(dev, "drmres release begin\n");
69 list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
70 drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
71 dr, dr->node.name, dr->node.size);
72
73 if (dr->node.release)
74 dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
75
76 list_del(&dr->node.entry);
77 free_dr(dr);
78 }
79 drm_dbg_drmres(dev, "drmres release end\n");
80 }
81
82 /*
83 * Always inline so that kmalloc_track_caller tracks the actual interesting
84 * caller outside of drm_managed.c.
85 */
alloc_dr(drmres_release_t release,size_t size,gfp_t gfp,int nid)86 static __always_inline struct drmres * alloc_dr(drmres_release_t release,
87 size_t size, gfp_t gfp, int nid)
88 {
89 size_t tot_size;
90 struct drmres *dr;
91
92 /* We must catch any near-SIZE_MAX cases that could overflow. */
93 if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
94 return NULL;
95
96 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
97 if (unlikely(!dr))
98 return NULL;
99
100 memset(dr, 0, offsetof(struct drmres, data));
101
102 INIT_LIST_HEAD(&dr->node.entry);
103 dr->node.release = release;
104 dr->node.size = size;
105
106 return dr;
107 }
108
del_dr(struct drm_device * dev,struct drmres * dr)109 static void del_dr(struct drm_device *dev, struct drmres *dr)
110 {
111 list_del_init(&dr->node.entry);
112
113 drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
114 dr, dr->node.name, (unsigned long) dr->node.size);
115 }
116
add_dr(struct drm_device * dev,struct drmres * dr)117 static void add_dr(struct drm_device *dev, struct drmres *dr)
118 {
119 unsigned long flags;
120
121 spin_lock_irqsave(&dev->managed.lock, flags);
122 list_add(&dr->node.entry, &dev->managed.resources);
123 spin_unlock_irqrestore(&dev->managed.lock, flags);
124
125 drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
126 dr, dr->node.name, (unsigned long) dr->node.size);
127 }
128
drmm_add_final_kfree(struct drm_device * dev,void * container)129 void drmm_add_final_kfree(struct drm_device *dev, void *container)
130 {
131 WARN_ON(dev->managed.final_kfree);
132 WARN_ON(dev < (struct drm_device *) container);
133 WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
134 dev->managed.final_kfree = container;
135 }
136
__drmm_add_action(struct drm_device * dev,drmres_release_t action,void * data,const char * name)137 int __drmm_add_action(struct drm_device *dev,
138 drmres_release_t action,
139 void *data, const char *name)
140 {
141 struct drmres *dr;
142 void **void_ptr;
143
144 dr = alloc_dr(action, data ? sizeof(void*) : 0,
145 GFP_KERNEL | __GFP_ZERO,
146 dev_to_node(dev->dev));
147 if (!dr) {
148 drm_dbg_drmres(dev, "failed to add action %s for %p\n",
149 name, data);
150 return -ENOMEM;
151 }
152
153 dr->node.name = kstrdup_const(name, GFP_KERNEL);
154 if (data) {
155 void_ptr = (void **)&dr->data;
156 *void_ptr = data;
157 }
158
159 add_dr(dev, dr);
160
161 return 0;
162 }
163 EXPORT_SYMBOL(__drmm_add_action);
164
__drmm_add_action_or_reset(struct drm_device * dev,drmres_release_t action,void * data,const char * name)165 int __drmm_add_action_or_reset(struct drm_device *dev,
166 drmres_release_t action,
167 void *data, const char *name)
168 {
169 int ret;
170
171 ret = __drmm_add_action(dev, action, data, name);
172 if (ret)
173 action(dev, data);
174
175 return ret;
176 }
177 EXPORT_SYMBOL(__drmm_add_action_or_reset);
178
179 /**
180 * drmm_kmalloc - &drm_device managed kmalloc()
181 * @dev: DRM device
182 * @size: size of the memory allocation
183 * @gfp: GFP allocation flags
184 *
185 * This is a &drm_device managed version of kmalloc(). The allocated memory is
186 * automatically freed on the final drm_dev_put(). Memory can also be freed
187 * before the final drm_dev_put() by calling drmm_kfree().
188 */
drmm_kmalloc(struct drm_device * dev,size_t size,gfp_t gfp)189 void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
190 {
191 struct drmres *dr;
192
193 dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
194 if (!dr) {
195 drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
196 size, gfp);
197 return NULL;
198 }
199 dr->node.name = kstrdup_const("kmalloc", GFP_KERNEL);
200
201 add_dr(dev, dr);
202
203 return dr->data;
204 }
205 EXPORT_SYMBOL(drmm_kmalloc);
206
207 /**
208 * drmm_kstrdup - &drm_device managed kstrdup()
209 * @dev: DRM device
210 * @s: 0-terminated string to be duplicated
211 * @gfp: GFP allocation flags
212 *
213 * This is a &drm_device managed version of kstrdup(). The allocated memory is
214 * automatically freed on the final drm_dev_put() and works exactly like a
215 * memory allocation obtained by drmm_kmalloc().
216 */
drmm_kstrdup(struct drm_device * dev,const char * s,gfp_t gfp)217 char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
218 {
219 size_t size;
220 char *buf;
221
222 if (!s)
223 return NULL;
224
225 size = strlen(s) + 1;
226 buf = drmm_kmalloc(dev, size, gfp);
227 if (buf)
228 memcpy(buf, s, size);
229 return buf;
230 }
231 EXPORT_SYMBOL_GPL(drmm_kstrdup);
232
233 /**
234 * drmm_kfree - &drm_device managed kfree()
235 * @dev: DRM device
236 * @data: memory allocation to be freed
237 *
238 * This is a &drm_device managed version of kfree() which can be used to
239 * release memory allocated through drmm_kmalloc() or any of its related
240 * functions before the final drm_dev_put() of @dev.
241 */
drmm_kfree(struct drm_device * dev,void * data)242 void drmm_kfree(struct drm_device *dev, void *data)
243 {
244 struct drmres *dr_match = NULL, *dr;
245 unsigned long flags;
246
247 if (!data)
248 return;
249
250 spin_lock_irqsave(&dev->managed.lock, flags);
251 list_for_each_entry(dr, &dev->managed.resources, node.entry) {
252 if (dr->data == data) {
253 dr_match = dr;
254 del_dr(dev, dr_match);
255 break;
256 }
257 }
258 spin_unlock_irqrestore(&dev->managed.lock, flags);
259
260 if (WARN_ON(!dr_match))
261 return;
262
263 free_dr(dr_match);
264 }
265 EXPORT_SYMBOL(drmm_kfree);
266
drmm_mutex_release(struct drm_device * dev,void * res)267 static void drmm_mutex_release(struct drm_device *dev, void *res)
268 {
269 struct mutex *lock = res;
270
271 mutex_destroy(lock);
272 }
273
274 /**
275 * drmm_mutex_init - &drm_device-managed mutex_init()
276 * @dev: DRM device
277 * @lock: lock to be initialized
278 *
279 * Returns:
280 * 0 on success, or a negative errno code otherwise.
281 *
282 * This is a &drm_device-managed version of mutex_init(). The initialized
283 * lock is automatically destroyed on the final drm_dev_put().
284 */
drmm_mutex_init(struct drm_device * dev,struct mutex * lock)285 int drmm_mutex_init(struct drm_device *dev, struct mutex *lock)
286 {
287 mutex_init(lock);
288
289 return drmm_add_action_or_reset(dev, drmm_mutex_release, lock);
290 }
291 EXPORT_SYMBOL(drmm_mutex_init);
292