1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/slab.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/of.h>
18 #include <linux/of_mdio.h>
19 #include <linux/of_net.h>
20 #include <net/sch_generic.h>
21
22 #include "devlink.h"
23 #include "dsa.h"
24 #include "master.h"
25 #include "netlink.h"
26 #include "port.h"
27 #include "slave.h"
28 #include "switch.h"
29 #include "tag.h"
30
31 #define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
32
33 static DEFINE_MUTEX(dsa2_mutex);
34 LIST_HEAD(dsa_tree_list);
35
36 static struct workqueue_struct *dsa_owq;
37
38 /* Track the bridges with forwarding offload enabled */
39 static unsigned long dsa_fwd_offloading_bridges;
40
dsa_schedule_work(struct work_struct * work)41 bool dsa_schedule_work(struct work_struct *work)
42 {
43 return queue_work(dsa_owq, work);
44 }
45
dsa_flush_workqueue(void)46 void dsa_flush_workqueue(void)
47 {
48 flush_workqueue(dsa_owq);
49 }
50 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51
52 /**
53 * dsa_lag_map() - Map LAG structure to a linear LAG array
54 * @dst: Tree in which to record the mapping.
55 * @lag: LAG structure that is to be mapped to the tree's array.
56 *
57 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58 * two spaces. The size of the mapping space is determined by the
59 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
60 * it unset if it is not needed, in which case these functions become
61 * no-ops.
62 */
dsa_lag_map(struct dsa_switch_tree * dst,struct dsa_lag * lag)63 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64 {
65 unsigned int id;
66
67 for (id = 1; id <= dst->lags_len; id++) {
68 if (!dsa_lag_by_id(dst, id)) {
69 dst->lags[id - 1] = lag;
70 lag->id = id;
71 return;
72 }
73 }
74
75 /* No IDs left, which is OK. Some drivers do not need it. The
76 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77 * returns an error for this device when joining the LAG. The
78 * driver can then return -EOPNOTSUPP back to DSA, which will
79 * fall back to a software LAG.
80 */
81 }
82
83 /**
84 * dsa_lag_unmap() - Remove a LAG ID mapping
85 * @dst: Tree in which the mapping is recorded.
86 * @lag: LAG structure that was mapped.
87 *
88 * As there may be multiple users of the mapping, it is only removed
89 * if there are no other references to it.
90 */
dsa_lag_unmap(struct dsa_switch_tree * dst,struct dsa_lag * lag)91 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92 {
93 unsigned int id;
94
95 dsa_lags_foreach_id(id, dst) {
96 if (dsa_lag_by_id(dst, id) == lag) {
97 dst->lags[id - 1] = NULL;
98 lag->id = 0;
99 break;
100 }
101 }
102 }
103
dsa_tree_lag_find(struct dsa_switch_tree * dst,const struct net_device * lag_dev)104 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105 const struct net_device *lag_dev)
106 {
107 struct dsa_port *dp;
108
109 list_for_each_entry(dp, &dst->ports, list)
110 if (dsa_port_lag_dev_get(dp) == lag_dev)
111 return dp->lag;
112
113 return NULL;
114 }
115
dsa_tree_bridge_find(struct dsa_switch_tree * dst,const struct net_device * br)116 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117 const struct net_device *br)
118 {
119 struct dsa_port *dp;
120
121 list_for_each_entry(dp, &dst->ports, list)
122 if (dsa_port_bridge_dev_get(dp) == br)
123 return dp->bridge;
124
125 return NULL;
126 }
127
dsa_bridge_num_find(const struct net_device * bridge_dev)128 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129 {
130 struct dsa_switch_tree *dst;
131
132 list_for_each_entry(dst, &dsa_tree_list, list) {
133 struct dsa_bridge *bridge;
134
135 bridge = dsa_tree_bridge_find(dst, bridge_dev);
136 if (bridge)
137 return bridge->num;
138 }
139
140 return 0;
141 }
142
dsa_bridge_num_get(const struct net_device * bridge_dev,int max)143 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144 {
145 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146
147 /* Switches without FDB isolation support don't get unique
148 * bridge numbering
149 */
150 if (!max)
151 return 0;
152
153 if (!bridge_num) {
154 /* First port that requests FDB isolation or TX forwarding
155 * offload for this bridge
156 */
157 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
158 DSA_MAX_NUM_OFFLOADING_BRIDGES,
159 1);
160 if (bridge_num >= max)
161 return 0;
162
163 set_bit(bridge_num, &dsa_fwd_offloading_bridges);
164 }
165
166 return bridge_num;
167 }
168
dsa_bridge_num_put(const struct net_device * bridge_dev,unsigned int bridge_num)169 void dsa_bridge_num_put(const struct net_device *bridge_dev,
170 unsigned int bridge_num)
171 {
172 /* Since we refcount bridges, we know that when we call this function
173 * it is no longer in use, so we can just go ahead and remove it from
174 * the bit mask.
175 */
176 clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
177 }
178
dsa_switch_find(int tree_index,int sw_index)179 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180 {
181 struct dsa_switch_tree *dst;
182 struct dsa_port *dp;
183
184 list_for_each_entry(dst, &dsa_tree_list, list) {
185 if (dst->index != tree_index)
186 continue;
187
188 list_for_each_entry(dp, &dst->ports, list) {
189 if (dp->ds->index != sw_index)
190 continue;
191
192 return dp->ds;
193 }
194 }
195
196 return NULL;
197 }
198 EXPORT_SYMBOL_GPL(dsa_switch_find);
199
dsa_tree_find(int index)200 static struct dsa_switch_tree *dsa_tree_find(int index)
201 {
202 struct dsa_switch_tree *dst;
203
204 list_for_each_entry(dst, &dsa_tree_list, list)
205 if (dst->index == index)
206 return dst;
207
208 return NULL;
209 }
210
dsa_tree_alloc(int index)211 static struct dsa_switch_tree *dsa_tree_alloc(int index)
212 {
213 struct dsa_switch_tree *dst;
214
215 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
216 if (!dst)
217 return NULL;
218
219 dst->index = index;
220
221 INIT_LIST_HEAD(&dst->rtable);
222
223 INIT_LIST_HEAD(&dst->ports);
224
225 INIT_LIST_HEAD(&dst->list);
226 list_add_tail(&dst->list, &dsa_tree_list);
227
228 kref_init(&dst->refcount);
229
230 return dst;
231 }
232
dsa_tree_free(struct dsa_switch_tree * dst)233 static void dsa_tree_free(struct dsa_switch_tree *dst)
234 {
235 if (dst->tag_ops)
236 dsa_tag_driver_put(dst->tag_ops);
237 list_del(&dst->list);
238 kfree(dst);
239 }
240
dsa_tree_get(struct dsa_switch_tree * dst)241 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242 {
243 if (dst)
244 kref_get(&dst->refcount);
245
246 return dst;
247 }
248
dsa_tree_touch(int index)249 static struct dsa_switch_tree *dsa_tree_touch(int index)
250 {
251 struct dsa_switch_tree *dst;
252
253 dst = dsa_tree_find(index);
254 if (dst)
255 return dsa_tree_get(dst);
256 else
257 return dsa_tree_alloc(index);
258 }
259
dsa_tree_release(struct kref * ref)260 static void dsa_tree_release(struct kref *ref)
261 {
262 struct dsa_switch_tree *dst;
263
264 dst = container_of(ref, struct dsa_switch_tree, refcount);
265
266 dsa_tree_free(dst);
267 }
268
dsa_tree_put(struct dsa_switch_tree * dst)269 static void dsa_tree_put(struct dsa_switch_tree *dst)
270 {
271 if (dst)
272 kref_put(&dst->refcount, dsa_tree_release);
273 }
274
dsa_tree_find_port_by_node(struct dsa_switch_tree * dst,struct device_node * dn)275 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276 struct device_node *dn)
277 {
278 struct dsa_port *dp;
279
280 list_for_each_entry(dp, &dst->ports, list)
281 if (dp->dn == dn)
282 return dp;
283
284 return NULL;
285 }
286
dsa_link_touch(struct dsa_port * dp,struct dsa_port * link_dp)287 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288 struct dsa_port *link_dp)
289 {
290 struct dsa_switch *ds = dp->ds;
291 struct dsa_switch_tree *dst;
292 struct dsa_link *dl;
293
294 dst = ds->dst;
295
296 list_for_each_entry(dl, &dst->rtable, list)
297 if (dl->dp == dp && dl->link_dp == link_dp)
298 return dl;
299
300 dl = kzalloc(sizeof(*dl), GFP_KERNEL);
301 if (!dl)
302 return NULL;
303
304 dl->dp = dp;
305 dl->link_dp = link_dp;
306
307 INIT_LIST_HEAD(&dl->list);
308 list_add_tail(&dl->list, &dst->rtable);
309
310 return dl;
311 }
312
dsa_port_setup_routing_table(struct dsa_port * dp)313 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314 {
315 struct dsa_switch *ds = dp->ds;
316 struct dsa_switch_tree *dst = ds->dst;
317 struct device_node *dn = dp->dn;
318 struct of_phandle_iterator it;
319 struct dsa_port *link_dp;
320 struct dsa_link *dl;
321 int err;
322
323 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324 link_dp = dsa_tree_find_port_by_node(dst, it.node);
325 if (!link_dp) {
326 of_node_put(it.node);
327 return false;
328 }
329
330 dl = dsa_link_touch(dp, link_dp);
331 if (!dl) {
332 of_node_put(it.node);
333 return false;
334 }
335 }
336
337 return true;
338 }
339
dsa_tree_setup_routing_table(struct dsa_switch_tree * dst)340 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341 {
342 bool complete = true;
343 struct dsa_port *dp;
344
345 list_for_each_entry(dp, &dst->ports, list) {
346 if (dsa_port_is_dsa(dp)) {
347 complete = dsa_port_setup_routing_table(dp);
348 if (!complete)
349 break;
350 }
351 }
352
353 return complete;
354 }
355
dsa_tree_find_first_cpu(struct dsa_switch_tree * dst)356 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357 {
358 struct dsa_port *dp;
359
360 list_for_each_entry(dp, &dst->ports, list)
361 if (dsa_port_is_cpu(dp))
362 return dp;
363
364 return NULL;
365 }
366
dsa_tree_find_first_master(struct dsa_switch_tree * dst)367 struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
368 {
369 struct device_node *ethernet;
370 struct net_device *master;
371 struct dsa_port *cpu_dp;
372
373 cpu_dp = dsa_tree_find_first_cpu(dst);
374 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
375 master = of_find_net_device_by_node(ethernet);
376 of_node_put(ethernet);
377
378 return master;
379 }
380
381 /* Assign the default CPU port (the first one in the tree) to all ports of the
382 * fabric which don't already have one as part of their own switch.
383 */
dsa_tree_setup_default_cpu(struct dsa_switch_tree * dst)384 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385 {
386 struct dsa_port *cpu_dp, *dp;
387
388 cpu_dp = dsa_tree_find_first_cpu(dst);
389 if (!cpu_dp) {
390 pr_err("DSA: tree %d has no CPU port\n", dst->index);
391 return -EINVAL;
392 }
393
394 list_for_each_entry(dp, &dst->ports, list) {
395 if (dp->cpu_dp)
396 continue;
397
398 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
399 dp->cpu_dp = cpu_dp;
400 }
401
402 return 0;
403 }
404
405 /* Perform initial assignment of CPU ports to user ports and DSA links in the
406 * fabric, giving preference to CPU ports local to each switch. Default to
407 * using the first CPU port in the switch tree if the port does not have a CPU
408 * port local to this switch.
409 */
dsa_tree_setup_cpu_ports(struct dsa_switch_tree * dst)410 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
411 {
412 struct dsa_port *cpu_dp, *dp;
413
414 list_for_each_entry(cpu_dp, &dst->ports, list) {
415 if (!dsa_port_is_cpu(cpu_dp))
416 continue;
417
418 /* Prefer a local CPU port */
419 dsa_switch_for_each_port(dp, cpu_dp->ds) {
420 /* Prefer the first local CPU port found */
421 if (dp->cpu_dp)
422 continue;
423
424 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
425 dp->cpu_dp = cpu_dp;
426 }
427 }
428
429 return dsa_tree_setup_default_cpu(dst);
430 }
431
dsa_tree_teardown_cpu_ports(struct dsa_switch_tree * dst)432 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
433 {
434 struct dsa_port *dp;
435
436 list_for_each_entry(dp, &dst->ports, list)
437 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
438 dp->cpu_dp = NULL;
439 }
440
dsa_port_setup(struct dsa_port * dp)441 static int dsa_port_setup(struct dsa_port *dp)
442 {
443 bool dsa_port_link_registered = false;
444 struct dsa_switch *ds = dp->ds;
445 bool dsa_port_enabled = false;
446 int err = 0;
447
448 if (dp->setup)
449 return 0;
450
451 err = dsa_port_devlink_setup(dp);
452 if (err)
453 return err;
454
455 switch (dp->type) {
456 case DSA_PORT_TYPE_UNUSED:
457 dsa_port_disable(dp);
458 break;
459 case DSA_PORT_TYPE_CPU:
460 if (dp->dn) {
461 err = dsa_shared_port_link_register_of(dp);
462 if (err)
463 break;
464 dsa_port_link_registered = true;
465 } else {
466 dev_warn(ds->dev,
467 "skipping link registration for CPU port %d\n",
468 dp->index);
469 }
470
471 err = dsa_port_enable(dp, NULL);
472 if (err)
473 break;
474 dsa_port_enabled = true;
475
476 break;
477 case DSA_PORT_TYPE_DSA:
478 if (dp->dn) {
479 err = dsa_shared_port_link_register_of(dp);
480 if (err)
481 break;
482 dsa_port_link_registered = true;
483 } else {
484 dev_warn(ds->dev,
485 "skipping link registration for DSA port %d\n",
486 dp->index);
487 }
488
489 err = dsa_port_enable(dp, NULL);
490 if (err)
491 break;
492 dsa_port_enabled = true;
493
494 break;
495 case DSA_PORT_TYPE_USER:
496 of_get_mac_address(dp->dn, dp->mac);
497 err = dsa_slave_create(dp);
498 break;
499 }
500
501 if (err && dsa_port_enabled)
502 dsa_port_disable(dp);
503 if (err && dsa_port_link_registered)
504 dsa_shared_port_link_unregister_of(dp);
505 if (err) {
506 dsa_port_devlink_teardown(dp);
507 return err;
508 }
509
510 dp->setup = true;
511
512 return 0;
513 }
514
dsa_port_teardown(struct dsa_port * dp)515 static void dsa_port_teardown(struct dsa_port *dp)
516 {
517 if (!dp->setup)
518 return;
519
520 switch (dp->type) {
521 case DSA_PORT_TYPE_UNUSED:
522 break;
523 case DSA_PORT_TYPE_CPU:
524 dsa_port_disable(dp);
525 if (dp->dn)
526 dsa_shared_port_link_unregister_of(dp);
527 break;
528 case DSA_PORT_TYPE_DSA:
529 dsa_port_disable(dp);
530 if (dp->dn)
531 dsa_shared_port_link_unregister_of(dp);
532 break;
533 case DSA_PORT_TYPE_USER:
534 if (dp->slave) {
535 dsa_slave_destroy(dp->slave);
536 dp->slave = NULL;
537 }
538 break;
539 }
540
541 dsa_port_devlink_teardown(dp);
542
543 dp->setup = false;
544 }
545
dsa_port_setup_as_unused(struct dsa_port * dp)546 static int dsa_port_setup_as_unused(struct dsa_port *dp)
547 {
548 dp->type = DSA_PORT_TYPE_UNUSED;
549 return dsa_port_setup(dp);
550 }
551
dsa_switch_setup_tag_protocol(struct dsa_switch * ds)552 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
553 {
554 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
555 struct dsa_switch_tree *dst = ds->dst;
556 int err;
557
558 if (tag_ops->proto == dst->default_proto)
559 goto connect;
560
561 rtnl_lock();
562 err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
563 rtnl_unlock();
564 if (err) {
565 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
566 tag_ops->name, ERR_PTR(err));
567 return err;
568 }
569
570 connect:
571 if (tag_ops->connect) {
572 err = tag_ops->connect(ds);
573 if (err)
574 return err;
575 }
576
577 if (ds->ops->connect_tag_protocol) {
578 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
579 if (err) {
580 dev_err(ds->dev,
581 "Unable to connect to tag protocol \"%s\": %pe\n",
582 tag_ops->name, ERR_PTR(err));
583 goto disconnect;
584 }
585 }
586
587 return 0;
588
589 disconnect:
590 if (tag_ops->disconnect)
591 tag_ops->disconnect(ds);
592
593 return err;
594 }
595
dsa_switch_teardown_tag_protocol(struct dsa_switch * ds)596 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
597 {
598 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
599
600 if (tag_ops->disconnect)
601 tag_ops->disconnect(ds);
602 }
603
dsa_switch_setup(struct dsa_switch * ds)604 static int dsa_switch_setup(struct dsa_switch *ds)
605 {
606 struct device_node *dn;
607 int err;
608
609 if (ds->setup)
610 return 0;
611
612 /* Initialize ds->phys_mii_mask before registering the slave MDIO bus
613 * driver and before ops->setup() has run, since the switch drivers and
614 * the slave MDIO bus driver rely on these values for probing PHY
615 * devices or not
616 */
617 ds->phys_mii_mask |= dsa_user_ports(ds);
618
619 err = dsa_switch_devlink_alloc(ds);
620 if (err)
621 return err;
622
623 err = dsa_switch_register_notifier(ds);
624 if (err)
625 goto devlink_free;
626
627 ds->configure_vlan_while_not_filtering = true;
628
629 err = ds->ops->setup(ds);
630 if (err < 0)
631 goto unregister_notifier;
632
633 err = dsa_switch_setup_tag_protocol(ds);
634 if (err)
635 goto teardown;
636
637 if (!ds->slave_mii_bus && ds->ops->phy_read) {
638 ds->slave_mii_bus = mdiobus_alloc();
639 if (!ds->slave_mii_bus) {
640 err = -ENOMEM;
641 goto teardown;
642 }
643
644 dsa_slave_mii_bus_init(ds);
645
646 dn = of_get_child_by_name(ds->dev->of_node, "mdio");
647
648 err = of_mdiobus_register(ds->slave_mii_bus, dn);
649 of_node_put(dn);
650 if (err < 0)
651 goto free_slave_mii_bus;
652 }
653
654 dsa_switch_devlink_register(ds);
655
656 ds->setup = true;
657 return 0;
658
659 free_slave_mii_bus:
660 if (ds->slave_mii_bus && ds->ops->phy_read)
661 mdiobus_free(ds->slave_mii_bus);
662 teardown:
663 if (ds->ops->teardown)
664 ds->ops->teardown(ds);
665 unregister_notifier:
666 dsa_switch_unregister_notifier(ds);
667 devlink_free:
668 dsa_switch_devlink_free(ds);
669 return err;
670 }
671
dsa_switch_teardown(struct dsa_switch * ds)672 static void dsa_switch_teardown(struct dsa_switch *ds)
673 {
674 if (!ds->setup)
675 return;
676
677 dsa_switch_devlink_unregister(ds);
678
679 if (ds->slave_mii_bus && ds->ops->phy_read) {
680 mdiobus_unregister(ds->slave_mii_bus);
681 mdiobus_free(ds->slave_mii_bus);
682 ds->slave_mii_bus = NULL;
683 }
684
685 dsa_switch_teardown_tag_protocol(ds);
686
687 if (ds->ops->teardown)
688 ds->ops->teardown(ds);
689
690 dsa_switch_unregister_notifier(ds);
691
692 dsa_switch_devlink_free(ds);
693
694 ds->setup = false;
695 }
696
697 /* First tear down the non-shared, then the shared ports. This ensures that
698 * all work items scheduled by our switchdev handlers for user ports have
699 * completed before we destroy the refcounting kept on the shared ports.
700 */
dsa_tree_teardown_ports(struct dsa_switch_tree * dst)701 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
702 {
703 struct dsa_port *dp;
704
705 list_for_each_entry(dp, &dst->ports, list)
706 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
707 dsa_port_teardown(dp);
708
709 dsa_flush_workqueue();
710
711 list_for_each_entry(dp, &dst->ports, list)
712 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
713 dsa_port_teardown(dp);
714 }
715
dsa_tree_teardown_switches(struct dsa_switch_tree * dst)716 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
717 {
718 struct dsa_port *dp;
719
720 list_for_each_entry(dp, &dst->ports, list)
721 dsa_switch_teardown(dp->ds);
722 }
723
724 /* Bring shared ports up first, then non-shared ports */
dsa_tree_setup_ports(struct dsa_switch_tree * dst)725 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
726 {
727 struct dsa_port *dp;
728 int err = 0;
729
730 list_for_each_entry(dp, &dst->ports, list) {
731 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
732 err = dsa_port_setup(dp);
733 if (err)
734 goto teardown;
735 }
736 }
737
738 list_for_each_entry(dp, &dst->ports, list) {
739 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
740 err = dsa_port_setup(dp);
741 if (err) {
742 err = dsa_port_setup_as_unused(dp);
743 if (err)
744 goto teardown;
745 }
746 }
747 }
748
749 return 0;
750
751 teardown:
752 dsa_tree_teardown_ports(dst);
753
754 return err;
755 }
756
dsa_tree_setup_switches(struct dsa_switch_tree * dst)757 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
758 {
759 struct dsa_port *dp;
760 int err = 0;
761
762 list_for_each_entry(dp, &dst->ports, list) {
763 err = dsa_switch_setup(dp->ds);
764 if (err) {
765 dsa_tree_teardown_switches(dst);
766 break;
767 }
768 }
769
770 return err;
771 }
772
dsa_tree_setup_master(struct dsa_switch_tree * dst)773 static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
774 {
775 struct dsa_port *cpu_dp;
776 int err = 0;
777
778 rtnl_lock();
779
780 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
781 struct net_device *master = cpu_dp->master;
782 bool admin_up = (master->flags & IFF_UP) &&
783 !qdisc_tx_is_noop(master);
784
785 err = dsa_master_setup(master, cpu_dp);
786 if (err)
787 break;
788
789 /* Replay master state event */
790 dsa_tree_master_admin_state_change(dst, master, admin_up);
791 dsa_tree_master_oper_state_change(dst, master,
792 netif_oper_up(master));
793 }
794
795 rtnl_unlock();
796
797 return err;
798 }
799
dsa_tree_teardown_master(struct dsa_switch_tree * dst)800 static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
801 {
802 struct dsa_port *cpu_dp;
803
804 rtnl_lock();
805
806 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
807 struct net_device *master = cpu_dp->master;
808
809 /* Synthesizing an "admin down" state is sufficient for
810 * the switches to get a notification if the master is
811 * currently up and running.
812 */
813 dsa_tree_master_admin_state_change(dst, master, false);
814
815 dsa_master_teardown(master);
816 }
817
818 rtnl_unlock();
819 }
820
dsa_tree_setup_lags(struct dsa_switch_tree * dst)821 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
822 {
823 unsigned int len = 0;
824 struct dsa_port *dp;
825
826 list_for_each_entry(dp, &dst->ports, list) {
827 if (dp->ds->num_lag_ids > len)
828 len = dp->ds->num_lag_ids;
829 }
830
831 if (!len)
832 return 0;
833
834 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
835 if (!dst->lags)
836 return -ENOMEM;
837
838 dst->lags_len = len;
839 return 0;
840 }
841
dsa_tree_teardown_lags(struct dsa_switch_tree * dst)842 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
843 {
844 kfree(dst->lags);
845 }
846
dsa_tree_setup(struct dsa_switch_tree * dst)847 static int dsa_tree_setup(struct dsa_switch_tree *dst)
848 {
849 bool complete;
850 int err;
851
852 if (dst->setup) {
853 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
854 dst->index);
855 return -EEXIST;
856 }
857
858 complete = dsa_tree_setup_routing_table(dst);
859 if (!complete)
860 return 0;
861
862 err = dsa_tree_setup_cpu_ports(dst);
863 if (err)
864 return err;
865
866 err = dsa_tree_setup_switches(dst);
867 if (err)
868 goto teardown_cpu_ports;
869
870 err = dsa_tree_setup_ports(dst);
871 if (err)
872 goto teardown_switches;
873
874 err = dsa_tree_setup_master(dst);
875 if (err)
876 goto teardown_ports;
877
878 err = dsa_tree_setup_lags(dst);
879 if (err)
880 goto teardown_master;
881
882 dst->setup = true;
883
884 pr_info("DSA: tree %d setup\n", dst->index);
885
886 return 0;
887
888 teardown_master:
889 dsa_tree_teardown_master(dst);
890 teardown_ports:
891 dsa_tree_teardown_ports(dst);
892 teardown_switches:
893 dsa_tree_teardown_switches(dst);
894 teardown_cpu_ports:
895 dsa_tree_teardown_cpu_ports(dst);
896
897 return err;
898 }
899
dsa_tree_teardown(struct dsa_switch_tree * dst)900 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
901 {
902 struct dsa_link *dl, *next;
903
904 if (!dst->setup)
905 return;
906
907 dsa_tree_teardown_lags(dst);
908
909 dsa_tree_teardown_master(dst);
910
911 dsa_tree_teardown_ports(dst);
912
913 dsa_tree_teardown_switches(dst);
914
915 dsa_tree_teardown_cpu_ports(dst);
916
917 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
918 list_del(&dl->list);
919 kfree(dl);
920 }
921
922 pr_info("DSA: tree %d torn down\n", dst->index);
923
924 dst->setup = false;
925 }
926
dsa_tree_bind_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops)927 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
928 const struct dsa_device_ops *tag_ops)
929 {
930 const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
931 struct dsa_notifier_tag_proto_info info;
932 int err;
933
934 dst->tag_ops = tag_ops;
935
936 /* Notify the switches from this tree about the connection
937 * to the new tagger
938 */
939 info.tag_ops = tag_ops;
940 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
941 if (err && err != -EOPNOTSUPP)
942 goto out_disconnect;
943
944 /* Notify the old tagger about the disconnection from this tree */
945 info.tag_ops = old_tag_ops;
946 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
947
948 return 0;
949
950 out_disconnect:
951 info.tag_ops = tag_ops;
952 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
953 dst->tag_ops = old_tag_ops;
954
955 return err;
956 }
957
958 /* Since the dsa/tagging sysfs device attribute is per master, the assumption
959 * is that all DSA switches within a tree share the same tagger, otherwise
960 * they would have formed disjoint trees (different "dsa,member" values).
961 */
dsa_tree_change_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops,const struct dsa_device_ops * old_tag_ops)962 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
963 const struct dsa_device_ops *tag_ops,
964 const struct dsa_device_ops *old_tag_ops)
965 {
966 struct dsa_notifier_tag_proto_info info;
967 struct dsa_port *dp;
968 int err = -EBUSY;
969
970 if (!rtnl_trylock())
971 return restart_syscall();
972
973 /* At the moment we don't allow changing the tag protocol under
974 * traffic. The rtnl_mutex also happens to serialize concurrent
975 * attempts to change the tagging protocol. If we ever lift the IFF_UP
976 * restriction, there needs to be another mutex which serializes this.
977 */
978 dsa_tree_for_each_user_port(dp, dst) {
979 if (dsa_port_to_master(dp)->flags & IFF_UP)
980 goto out_unlock;
981
982 if (dp->slave->flags & IFF_UP)
983 goto out_unlock;
984 }
985
986 /* Notify the tag protocol change */
987 info.tag_ops = tag_ops;
988 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
989 if (err)
990 goto out_unwind_tagger;
991
992 err = dsa_tree_bind_tag_proto(dst, tag_ops);
993 if (err)
994 goto out_unwind_tagger;
995
996 rtnl_unlock();
997
998 return 0;
999
1000 out_unwind_tagger:
1001 info.tag_ops = old_tag_ops;
1002 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1003 out_unlock:
1004 rtnl_unlock();
1005 return err;
1006 }
1007
dsa_tree_master_state_change(struct dsa_switch_tree * dst,struct net_device * master)1008 static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1009 struct net_device *master)
1010 {
1011 struct dsa_notifier_master_state_info info;
1012 struct dsa_port *cpu_dp = master->dsa_ptr;
1013
1014 info.master = master;
1015 info.operational = dsa_port_master_is_operational(cpu_dp);
1016
1017 dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1018 }
1019
dsa_tree_master_admin_state_change(struct dsa_switch_tree * dst,struct net_device * master,bool up)1020 void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1021 struct net_device *master,
1022 bool up)
1023 {
1024 struct dsa_port *cpu_dp = master->dsa_ptr;
1025 bool notify = false;
1026
1027 /* Don't keep track of admin state on LAG DSA masters,
1028 * but rather just of physical DSA masters
1029 */
1030 if (netif_is_lag_master(master))
1031 return;
1032
1033 if ((dsa_port_master_is_operational(cpu_dp)) !=
1034 (up && cpu_dp->master_oper_up))
1035 notify = true;
1036
1037 cpu_dp->master_admin_up = up;
1038
1039 if (notify)
1040 dsa_tree_master_state_change(dst, master);
1041 }
1042
dsa_tree_master_oper_state_change(struct dsa_switch_tree * dst,struct net_device * master,bool up)1043 void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1044 struct net_device *master,
1045 bool up)
1046 {
1047 struct dsa_port *cpu_dp = master->dsa_ptr;
1048 bool notify = false;
1049
1050 /* Don't keep track of oper state on LAG DSA masters,
1051 * but rather just of physical DSA masters
1052 */
1053 if (netif_is_lag_master(master))
1054 return;
1055
1056 if ((dsa_port_master_is_operational(cpu_dp)) !=
1057 (cpu_dp->master_admin_up && up))
1058 notify = true;
1059
1060 cpu_dp->master_oper_up = up;
1061
1062 if (notify)
1063 dsa_tree_master_state_change(dst, master);
1064 }
1065
dsa_port_touch(struct dsa_switch * ds,int index)1066 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1067 {
1068 struct dsa_switch_tree *dst = ds->dst;
1069 struct dsa_port *dp;
1070
1071 dsa_switch_for_each_port(dp, ds)
1072 if (dp->index == index)
1073 return dp;
1074
1075 dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1076 if (!dp)
1077 return NULL;
1078
1079 dp->ds = ds;
1080 dp->index = index;
1081
1082 mutex_init(&dp->addr_lists_lock);
1083 mutex_init(&dp->vlans_lock);
1084 INIT_LIST_HEAD(&dp->fdbs);
1085 INIT_LIST_HEAD(&dp->mdbs);
1086 INIT_LIST_HEAD(&dp->vlans);
1087 INIT_LIST_HEAD(&dp->list);
1088 list_add_tail(&dp->list, &dst->ports);
1089
1090 return dp;
1091 }
1092
dsa_port_parse_user(struct dsa_port * dp,const char * name)1093 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1094 {
1095 dp->type = DSA_PORT_TYPE_USER;
1096 dp->name = name;
1097
1098 return 0;
1099 }
1100
dsa_port_parse_dsa(struct dsa_port * dp)1101 static int dsa_port_parse_dsa(struct dsa_port *dp)
1102 {
1103 dp->type = DSA_PORT_TYPE_DSA;
1104
1105 return 0;
1106 }
1107
dsa_get_tag_protocol(struct dsa_port * dp,struct net_device * master)1108 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1109 struct net_device *master)
1110 {
1111 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1112 struct dsa_switch *mds, *ds = dp->ds;
1113 unsigned int mdp_upstream;
1114 struct dsa_port *mdp;
1115
1116 /* It is possible to stack DSA switches onto one another when that
1117 * happens the switch driver may want to know if its tagging protocol
1118 * is going to work in such a configuration.
1119 */
1120 if (dsa_slave_dev_check(master)) {
1121 mdp = dsa_slave_to_port(master);
1122 mds = mdp->ds;
1123 mdp_upstream = dsa_upstream_port(mds, mdp->index);
1124 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1125 DSA_TAG_PROTO_NONE);
1126 }
1127
1128 /* If the master device is not itself a DSA slave in a disjoint DSA
1129 * tree, then return immediately.
1130 */
1131 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1132 }
1133
dsa_port_parse_cpu(struct dsa_port * dp,struct net_device * master,const char * user_protocol)1134 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1135 const char *user_protocol)
1136 {
1137 const struct dsa_device_ops *tag_ops = NULL;
1138 struct dsa_switch *ds = dp->ds;
1139 struct dsa_switch_tree *dst = ds->dst;
1140 enum dsa_tag_protocol default_proto;
1141
1142 /* Find out which protocol the switch would prefer. */
1143 default_proto = dsa_get_tag_protocol(dp, master);
1144 if (dst->default_proto) {
1145 if (dst->default_proto != default_proto) {
1146 dev_err(ds->dev,
1147 "A DSA switch tree can have only one tagging protocol\n");
1148 return -EINVAL;
1149 }
1150 } else {
1151 dst->default_proto = default_proto;
1152 }
1153
1154 /* See if the user wants to override that preference. */
1155 if (user_protocol) {
1156 if (!ds->ops->change_tag_protocol) {
1157 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1158 return -EINVAL;
1159 }
1160
1161 tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1162 if (IS_ERR(tag_ops)) {
1163 dev_warn(ds->dev,
1164 "Failed to find a tagging driver for protocol %s, using default\n",
1165 user_protocol);
1166 tag_ops = NULL;
1167 }
1168 }
1169
1170 if (!tag_ops)
1171 tag_ops = dsa_tag_driver_get_by_id(default_proto);
1172
1173 if (IS_ERR(tag_ops)) {
1174 if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1175 return -EPROBE_DEFER;
1176
1177 dev_warn(ds->dev, "No tagger for this switch\n");
1178 return PTR_ERR(tag_ops);
1179 }
1180
1181 if (dst->tag_ops) {
1182 if (dst->tag_ops != tag_ops) {
1183 dev_err(ds->dev,
1184 "A DSA switch tree can have only one tagging protocol\n");
1185
1186 dsa_tag_driver_put(tag_ops);
1187 return -EINVAL;
1188 }
1189
1190 /* In the case of multiple CPU ports per switch, the tagging
1191 * protocol is still reference-counted only per switch tree.
1192 */
1193 dsa_tag_driver_put(tag_ops);
1194 } else {
1195 dst->tag_ops = tag_ops;
1196 }
1197
1198 dp->master = master;
1199 dp->type = DSA_PORT_TYPE_CPU;
1200 dsa_port_set_tag_protocol(dp, dst->tag_ops);
1201 dp->dst = dst;
1202
1203 /* At this point, the tree may be configured to use a different
1204 * tagger than the one chosen by the switch driver during
1205 * .setup, in the case when a user selects a custom protocol
1206 * through the DT.
1207 *
1208 * This is resolved by syncing the driver with the tree in
1209 * dsa_switch_setup_tag_protocol once .setup has run and the
1210 * driver is ready to accept calls to .change_tag_protocol. If
1211 * the driver does not support the custom protocol at that
1212 * point, the tree is wholly rejected, thereby ensuring that the
1213 * tree and driver are always in agreement on the protocol to
1214 * use.
1215 */
1216 return 0;
1217 }
1218
dsa_port_parse_of(struct dsa_port * dp,struct device_node * dn)1219 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1220 {
1221 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1222 const char *name = of_get_property(dn, "label", NULL);
1223 bool link = of_property_read_bool(dn, "link");
1224
1225 dp->dn = dn;
1226
1227 if (ethernet) {
1228 struct net_device *master;
1229 const char *user_protocol;
1230
1231 master = of_find_net_device_by_node(ethernet);
1232 of_node_put(ethernet);
1233 if (!master)
1234 return -EPROBE_DEFER;
1235
1236 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1237 return dsa_port_parse_cpu(dp, master, user_protocol);
1238 }
1239
1240 if (link)
1241 return dsa_port_parse_dsa(dp);
1242
1243 return dsa_port_parse_user(dp, name);
1244 }
1245
dsa_switch_parse_ports_of(struct dsa_switch * ds,struct device_node * dn)1246 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1247 struct device_node *dn)
1248 {
1249 struct device_node *ports, *port;
1250 struct dsa_port *dp;
1251 int err = 0;
1252 u32 reg;
1253
1254 ports = of_get_child_by_name(dn, "ports");
1255 if (!ports) {
1256 /* The second possibility is "ethernet-ports" */
1257 ports = of_get_child_by_name(dn, "ethernet-ports");
1258 if (!ports) {
1259 dev_err(ds->dev, "no ports child node found\n");
1260 return -EINVAL;
1261 }
1262 }
1263
1264 for_each_available_child_of_node(ports, port) {
1265 err = of_property_read_u32(port, "reg", ®);
1266 if (err) {
1267 of_node_put(port);
1268 goto out_put_node;
1269 }
1270
1271 if (reg >= ds->num_ports) {
1272 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1273 port, reg, ds->num_ports);
1274 of_node_put(port);
1275 err = -EINVAL;
1276 goto out_put_node;
1277 }
1278
1279 dp = dsa_to_port(ds, reg);
1280
1281 err = dsa_port_parse_of(dp, port);
1282 if (err) {
1283 of_node_put(port);
1284 goto out_put_node;
1285 }
1286 }
1287
1288 out_put_node:
1289 of_node_put(ports);
1290 return err;
1291 }
1292
dsa_switch_parse_member_of(struct dsa_switch * ds,struct device_node * dn)1293 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1294 struct device_node *dn)
1295 {
1296 u32 m[2] = { 0, 0 };
1297 int sz;
1298
1299 /* Don't error out if this optional property isn't found */
1300 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1301 if (sz < 0 && sz != -EINVAL)
1302 return sz;
1303
1304 ds->index = m[1];
1305
1306 ds->dst = dsa_tree_touch(m[0]);
1307 if (!ds->dst)
1308 return -ENOMEM;
1309
1310 if (dsa_switch_find(ds->dst->index, ds->index)) {
1311 dev_err(ds->dev,
1312 "A DSA switch with index %d already exists in tree %d\n",
1313 ds->index, ds->dst->index);
1314 return -EEXIST;
1315 }
1316
1317 if (ds->dst->last_switch < ds->index)
1318 ds->dst->last_switch = ds->index;
1319
1320 return 0;
1321 }
1322
dsa_switch_touch_ports(struct dsa_switch * ds)1323 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1324 {
1325 struct dsa_port *dp;
1326 int port;
1327
1328 for (port = 0; port < ds->num_ports; port++) {
1329 dp = dsa_port_touch(ds, port);
1330 if (!dp)
1331 return -ENOMEM;
1332 }
1333
1334 return 0;
1335 }
1336
dsa_switch_parse_of(struct dsa_switch * ds,struct device_node * dn)1337 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1338 {
1339 int err;
1340
1341 err = dsa_switch_parse_member_of(ds, dn);
1342 if (err)
1343 return err;
1344
1345 err = dsa_switch_touch_ports(ds);
1346 if (err)
1347 return err;
1348
1349 return dsa_switch_parse_ports_of(ds, dn);
1350 }
1351
dev_is_class(struct device * dev,void * class)1352 static int dev_is_class(struct device *dev, void *class)
1353 {
1354 if (dev->class != NULL && !strcmp(dev->class->name, class))
1355 return 1;
1356
1357 return 0;
1358 }
1359
dev_find_class(struct device * parent,char * class)1360 static struct device *dev_find_class(struct device *parent, char *class)
1361 {
1362 if (dev_is_class(parent, class)) {
1363 get_device(parent);
1364 return parent;
1365 }
1366
1367 return device_find_child(parent, class, dev_is_class);
1368 }
1369
dsa_dev_to_net_device(struct device * dev)1370 static struct net_device *dsa_dev_to_net_device(struct device *dev)
1371 {
1372 struct device *d;
1373
1374 d = dev_find_class(dev, "net");
1375 if (d != NULL) {
1376 struct net_device *nd;
1377
1378 nd = to_net_dev(d);
1379 dev_hold(nd);
1380 put_device(d);
1381
1382 return nd;
1383 }
1384
1385 return NULL;
1386 }
1387
dsa_port_parse(struct dsa_port * dp,const char * name,struct device * dev)1388 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1389 struct device *dev)
1390 {
1391 if (!strcmp(name, "cpu")) {
1392 struct net_device *master;
1393
1394 master = dsa_dev_to_net_device(dev);
1395 if (!master)
1396 return -EPROBE_DEFER;
1397
1398 dev_put(master);
1399
1400 return dsa_port_parse_cpu(dp, master, NULL);
1401 }
1402
1403 if (!strcmp(name, "dsa"))
1404 return dsa_port_parse_dsa(dp);
1405
1406 return dsa_port_parse_user(dp, name);
1407 }
1408
dsa_switch_parse_ports(struct dsa_switch * ds,struct dsa_chip_data * cd)1409 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1410 struct dsa_chip_data *cd)
1411 {
1412 bool valid_name_found = false;
1413 struct dsa_port *dp;
1414 struct device *dev;
1415 const char *name;
1416 unsigned int i;
1417 int err;
1418
1419 for (i = 0; i < DSA_MAX_PORTS; i++) {
1420 name = cd->port_names[i];
1421 dev = cd->netdev[i];
1422 dp = dsa_to_port(ds, i);
1423
1424 if (!name)
1425 continue;
1426
1427 err = dsa_port_parse(dp, name, dev);
1428 if (err)
1429 return err;
1430
1431 valid_name_found = true;
1432 }
1433
1434 if (!valid_name_found && i == DSA_MAX_PORTS)
1435 return -EINVAL;
1436
1437 return 0;
1438 }
1439
dsa_switch_parse(struct dsa_switch * ds,struct dsa_chip_data * cd)1440 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1441 {
1442 int err;
1443
1444 ds->cd = cd;
1445
1446 /* We don't support interconnected switches nor multiple trees via
1447 * platform data, so this is the unique switch of the tree.
1448 */
1449 ds->index = 0;
1450 ds->dst = dsa_tree_touch(0);
1451 if (!ds->dst)
1452 return -ENOMEM;
1453
1454 err = dsa_switch_touch_ports(ds);
1455 if (err)
1456 return err;
1457
1458 return dsa_switch_parse_ports(ds, cd);
1459 }
1460
dsa_switch_release_ports(struct dsa_switch * ds)1461 static void dsa_switch_release_ports(struct dsa_switch *ds)
1462 {
1463 struct dsa_port *dp, *next;
1464
1465 dsa_switch_for_each_port_safe(dp, next, ds) {
1466 WARN_ON(!list_empty(&dp->fdbs));
1467 WARN_ON(!list_empty(&dp->mdbs));
1468 WARN_ON(!list_empty(&dp->vlans));
1469 list_del(&dp->list);
1470 kfree(dp);
1471 }
1472 }
1473
dsa_switch_probe(struct dsa_switch * ds)1474 static int dsa_switch_probe(struct dsa_switch *ds)
1475 {
1476 struct dsa_switch_tree *dst;
1477 struct dsa_chip_data *pdata;
1478 struct device_node *np;
1479 int err;
1480
1481 if (!ds->dev)
1482 return -ENODEV;
1483
1484 pdata = ds->dev->platform_data;
1485 np = ds->dev->of_node;
1486
1487 if (!ds->num_ports)
1488 return -EINVAL;
1489
1490 if (np) {
1491 err = dsa_switch_parse_of(ds, np);
1492 if (err)
1493 dsa_switch_release_ports(ds);
1494 } else if (pdata) {
1495 err = dsa_switch_parse(ds, pdata);
1496 if (err)
1497 dsa_switch_release_ports(ds);
1498 } else {
1499 err = -ENODEV;
1500 }
1501
1502 if (err)
1503 return err;
1504
1505 dst = ds->dst;
1506 dsa_tree_get(dst);
1507 err = dsa_tree_setup(dst);
1508 if (err) {
1509 dsa_switch_release_ports(ds);
1510 dsa_tree_put(dst);
1511 }
1512
1513 return err;
1514 }
1515
dsa_register_switch(struct dsa_switch * ds)1516 int dsa_register_switch(struct dsa_switch *ds)
1517 {
1518 int err;
1519
1520 mutex_lock(&dsa2_mutex);
1521 err = dsa_switch_probe(ds);
1522 dsa_tree_put(ds->dst);
1523 mutex_unlock(&dsa2_mutex);
1524
1525 return err;
1526 }
1527 EXPORT_SYMBOL_GPL(dsa_register_switch);
1528
dsa_switch_remove(struct dsa_switch * ds)1529 static void dsa_switch_remove(struct dsa_switch *ds)
1530 {
1531 struct dsa_switch_tree *dst = ds->dst;
1532
1533 dsa_tree_teardown(dst);
1534 dsa_switch_release_ports(ds);
1535 dsa_tree_put(dst);
1536 }
1537
dsa_unregister_switch(struct dsa_switch * ds)1538 void dsa_unregister_switch(struct dsa_switch *ds)
1539 {
1540 mutex_lock(&dsa2_mutex);
1541 dsa_switch_remove(ds);
1542 mutex_unlock(&dsa2_mutex);
1543 }
1544 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1545
1546 /* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1547 * blocking that operation from completion, due to the dev_hold taken inside
1548 * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1549 * the DSA master, so that the system can reboot successfully.
1550 */
dsa_switch_shutdown(struct dsa_switch * ds)1551 void dsa_switch_shutdown(struct dsa_switch *ds)
1552 {
1553 struct net_device *master, *slave_dev;
1554 struct dsa_port *dp;
1555
1556 mutex_lock(&dsa2_mutex);
1557
1558 if (!ds->setup)
1559 goto out;
1560
1561 rtnl_lock();
1562
1563 dsa_switch_for_each_user_port(dp, ds) {
1564 master = dsa_port_to_master(dp);
1565 slave_dev = dp->slave;
1566
1567 netdev_upper_dev_unlink(master, slave_dev);
1568 }
1569
1570 /* Disconnect from further netdevice notifiers on the master,
1571 * since netdev_uses_dsa() will now return false.
1572 */
1573 dsa_switch_for_each_cpu_port(dp, ds)
1574 dp->master->dsa_ptr = NULL;
1575
1576 rtnl_unlock();
1577 out:
1578 mutex_unlock(&dsa2_mutex);
1579 }
1580 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1581
1582 #ifdef CONFIG_PM_SLEEP
dsa_port_is_initialized(const struct dsa_port * dp)1583 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1584 {
1585 return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1586 }
1587
dsa_switch_suspend(struct dsa_switch * ds)1588 int dsa_switch_suspend(struct dsa_switch *ds)
1589 {
1590 struct dsa_port *dp;
1591 int ret = 0;
1592
1593 /* Suspend slave network devices */
1594 dsa_switch_for_each_port(dp, ds) {
1595 if (!dsa_port_is_initialized(dp))
1596 continue;
1597
1598 ret = dsa_slave_suspend(dp->slave);
1599 if (ret)
1600 return ret;
1601 }
1602
1603 if (ds->ops->suspend)
1604 ret = ds->ops->suspend(ds);
1605
1606 return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1609
dsa_switch_resume(struct dsa_switch * ds)1610 int dsa_switch_resume(struct dsa_switch *ds)
1611 {
1612 struct dsa_port *dp;
1613 int ret = 0;
1614
1615 if (ds->ops->resume)
1616 ret = ds->ops->resume(ds);
1617
1618 if (ret)
1619 return ret;
1620
1621 /* Resume slave network devices */
1622 dsa_switch_for_each_port(dp, ds) {
1623 if (!dsa_port_is_initialized(dp))
1624 continue;
1625
1626 ret = dsa_slave_resume(dp->slave);
1627 if (ret)
1628 return ret;
1629 }
1630
1631 return 0;
1632 }
1633 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1634 #endif
1635
dsa_port_from_netdev(struct net_device * netdev)1636 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1637 {
1638 if (!netdev || !dsa_slave_dev_check(netdev))
1639 return ERR_PTR(-ENODEV);
1640
1641 return dsa_slave_to_port(netdev);
1642 }
1643 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1644
dsa_db_equal(const struct dsa_db * a,const struct dsa_db * b)1645 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1646 {
1647 if (a->type != b->type)
1648 return false;
1649
1650 switch (a->type) {
1651 case DSA_DB_PORT:
1652 return a->dp == b->dp;
1653 case DSA_DB_LAG:
1654 return a->lag.dev == b->lag.dev;
1655 case DSA_DB_BRIDGE:
1656 return a->bridge.num == b->bridge.num;
1657 default:
1658 WARN_ON(1);
1659 return false;
1660 }
1661 }
1662
dsa_fdb_present_in_other_db(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1663 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1664 const unsigned char *addr, u16 vid,
1665 struct dsa_db db)
1666 {
1667 struct dsa_port *dp = dsa_to_port(ds, port);
1668 struct dsa_mac_addr *a;
1669
1670 lockdep_assert_held(&dp->addr_lists_lock);
1671
1672 list_for_each_entry(a, &dp->fdbs, list) {
1673 if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1674 continue;
1675
1676 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1677 return true;
1678 }
1679
1680 return false;
1681 }
1682 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1683
dsa_mdb_present_in_other_db(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1684 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1685 const struct switchdev_obj_port_mdb *mdb,
1686 struct dsa_db db)
1687 {
1688 struct dsa_port *dp = dsa_to_port(ds, port);
1689 struct dsa_mac_addr *a;
1690
1691 lockdep_assert_held(&dp->addr_lists_lock);
1692
1693 list_for_each_entry(a, &dp->mdbs, list) {
1694 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1695 continue;
1696
1697 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1698 return true;
1699 }
1700
1701 return false;
1702 }
1703 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1704
dsa_init_module(void)1705 static int __init dsa_init_module(void)
1706 {
1707 int rc;
1708
1709 dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1710 WQ_MEM_RECLAIM);
1711 if (!dsa_owq)
1712 return -ENOMEM;
1713
1714 rc = dsa_slave_register_notifier();
1715 if (rc)
1716 goto register_notifier_fail;
1717
1718 dev_add_pack(&dsa_pack_type);
1719
1720 rc = rtnl_link_register(&dsa_link_ops);
1721 if (rc)
1722 goto netlink_register_fail;
1723
1724 return 0;
1725
1726 netlink_register_fail:
1727 dsa_slave_unregister_notifier();
1728 dev_remove_pack(&dsa_pack_type);
1729 register_notifier_fail:
1730 destroy_workqueue(dsa_owq);
1731
1732 return rc;
1733 }
1734 module_init(dsa_init_module);
1735
dsa_cleanup_module(void)1736 static void __exit dsa_cleanup_module(void)
1737 {
1738 rtnl_link_unregister(&dsa_link_ops);
1739
1740 dsa_slave_unregister_notifier();
1741 dev_remove_pack(&dsa_pack_type);
1742 destroy_workqueue(dsa_owq);
1743 }
1744 module_exit(dsa_cleanup_module);
1745
1746 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1747 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1748 MODULE_LICENSE("GPL");
1749 MODULE_ALIAS("platform:dsa");
1750