1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * <linux/usb/gadget.h>
4 *
5 * We call the USB code inside a Linux-based peripheral device a "gadget"
6 * driver, except for the hardware-specific bus glue. One USB host can
7 * talk to many USB gadgets, but the gadgets are only able to communicate
8 * to one host.
9 *
10 *
11 * (C) Copyright 2002-2004 by David Brownell
12 * All Rights Reserved.
13 */
14
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17
18 #include <linux/configfs.h>
19 #include <linux/device.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/scatterlist.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 #include <linux/usb/ch9.h>
28
29 #define UDC_TRACE_STR_MAX 512
30
31 struct usb_ep;
32
33 /**
34 * struct usb_request - describes one i/o request
35 * @buf: Buffer used for data. Always provide this; some controllers
36 * only use PIO, or don't use DMA for some endpoints.
37 * @dma: DMA address corresponding to 'buf'. If you don't set this
38 * field, and the usb controller needs one, it is responsible
39 * for mapping and unmapping the buffer.
40 * @sg: a scatterlist for SG-capable controllers.
41 * @num_sgs: number of SG entries
42 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
43 * @length: Length of that data
44 * @stream_id: The stream id, when USB3.0 bulk streams are being used
45 * @is_last: Indicates if this is the last request of a stream_id before
46 * switching to a different stream (required for DWC3 controllers).
47 * @no_interrupt: If true, hints that no completion irq is needed.
48 * Helpful sometimes with deep request queues that are handled
49 * directly by DMA controllers.
50 * @zero: If true, when writing data, makes the last packet be "short"
51 * by adding a zero length packet as needed;
52 * @short_not_ok: When reading data, makes short packets be
53 * treated as errors (queue stops advancing till cleanup).
54 * @dma_mapped: Indicates if request has been mapped to DMA (internal)
55 * @complete: Function called when request completes, so this request and
56 * its buffer may be re-used. The function will always be called with
57 * interrupts disabled, and it must not sleep.
58 * Reads terminate with a short packet, or when the buffer fills,
59 * whichever comes first. When writes terminate, some data bytes
60 * will usually still be in flight (often in a hardware fifo).
61 * Errors (for reads or writes) stop the queue from advancing
62 * until the completion function returns, so that any transfers
63 * invalidated by the error may first be dequeued.
64 * @context: For use by the completion callback
65 * @list: For use by the gadget driver.
66 * @frame_number: Reports the interval number in (micro)frame in which the
67 * isochronous transfer was transmitted or received.
68 * @status: Reports completion code, zero or a negative errno.
69 * Normally, faults block the transfer queue from advancing until
70 * the completion callback returns.
71 * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
72 * or when the driver disabled the endpoint.
73 * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
74 * transfers) this may be less than the requested length. If the
75 * short_not_ok flag is set, short reads are treated as errors
76 * even when status otherwise indicates successful completion.
77 * Note that for writes (IN transfers) some data bytes may still
78 * reside in a device-side FIFO when the request is reported as
79 * complete.
80 *
81 * These are allocated/freed through the endpoint they're used with. The
82 * hardware's driver can add extra per-request data to the memory it returns,
83 * which often avoids separate memory allocations (potential failures),
84 * later when the request is queued.
85 *
86 * Request flags affect request handling, such as whether a zero length
87 * packet is written (the "zero" flag), whether a short read should be
88 * treated as an error (blocking request queue advance, the "short_not_ok"
89 * flag), or hinting that an interrupt is not required (the "no_interrupt"
90 * flag, for use with deep request queues).
91 *
92 * Bulk endpoints can use any size buffers, and can also be used for interrupt
93 * transfers. interrupt-only endpoints can be much less functional.
94 *
95 * NOTE: this is analogous to 'struct urb' on the host side, except that
96 * it's thinner and promotes more pre-allocation.
97 */
98
99 struct usb_request {
100 void *buf;
101 unsigned length;
102 dma_addr_t dma;
103
104 struct scatterlist *sg;
105 unsigned num_sgs;
106 unsigned num_mapped_sgs;
107
108 unsigned stream_id:16;
109 unsigned is_last:1;
110 unsigned no_interrupt:1;
111 unsigned zero:1;
112 unsigned short_not_ok:1;
113 unsigned dma_mapped:1;
114
115 void (*complete)(struct usb_ep *ep,
116 struct usb_request *req);
117 void *context;
118 struct list_head list;
119
120 unsigned frame_number; /* ISO ONLY */
121
122 int status;
123 unsigned actual;
124 };
125
126 /*-------------------------------------------------------------------------*/
127
128 /* endpoint-specific parts of the api to the usb controller hardware.
129 * unlike the urb model, (de)multiplexing layers are not required.
130 * (so this api could slash overhead if used on the host side...)
131 *
132 * note that device side usb controllers commonly differ in how many
133 * endpoints they support, as well as their capabilities.
134 */
135 struct usb_ep_ops {
136 int (*enable) (struct usb_ep *ep,
137 const struct usb_endpoint_descriptor *desc);
138 int (*disable) (struct usb_ep *ep);
139 void (*dispose) (struct usb_ep *ep);
140
141 struct usb_request *(*alloc_request) (struct usb_ep *ep,
142 gfp_t gfp_flags);
143 void (*free_request) (struct usb_ep *ep, struct usb_request *req);
144
145 int (*queue) (struct usb_ep *ep, struct usb_request *req,
146 gfp_t gfp_flags);
147 int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
148
149 int (*set_halt) (struct usb_ep *ep, int value);
150 int (*set_wedge) (struct usb_ep *ep);
151
152 int (*fifo_status) (struct usb_ep *ep);
153 void (*fifo_flush) (struct usb_ep *ep);
154 };
155
156 /**
157 * struct usb_ep_caps - endpoint capabilities description
158 * @type_control:Endpoint supports control type (reserved for ep0).
159 * @type_iso:Endpoint supports isochronous transfers.
160 * @type_bulk:Endpoint supports bulk transfers.
161 * @type_int:Endpoint supports interrupt transfers.
162 * @dir_in:Endpoint supports IN direction.
163 * @dir_out:Endpoint supports OUT direction.
164 */
165 struct usb_ep_caps {
166 unsigned type_control:1;
167 unsigned type_iso:1;
168 unsigned type_bulk:1;
169 unsigned type_int:1;
170 unsigned dir_in:1;
171 unsigned dir_out:1;
172 };
173
174 #define USB_EP_CAPS_TYPE_CONTROL 0x01
175 #define USB_EP_CAPS_TYPE_ISO 0x02
176 #define USB_EP_CAPS_TYPE_BULK 0x04
177 #define USB_EP_CAPS_TYPE_INT 0x08
178 #define USB_EP_CAPS_TYPE_ALL \
179 (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
180 #define USB_EP_CAPS_DIR_IN 0x01
181 #define USB_EP_CAPS_DIR_OUT 0x02
182 #define USB_EP_CAPS_DIR_ALL (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
183
184 #define USB_EP_CAPS(_type, _dir) \
185 { \
186 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
187 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
188 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
189 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
190 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
191 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
192 }
193
194 /**
195 * struct usb_ep - device side representation of USB endpoint
196 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
197 * @ops: Function pointers used to access hardware-specific operations.
198 * @ep_list:the gadget's ep_list holds all of its endpoints
199 * @caps:The structure describing types and directions supported by endpoint.
200 * @enabled: The current endpoint enabled/disabled state.
201 * @claimed: True if this endpoint is claimed by a function.
202 * @maxpacket:The maximum packet size used on this endpoint. The initial
203 * value can sometimes be reduced (hardware allowing), according to
204 * the endpoint descriptor used to configure the endpoint.
205 * @maxpacket_limit:The maximum packet size value which can be handled by this
206 * endpoint. It's set once by UDC driver when endpoint is initialized, and
207 * should not be changed. Should not be confused with maxpacket.
208 * @max_streams: The maximum number of streams supported
209 * by this EP (0 - 16, actual number is 2^n)
210 * @mult: multiplier, 'mult' value for SS Isoc EPs
211 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
212 * @driver_data:for use by the gadget driver.
213 * @address: used to identify the endpoint when finding descriptor that
214 * matches connection speed
215 * @desc: endpoint descriptor. This pointer is set before the endpoint is
216 * enabled and remains valid until the endpoint is disabled.
217 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
218 * descriptor that is used to configure the endpoint
219 *
220 * the bus controller driver lists all the general purpose endpoints in
221 * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
222 * and is accessed only in response to a driver setup() callback.
223 */
224
225 struct usb_ep {
226 void *driver_data;
227
228 const char *name;
229 const struct usb_ep_ops *ops;
230 struct list_head ep_list;
231 struct usb_ep_caps caps;
232 bool claimed;
233 bool enabled;
234 unsigned maxpacket:16;
235 unsigned maxpacket_limit:16;
236 unsigned max_streams:16;
237 unsigned mult:2;
238 unsigned maxburst:5;
239 u8 address;
240 const struct usb_endpoint_descriptor *desc;
241 const struct usb_ss_ep_comp_descriptor *comp_desc;
242 };
243
244 /*-------------------------------------------------------------------------*/
245
246 #if IS_ENABLED(CONFIG_USB_GADGET)
247 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
248 int usb_ep_enable(struct usb_ep *ep);
249 int usb_ep_disable(struct usb_ep *ep);
250 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
251 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
252 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
253 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
254 int usb_ep_set_halt(struct usb_ep *ep);
255 int usb_ep_clear_halt(struct usb_ep *ep);
256 int usb_ep_set_wedge(struct usb_ep *ep);
257 int usb_ep_fifo_status(struct usb_ep *ep);
258 void usb_ep_fifo_flush(struct usb_ep *ep);
259 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)260 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
261 unsigned maxpacket_limit)
262 { }
usb_ep_enable(struct usb_ep * ep)263 static inline int usb_ep_enable(struct usb_ep *ep)
264 { return 0; }
usb_ep_disable(struct usb_ep * ep)265 static inline int usb_ep_disable(struct usb_ep *ep)
266 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)267 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
268 gfp_t gfp_flags)
269 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)270 static inline void usb_ep_free_request(struct usb_ep *ep,
271 struct usb_request *req)
272 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)273 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
274 gfp_t gfp_flags)
275 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)276 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
277 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)278 static inline int usb_ep_set_halt(struct usb_ep *ep)
279 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)280 static inline int usb_ep_clear_halt(struct usb_ep *ep)
281 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)282 static inline int usb_ep_set_wedge(struct usb_ep *ep)
283 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)284 static inline int usb_ep_fifo_status(struct usb_ep *ep)
285 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)286 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
287 { }
288 #endif /* USB_GADGET */
289
290 /*-------------------------------------------------------------------------*/
291
292 struct usb_dcd_config_params {
293 __u8 bU1devExitLat; /* U1 Device exit Latency */
294 #define USB_DEFAULT_U1_DEV_EXIT_LAT 0x01 /* Less then 1 microsec */
295 __le16 bU2DevExitLat; /* U2 Device exit Latency */
296 #define USB_DEFAULT_U2_DEV_EXIT_LAT 0x1F4 /* Less then 500 microsec */
297 __u8 besl_baseline; /* Recommended baseline BESL (0-15) */
298 __u8 besl_deep; /* Recommended deep BESL (0-15) */
299 #define USB_DEFAULT_BESL_UNSPECIFIED 0xFF /* No recommended value */
300 };
301
302
303 struct usb_gadget;
304 struct usb_gadget_driver;
305 struct usb_udc;
306
307 /* the rest of the api to the controller hardware: device operations,
308 * which don't involve endpoints (or i/o).
309 */
310 struct usb_gadget_ops {
311 int (*get_frame)(struct usb_gadget *);
312 int (*wakeup)(struct usb_gadget *);
313 int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
314 int (*vbus_session) (struct usb_gadget *, int is_active);
315 int (*vbus_draw) (struct usb_gadget *, unsigned mA);
316 int (*pullup) (struct usb_gadget *, int is_on);
317 int (*ioctl)(struct usb_gadget *,
318 unsigned code, unsigned long param);
319 void (*get_config_params)(struct usb_gadget *,
320 struct usb_dcd_config_params *);
321 int (*udc_start)(struct usb_gadget *,
322 struct usb_gadget_driver *);
323 int (*udc_stop)(struct usb_gadget *);
324 void (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
325 void (*udc_set_ssp_rate)(struct usb_gadget *gadget,
326 enum usb_ssp_rate rate);
327 void (*udc_async_callbacks)(struct usb_gadget *gadget, bool enable);
328 struct usb_ep *(*match_ep)(struct usb_gadget *,
329 struct usb_endpoint_descriptor *,
330 struct usb_ss_ep_comp_descriptor *);
331 int (*check_config)(struct usb_gadget *gadget);
332 };
333
334 /**
335 * struct usb_gadget - represents a usb device
336 * @work: (internal use) Workqueue to be used for sysfs_notify()
337 * @udc: struct usb_udc pointer for this gadget
338 * @ops: Function pointers used to access hardware-specific operations.
339 * @ep0: Endpoint zero, used when reading or writing responses to
340 * driver setup() requests
341 * @ep_list: List of other endpoints supported by the device.
342 * @speed: Speed of current connection to USB host.
343 * @max_speed: Maximal speed the UDC can handle. UDC must support this
344 * and all slower speeds.
345 * @ssp_rate: Current connected SuperSpeed Plus signaling rate and lane count.
346 * @max_ssp_rate: Maximum SuperSpeed Plus signaling rate and lane count the UDC
347 * can handle. The UDC must support this and all slower speeds and lower
348 * number of lanes.
349 * @state: the state we are now (attached, suspended, configured, etc)
350 * @name: Identifies the controller hardware type. Used in diagnostics
351 * and sometimes configuration.
352 * @dev: Driver model state for this abstract device.
353 * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
354 * @out_epnum: last used out ep number
355 * @in_epnum: last used in ep number
356 * @mA: last set mA value
357 * @otg_caps: OTG capabilities of this gadget.
358 * @sg_supported: true if we can handle scatter-gather
359 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
360 * gadget driver must provide a USB OTG descriptor.
361 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
362 * is in the Mini-AB jack, and HNP has been used to switch roles
363 * so that the "A" device currently acts as A-Peripheral, not A-Host.
364 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
365 * supports HNP at this port.
366 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
367 * only supports HNP on a different root port.
368 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
369 * enabled HNP support.
370 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
371 * in peripheral mode can support HNP polling.
372 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
373 * or B-Peripheral wants to take host role.
374 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
375 * MaxPacketSize.
376 * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
377 * @quirk_stall_not_supp: UDC controller doesn't support stalling.
378 * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
379 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
380 * u_ether.c to improve performance.
381 * @is_selfpowered: if the gadget is self-powered.
382 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
383 * be connected.
384 * @connected: True if gadget is connected.
385 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
386 * indicates that it supports LPM as per the LPM ECN & errata.
387 * @irq: the interrupt number for device controller.
388 * @id_number: a unique ID number for ensuring that gadget names are distinct
389 *
390 * Gadgets have a mostly-portable "gadget driver" implementing device
391 * functions, handling all usb configurations and interfaces. Gadget
392 * drivers talk to hardware-specific code indirectly, through ops vectors.
393 * That insulates the gadget driver from hardware details, and packages
394 * the hardware endpoints through generic i/o queues. The "usb_gadget"
395 * and "usb_ep" interfaces provide that insulation from the hardware.
396 *
397 * Except for the driver data, all fields in this structure are
398 * read-only to the gadget driver. That driver data is part of the
399 * "driver model" infrastructure in 2.6 (and later) kernels, and for
400 * earlier systems is grouped in a similar structure that's not known
401 * to the rest of the kernel.
402 *
403 * Values of the three OTG device feature flags are updated before the
404 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
405 * driver suspend() calls. They are valid only when is_otg, and when the
406 * device is acting as a B-Peripheral (so is_a_peripheral is false).
407 */
408 struct usb_gadget {
409 struct work_struct work;
410 struct usb_udc *udc;
411 /* readonly to gadget driver */
412 const struct usb_gadget_ops *ops;
413 struct usb_ep *ep0;
414 struct list_head ep_list; /* of usb_ep */
415 enum usb_device_speed speed;
416 enum usb_device_speed max_speed;
417
418 /* USB SuperSpeed Plus only */
419 enum usb_ssp_rate ssp_rate;
420 enum usb_ssp_rate max_ssp_rate;
421
422 enum usb_device_state state;
423 const char *name;
424 struct device dev;
425 unsigned isoch_delay;
426 unsigned out_epnum;
427 unsigned in_epnum;
428 unsigned mA;
429 struct usb_otg_caps *otg_caps;
430
431 unsigned sg_supported:1;
432 unsigned is_otg:1;
433 unsigned is_a_peripheral:1;
434 unsigned b_hnp_enable:1;
435 unsigned a_hnp_support:1;
436 unsigned a_alt_hnp_support:1;
437 unsigned hnp_polling_support:1;
438 unsigned host_request_flag:1;
439 unsigned quirk_ep_out_aligned_size:1;
440 unsigned quirk_altset_not_supp:1;
441 unsigned quirk_stall_not_supp:1;
442 unsigned quirk_zlp_not_supp:1;
443 unsigned quirk_avoids_skb_reserve:1;
444 unsigned is_selfpowered:1;
445 unsigned deactivated:1;
446 unsigned connected:1;
447 unsigned lpm_capable:1;
448 int irq;
449 int id_number;
450 };
451 #define work_to_gadget(w) (container_of((w), struct usb_gadget, work))
452
453 /* Interface to the device model */
set_gadget_data(struct usb_gadget * gadget,void * data)454 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
455 { dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)456 static inline void *get_gadget_data(struct usb_gadget *gadget)
457 { return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)458 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
459 {
460 return container_of(dev, struct usb_gadget, dev);
461 }
usb_get_gadget(struct usb_gadget * gadget)462 static inline struct usb_gadget *usb_get_gadget(struct usb_gadget *gadget)
463 {
464 get_device(&gadget->dev);
465 return gadget;
466 }
usb_put_gadget(struct usb_gadget * gadget)467 static inline void usb_put_gadget(struct usb_gadget *gadget)
468 {
469 put_device(&gadget->dev);
470 }
471 extern void usb_initialize_gadget(struct device *parent,
472 struct usb_gadget *gadget, void (*release)(struct device *dev));
473 extern int usb_add_gadget(struct usb_gadget *gadget);
474 extern void usb_del_gadget(struct usb_gadget *gadget);
475
476 /* Legacy device-model interface */
477 extern int usb_add_gadget_udc_release(struct device *parent,
478 struct usb_gadget *gadget, void (*release)(struct device *dev));
479 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
480 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
481 extern char *usb_get_gadget_udc_name(void);
482
483 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
484 #define gadget_for_each_ep(tmp, gadget) \
485 list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
486
487 /**
488 * usb_ep_align - returns @len aligned to ep's maxpacketsize.
489 * @ep: the endpoint whose maxpacketsize is used to align @len
490 * @len: buffer size's length to align to @ep's maxpacketsize
491 *
492 * This helper is used to align buffer's size to an ep's maxpacketsize.
493 */
usb_ep_align(struct usb_ep * ep,size_t len)494 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
495 {
496 int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc);
497
498 return round_up(len, max_packet_size);
499 }
500
501 /**
502 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
503 * requires quirk_ep_out_aligned_size, otherwise returns len.
504 * @g: controller to check for quirk
505 * @ep: the endpoint whose maxpacketsize is used to align @len
506 * @len: buffer size's length to align to @ep's maxpacketsize
507 *
508 * This helper is used in case it's required for any reason to check and maybe
509 * align buffer's size to an ep's maxpacketsize.
510 */
511 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)512 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
513 {
514 return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
515 }
516
517 /**
518 * gadget_is_altset_supported - return true iff the hardware supports
519 * altsettings
520 * @g: controller to check for quirk
521 */
gadget_is_altset_supported(struct usb_gadget * g)522 static inline int gadget_is_altset_supported(struct usb_gadget *g)
523 {
524 return !g->quirk_altset_not_supp;
525 }
526
527 /**
528 * gadget_is_stall_supported - return true iff the hardware supports stalling
529 * @g: controller to check for quirk
530 */
gadget_is_stall_supported(struct usb_gadget * g)531 static inline int gadget_is_stall_supported(struct usb_gadget *g)
532 {
533 return !g->quirk_stall_not_supp;
534 }
535
536 /**
537 * gadget_is_zlp_supported - return true iff the hardware supports zlp
538 * @g: controller to check for quirk
539 */
gadget_is_zlp_supported(struct usb_gadget * g)540 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
541 {
542 return !g->quirk_zlp_not_supp;
543 }
544
545 /**
546 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
547 * skb_reserve to improve performance.
548 * @g: controller to check for quirk
549 */
gadget_avoids_skb_reserve(struct usb_gadget * g)550 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
551 {
552 return g->quirk_avoids_skb_reserve;
553 }
554
555 /**
556 * gadget_is_dualspeed - return true iff the hardware handles high speed
557 * @g: controller that might support both high and full speeds
558 */
gadget_is_dualspeed(struct usb_gadget * g)559 static inline int gadget_is_dualspeed(struct usb_gadget *g)
560 {
561 return g->max_speed >= USB_SPEED_HIGH;
562 }
563
564 /**
565 * gadget_is_superspeed() - return true if the hardware handles superspeed
566 * @g: controller that might support superspeed
567 */
gadget_is_superspeed(struct usb_gadget * g)568 static inline int gadget_is_superspeed(struct usb_gadget *g)
569 {
570 return g->max_speed >= USB_SPEED_SUPER;
571 }
572
573 /**
574 * gadget_is_superspeed_plus() - return true if the hardware handles
575 * superspeed plus
576 * @g: controller that might support superspeed plus
577 */
gadget_is_superspeed_plus(struct usb_gadget * g)578 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
579 {
580 return g->max_speed >= USB_SPEED_SUPER_PLUS;
581 }
582
583 /**
584 * gadget_is_otg - return true iff the hardware is OTG-ready
585 * @g: controller that might have a Mini-AB connector
586 *
587 * This is a runtime test, since kernels with a USB-OTG stack sometimes
588 * run on boards which only have a Mini-B (or Mini-A) connector.
589 */
gadget_is_otg(struct usb_gadget * g)590 static inline int gadget_is_otg(struct usb_gadget *g)
591 {
592 #ifdef CONFIG_USB_OTG
593 return g->is_otg;
594 #else
595 return 0;
596 #endif
597 }
598
599 /*-------------------------------------------------------------------------*/
600
601 #if IS_ENABLED(CONFIG_USB_GADGET)
602 int usb_gadget_frame_number(struct usb_gadget *gadget);
603 int usb_gadget_wakeup(struct usb_gadget *gadget);
604 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
605 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
606 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
608 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
609 int usb_gadget_connect(struct usb_gadget *gadget);
610 int usb_gadget_disconnect(struct usb_gadget *gadget);
611 int usb_gadget_deactivate(struct usb_gadget *gadget);
612 int usb_gadget_activate(struct usb_gadget *gadget);
613 int usb_gadget_check_config(struct usb_gadget *gadget);
614 #else
usb_gadget_frame_number(struct usb_gadget * gadget)615 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
616 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)617 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
618 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)619 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
620 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)621 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
622 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)623 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
624 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)625 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
626 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)627 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
628 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)629 static inline int usb_gadget_connect(struct usb_gadget *gadget)
630 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)631 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
632 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)633 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
634 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)635 static inline int usb_gadget_activate(struct usb_gadget *gadget)
636 { return 0; }
usb_gadget_check_config(struct usb_gadget * gadget)637 static inline int usb_gadget_check_config(struct usb_gadget *gadget)
638 { return 0; }
639 #endif /* CONFIG_USB_GADGET */
640
641 /*-------------------------------------------------------------------------*/
642
643 /**
644 * struct usb_gadget_driver - driver for usb gadget devices
645 * @function: String describing the gadget's function
646 * @max_speed: Highest speed the driver handles.
647 * @setup: Invoked for ep0 control requests that aren't handled by
648 * the hardware level driver. Most calls must be handled by
649 * the gadget driver, including descriptor and configuration
650 * management. The 16 bit members of the setup data are in
651 * USB byte order. Called in_interrupt; this may not sleep. Driver
652 * queues a response to ep0, or returns negative to stall.
653 * @disconnect: Invoked after all transfers have been stopped,
654 * when the host is disconnected. May be called in_interrupt; this
655 * may not sleep. Some devices can't detect disconnect, so this might
656 * not be called except as part of controller shutdown.
657 * @bind: the driver's bind callback
658 * @unbind: Invoked when the driver is unbound from a gadget,
659 * usually from rmmod (after a disconnect is reported).
660 * Called in a context that permits sleeping.
661 * @suspend: Invoked on USB suspend. May be called in_interrupt.
662 * @resume: Invoked on USB resume. May be called in_interrupt.
663 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
664 * and should be called in_interrupt.
665 * @driver: Driver model state for this driver.
666 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
667 * this driver will be bound to any available UDC.
668 * @match_existing_only: If udc is not found, return an error and fail
669 * the driver registration
670 * @is_bound: Allow a driver to be bound to only one gadget
671 *
672 * Devices are disabled till a gadget driver successfully bind()s, which
673 * means the driver will handle setup() requests needed to enumerate (and
674 * meet "chapter 9" requirements) then do some useful work.
675 *
676 * If gadget->is_otg is true, the gadget driver must provide an OTG
677 * descriptor during enumeration, or else fail the bind() call. In such
678 * cases, no USB traffic may flow until both bind() returns without
679 * having called usb_gadget_disconnect(), and the USB host stack has
680 * initialized.
681 *
682 * Drivers use hardware-specific knowledge to configure the usb hardware.
683 * endpoint addressing is only one of several hardware characteristics that
684 * are in descriptors the ep0 implementation returns from setup() calls.
685 *
686 * Except for ep0 implementation, most driver code shouldn't need change to
687 * run on top of different usb controllers. It'll use endpoints set up by
688 * that ep0 implementation.
689 *
690 * The usb controller driver handles a few standard usb requests. Those
691 * include set_address, and feature flags for devices, interfaces, and
692 * endpoints (the get_status, set_feature, and clear_feature requests).
693 *
694 * Accordingly, the driver's setup() callback must always implement all
695 * get_descriptor requests, returning at least a device descriptor and
696 * a configuration descriptor. Drivers must make sure the endpoint
697 * descriptors match any hardware constraints. Some hardware also constrains
698 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
699 *
700 * The driver's setup() callback must also implement set_configuration,
701 * and should also implement set_interface, get_configuration, and
702 * get_interface. Setting a configuration (or interface) is where
703 * endpoints should be activated or (config 0) shut down.
704 *
705 * (Note that only the default control endpoint is supported. Neither
706 * hosts nor devices generally support control traffic except to ep0.)
707 *
708 * Most devices will ignore USB suspend/resume operations, and so will
709 * not provide those callbacks. However, some may need to change modes
710 * when the host is not longer directing those activities. For example,
711 * local controls (buttons, dials, etc) may need to be re-enabled since
712 * the (remote) host can't do that any longer; or an error state might
713 * be cleared, to make the device behave identically whether or not
714 * power is maintained.
715 */
716 struct usb_gadget_driver {
717 char *function;
718 enum usb_device_speed max_speed;
719 int (*bind)(struct usb_gadget *gadget,
720 struct usb_gadget_driver *driver);
721 void (*unbind)(struct usb_gadget *);
722 int (*setup)(struct usb_gadget *,
723 const struct usb_ctrlrequest *);
724 void (*disconnect)(struct usb_gadget *);
725 void (*suspend)(struct usb_gadget *);
726 void (*resume)(struct usb_gadget *);
727 void (*reset)(struct usb_gadget *);
728
729 /* FIXME support safe rmmod */
730 struct device_driver driver;
731
732 char *udc_name;
733 unsigned match_existing_only:1;
734 bool is_bound:1;
735 };
736
737
738
739 /*-------------------------------------------------------------------------*/
740
741 /* driver modules register and unregister, as usual.
742 * these calls must be made in a context that can sleep.
743 *
744 * A gadget driver can be bound to only one gadget at a time.
745 */
746
747 /**
748 * usb_gadget_register_driver_owner - register a gadget driver
749 * @driver: the driver being registered
750 * @owner: the driver module
751 * @mod_name: the driver module's build name
752 * Context: can sleep
753 *
754 * Call this in your gadget driver's module initialization function,
755 * to tell the underlying UDC controller driver about your driver.
756 * The @bind() function will be called to bind it to a gadget before this
757 * registration call returns. It's expected that the @bind() function will
758 * be in init sections.
759 *
760 * Use the macro defined below instead of calling this directly.
761 */
762 int usb_gadget_register_driver_owner(struct usb_gadget_driver *driver,
763 struct module *owner, const char *mod_name);
764
765 /* use a define to avoid include chaining to get THIS_MODULE & friends */
766 #define usb_gadget_register_driver(driver) \
767 usb_gadget_register_driver_owner(driver, THIS_MODULE, KBUILD_MODNAME)
768
769 /**
770 * usb_gadget_unregister_driver - unregister a gadget driver
771 * @driver:the driver being unregistered
772 * Context: can sleep
773 *
774 * Call this in your gadget driver's module cleanup function,
775 * to tell the underlying usb controller that your driver is
776 * going away. If the controller is connected to a USB host,
777 * it will first disconnect(). The driver is also requested
778 * to unbind() and clean up any device state, before this procedure
779 * finally returns. It's expected that the unbind() functions
780 * will be in exit sections, so may not be linked in some kernels.
781 */
782 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
783
784 /*-------------------------------------------------------------------------*/
785
786 /* utility to simplify dealing with string descriptors */
787
788 /**
789 * struct usb_string - wraps a C string and its USB id
790 * @id:the (nonzero) ID for this string
791 * @s:the string, in UTF-8 encoding
792 *
793 * If you're using usb_gadget_get_string(), use this to wrap a string
794 * together with its ID.
795 */
796 struct usb_string {
797 u8 id;
798 const char *s;
799 };
800
801 /**
802 * struct usb_gadget_strings - a set of USB strings in a given language
803 * @language:identifies the strings' language (0x0409 for en-us)
804 * @strings:array of strings with their ids
805 *
806 * If you're using usb_gadget_get_string(), use this to wrap all the
807 * strings for a given language.
808 */
809 struct usb_gadget_strings {
810 u16 language; /* 0x0409 for en-us */
811 struct usb_string *strings;
812 };
813
814 struct usb_gadget_string_container {
815 struct list_head list;
816 u8 *stash[];
817 };
818
819 /* put descriptor for string with that id into buf (buflen >= 256) */
820 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
821
822 /* check if the given language identifier is valid */
823 bool usb_validate_langid(u16 langid);
824
825 struct gadget_string {
826 struct config_item item;
827 struct list_head list;
828 char string[USB_MAX_STRING_LEN];
829 struct usb_string usb_string;
830 };
831
832 #define to_gadget_string(str_item)\
833 container_of(str_item, struct gadget_string, item)
834
835 /*-------------------------------------------------------------------------*/
836
837 /* utility to simplify managing config descriptors */
838
839 /* write vector of descriptors into buffer */
840 int usb_descriptor_fillbuf(void *, unsigned,
841 const struct usb_descriptor_header **);
842
843 /* build config descriptor from single descriptor vector */
844 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
845 void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
846
847 /* copy a NULL-terminated vector of descriptors */
848 struct usb_descriptor_header **usb_copy_descriptors(
849 struct usb_descriptor_header **);
850
851 /**
852 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
853 * @v: vector of descriptors
854 */
usb_free_descriptors(struct usb_descriptor_header ** v)855 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
856 {
857 kfree(v);
858 }
859
860 struct usb_function;
861 int usb_assign_descriptors(struct usb_function *f,
862 struct usb_descriptor_header **fs,
863 struct usb_descriptor_header **hs,
864 struct usb_descriptor_header **ss,
865 struct usb_descriptor_header **ssp);
866 void usb_free_all_descriptors(struct usb_function *f);
867
868 struct usb_descriptor_header *usb_otg_descriptor_alloc(
869 struct usb_gadget *gadget);
870 int usb_otg_descriptor_init(struct usb_gadget *gadget,
871 struct usb_descriptor_header *otg_desc);
872 /*-------------------------------------------------------------------------*/
873
874 /* utility to simplify map/unmap of usb_requests to/from DMA */
875
876 #ifdef CONFIG_HAS_DMA
877 extern int usb_gadget_map_request_by_dev(struct device *dev,
878 struct usb_request *req, int is_in);
879 extern int usb_gadget_map_request(struct usb_gadget *gadget,
880 struct usb_request *req, int is_in);
881
882 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
883 struct usb_request *req, int is_in);
884 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
885 struct usb_request *req, int is_in);
886 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)887 static inline int usb_gadget_map_request_by_dev(struct device *dev,
888 struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)889 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
890 struct usb_request *req, int is_in) { return -ENOSYS; }
891
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)892 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
893 struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)894 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
895 struct usb_request *req, int is_in) { }
896 #endif /* !CONFIG_HAS_DMA */
897
898 /*-------------------------------------------------------------------------*/
899
900 /* utility to set gadget state properly */
901
902 extern void usb_gadget_set_state(struct usb_gadget *gadget,
903 enum usb_device_state state);
904
905 /*-------------------------------------------------------------------------*/
906
907 /* utility to tell udc core that the bus reset occurs */
908 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
909 struct usb_gadget_driver *driver);
910
911 /*-------------------------------------------------------------------------*/
912
913 /* utility to give requests back to the gadget layer */
914
915 extern void usb_gadget_giveback_request(struct usb_ep *ep,
916 struct usb_request *req);
917
918 /*-------------------------------------------------------------------------*/
919
920 /* utility to find endpoint by name */
921
922 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
923 const char *name);
924
925 /*-------------------------------------------------------------------------*/
926
927 /* utility to check if endpoint caps match descriptor needs */
928
929 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
930 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
931 struct usb_ss_ep_comp_descriptor *ep_comp);
932
933 /*-------------------------------------------------------------------------*/
934
935 /* utility to update vbus status for udc core, it may be scheduled */
936 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
937
938 /*-------------------------------------------------------------------------*/
939
940 /* utility wrapping a simple endpoint selection policy */
941
942 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
943 struct usb_endpoint_descriptor *);
944
945
946 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
947 struct usb_endpoint_descriptor *,
948 struct usb_ss_ep_comp_descriptor *);
949
950 extern void usb_ep_autoconfig_release(struct usb_ep *);
951
952 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
953
954 #endif /* __LINUX_USB_GADGET_H */
955