1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94 * run but prevent them to use FPSIMD.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122 static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139 #endif
140 };
141
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153 }
154
155 struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157 };
158
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 return READ_ONCE(vl_config[type].__default_vl);
164 }
165
166 #ifdef CONFIG_ARM64_SVE
167
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 return get_default_vl(ARM64_VEC_SVE);
171 }
172
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 set_default_vl(ARM64_VEC_SVE, val);
181 }
182
183 static void __percpu *efi_sve_state;
184
185 #else /* ! CONFIG_ARM64_SVE */
186
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189
190 #endif /* ! CONFIG_ARM64_SVE */
191
192 #ifdef CONFIG_ARM64_SME
193
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 return get_default_vl(ARM64_VEC_SME);
197 }
198
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 set_default_vl(ARM64_VEC_SME, val);
202 }
203
204 static void sme_free(struct task_struct *);
205
206 #else
207
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209
210 #endif
211
212 DEFINE_PER_CPU(bool, fpsimd_context_busy);
213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214
215 static void fpsimd_bind_task_to_cpu(void);
216
__get_cpu_fpsimd_context(void)217 static void __get_cpu_fpsimd_context(void)
218 {
219 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220
221 WARN_ON(busy);
222 }
223
224 /*
225 * Claim ownership of the CPU FPSIMD context for use by the calling context.
226 *
227 * The caller may freely manipulate the FPSIMD context metadata until
228 * put_cpu_fpsimd_context() is called.
229 *
230 * The double-underscore version must only be called if you know the task
231 * can't be preempted.
232 *
233 * On RT kernels local_bh_disable() is not sufficient because it only
234 * serializes soft interrupt related sections via a local lock, but stays
235 * preemptible. Disabling preemption is the right choice here as bottom
236 * half processing is always in thread context on RT kernels so it
237 * implicitly prevents bottom half processing as well.
238 */
get_cpu_fpsimd_context(void)239 static void get_cpu_fpsimd_context(void)
240 {
241 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 local_bh_disable();
243 else
244 preempt_disable();
245 __get_cpu_fpsimd_context();
246 }
247
__put_cpu_fpsimd_context(void)248 static void __put_cpu_fpsimd_context(void)
249 {
250 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251
252 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253 }
254
255 /*
256 * Release the CPU FPSIMD context.
257 *
258 * Must be called from a context in which get_cpu_fpsimd_context() was
259 * previously called, with no call to put_cpu_fpsimd_context() in the
260 * meantime.
261 */
put_cpu_fpsimd_context(void)262 static void put_cpu_fpsimd_context(void)
263 {
264 __put_cpu_fpsimd_context();
265 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 local_bh_enable();
267 else
268 preempt_enable();
269 }
270
have_cpu_fpsimd_context(void)271 static bool have_cpu_fpsimd_context(void)
272 {
273 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274 }
275
task_get_vl(const struct task_struct * task,enum vec_type type)276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277 {
278 return task->thread.vl[type];
279 }
280
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)281 void task_set_vl(struct task_struct *task, enum vec_type type,
282 unsigned long vl)
283 {
284 task->thread.vl[type] = vl;
285 }
286
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)287 unsigned int task_get_vl_onexec(const struct task_struct *task,
288 enum vec_type type)
289 {
290 return task->thread.vl_onexec[type];
291 }
292
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 unsigned long vl)
295 {
296 task->thread.vl_onexec[type] = vl;
297 }
298
299 /*
300 * TIF_SME controls whether a task can use SME without trapping while
301 * in userspace, when TIF_SME is set then we must have storage
302 * alocated in sve_state and sme_state to store the contents of both ZA
303 * and the SVE registers for both streaming and non-streaming modes.
304 *
305 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306 * may disable TIF_SME and reenable traps.
307 */
308
309
310 /*
311 * TIF_SVE controls whether a task can use SVE without trapping while
312 * in userspace, and also (together with TIF_SME) the way a task's
313 * FPSIMD/SVE state is stored in thread_struct.
314 *
315 * The kernel uses this flag to track whether a user task is actively
316 * using SVE, and therefore whether full SVE register state needs to
317 * be tracked. If not, the cheaper FPSIMD context handling code can
318 * be used instead of the more costly SVE equivalents.
319 *
320 * * TIF_SVE or SVCR.SM set:
321 *
322 * The task can execute SVE instructions while in userspace without
323 * trapping to the kernel.
324 *
325 * During any syscall, the kernel may optionally clear TIF_SVE and
326 * discard the vector state except for the FPSIMD subset.
327 *
328 * * TIF_SVE clear:
329 *
330 * An attempt by the user task to execute an SVE instruction causes
331 * do_sve_acc() to be called, which does some preparation and then
332 * sets TIF_SVE.
333 *
334 * During any syscall, the kernel may optionally clear TIF_SVE and
335 * discard the vector state except for the FPSIMD subset.
336 *
337 * The data will be stored in one of two formats:
338 *
339 * * FPSIMD only - FP_STATE_FPSIMD:
340 *
341 * When the FPSIMD only state stored task->thread.fp_type is set to
342 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344 * logically zero but not stored anywhere; P0-P15 and FFR are not
345 * stored and have unspecified values from userspace's point of
346 * view. For hygiene purposes, the kernel zeroes them on next use,
347 * but userspace is discouraged from relying on this.
348 *
349 * task->thread.sve_state does not need to be non-NULL, valid or any
350 * particular size: it must not be dereferenced and any data stored
351 * there should be considered stale and not referenced.
352 *
353 * * SVE state - FP_STATE_SVE:
354 *
355 * When the full SVE state is stored task->thread.fp_type is set to
356 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357 * corresponding Zn), P0-P15 and FFR are encoded in in
358 * task->thread.sve_state, formatted appropriately for vector
359 * length task->thread.sve_vl or, if SVCR.SM is set,
360 * task->thread.sme_vl. The storage for the vector registers in
361 * task->thread.uw.fpsimd_state should be ignored.
362 *
363 * task->thread.sve_state must point to a valid buffer at least
364 * sve_state_size(task) bytes in size. The data stored in
365 * task->thread.uw.fpsimd_state.vregs should be considered stale
366 * and not referenced.
367 *
368 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369 * irrespective of whether TIF_SVE is clear or set, since these are
370 * not vector length dependent.
371 */
372
373 /*
374 * Update current's FPSIMD/SVE registers from thread_struct.
375 *
376 * This function should be called only when the FPSIMD/SVE state in
377 * thread_struct is known to be up to date, when preparing to enter
378 * userspace.
379 */
task_fpsimd_load(void)380 static void task_fpsimd_load(void)
381 {
382 bool restore_sve_regs = false;
383 bool restore_ffr;
384
385 WARN_ON(!system_supports_fpsimd());
386 WARN_ON(!have_cpu_fpsimd_context());
387
388 if (system_supports_sve() || system_supports_sme()) {
389 switch (current->thread.fp_type) {
390 case FP_STATE_FPSIMD:
391 /* Stop tracking SVE for this task until next use. */
392 if (test_and_clear_thread_flag(TIF_SVE))
393 sve_user_disable();
394 break;
395 case FP_STATE_SVE:
396 if (!thread_sm_enabled(¤t->thread) &&
397 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 sve_user_enable();
399
400 if (test_thread_flag(TIF_SVE))
401 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402
403 restore_sve_regs = true;
404 restore_ffr = true;
405 break;
406 default:
407 /*
408 * This indicates either a bug in
409 * fpsimd_save() or memory corruption, we
410 * should always record an explicit format
411 * when we save. We always at least have the
412 * memory allocated for FPSMID registers so
413 * try that and hope for the best.
414 */
415 WARN_ON_ONCE(1);
416 clear_thread_flag(TIF_SVE);
417 break;
418 }
419 }
420
421 /* Restore SME, override SVE register configuration if needed */
422 if (system_supports_sme()) {
423 unsigned long sme_vl = task_get_sme_vl(current);
424
425 /* Ensure VL is set up for restoring data */
426 if (test_thread_flag(TIF_SME))
427 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428
429 write_sysreg_s(current->thread.svcr, SYS_SVCR);
430
431 if (thread_za_enabled(¤t->thread))
432 sme_load_state(current->thread.sme_state,
433 system_supports_sme2());
434
435 if (thread_sm_enabled(¤t->thread))
436 restore_ffr = system_supports_fa64();
437 }
438
439 if (restore_sve_regs) {
440 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
441 sve_load_state(sve_pffr(¤t->thread),
442 ¤t->thread.uw.fpsimd_state.fpsr,
443 restore_ffr);
444 } else {
445 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
446 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
447 }
448 }
449
450 /*
451 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
452 * date with respect to the CPU registers. Note carefully that the
453 * current context is the context last bound to the CPU stored in
454 * last, if KVM is involved this may be the guest VM context rather
455 * than the host thread for the VM pointed to by current. This means
456 * that we must always reference the state storage via last rather
457 * than via current, if we are saving KVM state then it will have
458 * ensured that the type of registers to save is set in last->to_save.
459 */
fpsimd_save(void)460 static void fpsimd_save(void)
461 {
462 struct cpu_fp_state const *last =
463 this_cpu_ptr(&fpsimd_last_state);
464 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
465 bool save_sve_regs = false;
466 bool save_ffr;
467 unsigned int vl;
468
469 WARN_ON(!system_supports_fpsimd());
470 WARN_ON(!have_cpu_fpsimd_context());
471
472 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
473 return;
474
475 /*
476 * If a task is in a syscall the ABI allows us to only
477 * preserve the state shared with FPSIMD so don't bother
478 * saving the full SVE state in that case.
479 */
480 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
481 !in_syscall(current_pt_regs())) ||
482 last->to_save == FP_STATE_SVE) {
483 save_sve_regs = true;
484 save_ffr = true;
485 vl = last->sve_vl;
486 }
487
488 if (system_supports_sme()) {
489 u64 *svcr = last->svcr;
490
491 *svcr = read_sysreg_s(SYS_SVCR);
492
493 if (*svcr & SVCR_ZA_MASK)
494 sme_save_state(last->sme_state,
495 system_supports_sme2());
496
497 /* If we are in streaming mode override regular SVE. */
498 if (*svcr & SVCR_SM_MASK) {
499 save_sve_regs = true;
500 save_ffr = system_supports_fa64();
501 vl = last->sme_vl;
502 }
503 }
504
505 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
506 /* Get the configured VL from RDVL, will account for SM */
507 if (WARN_ON(sve_get_vl() != vl)) {
508 /*
509 * Can't save the user regs, so current would
510 * re-enter user with corrupt state.
511 * There's no way to recover, so kill it:
512 */
513 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
514 return;
515 }
516
517 sve_save_state((char *)last->sve_state +
518 sve_ffr_offset(vl),
519 &last->st->fpsr, save_ffr);
520 *last->fp_type = FP_STATE_SVE;
521 } else {
522 fpsimd_save_state(last->st);
523 *last->fp_type = FP_STATE_FPSIMD;
524 }
525 }
526
527 /*
528 * All vector length selection from userspace comes through here.
529 * We're on a slow path, so some sanity-checks are included.
530 * If things go wrong there's a bug somewhere, but try to fall back to a
531 * safe choice.
532 */
find_supported_vector_length(enum vec_type type,unsigned int vl)533 static unsigned int find_supported_vector_length(enum vec_type type,
534 unsigned int vl)
535 {
536 struct vl_info *info = &vl_info[type];
537 int bit;
538 int max_vl = info->max_vl;
539
540 if (WARN_ON(!sve_vl_valid(vl)))
541 vl = info->min_vl;
542
543 if (WARN_ON(!sve_vl_valid(max_vl)))
544 max_vl = info->min_vl;
545
546 if (vl > max_vl)
547 vl = max_vl;
548 if (vl < info->min_vl)
549 vl = info->min_vl;
550
551 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
552 __vq_to_bit(sve_vq_from_vl(vl)));
553 return sve_vl_from_vq(__bit_to_vq(bit));
554 }
555
556 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
557
vec_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)558 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
559 void *buffer, size_t *lenp, loff_t *ppos)
560 {
561 struct vl_info *info = table->extra1;
562 enum vec_type type = info->type;
563 int ret;
564 int vl = get_default_vl(type);
565 struct ctl_table tmp_table = {
566 .data = &vl,
567 .maxlen = sizeof(vl),
568 };
569
570 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
571 if (ret || !write)
572 return ret;
573
574 /* Writing -1 has the special meaning "set to max": */
575 if (vl == -1)
576 vl = info->max_vl;
577
578 if (!sve_vl_valid(vl))
579 return -EINVAL;
580
581 set_default_vl(type, find_supported_vector_length(type, vl));
582 return 0;
583 }
584
585 static struct ctl_table sve_default_vl_table[] = {
586 {
587 .procname = "sve_default_vector_length",
588 .mode = 0644,
589 .proc_handler = vec_proc_do_default_vl,
590 .extra1 = &vl_info[ARM64_VEC_SVE],
591 },
592 { }
593 };
594
sve_sysctl_init(void)595 static int __init sve_sysctl_init(void)
596 {
597 if (system_supports_sve())
598 if (!register_sysctl("abi", sve_default_vl_table))
599 return -EINVAL;
600
601 return 0;
602 }
603
604 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)605 static int __init sve_sysctl_init(void) { return 0; }
606 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
607
608 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
609 static struct ctl_table sme_default_vl_table[] = {
610 {
611 .procname = "sme_default_vector_length",
612 .mode = 0644,
613 .proc_handler = vec_proc_do_default_vl,
614 .extra1 = &vl_info[ARM64_VEC_SME],
615 },
616 { }
617 };
618
sme_sysctl_init(void)619 static int __init sme_sysctl_init(void)
620 {
621 if (system_supports_sme())
622 if (!register_sysctl("abi", sme_default_vl_table))
623 return -EINVAL;
624
625 return 0;
626 }
627
628 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)629 static int __init sme_sysctl_init(void) { return 0; }
630 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
631
632 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
633 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
634
635 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)636 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
637 {
638 u64 a = swab64(x);
639 u64 b = swab64(x >> 64);
640
641 return ((__uint128_t)a << 64) | b;
642 }
643 #else
arm64_cpu_to_le128(__uint128_t x)644 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
645 {
646 return x;
647 }
648 #endif
649
650 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
651
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)652 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
653 unsigned int vq)
654 {
655 unsigned int i;
656 __uint128_t *p;
657
658 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
659 p = (__uint128_t *)ZREG(sst, vq, i);
660 *p = arm64_cpu_to_le128(fst->vregs[i]);
661 }
662 }
663
664 /*
665 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
666 * task->thread.sve_state.
667 *
668 * Task can be a non-runnable task, or current. In the latter case,
669 * the caller must have ownership of the cpu FPSIMD context before calling
670 * this function.
671 * task->thread.sve_state must point to at least sve_state_size(task)
672 * bytes of allocated kernel memory.
673 * task->thread.uw.fpsimd_state must be up to date before calling this
674 * function.
675 */
fpsimd_to_sve(struct task_struct * task)676 static void fpsimd_to_sve(struct task_struct *task)
677 {
678 unsigned int vq;
679 void *sst = task->thread.sve_state;
680 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
681
682 if (!system_supports_sve())
683 return;
684
685 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
686 __fpsimd_to_sve(sst, fst, vq);
687 }
688
689 /*
690 * Transfer the SVE state in task->thread.sve_state to
691 * task->thread.uw.fpsimd_state.
692 *
693 * Task can be a non-runnable task, or current. In the latter case,
694 * the caller must have ownership of the cpu FPSIMD context before calling
695 * this function.
696 * task->thread.sve_state must point to at least sve_state_size(task)
697 * bytes of allocated kernel memory.
698 * task->thread.sve_state must be up to date before calling this function.
699 */
sve_to_fpsimd(struct task_struct * task)700 static void sve_to_fpsimd(struct task_struct *task)
701 {
702 unsigned int vq, vl;
703 void const *sst = task->thread.sve_state;
704 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
705 unsigned int i;
706 __uint128_t const *p;
707
708 if (!system_supports_sve())
709 return;
710
711 vl = thread_get_cur_vl(&task->thread);
712 vq = sve_vq_from_vl(vl);
713 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
714 p = (__uint128_t const *)ZREG(sst, vq, i);
715 fst->vregs[i] = arm64_le128_to_cpu(*p);
716 }
717 }
718
719 #ifdef CONFIG_ARM64_SVE
720 /*
721 * Call __sve_free() directly only if you know task can't be scheduled
722 * or preempted.
723 */
__sve_free(struct task_struct * task)724 static void __sve_free(struct task_struct *task)
725 {
726 kfree(task->thread.sve_state);
727 task->thread.sve_state = NULL;
728 }
729
sve_free(struct task_struct * task)730 static void sve_free(struct task_struct *task)
731 {
732 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
733
734 __sve_free(task);
735 }
736
737 /*
738 * Return how many bytes of memory are required to store the full SVE
739 * state for task, given task's currently configured vector length.
740 */
sve_state_size(struct task_struct const * task)741 size_t sve_state_size(struct task_struct const *task)
742 {
743 unsigned int vl = 0;
744
745 if (system_supports_sve())
746 vl = task_get_sve_vl(task);
747 if (system_supports_sme())
748 vl = max(vl, task_get_sme_vl(task));
749
750 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
751 }
752
753 /*
754 * Ensure that task->thread.sve_state is allocated and sufficiently large.
755 *
756 * This function should be used only in preparation for replacing
757 * task->thread.sve_state with new data. The memory is always zeroed
758 * here to prevent stale data from showing through: this is done in
759 * the interest of testability and predictability: except in the
760 * do_sve_acc() case, there is no ABI requirement to hide stale data
761 * written previously be task.
762 */
sve_alloc(struct task_struct * task,bool flush)763 void sve_alloc(struct task_struct *task, bool flush)
764 {
765 if (task->thread.sve_state) {
766 if (flush)
767 memset(task->thread.sve_state, 0,
768 sve_state_size(task));
769 return;
770 }
771
772 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
773 task->thread.sve_state =
774 kzalloc(sve_state_size(task), GFP_KERNEL);
775 }
776
777
778 /*
779 * Force the FPSIMD state shared with SVE to be updated in the SVE state
780 * even if the SVE state is the current active state.
781 *
782 * This should only be called by ptrace. task must be non-runnable.
783 * task->thread.sve_state must point to at least sve_state_size(task)
784 * bytes of allocated kernel memory.
785 */
fpsimd_force_sync_to_sve(struct task_struct * task)786 void fpsimd_force_sync_to_sve(struct task_struct *task)
787 {
788 fpsimd_to_sve(task);
789 }
790
791 /*
792 * Ensure that task->thread.sve_state is up to date with respect to
793 * the user task, irrespective of when SVE is in use or not.
794 *
795 * This should only be called by ptrace. task must be non-runnable.
796 * task->thread.sve_state must point to at least sve_state_size(task)
797 * bytes of allocated kernel memory.
798 */
fpsimd_sync_to_sve(struct task_struct * task)799 void fpsimd_sync_to_sve(struct task_struct *task)
800 {
801 if (!test_tsk_thread_flag(task, TIF_SVE) &&
802 !thread_sm_enabled(&task->thread))
803 fpsimd_to_sve(task);
804 }
805
806 /*
807 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
808 * the user task, irrespective of whether SVE is in use or not.
809 *
810 * This should only be called by ptrace. task must be non-runnable.
811 * task->thread.sve_state must point to at least sve_state_size(task)
812 * bytes of allocated kernel memory.
813 */
sve_sync_to_fpsimd(struct task_struct * task)814 void sve_sync_to_fpsimd(struct task_struct *task)
815 {
816 if (task->thread.fp_type == FP_STATE_SVE)
817 sve_to_fpsimd(task);
818 }
819
820 /*
821 * Ensure that task->thread.sve_state is up to date with respect to
822 * the task->thread.uw.fpsimd_state.
823 *
824 * This should only be called by ptrace to merge new FPSIMD register
825 * values into a task for which SVE is currently active.
826 * task must be non-runnable.
827 * task->thread.sve_state must point to at least sve_state_size(task)
828 * bytes of allocated kernel memory.
829 * task->thread.uw.fpsimd_state must already have been initialised with
830 * the new FPSIMD register values to be merged in.
831 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)832 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
833 {
834 unsigned int vq;
835 void *sst = task->thread.sve_state;
836 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
837
838 if (!test_tsk_thread_flag(task, TIF_SVE))
839 return;
840
841 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
842
843 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
844 __fpsimd_to_sve(sst, fst, vq);
845 }
846
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)847 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
848 unsigned long vl, unsigned long flags)
849 {
850 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
851 PR_SVE_SET_VL_ONEXEC))
852 return -EINVAL;
853
854 if (!sve_vl_valid(vl))
855 return -EINVAL;
856
857 /*
858 * Clamp to the maximum vector length that VL-agnostic code
859 * can work with. A flag may be assigned in the future to
860 * allow setting of larger vector lengths without confusing
861 * older software.
862 */
863 if (vl > VL_ARCH_MAX)
864 vl = VL_ARCH_MAX;
865
866 vl = find_supported_vector_length(type, vl);
867
868 if (flags & (PR_SVE_VL_INHERIT |
869 PR_SVE_SET_VL_ONEXEC))
870 task_set_vl_onexec(task, type, vl);
871 else
872 /* Reset VL to system default on next exec: */
873 task_set_vl_onexec(task, type, 0);
874
875 /* Only actually set the VL if not deferred: */
876 if (flags & PR_SVE_SET_VL_ONEXEC)
877 goto out;
878
879 if (vl == task_get_vl(task, type))
880 goto out;
881
882 /*
883 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
884 * write any live register state back to task_struct, and convert to a
885 * regular FPSIMD thread.
886 */
887 if (task == current) {
888 get_cpu_fpsimd_context();
889
890 fpsimd_save();
891 }
892
893 fpsimd_flush_task_state(task);
894 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
895 thread_sm_enabled(&task->thread)) {
896 sve_to_fpsimd(task);
897 task->thread.fp_type = FP_STATE_FPSIMD;
898 }
899
900 if (system_supports_sme() && type == ARM64_VEC_SME) {
901 task->thread.svcr &= ~(SVCR_SM_MASK |
902 SVCR_ZA_MASK);
903 clear_thread_flag(TIF_SME);
904 }
905
906 if (task == current)
907 put_cpu_fpsimd_context();
908
909 /*
910 * Force reallocation of task SVE and SME state to the correct
911 * size on next use:
912 */
913 sve_free(task);
914 if (system_supports_sme() && type == ARM64_VEC_SME)
915 sme_free(task);
916
917 task_set_vl(task, type, vl);
918
919 out:
920 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
921 flags & PR_SVE_VL_INHERIT);
922
923 return 0;
924 }
925
926 /*
927 * Encode the current vector length and flags for return.
928 * This is only required for prctl(): ptrace has separate fields.
929 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
930 *
931 * flags are as for vec_set_vector_length().
932 */
vec_prctl_status(enum vec_type type,unsigned long flags)933 static int vec_prctl_status(enum vec_type type, unsigned long flags)
934 {
935 int ret;
936
937 if (flags & PR_SVE_SET_VL_ONEXEC)
938 ret = task_get_vl_onexec(current, type);
939 else
940 ret = task_get_vl(current, type);
941
942 if (test_thread_flag(vec_vl_inherit_flag(type)))
943 ret |= PR_SVE_VL_INHERIT;
944
945 return ret;
946 }
947
948 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)949 int sve_set_current_vl(unsigned long arg)
950 {
951 unsigned long vl, flags;
952 int ret;
953
954 vl = arg & PR_SVE_VL_LEN_MASK;
955 flags = arg & ~vl;
956
957 if (!system_supports_sve() || is_compat_task())
958 return -EINVAL;
959
960 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
961 if (ret)
962 return ret;
963
964 return vec_prctl_status(ARM64_VEC_SVE, flags);
965 }
966
967 /* PR_SVE_GET_VL */
sve_get_current_vl(void)968 int sve_get_current_vl(void)
969 {
970 if (!system_supports_sve() || is_compat_task())
971 return -EINVAL;
972
973 return vec_prctl_status(ARM64_VEC_SVE, 0);
974 }
975
976 #ifdef CONFIG_ARM64_SME
977 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)978 int sme_set_current_vl(unsigned long arg)
979 {
980 unsigned long vl, flags;
981 int ret;
982
983 vl = arg & PR_SME_VL_LEN_MASK;
984 flags = arg & ~vl;
985
986 if (!system_supports_sme() || is_compat_task())
987 return -EINVAL;
988
989 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
990 if (ret)
991 return ret;
992
993 return vec_prctl_status(ARM64_VEC_SME, flags);
994 }
995
996 /* PR_SME_GET_VL */
sme_get_current_vl(void)997 int sme_get_current_vl(void)
998 {
999 if (!system_supports_sme() || is_compat_task())
1000 return -EINVAL;
1001
1002 return vec_prctl_status(ARM64_VEC_SME, 0);
1003 }
1004 #endif /* CONFIG_ARM64_SME */
1005
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))1006 static void vec_probe_vqs(struct vl_info *info,
1007 DECLARE_BITMAP(map, SVE_VQ_MAX))
1008 {
1009 unsigned int vq, vl;
1010
1011 bitmap_zero(map, SVE_VQ_MAX);
1012
1013 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1014 write_vl(info->type, vq - 1); /* self-syncing */
1015
1016 switch (info->type) {
1017 case ARM64_VEC_SVE:
1018 vl = sve_get_vl();
1019 break;
1020 case ARM64_VEC_SME:
1021 vl = sme_get_vl();
1022 break;
1023 default:
1024 vl = 0;
1025 break;
1026 }
1027
1028 /* Minimum VL identified? */
1029 if (sve_vq_from_vl(vl) > vq)
1030 break;
1031
1032 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1033 set_bit(__vq_to_bit(vq), map);
1034 }
1035 }
1036
1037 /*
1038 * Initialise the set of known supported VQs for the boot CPU.
1039 * This is called during kernel boot, before secondary CPUs are brought up.
1040 */
vec_init_vq_map(enum vec_type type)1041 void __init vec_init_vq_map(enum vec_type type)
1042 {
1043 struct vl_info *info = &vl_info[type];
1044 vec_probe_vqs(info, info->vq_map);
1045 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1046 }
1047
1048 /*
1049 * If we haven't committed to the set of supported VQs yet, filter out
1050 * those not supported by the current CPU.
1051 * This function is called during the bring-up of early secondary CPUs only.
1052 */
vec_update_vq_map(enum vec_type type)1053 void vec_update_vq_map(enum vec_type type)
1054 {
1055 struct vl_info *info = &vl_info[type];
1056 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1057
1058 vec_probe_vqs(info, tmp_map);
1059 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1060 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1061 SVE_VQ_MAX);
1062 }
1063
1064 /*
1065 * Check whether the current CPU supports all VQs in the committed set.
1066 * This function is called during the bring-up of late secondary CPUs only.
1067 */
vec_verify_vq_map(enum vec_type type)1068 int vec_verify_vq_map(enum vec_type type)
1069 {
1070 struct vl_info *info = &vl_info[type];
1071 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1072 unsigned long b;
1073
1074 vec_probe_vqs(info, tmp_map);
1075
1076 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1077 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1078 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1079 info->name, smp_processor_id());
1080 return -EINVAL;
1081 }
1082
1083 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1084 return 0;
1085
1086 /*
1087 * For KVM, it is necessary to ensure that this CPU doesn't
1088 * support any vector length that guests may have probed as
1089 * unsupported.
1090 */
1091
1092 /* Recover the set of supported VQs: */
1093 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1094 /* Find VQs supported that are not globally supported: */
1095 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1096
1097 /* Find the lowest such VQ, if any: */
1098 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1099 if (b >= SVE_VQ_MAX)
1100 return 0; /* no mismatches */
1101
1102 /*
1103 * Mismatches above sve_max_virtualisable_vl are fine, since
1104 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1105 */
1106 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1107 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1108 info->name, smp_processor_id());
1109 return -EINVAL;
1110 }
1111
1112 return 0;
1113 }
1114
sve_efi_setup(void)1115 static void __init sve_efi_setup(void)
1116 {
1117 int max_vl = 0;
1118 int i;
1119
1120 if (!IS_ENABLED(CONFIG_EFI))
1121 return;
1122
1123 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1124 max_vl = max(vl_info[i].max_vl, max_vl);
1125
1126 /*
1127 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1128 * This is evidence of a crippled system and we are returning void,
1129 * so no attempt is made to handle this situation here.
1130 */
1131 if (!sve_vl_valid(max_vl))
1132 goto fail;
1133
1134 efi_sve_state = __alloc_percpu(
1135 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1136 if (!efi_sve_state)
1137 goto fail;
1138
1139 return;
1140
1141 fail:
1142 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1143 }
1144
1145 /*
1146 * Enable SVE for EL1.
1147 * Intended for use by the cpufeatures code during CPU boot.
1148 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1149 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1150 {
1151 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1152 isb();
1153 }
1154
1155 /*
1156 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1157 * vector length.
1158 *
1159 * Use only if SVE is present.
1160 * This function clobbers the SVE vector length.
1161 */
read_zcr_features(void)1162 u64 read_zcr_features(void)
1163 {
1164 u64 zcr;
1165 unsigned int vq_max;
1166
1167 /*
1168 * Set the maximum possible VL, and write zeroes to all other
1169 * bits to see if they stick.
1170 */
1171 sve_kernel_enable(NULL);
1172 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1173
1174 zcr = read_sysreg_s(SYS_ZCR_EL1);
1175 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1176 vq_max = sve_vq_from_vl(sve_get_vl());
1177 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1178
1179 return zcr;
1180 }
1181
sve_setup(void)1182 void __init sve_setup(void)
1183 {
1184 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1185 u64 zcr;
1186 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1187 unsigned long b;
1188
1189 if (!system_supports_sve())
1190 return;
1191
1192 /*
1193 * The SVE architecture mandates support for 128-bit vectors,
1194 * so sve_vq_map must have at least SVE_VQ_MIN set.
1195 * If something went wrong, at least try to patch it up:
1196 */
1197 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1198 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1199
1200 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1201 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1202
1203 /*
1204 * Sanity-check that the max VL we determined through CPU features
1205 * corresponds properly to sve_vq_map. If not, do our best:
1206 */
1207 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1208 info->max_vl)))
1209 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1210 info->max_vl);
1211
1212 /*
1213 * For the default VL, pick the maximum supported value <= 64.
1214 * VL == 64 is guaranteed not to grow the signal frame.
1215 */
1216 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1217
1218 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1219 SVE_VQ_MAX);
1220
1221 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1222 if (b >= SVE_VQ_MAX)
1223 /* No non-virtualisable VLs found */
1224 info->max_virtualisable_vl = SVE_VQ_MAX;
1225 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1226 /* No virtualisable VLs? This is architecturally forbidden. */
1227 info->max_virtualisable_vl = SVE_VQ_MIN;
1228 else /* b + 1 < SVE_VQ_MAX */
1229 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1230
1231 if (info->max_virtualisable_vl > info->max_vl)
1232 info->max_virtualisable_vl = info->max_vl;
1233
1234 pr_info("%s: maximum available vector length %u bytes per vector\n",
1235 info->name, info->max_vl);
1236 pr_info("%s: default vector length %u bytes per vector\n",
1237 info->name, get_sve_default_vl());
1238
1239 /* KVM decides whether to support mismatched systems. Just warn here: */
1240 if (sve_max_virtualisable_vl() < sve_max_vl())
1241 pr_warn("%s: unvirtualisable vector lengths present\n",
1242 info->name);
1243
1244 sve_efi_setup();
1245 }
1246
1247 /*
1248 * Called from the put_task_struct() path, which cannot get here
1249 * unless dead_task is really dead and not schedulable.
1250 */
fpsimd_release_task(struct task_struct * dead_task)1251 void fpsimd_release_task(struct task_struct *dead_task)
1252 {
1253 __sve_free(dead_task);
1254 sme_free(dead_task);
1255 }
1256
1257 #endif /* CONFIG_ARM64_SVE */
1258
1259 #ifdef CONFIG_ARM64_SME
1260
1261 /*
1262 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1263 *
1264 * This function should be used only in preparation for replacing
1265 * task->thread.sme_state with new data. The memory is always zeroed
1266 * here to prevent stale data from showing through: this is done in
1267 * the interest of testability and predictability, the architecture
1268 * guarantees that when ZA is enabled it will be zeroed.
1269 */
sme_alloc(struct task_struct * task)1270 void sme_alloc(struct task_struct *task)
1271 {
1272 if (task->thread.sme_state) {
1273 memset(task->thread.sme_state, 0, sme_state_size(task));
1274 return;
1275 }
1276
1277 /* This could potentially be up to 64K. */
1278 task->thread.sme_state =
1279 kzalloc(sme_state_size(task), GFP_KERNEL);
1280 }
1281
sme_free(struct task_struct * task)1282 static void sme_free(struct task_struct *task)
1283 {
1284 kfree(task->thread.sme_state);
1285 task->thread.sme_state = NULL;
1286 }
1287
sme_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1288 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1289 {
1290 /* Set priority for all PEs to architecturally defined minimum */
1291 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1292 SYS_SMPRI_EL1);
1293
1294 /* Allow SME in kernel */
1295 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1296 isb();
1297
1298 /* Allow EL0 to access TPIDR2 */
1299 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1300 isb();
1301 }
1302
1303 /*
1304 * This must be called after sme_kernel_enable(), we rely on the
1305 * feature table being sorted to ensure this.
1306 */
sme2_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1307 void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1308 {
1309 /* Allow use of ZT0 */
1310 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1311 SYS_SMCR_EL1);
1312 }
1313
1314 /*
1315 * This must be called after sme_kernel_enable(), we rely on the
1316 * feature table being sorted to ensure this.
1317 */
fa64_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1318 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1319 {
1320 /* Allow use of FA64 */
1321 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1322 SYS_SMCR_EL1);
1323 }
1324
1325 /*
1326 * Read the pseudo-SMCR used by cpufeatures to identify the supported
1327 * vector length.
1328 *
1329 * Use only if SME is present.
1330 * This function clobbers the SME vector length.
1331 */
read_smcr_features(void)1332 u64 read_smcr_features(void)
1333 {
1334 u64 smcr;
1335 unsigned int vq_max;
1336
1337 sme_kernel_enable(NULL);
1338
1339 /*
1340 * Set the maximum possible VL.
1341 */
1342 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1343 SYS_SMCR_EL1);
1344
1345 smcr = read_sysreg_s(SYS_SMCR_EL1);
1346 smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1347 vq_max = sve_vq_from_vl(sme_get_vl());
1348 smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1349
1350 return smcr;
1351 }
1352
sme_setup(void)1353 void __init sme_setup(void)
1354 {
1355 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1356 u64 smcr;
1357 int min_bit;
1358
1359 if (!system_supports_sme())
1360 return;
1361
1362 /*
1363 * SME doesn't require any particular vector length be
1364 * supported but it does require at least one. We should have
1365 * disabled the feature entirely while bringing up CPUs but
1366 * let's double check here.
1367 */
1368 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1369
1370 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1371 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1372
1373 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1374 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1375
1376 /*
1377 * Sanity-check that the max VL we determined through CPU features
1378 * corresponds properly to sme_vq_map. If not, do our best:
1379 */
1380 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1381 info->max_vl)))
1382 info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1383 info->max_vl);
1384
1385 WARN_ON(info->min_vl > info->max_vl);
1386
1387 /*
1388 * For the default VL, pick the maximum supported value <= 32
1389 * (256 bits) if there is one since this is guaranteed not to
1390 * grow the signal frame when in streaming mode, otherwise the
1391 * minimum available VL will be used.
1392 */
1393 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1394
1395 pr_info("SME: minimum available vector length %u bytes per vector\n",
1396 info->min_vl);
1397 pr_info("SME: maximum available vector length %u bytes per vector\n",
1398 info->max_vl);
1399 pr_info("SME: default vector length %u bytes per vector\n",
1400 get_sme_default_vl());
1401 }
1402
1403 #endif /* CONFIG_ARM64_SME */
1404
sve_init_regs(void)1405 static void sve_init_regs(void)
1406 {
1407 /*
1408 * Convert the FPSIMD state to SVE, zeroing all the state that
1409 * is not shared with FPSIMD. If (as is likely) the current
1410 * state is live in the registers then do this there and
1411 * update our metadata for the current task including
1412 * disabling the trap, otherwise update our in-memory copy.
1413 * We are guaranteed to not be in streaming mode, we can only
1414 * take a SVE trap when not in streaming mode and we can't be
1415 * in streaming mode when taking a SME trap.
1416 */
1417 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1418 unsigned long vq_minus_one =
1419 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1420 sve_set_vq(vq_minus_one);
1421 sve_flush_live(true, vq_minus_one);
1422 fpsimd_bind_task_to_cpu();
1423 } else {
1424 fpsimd_to_sve(current);
1425 current->thread.fp_type = FP_STATE_SVE;
1426 }
1427 }
1428
1429 /*
1430 * Trapped SVE access
1431 *
1432 * Storage is allocated for the full SVE state, the current FPSIMD
1433 * register contents are migrated across, and the access trap is
1434 * disabled.
1435 *
1436 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1437 * would have disabled the SVE access trap for userspace during
1438 * ret_to_user, making an SVE access trap impossible in that case.
1439 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1440 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1441 {
1442 /* Even if we chose not to use SVE, the hardware could still trap: */
1443 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1444 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1445 return;
1446 }
1447
1448 sve_alloc(current, true);
1449 if (!current->thread.sve_state) {
1450 force_sig(SIGKILL);
1451 return;
1452 }
1453
1454 get_cpu_fpsimd_context();
1455
1456 if (test_and_set_thread_flag(TIF_SVE))
1457 WARN_ON(1); /* SVE access shouldn't have trapped */
1458
1459 /*
1460 * Even if the task can have used streaming mode we can only
1461 * generate SVE access traps in normal SVE mode and
1462 * transitioning out of streaming mode may discard any
1463 * streaming mode state. Always clear the high bits to avoid
1464 * any potential errors tracking what is properly initialised.
1465 */
1466 sve_init_regs();
1467
1468 put_cpu_fpsimd_context();
1469 }
1470
1471 /*
1472 * Trapped SME access
1473 *
1474 * Storage is allocated for the full SVE and SME state, the current
1475 * FPSIMD register contents are migrated to SVE if SVE is not already
1476 * active, and the access trap is disabled.
1477 *
1478 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1479 * would have disabled the SME access trap for userspace during
1480 * ret_to_user, making an SVE access trap impossible in that case.
1481 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1482 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1483 {
1484 /* Even if we chose not to use SME, the hardware could still trap: */
1485 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1486 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1487 return;
1488 }
1489
1490 /*
1491 * If this not a trap due to SME being disabled then something
1492 * is being used in the wrong mode, report as SIGILL.
1493 */
1494 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1495 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1496 return;
1497 }
1498
1499 sve_alloc(current, false);
1500 sme_alloc(current);
1501 if (!current->thread.sve_state || !current->thread.sme_state) {
1502 force_sig(SIGKILL);
1503 return;
1504 }
1505
1506 get_cpu_fpsimd_context();
1507
1508 /* With TIF_SME userspace shouldn't generate any traps */
1509 if (test_and_set_thread_flag(TIF_SME))
1510 WARN_ON(1);
1511
1512 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1513 unsigned long vq_minus_one =
1514 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1515 sme_set_vq(vq_minus_one);
1516
1517 fpsimd_bind_task_to_cpu();
1518 }
1519
1520 put_cpu_fpsimd_context();
1521 }
1522
1523 /*
1524 * Trapped FP/ASIMD access.
1525 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1526 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1527 {
1528 /* TODO: implement lazy context saving/restoring */
1529 WARN_ON(1);
1530 }
1531
1532 /*
1533 * Raise a SIGFPE for the current process.
1534 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1535 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1536 {
1537 unsigned int si_code = FPE_FLTUNK;
1538
1539 if (esr & ESR_ELx_FP_EXC_TFV) {
1540 if (esr & FPEXC_IOF)
1541 si_code = FPE_FLTINV;
1542 else if (esr & FPEXC_DZF)
1543 si_code = FPE_FLTDIV;
1544 else if (esr & FPEXC_OFF)
1545 si_code = FPE_FLTOVF;
1546 else if (esr & FPEXC_UFF)
1547 si_code = FPE_FLTUND;
1548 else if (esr & FPEXC_IXF)
1549 si_code = FPE_FLTRES;
1550 }
1551
1552 send_sig_fault(SIGFPE, si_code,
1553 (void __user *)instruction_pointer(regs),
1554 current);
1555 }
1556
fpsimd_thread_switch(struct task_struct * next)1557 void fpsimd_thread_switch(struct task_struct *next)
1558 {
1559 bool wrong_task, wrong_cpu;
1560
1561 if (!system_supports_fpsimd())
1562 return;
1563
1564 __get_cpu_fpsimd_context();
1565
1566 /* Save unsaved fpsimd state, if any: */
1567 fpsimd_save();
1568
1569 /*
1570 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1571 * state. For kernel threads, FPSIMD registers are never loaded
1572 * and wrong_task and wrong_cpu will always be true.
1573 */
1574 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1575 &next->thread.uw.fpsimd_state;
1576 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1577
1578 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1579 wrong_task || wrong_cpu);
1580
1581 __put_cpu_fpsimd_context();
1582 }
1583
fpsimd_flush_thread_vl(enum vec_type type)1584 static void fpsimd_flush_thread_vl(enum vec_type type)
1585 {
1586 int vl, supported_vl;
1587
1588 /*
1589 * Reset the task vector length as required. This is where we
1590 * ensure that all user tasks have a valid vector length
1591 * configured: no kernel task can become a user task without
1592 * an exec and hence a call to this function. By the time the
1593 * first call to this function is made, all early hardware
1594 * probing is complete, so __sve_default_vl should be valid.
1595 * If a bug causes this to go wrong, we make some noise and
1596 * try to fudge thread.sve_vl to a safe value here.
1597 */
1598 vl = task_get_vl_onexec(current, type);
1599 if (!vl)
1600 vl = get_default_vl(type);
1601
1602 if (WARN_ON(!sve_vl_valid(vl)))
1603 vl = vl_info[type].min_vl;
1604
1605 supported_vl = find_supported_vector_length(type, vl);
1606 if (WARN_ON(supported_vl != vl))
1607 vl = supported_vl;
1608
1609 task_set_vl(current, type, vl);
1610
1611 /*
1612 * If the task is not set to inherit, ensure that the vector
1613 * length will be reset by a subsequent exec:
1614 */
1615 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1616 task_set_vl_onexec(current, type, 0);
1617 }
1618
fpsimd_flush_thread(void)1619 void fpsimd_flush_thread(void)
1620 {
1621 void *sve_state = NULL;
1622 void *sme_state = NULL;
1623
1624 if (!system_supports_fpsimd())
1625 return;
1626
1627 get_cpu_fpsimd_context();
1628
1629 fpsimd_flush_task_state(current);
1630 memset(¤t->thread.uw.fpsimd_state, 0,
1631 sizeof(current->thread.uw.fpsimd_state));
1632
1633 if (system_supports_sve()) {
1634 clear_thread_flag(TIF_SVE);
1635
1636 /* Defer kfree() while in atomic context */
1637 sve_state = current->thread.sve_state;
1638 current->thread.sve_state = NULL;
1639
1640 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1641 }
1642
1643 if (system_supports_sme()) {
1644 clear_thread_flag(TIF_SME);
1645
1646 /* Defer kfree() while in atomic context */
1647 sme_state = current->thread.sme_state;
1648 current->thread.sme_state = NULL;
1649
1650 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1651 current->thread.svcr = 0;
1652 }
1653
1654 current->thread.fp_type = FP_STATE_FPSIMD;
1655
1656 put_cpu_fpsimd_context();
1657 kfree(sve_state);
1658 kfree(sme_state);
1659 }
1660
1661 /*
1662 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1663 * currently held in the registers does in fact belong to 'current'
1664 */
fpsimd_preserve_current_state(void)1665 void fpsimd_preserve_current_state(void)
1666 {
1667 if (!system_supports_fpsimd())
1668 return;
1669
1670 get_cpu_fpsimd_context();
1671 fpsimd_save();
1672 put_cpu_fpsimd_context();
1673 }
1674
1675 /*
1676 * Like fpsimd_preserve_current_state(), but ensure that
1677 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1678 * the signal frame.
1679 */
fpsimd_signal_preserve_current_state(void)1680 void fpsimd_signal_preserve_current_state(void)
1681 {
1682 fpsimd_preserve_current_state();
1683 if (test_thread_flag(TIF_SVE))
1684 sve_to_fpsimd(current);
1685 }
1686
1687 /*
1688 * Called by KVM when entering the guest.
1689 */
fpsimd_kvm_prepare(void)1690 void fpsimd_kvm_prepare(void)
1691 {
1692 if (!system_supports_sve())
1693 return;
1694
1695 /*
1696 * KVM does not save host SVE state since we can only enter
1697 * the guest from a syscall so the ABI means that only the
1698 * non-saved SVE state needs to be saved. If we have left
1699 * SVE enabled for performance reasons then update the task
1700 * state to be FPSIMD only.
1701 */
1702 get_cpu_fpsimd_context();
1703
1704 if (test_and_clear_thread_flag(TIF_SVE)) {
1705 sve_to_fpsimd(current);
1706 current->thread.fp_type = FP_STATE_FPSIMD;
1707 }
1708
1709 put_cpu_fpsimd_context();
1710 }
1711
1712 /*
1713 * Associate current's FPSIMD context with this cpu
1714 * The caller must have ownership of the cpu FPSIMD context before calling
1715 * this function.
1716 */
fpsimd_bind_task_to_cpu(void)1717 static void fpsimd_bind_task_to_cpu(void)
1718 {
1719 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1720
1721 WARN_ON(!system_supports_fpsimd());
1722 last->st = ¤t->thread.uw.fpsimd_state;
1723 last->sve_state = current->thread.sve_state;
1724 last->sme_state = current->thread.sme_state;
1725 last->sve_vl = task_get_sve_vl(current);
1726 last->sme_vl = task_get_sme_vl(current);
1727 last->svcr = ¤t->thread.svcr;
1728 last->fp_type = ¤t->thread.fp_type;
1729 last->to_save = FP_STATE_CURRENT;
1730 current->thread.fpsimd_cpu = smp_processor_id();
1731
1732 /*
1733 * Toggle SVE and SME trapping for userspace if needed, these
1734 * are serialsied by ret_to_user().
1735 */
1736 if (system_supports_sme()) {
1737 if (test_thread_flag(TIF_SME))
1738 sme_user_enable();
1739 else
1740 sme_user_disable();
1741 }
1742
1743 if (system_supports_sve()) {
1744 if (test_thread_flag(TIF_SVE))
1745 sve_user_enable();
1746 else
1747 sve_user_disable();
1748 }
1749 }
1750
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1751 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1752 {
1753 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1754
1755 WARN_ON(!system_supports_fpsimd());
1756 WARN_ON(!in_softirq() && !irqs_disabled());
1757
1758 *last = *state;
1759 }
1760
1761 /*
1762 * Load the userland FPSIMD state of 'current' from memory, but only if the
1763 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1764 * state of 'current'. This is called when we are preparing to return to
1765 * userspace to ensure that userspace sees a good register state.
1766 */
fpsimd_restore_current_state(void)1767 void fpsimd_restore_current_state(void)
1768 {
1769 /*
1770 * For the tasks that were created before we detected the absence of
1771 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1772 * e.g, init. This could be then inherited by the children processes.
1773 * If we later detect that the system doesn't support FP/SIMD,
1774 * we must clear the flag for all the tasks to indicate that the
1775 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1776 * do_notify_resume().
1777 */
1778 if (!system_supports_fpsimd()) {
1779 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1780 return;
1781 }
1782
1783 get_cpu_fpsimd_context();
1784
1785 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1786 task_fpsimd_load();
1787 fpsimd_bind_task_to_cpu();
1788 }
1789
1790 put_cpu_fpsimd_context();
1791 }
1792
1793 /*
1794 * Load an updated userland FPSIMD state for 'current' from memory and set the
1795 * flag that indicates that the FPSIMD register contents are the most recent
1796 * FPSIMD state of 'current'. This is used by the signal code to restore the
1797 * register state when returning from a signal handler in FPSIMD only cases,
1798 * any SVE context will be discarded.
1799 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1800 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1801 {
1802 if (WARN_ON(!system_supports_fpsimd()))
1803 return;
1804
1805 get_cpu_fpsimd_context();
1806
1807 current->thread.uw.fpsimd_state = *state;
1808 if (test_thread_flag(TIF_SVE))
1809 fpsimd_to_sve(current);
1810
1811 task_fpsimd_load();
1812 fpsimd_bind_task_to_cpu();
1813
1814 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1815
1816 put_cpu_fpsimd_context();
1817 }
1818
1819 /*
1820 * Invalidate live CPU copies of task t's FPSIMD state
1821 *
1822 * This function may be called with preemption enabled. The barrier()
1823 * ensures that the assignment to fpsimd_cpu is visible to any
1824 * preemption/softirq that could race with set_tsk_thread_flag(), so
1825 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1826 *
1827 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1828 * subsequent code.
1829 */
fpsimd_flush_task_state(struct task_struct * t)1830 void fpsimd_flush_task_state(struct task_struct *t)
1831 {
1832 t->thread.fpsimd_cpu = NR_CPUS;
1833 /*
1834 * If we don't support fpsimd, bail out after we have
1835 * reset the fpsimd_cpu for this task and clear the
1836 * FPSTATE.
1837 */
1838 if (!system_supports_fpsimd())
1839 return;
1840 barrier();
1841 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1842
1843 barrier();
1844 }
1845
1846 /*
1847 * Invalidate any task's FPSIMD state that is present on this cpu.
1848 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1849 * before calling this function.
1850 */
fpsimd_flush_cpu_state(void)1851 static void fpsimd_flush_cpu_state(void)
1852 {
1853 WARN_ON(!system_supports_fpsimd());
1854 __this_cpu_write(fpsimd_last_state.st, NULL);
1855
1856 /*
1857 * Leaving streaming mode enabled will cause issues for any kernel
1858 * NEON and leaving streaming mode or ZA enabled may increase power
1859 * consumption.
1860 */
1861 if (system_supports_sme())
1862 sme_smstop();
1863
1864 set_thread_flag(TIF_FOREIGN_FPSTATE);
1865 }
1866
1867 /*
1868 * Save the FPSIMD state to memory and invalidate cpu view.
1869 * This function must be called with preemption disabled.
1870 */
fpsimd_save_and_flush_cpu_state(void)1871 void fpsimd_save_and_flush_cpu_state(void)
1872 {
1873 if (!system_supports_fpsimd())
1874 return;
1875 WARN_ON(preemptible());
1876 __get_cpu_fpsimd_context();
1877 fpsimd_save();
1878 fpsimd_flush_cpu_state();
1879 __put_cpu_fpsimd_context();
1880 }
1881
1882 #ifdef CONFIG_KERNEL_MODE_NEON
1883
1884 /*
1885 * Kernel-side NEON support functions
1886 */
1887
1888 /*
1889 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1890 * context
1891 *
1892 * Must not be called unless may_use_simd() returns true.
1893 * Task context in the FPSIMD registers is saved back to memory as necessary.
1894 *
1895 * A matching call to kernel_neon_end() must be made before returning from the
1896 * calling context.
1897 *
1898 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1899 * called.
1900 */
kernel_neon_begin(void)1901 void kernel_neon_begin(void)
1902 {
1903 if (WARN_ON(!system_supports_fpsimd()))
1904 return;
1905
1906 BUG_ON(!may_use_simd());
1907
1908 get_cpu_fpsimd_context();
1909
1910 /* Save unsaved fpsimd state, if any: */
1911 fpsimd_save();
1912
1913 /* Invalidate any task state remaining in the fpsimd regs: */
1914 fpsimd_flush_cpu_state();
1915 }
1916 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1917
1918 /*
1919 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1920 *
1921 * Must be called from a context in which kernel_neon_begin() was previously
1922 * called, with no call to kernel_neon_end() in the meantime.
1923 *
1924 * The caller must not use the FPSIMD registers after this function is called,
1925 * unless kernel_neon_begin() is called again in the meantime.
1926 */
kernel_neon_end(void)1927 void kernel_neon_end(void)
1928 {
1929 if (!system_supports_fpsimd())
1930 return;
1931
1932 put_cpu_fpsimd_context();
1933 }
1934 EXPORT_SYMBOL_GPL(kernel_neon_end);
1935
1936 #ifdef CONFIG_EFI
1937
1938 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1939 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1940 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1941 static DEFINE_PER_CPU(bool, efi_sm_state);
1942
1943 /*
1944 * EFI runtime services support functions
1945 *
1946 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1947 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1948 * is always used rather than being an optional accelerator.
1949 *
1950 * These functions provide the necessary support for ensuring FPSIMD
1951 * save/restore in the contexts from which EFI is used.
1952 *
1953 * Do not use them for any other purpose -- if tempted to do so, you are
1954 * either doing something wrong or you need to propose some refactoring.
1955 */
1956
1957 /*
1958 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1959 */
__efi_fpsimd_begin(void)1960 void __efi_fpsimd_begin(void)
1961 {
1962 if (!system_supports_fpsimd())
1963 return;
1964
1965 WARN_ON(preemptible());
1966
1967 if (may_use_simd()) {
1968 kernel_neon_begin();
1969 } else {
1970 /*
1971 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1972 * preserving:
1973 */
1974 if (system_supports_sve() && likely(efi_sve_state)) {
1975 char *sve_state = this_cpu_ptr(efi_sve_state);
1976 bool ffr = true;
1977 u64 svcr;
1978
1979 __this_cpu_write(efi_sve_state_used, true);
1980
1981 if (system_supports_sme()) {
1982 svcr = read_sysreg_s(SYS_SVCR);
1983
1984 __this_cpu_write(efi_sm_state,
1985 svcr & SVCR_SM_MASK);
1986
1987 /*
1988 * Unless we have FA64 FFR does not
1989 * exist in streaming mode.
1990 */
1991 if (!system_supports_fa64())
1992 ffr = !(svcr & SVCR_SM_MASK);
1993 }
1994
1995 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1996 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1997 ffr);
1998
1999 if (system_supports_sme())
2000 sysreg_clear_set_s(SYS_SVCR,
2001 SVCR_SM_MASK, 0);
2002
2003 } else {
2004 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2005 }
2006
2007 __this_cpu_write(efi_fpsimd_state_used, true);
2008 }
2009 }
2010
2011 /*
2012 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2013 */
__efi_fpsimd_end(void)2014 void __efi_fpsimd_end(void)
2015 {
2016 if (!system_supports_fpsimd())
2017 return;
2018
2019 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2020 kernel_neon_end();
2021 } else {
2022 if (system_supports_sve() &&
2023 likely(__this_cpu_read(efi_sve_state_used))) {
2024 char const *sve_state = this_cpu_ptr(efi_sve_state);
2025 bool ffr = true;
2026
2027 /*
2028 * Restore streaming mode; EFI calls are
2029 * normal function calls so should not return in
2030 * streaming mode.
2031 */
2032 if (system_supports_sme()) {
2033 if (__this_cpu_read(efi_sm_state)) {
2034 sysreg_clear_set_s(SYS_SVCR,
2035 0,
2036 SVCR_SM_MASK);
2037
2038 /*
2039 * Unless we have FA64 FFR does not
2040 * exist in streaming mode.
2041 */
2042 if (!system_supports_fa64())
2043 ffr = false;
2044 }
2045 }
2046
2047 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2048 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2049 ffr);
2050
2051 __this_cpu_write(efi_sve_state_used, false);
2052 } else {
2053 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2054 }
2055 }
2056 }
2057
2058 #endif /* CONFIG_EFI */
2059
2060 #endif /* CONFIG_KERNEL_MODE_NEON */
2061
2062 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2063 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2064 unsigned long cmd, void *v)
2065 {
2066 switch (cmd) {
2067 case CPU_PM_ENTER:
2068 fpsimd_save_and_flush_cpu_state();
2069 break;
2070 case CPU_PM_EXIT:
2071 break;
2072 case CPU_PM_ENTER_FAILED:
2073 default:
2074 return NOTIFY_DONE;
2075 }
2076 return NOTIFY_OK;
2077 }
2078
2079 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2080 .notifier_call = fpsimd_cpu_pm_notifier,
2081 };
2082
fpsimd_pm_init(void)2083 static void __init fpsimd_pm_init(void)
2084 {
2085 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2086 }
2087
2088 #else
fpsimd_pm_init(void)2089 static inline void fpsimd_pm_init(void) { }
2090 #endif /* CONFIG_CPU_PM */
2091
2092 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2093 static int fpsimd_cpu_dead(unsigned int cpu)
2094 {
2095 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2096 return 0;
2097 }
2098
fpsimd_hotplug_init(void)2099 static inline void fpsimd_hotplug_init(void)
2100 {
2101 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2102 NULL, fpsimd_cpu_dead);
2103 }
2104
2105 #else
fpsimd_hotplug_init(void)2106 static inline void fpsimd_hotplug_init(void) { }
2107 #endif
2108
2109 /*
2110 * FP/SIMD support code initialisation.
2111 */
fpsimd_init(void)2112 static int __init fpsimd_init(void)
2113 {
2114 if (cpu_have_named_feature(FP)) {
2115 fpsimd_pm_init();
2116 fpsimd_hotplug_init();
2117 } else {
2118 pr_notice("Floating-point is not implemented\n");
2119 }
2120
2121 if (!cpu_have_named_feature(ASIMD))
2122 pr_notice("Advanced SIMD is not implemented\n");
2123
2124
2125 sve_sysctl_init();
2126 sme_sysctl_init();
2127
2128 return 0;
2129 }
2130 core_initcall(fpsimd_init);
2131