1 /*
2 * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <string.h>
9
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/el3_runtime/context_mgmt.h>
17 #include <lib/utils.h>
18 #include <plat/common/platform.h>
19
20 #include "psci_private.h"
21
22 /*
23 * SPD power management operations, expected to be supplied by the registered
24 * SPD on successful SP initialization
25 */
26 const spd_pm_ops_t *psci_spd_pm;
27
28 /*
29 * PSCI requested local power state map. This array is used to store the local
30 * power states requested by a CPU for power levels from level 1 to
31 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
32 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
33 * CPU are the same.
34 *
35 * During state coordination, the platform is passed an array containing the
36 * local states requested for a particular non cpu power domain by each cpu
37 * within the domain.
38 *
39 * TODO: Dense packing of the requested states will cause cache thrashing
40 * when multiple power domains write to it. If we allocate the requested
41 * states at each power level in a cache-line aligned per-domain memory,
42 * the cache thrashing can be avoided.
43 */
44 static plat_local_state_t
45 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
46
47 unsigned int psci_plat_core_count;
48
49 /*******************************************************************************
50 * Arrays that hold the platform's power domain tree information for state
51 * management of power domains.
52 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
53 * which is an ancestor of a CPU power domain.
54 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
55 ******************************************************************************/
56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
57 #if USE_COHERENT_MEM
58 __section("tzfw_coherent_mem")
59 #endif
60 ;
61
62 /* Lock for PSCI state coordination */
63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
64
65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
66
67 /*******************************************************************************
68 * Pointer to functions exported by the platform to complete power mgmt. ops
69 ******************************************************************************/
70 const plat_psci_ops_t *psci_plat_pm_ops;
71
72 /******************************************************************************
73 * Check that the maximum power level supported by the platform makes sense
74 *****************************************************************************/
75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
76 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
77 assert_platform_max_pwrlvl_check);
78
79 /*
80 * The plat_local_state used by the platform is one of these types: RUN,
81 * RETENTION and OFF. The platform can define further sub-states for each type
82 * apart from RUN. This categorization is done to verify the sanity of the
83 * psci_power_state passed by the platform and to print debug information. The
84 * categorization is done on the basis of the following conditions:
85 *
86 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
87 *
88 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
89 * STATE_TYPE_RETN.
90 *
91 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
92 * STATE_TYPE_OFF.
93 */
94 typedef enum plat_local_state_type {
95 STATE_TYPE_RUN = 0,
96 STATE_TYPE_RETN,
97 STATE_TYPE_OFF
98 } plat_local_state_type_t;
99
100 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)101 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
102 {
103 if (state != 0U) {
104 if (state > PLAT_MAX_RET_STATE) {
105 return STATE_TYPE_OFF;
106 } else {
107 return STATE_TYPE_RETN;
108 }
109 } else {
110 return STATE_TYPE_RUN;
111 }
112 }
113
114 /******************************************************************************
115 * Check that the maximum retention level supported by the platform is less
116 * than the maximum off level.
117 *****************************************************************************/
118 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
119 assert_platform_max_off_and_retn_state_check);
120
121 /******************************************************************************
122 * This function ensures that the power state parameter in a CPU_SUSPEND request
123 * is valid. If so, it returns the requested states for each power level.
124 *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)125 int psci_validate_power_state(unsigned int power_state,
126 psci_power_state_t *state_info)
127 {
128 /* Check SBZ bits in power state are zero */
129 if (psci_check_power_state(power_state) != 0U)
130 return PSCI_E_INVALID_PARAMS;
131
132 assert(psci_plat_pm_ops->validate_power_state != NULL);
133
134 /* Validate the power_state using platform pm_ops */
135 return psci_plat_pm_ops->validate_power_state(power_state, state_info);
136 }
137
138 /******************************************************************************
139 * This function retrieves the `psci_power_state_t` for system suspend from
140 * the platform.
141 *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)142 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
143 {
144 /*
145 * Assert that the required pm_ops hook is implemented to ensure that
146 * the capability detected during psci_setup() is valid.
147 */
148 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
149
150 /*
151 * Query the platform for the power_state required for system suspend
152 */
153 psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
154 }
155
156 /*******************************************************************************
157 * This function verifies that the all the other cores in the system have been
158 * turned OFF and the current CPU is the last running CPU in the system.
159 * Returns true, if the current CPU is the last ON CPU or false otherwise.
160 ******************************************************************************/
psci_is_last_on_cpu(void)161 bool psci_is_last_on_cpu(void)
162 {
163 unsigned int cpu_idx, my_idx = plat_my_core_pos();
164
165 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
166 if (cpu_idx == my_idx) {
167 assert(psci_get_aff_info_state() == AFF_STATE_ON);
168 continue;
169 }
170
171 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
172 VERBOSE("core=%u other than current core=%u %s\n",
173 cpu_idx, my_idx, "running in the system");
174 return false;
175 }
176 }
177
178 return true;
179 }
180
181 /*******************************************************************************
182 * Routine to return the maximum power level to traverse to after a cpu has
183 * been physically powered up. It is expected to be called immediately after
184 * reset from assembler code.
185 ******************************************************************************/
get_power_on_target_pwrlvl(void)186 static unsigned int get_power_on_target_pwrlvl(void)
187 {
188 unsigned int pwrlvl;
189
190 /*
191 * Assume that this cpu was suspended and retrieve its target power
192 * level. If it is invalid then it could only have been turned off
193 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
194 * cpu can be turned off to.
195 */
196 pwrlvl = psci_get_suspend_pwrlvl();
197 if (pwrlvl == PSCI_INVALID_PWR_LVL)
198 pwrlvl = PLAT_MAX_PWR_LVL;
199 assert(pwrlvl < PSCI_INVALID_PWR_LVL);
200 return pwrlvl;
201 }
202
203 /******************************************************************************
204 * Helper function to update the requested local power state array. This array
205 * does not store the requested state for the CPU power level. Hence an
206 * assertion is added to prevent us from accessing the CPU power level.
207 *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)208 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
209 unsigned int cpu_idx,
210 plat_local_state_t req_pwr_state)
211 {
212 assert(pwrlvl > PSCI_CPU_PWR_LVL);
213 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
214 (cpu_idx < psci_plat_core_count)) {
215 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
216 }
217 }
218
219 /******************************************************************************
220 * This function initializes the psci_req_local_pwr_states.
221 *****************************************************************************/
psci_init_req_local_pwr_states(void)222 void __init psci_init_req_local_pwr_states(void)
223 {
224 /* Initialize the requested state of all non CPU power domains as OFF */
225 unsigned int pwrlvl;
226 unsigned int core;
227
228 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
229 for (core = 0; core < psci_plat_core_count; core++) {
230 psci_req_local_pwr_states[pwrlvl][core] =
231 PLAT_MAX_OFF_STATE;
232 }
233 }
234 }
235
236 /******************************************************************************
237 * Helper function to return a reference to an array containing the local power
238 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
239 * array will be the number of cpu power domains of which this power domain is
240 * an ancestor. These requested states will be used to determine a suitable
241 * target state for this power domain during psci state coordination. An
242 * assertion is added to prevent us from accessing the CPU power level.
243 *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)244 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
245 unsigned int cpu_idx)
246 {
247 assert(pwrlvl > PSCI_CPU_PWR_LVL);
248
249 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
250 (cpu_idx < psci_plat_core_count)) {
251 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
252 } else
253 return NULL;
254 }
255
256 /*
257 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
258 * memory.
259 *
260 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
261 * it's accessed by both cached and non-cached participants. To serve the common
262 * minimum, perform a cache flush before read and after write so that non-cached
263 * participants operate on latest data in main memory.
264 *
265 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
266 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
267 * In both cases, no cache operations are required.
268 */
269
270 /*
271 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
272 * after any required cache maintenance operation.
273 */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)274 static plat_local_state_t get_non_cpu_pd_node_local_state(
275 unsigned int parent_idx)
276 {
277 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
278 flush_dcache_range(
279 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
280 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
281 #endif
282 return psci_non_cpu_pd_nodes[parent_idx].local_state;
283 }
284
285 /*
286 * Update local state of non-CPU power domain node from a cached CPU; perform
287 * any required cache maintenance operation afterwards.
288 */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)289 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
290 plat_local_state_t state)
291 {
292 psci_non_cpu_pd_nodes[parent_idx].local_state = state;
293 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
294 flush_dcache_range(
295 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
296 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
297 #endif
298 }
299
300 /******************************************************************************
301 * Helper function to return the current local power state of each power domain
302 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
303 * function will be called after a cpu is powered on to find the local state
304 * each power domain has emerged from.
305 *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)306 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
307 psci_power_state_t *target_state)
308 {
309 unsigned int parent_idx, lvl;
310 plat_local_state_t *pd_state = target_state->pwr_domain_state;
311
312 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
313 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
314
315 /* Copy the local power state from node to state_info */
316 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
317 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
318 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
319 }
320
321 /* Set the the higher levels to RUN */
322 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
323 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
324 }
325
326 /******************************************************************************
327 * Helper function to set the target local power state that each power domain
328 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
329 * enter. This function will be called after coordination of requested power
330 * states has been done for each power level.
331 *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)332 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
333 const psci_power_state_t *target_state)
334 {
335 unsigned int parent_idx, lvl;
336 const plat_local_state_t *pd_state = target_state->pwr_domain_state;
337
338 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
339
340 /*
341 * Need to flush as local_state might be accessed with Data Cache
342 * disabled during power on
343 */
344 psci_flush_cpu_data(psci_svc_cpu_data.local_state);
345
346 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
347
348 /* Copy the local_state from state_info */
349 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
350 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
351 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
352 }
353 }
354
355
356 /*******************************************************************************
357 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
358 ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)359 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
360 unsigned int end_lvl,
361 unsigned int *node_index)
362 {
363 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
364 unsigned int i;
365 unsigned int *node = node_index;
366
367 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
368 *node = parent_node;
369 node++;
370 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
371 }
372 }
373
374 /******************************************************************************
375 * This function is invoked post CPU power up and initialization. It sets the
376 * affinity info state, target power state and requested power state for the
377 * current CPU and all its ancestor power domains to RUN.
378 *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)379 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
380 {
381 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
382 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
383
384 /* Reset the local_state to RUN for the non cpu power domains. */
385 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
386 set_non_cpu_pd_node_local_state(parent_idx,
387 PSCI_LOCAL_STATE_RUN);
388 psci_set_req_local_pwr_state(lvl,
389 cpu_idx,
390 PSCI_LOCAL_STATE_RUN);
391 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
392 }
393
394 /* Set the affinity info state to ON */
395 psci_set_aff_info_state(AFF_STATE_ON);
396
397 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
398 psci_flush_cpu_data(psci_svc_cpu_data);
399 }
400
401 /******************************************************************************
402 * This function is passed the local power states requested for each power
403 * domain (state_info) between the current CPU domain and its ancestors until
404 * the target power level (end_pwrlvl). It updates the array of requested power
405 * states with this information.
406 *
407 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
408 * retrieves the states requested by all the cpus of which the power domain at
409 * that level is an ancestor. It passes this information to the platform to
410 * coordinate and return the target power state. If the target state for a level
411 * is RUN then subsequent levels are not considered. At the CPU level, state
412 * coordination is not required. Hence, the requested and the target states are
413 * the same.
414 *
415 * The 'state_info' is updated with the target state for each level between the
416 * CPU and the 'end_pwrlvl' and returned to the caller.
417 *
418 * This function will only be invoked with data cache enabled and while
419 * powering down a core.
420 *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)421 void psci_do_state_coordination(unsigned int end_pwrlvl,
422 psci_power_state_t *state_info)
423 {
424 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
425 unsigned int start_idx;
426 unsigned int ncpus;
427 plat_local_state_t target_state, *req_states;
428
429 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
430 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
431
432 /* For level 0, the requested state will be equivalent
433 to target state */
434 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
435
436 /* First update the requested power state */
437 psci_set_req_local_pwr_state(lvl, cpu_idx,
438 state_info->pwr_domain_state[lvl]);
439
440 /* Get the requested power states for this power level */
441 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
442 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
443
444 /*
445 * Let the platform coordinate amongst the requested states at
446 * this power level and return the target local power state.
447 */
448 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
449 target_state = plat_get_target_pwr_state(lvl,
450 req_states,
451 ncpus);
452
453 state_info->pwr_domain_state[lvl] = target_state;
454
455 /* Break early if the negotiated target power state is RUN */
456 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
457 break;
458
459 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
460 }
461
462 /*
463 * This is for cases when we break out of the above loop early because
464 * the target power state is RUN at a power level < end_pwlvl.
465 * We update the requested power state from state_info and then
466 * set the target state as RUN.
467 */
468 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
469 psci_set_req_local_pwr_state(lvl, cpu_idx,
470 state_info->pwr_domain_state[lvl]);
471 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
472
473 }
474
475 /* Update the target state in the power domain nodes */
476 psci_set_target_local_pwr_states(end_pwrlvl, state_info);
477 }
478
479 /******************************************************************************
480 * This function validates a suspend request by making sure that if a standby
481 * state is requested then no power level is turned off and the highest power
482 * level is placed in a standby/retention state.
483 *
484 * It also ensures that the state level X will enter is not shallower than the
485 * state level X + 1 will enter.
486 *
487 * This validation will be enabled only for DEBUG builds as the platform is
488 * expected to perform these validations as well.
489 *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)490 int psci_validate_suspend_req(const psci_power_state_t *state_info,
491 unsigned int is_power_down_state)
492 {
493 unsigned int max_off_lvl, target_lvl, max_retn_lvl;
494 plat_local_state_t state;
495 plat_local_state_type_t req_state_type, deepest_state_type;
496 int i;
497
498 /* Find the target suspend power level */
499 target_lvl = psci_find_target_suspend_lvl(state_info);
500 if (target_lvl == PSCI_INVALID_PWR_LVL)
501 return PSCI_E_INVALID_PARAMS;
502
503 /* All power domain levels are in a RUN state to begin with */
504 deepest_state_type = STATE_TYPE_RUN;
505
506 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
507 state = state_info->pwr_domain_state[i];
508 req_state_type = find_local_state_type(state);
509
510 /*
511 * While traversing from the highest power level to the lowest,
512 * the state requested for lower levels has to be the same or
513 * deeper i.e. equal to or greater than the state at the higher
514 * levels. If this condition is true, then the requested state
515 * becomes the deepest state encountered so far.
516 */
517 if (req_state_type < deepest_state_type)
518 return PSCI_E_INVALID_PARAMS;
519 deepest_state_type = req_state_type;
520 }
521
522 /* Find the highest off power level */
523 max_off_lvl = psci_find_max_off_lvl(state_info);
524
525 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
526 max_retn_lvl = PSCI_INVALID_PWR_LVL;
527 if (target_lvl != max_off_lvl)
528 max_retn_lvl = target_lvl;
529
530 /*
531 * If this is not a request for a power down state then max off level
532 * has to be invalid and max retention level has to be a valid power
533 * level.
534 */
535 if ((is_power_down_state == 0U) &&
536 ((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
537 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
538 return PSCI_E_INVALID_PARAMS;
539
540 return PSCI_E_SUCCESS;
541 }
542
543 /******************************************************************************
544 * This function finds the highest power level which will be powered down
545 * amongst all the power levels specified in the 'state_info' structure
546 *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)547 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
548 {
549 int i;
550
551 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
552 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
553 return (unsigned int) i;
554 }
555
556 return PSCI_INVALID_PWR_LVL;
557 }
558
559 /******************************************************************************
560 * This functions finds the level of the highest power domain which will be
561 * placed in a low power state during a suspend operation.
562 *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)563 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
564 {
565 int i;
566
567 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
568 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
569 return (unsigned int) i;
570 }
571
572 return PSCI_INVALID_PWR_LVL;
573 }
574
575 /*******************************************************************************
576 * This function is passed the highest level in the topology tree that the
577 * operation should be applied to and a list of node indexes. It picks up locks
578 * from the node index list in order of increasing power domain level in the
579 * range specified.
580 ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)581 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
582 const unsigned int *parent_nodes)
583 {
584 unsigned int parent_idx;
585 unsigned int level;
586
587 /* No locking required for level 0. Hence start locking from level 1 */
588 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
589 parent_idx = parent_nodes[level - 1U];
590 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
591 }
592 }
593
594 /*******************************************************************************
595 * This function is passed the highest level in the topology tree that the
596 * operation should be applied to and a list of node indexes. It releases the
597 * locks in order of decreasing power domain level in the range specified.
598 ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)599 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
600 const unsigned int *parent_nodes)
601 {
602 unsigned int parent_idx;
603 unsigned int level;
604
605 /* Unlock top down. No unlocking required for level 0. */
606 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
607 parent_idx = parent_nodes[level - 1U];
608 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
609 }
610 }
611
612 /*******************************************************************************
613 * Simple routine to determine whether a mpidr is valid or not.
614 ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)615 int psci_validate_mpidr(u_register_t mpidr)
616 {
617 if (plat_core_pos_by_mpidr(mpidr) < 0)
618 return PSCI_E_INVALID_PARAMS;
619
620 return PSCI_E_SUCCESS;
621 }
622
623 /*******************************************************************************
624 * This function determines the full entrypoint information for the requested
625 * PSCI entrypoint on power on/resume and returns it.
626 ******************************************************************************/
627 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)628 static int psci_get_ns_ep_info(entry_point_info_t *ep,
629 uintptr_t entrypoint,
630 u_register_t context_id)
631 {
632 u_register_t ep_attr, sctlr;
633 unsigned int daif, ee, mode;
634 u_register_t ns_scr_el3 = read_scr_el3();
635 u_register_t ns_sctlr_el1 = read_sctlr_el1();
636
637 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
638 read_sctlr_el2() : ns_sctlr_el1;
639 ee = 0;
640
641 ep_attr = NON_SECURE | EP_ST_DISABLE;
642 if ((sctlr & SCTLR_EE_BIT) != 0U) {
643 ep_attr |= EP_EE_BIG;
644 ee = 1;
645 }
646 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
647
648 ep->pc = entrypoint;
649 zeromem(&ep->args, sizeof(ep->args));
650 ep->args.arg0 = context_id;
651
652 /*
653 * Figure out whether the cpu enters the non-secure address space
654 * in aarch32 or aarch64
655 */
656 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
657
658 /*
659 * Check whether a Thumb entry point has been provided for an
660 * aarch64 EL
661 */
662 if ((entrypoint & 0x1UL) != 0UL)
663 return PSCI_E_INVALID_ADDRESS;
664
665 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
666
667 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
668 DISABLE_ALL_EXCEPTIONS);
669 } else {
670
671 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
672 MODE32_hyp : MODE32_svc;
673
674 /*
675 * TODO: Choose async. exception bits if HYP mode is not
676 * implemented according to the values of SCR.{AW, FW} bits
677 */
678 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
679
680 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
681 daif);
682 }
683
684 return PSCI_E_SUCCESS;
685 }
686 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)687 static int psci_get_ns_ep_info(entry_point_info_t *ep,
688 uintptr_t entrypoint,
689 u_register_t context_id)
690 {
691 u_register_t ep_attr;
692 unsigned int aif, ee, mode;
693 u_register_t scr = read_scr();
694 u_register_t ns_sctlr, sctlr;
695
696 /* Switch to non secure state */
697 write_scr(scr | SCR_NS_BIT);
698 isb();
699 ns_sctlr = read_sctlr();
700
701 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
702
703 /* Return to original state */
704 write_scr(scr);
705 isb();
706 ee = 0;
707
708 ep_attr = NON_SECURE | EP_ST_DISABLE;
709 if (sctlr & SCTLR_EE_BIT) {
710 ep_attr |= EP_EE_BIG;
711 ee = 1;
712 }
713 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
714
715 ep->pc = entrypoint;
716 zeromem(&ep->args, sizeof(ep->args));
717 ep->args.arg0 = context_id;
718
719 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
720
721 /*
722 * TODO: Choose async. exception bits if HYP mode is not
723 * implemented according to the values of SCR.{AW, FW} bits
724 */
725 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
726
727 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
728
729 return PSCI_E_SUCCESS;
730 }
731
732 #endif /* __aarch64__ */
733
734 /*******************************************************************************
735 * This function validates the entrypoint with the platform layer if the
736 * appropriate pm_ops hook is exported by the platform and returns the
737 * 'entry_point_info'.
738 ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)739 int psci_validate_entry_point(entry_point_info_t *ep,
740 uintptr_t entrypoint,
741 u_register_t context_id)
742 {
743 int rc;
744
745 /* Validate the entrypoint using platform psci_ops */
746 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
747 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
748 if (rc != PSCI_E_SUCCESS)
749 return PSCI_E_INVALID_ADDRESS;
750 }
751
752 /*
753 * Verify and derive the re-entry information for
754 * the non-secure world from the non-secure state from
755 * where this call originated.
756 */
757 rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
758 return rc;
759 }
760
761 /*******************************************************************************
762 * Generic handler which is called when a cpu is physically powered on. It
763 * traverses the node information and finds the highest power level powered
764 * off and performs generic, architectural, platform setup and state management
765 * to power on that power level and power levels below it.
766 * e.g. For a cpu that's been powered on, it will call the platform specific
767 * code to enable the gic cpu interface and for a cluster it will enable
768 * coherency at the interconnect level in addition to gic cpu interface.
769 ******************************************************************************/
psci_warmboot_entrypoint(void)770 void psci_warmboot_entrypoint(void)
771 {
772 unsigned int end_pwrlvl;
773 unsigned int cpu_idx = plat_my_core_pos();
774 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
775 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
776
777 /*
778 * Verify that we have been explicitly turned ON or resumed from
779 * suspend.
780 */
781 if (psci_get_aff_info_state() == AFF_STATE_OFF) {
782 ERROR("Unexpected affinity info state.\n");
783 panic();
784 }
785
786 /*
787 * Get the maximum power domain level to traverse to after this cpu
788 * has been physically powered up.
789 */
790 end_pwrlvl = get_power_on_target_pwrlvl();
791
792 /* Get the parent nodes */
793 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
794
795 /*
796 * This function acquires the lock corresponding to each power level so
797 * that by the time all locks are taken, the system topology is snapshot
798 * and state management can be done safely.
799 */
800 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
801
802 psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
803
804 #if ENABLE_PSCI_STAT
805 plat_psci_stat_accounting_stop(&state_info);
806 #endif
807
808 /*
809 * This CPU could be resuming from suspend or it could have just been
810 * turned on. To distinguish between these 2 cases, we examine the
811 * affinity state of the CPU:
812 * - If the affinity state is ON_PENDING then it has just been
813 * turned on.
814 * - Else it is resuming from suspend.
815 *
816 * Depending on the type of warm reset identified, choose the right set
817 * of power management handler and perform the generic, architecture
818 * and platform specific handling.
819 */
820 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
821 psci_cpu_on_finish(cpu_idx, &state_info);
822 else
823 psci_cpu_suspend_finish(cpu_idx, &state_info);
824
825 /*
826 * Set the requested and target state of this CPU and all the higher
827 * power domains which are ancestors of this CPU to run.
828 */
829 psci_set_pwr_domains_to_run(end_pwrlvl);
830
831 #if ENABLE_PSCI_STAT
832 /*
833 * Update PSCI stats.
834 * Caches are off when writing stats data on the power down path.
835 * Since caches are now enabled, it's necessary to do cache
836 * maintenance before reading that same data.
837 */
838 psci_stats_update_pwr_up(end_pwrlvl, &state_info);
839 #endif
840
841 /*
842 * This loop releases the lock corresponding to each power level
843 * in the reverse order to which they were acquired.
844 */
845 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
846 }
847
848 /*******************************************************************************
849 * This function initializes the set of hooks that PSCI invokes as part of power
850 * management operation. The power management hooks are expected to be provided
851 * by the SPD, after it finishes all its initialization
852 ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)853 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
854 {
855 assert(pm != NULL);
856 psci_spd_pm = pm;
857
858 if (pm->svc_migrate != NULL)
859 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
860
861 if (pm->svc_migrate_info != NULL)
862 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
863 | define_psci_cap(PSCI_MIG_INFO_TYPE);
864 }
865
866 /*******************************************************************************
867 * This function invokes the migrate info hook in the spd_pm_ops. It performs
868 * the necessary return value validation. If the Secure Payload is UP and
869 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
870 * is resident through the mpidr parameter. Else the value of the parameter on
871 * return is undefined.
872 ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)873 int psci_spd_migrate_info(u_register_t *mpidr)
874 {
875 int rc;
876
877 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
878 return PSCI_E_NOT_SUPPORTED;
879
880 rc = psci_spd_pm->svc_migrate_info(mpidr);
881
882 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
883 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
884
885 return rc;
886 }
887
888
889 /*******************************************************************************
890 * This function prints the state of all power domains present in the
891 * system
892 ******************************************************************************/
psci_print_power_domain_map(void)893 void psci_print_power_domain_map(void)
894 {
895 #if LOG_LEVEL >= LOG_LEVEL_INFO
896 unsigned int idx;
897 plat_local_state_t state;
898 plat_local_state_type_t state_type;
899
900 /* This array maps to the PSCI_STATE_X definitions in psci.h */
901 static const char * const psci_state_type_str[] = {
902 "ON",
903 "RETENTION",
904 "OFF",
905 };
906
907 INFO("PSCI Power Domain Map:\n");
908 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
909 idx++) {
910 state_type = find_local_state_type(
911 psci_non_cpu_pd_nodes[idx].local_state);
912 INFO(" Domain Node : Level %u, parent_node %u,"
913 " State %s (0x%x)\n",
914 psci_non_cpu_pd_nodes[idx].level,
915 psci_non_cpu_pd_nodes[idx].parent_node,
916 psci_state_type_str[state_type],
917 psci_non_cpu_pd_nodes[idx].local_state);
918 }
919
920 for (idx = 0; idx < psci_plat_core_count; idx++) {
921 state = psci_get_cpu_local_state_by_idx(idx);
922 state_type = find_local_state_type(state);
923 INFO(" CPU Node : MPID 0x%llx, parent_node %u,"
924 " State %s (0x%x)\n",
925 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
926 psci_cpu_pd_nodes[idx].parent_node,
927 psci_state_type_str[state_type],
928 psci_get_cpu_local_state_by_idx(idx));
929 }
930 #endif
931 }
932
933 /******************************************************************************
934 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
935 * have ever been powered up would have set its MPDIR value to something other
936 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
937 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
938 * meaningful only when called on the primary CPU during early boot.
939 *****************************************************************************/
psci_secondaries_brought_up(void)940 int psci_secondaries_brought_up(void)
941 {
942 unsigned int idx, n_valid = 0U;
943
944 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
945 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
946 n_valid++;
947 }
948
949 assert(n_valid > 0U);
950
951 return (n_valid > 1U) ? 1 : 0;
952 }
953
954 /*******************************************************************************
955 * Initiate power down sequence, by calling power down operations registered for
956 * this CPU.
957 ******************************************************************************/
psci_pwrdown_cpu(unsigned int power_level)958 void psci_pwrdown_cpu(unsigned int power_level)
959 {
960 #if HW_ASSISTED_COHERENCY
961 /*
962 * With hardware-assisted coherency, the CPU drivers only initiate the
963 * power down sequence, without performing cache-maintenance operations
964 * in software. Data caches enabled both before and after this call.
965 */
966 prepare_cpu_pwr_dwn(power_level);
967 #else
968 /*
969 * Without hardware-assisted coherency, the CPU drivers disable data
970 * caches, then perform cache-maintenance operations in software.
971 *
972 * This also calls prepare_cpu_pwr_dwn() to initiate power down
973 * sequence, but that function will return with data caches disabled.
974 * We must ensure that the stack memory is flushed out to memory before
975 * we start popping from it again.
976 */
977 psci_do_pwrdown_cache_maintenance(power_level);
978 #endif
979 }
980
981 /*******************************************************************************
982 * This function invokes the callback 'stop_func()' with the 'mpidr' of each
983 * online PE. Caller can pass suitable method to stop a remote core.
984 *
985 * 'wait_ms' is the timeout value in milliseconds for the other cores to
986 * transition to power down state. Passing '0' makes it non-blocking.
987 *
988 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
989 * given timeout.
990 ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))991 int psci_stop_other_cores(unsigned int wait_ms,
992 void (*stop_func)(u_register_t mpidr))
993 {
994 unsigned int idx, this_cpu_idx;
995
996 this_cpu_idx = plat_my_core_pos();
997
998 /* Invoke stop_func for each core */
999 for (idx = 0U; idx < psci_plat_core_count; idx++) {
1000 /* skip current CPU */
1001 if (idx == this_cpu_idx) {
1002 continue;
1003 }
1004
1005 /* Check if the CPU is ON */
1006 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1007 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1008 }
1009 }
1010
1011 /* Need to wait for other cores to shutdown */
1012 if (wait_ms != 0U) {
1013 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1014 mdelay(1U);
1015 }
1016
1017 if (!psci_is_last_on_cpu()) {
1018 WARN("Failed to stop all cores!\n");
1019 psci_print_power_domain_map();
1020 return PSCI_E_DENIED;
1021 }
1022 }
1023
1024 return PSCI_E_SUCCESS;
1025 }
1026
1027 /*******************************************************************************
1028 * This function verifies that all the other cores in the system have been
1029 * turned OFF and the current CPU is the last running CPU in the system.
1030 * Returns true if the current CPU is the last ON CPU or false otherwise.
1031 *
1032 * This API has following differences with psci_is_last_on_cpu
1033 * 1. PSCI states are locked
1034 ******************************************************************************/
psci_is_last_on_cpu_safe(void)1035 bool psci_is_last_on_cpu_safe(void)
1036 {
1037 unsigned int this_core = plat_my_core_pos();
1038 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1039
1040 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1041
1042 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1043
1044 if (!psci_is_last_on_cpu()) {
1045 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1046 return false;
1047 }
1048
1049 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1050
1051 return true;
1052 }
1053