1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
34 {
35 struct inode *inode = d_inode(path->dentry);
36 generic_fillattr(&nop_mnt_idmap, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41
simple_statfs(struct dentry * dentry,struct kstatfs * buf)42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 buf->f_type = dentry->d_sb->s_magic;
45 buf->f_bsize = PAGE_SIZE;
46 buf->f_namelen = NAME_MAX;
47 return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50
51 /*
52 * Retaining negative dentries for an in-memory filesystem just wastes
53 * memory and lookup time: arrange for them to be deleted immediately.
54 */
always_delete_dentry(const struct dentry * dentry)55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60
61 const struct dentry_operations simple_dentry_operations = {
62 .d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65
66 /*
67 * Lookup the data. This is trivial - if the dentry didn't already
68 * exist, we know it is negative. Set d_op to delete negative dentries.
69 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 if (dentry->d_name.len > NAME_MAX)
73 return ERR_PTR(-ENAMETOOLONG);
74 if (!dentry->d_sb->s_d_op)
75 d_set_d_op(dentry, &simple_dentry_operations);
76 d_add(dentry, NULL);
77 return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80
dcache_dir_open(struct inode * inode,struct file * file)81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 file->private_data = d_alloc_cursor(file->f_path.dentry);
84
85 return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88
dcache_dir_close(struct inode * inode,struct file * file)89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 dput(file->private_data);
92 return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95
96 /* parent is locked at least shared */
97 /*
98 * Returns an element of siblings' list.
99 * We are looking for <count>th positive after <p>; if
100 * found, dentry is grabbed and returned to caller.
101 * If no such element exists, NULL is returned.
102 */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)103 static struct dentry *scan_positives(struct dentry *cursor,
104 struct list_head *p,
105 loff_t count,
106 struct dentry *last)
107 {
108 struct dentry *dentry = cursor->d_parent, *found = NULL;
109
110 spin_lock(&dentry->d_lock);
111 while ((p = p->next) != &dentry->d_subdirs) {
112 struct dentry *d = list_entry(p, struct dentry, d_child);
113 // we must at least skip cursors, to avoid livelocks
114 if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 continue;
116 if (simple_positive(d) && !--count) {
117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 if (simple_positive(d))
119 found = dget_dlock(d);
120 spin_unlock(&d->d_lock);
121 if (likely(found))
122 break;
123 count = 1;
124 }
125 if (need_resched()) {
126 list_move(&cursor->d_child, p);
127 p = &cursor->d_child;
128 spin_unlock(&dentry->d_lock);
129 cond_resched();
130 spin_lock(&dentry->d_lock);
131 }
132 }
133 spin_unlock(&dentry->d_lock);
134 dput(last);
135 return found;
136 }
137
dcache_dir_lseek(struct file * file,loff_t offset,int whence)138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 struct dentry *dentry = file->f_path.dentry;
141 switch (whence) {
142 case 1:
143 offset += file->f_pos;
144 fallthrough;
145 case 0:
146 if (offset >= 0)
147 break;
148 fallthrough;
149 default:
150 return -EINVAL;
151 }
152 if (offset != file->f_pos) {
153 struct dentry *cursor = file->private_data;
154 struct dentry *to = NULL;
155
156 inode_lock_shared(dentry->d_inode);
157
158 if (offset > 2)
159 to = scan_positives(cursor, &dentry->d_subdirs,
160 offset - 2, NULL);
161 spin_lock(&dentry->d_lock);
162 if (to)
163 list_move(&cursor->d_child, &to->d_child);
164 else
165 list_del_init(&cursor->d_child);
166 spin_unlock(&dentry->d_lock);
167 dput(to);
168
169 file->f_pos = offset;
170
171 inode_unlock_shared(dentry->d_inode);
172 }
173 return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176
177 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)178 static inline unsigned char dt_type(struct inode *inode)
179 {
180 return (inode->i_mode >> 12) & 15;
181 }
182
183 /*
184 * Directory is locked and all positive dentries in it are safe, since
185 * for ramfs-type trees they can't go away without unlink() or rmdir(),
186 * both impossible due to the lock on directory.
187 */
188
dcache_readdir(struct file * file,struct dir_context * ctx)189 int dcache_readdir(struct file *file, struct dir_context *ctx)
190 {
191 struct dentry *dentry = file->f_path.dentry;
192 struct dentry *cursor = file->private_data;
193 struct list_head *anchor = &dentry->d_subdirs;
194 struct dentry *next = NULL;
195 struct list_head *p;
196
197 if (!dir_emit_dots(file, ctx))
198 return 0;
199
200 if (ctx->pos == 2)
201 p = anchor;
202 else if (!list_empty(&cursor->d_child))
203 p = &cursor->d_child;
204 else
205 return 0;
206
207 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
208 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
209 d_inode(next)->i_ino, dt_type(d_inode(next))))
210 break;
211 ctx->pos++;
212 p = &next->d_child;
213 }
214 spin_lock(&dentry->d_lock);
215 if (next)
216 list_move_tail(&cursor->d_child, &next->d_child);
217 else
218 list_del_init(&cursor->d_child);
219 spin_unlock(&dentry->d_lock);
220 dput(next);
221
222 return 0;
223 }
224 EXPORT_SYMBOL(dcache_readdir);
225
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)226 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
227 {
228 return -EISDIR;
229 }
230 EXPORT_SYMBOL(generic_read_dir);
231
232 const struct file_operations simple_dir_operations = {
233 .open = dcache_dir_open,
234 .release = dcache_dir_close,
235 .llseek = dcache_dir_lseek,
236 .read = generic_read_dir,
237 .iterate_shared = dcache_readdir,
238 .fsync = noop_fsync,
239 };
240 EXPORT_SYMBOL(simple_dir_operations);
241
242 const struct inode_operations simple_dir_inode_operations = {
243 .lookup = simple_lookup,
244 };
245 EXPORT_SYMBOL(simple_dir_inode_operations);
246
find_next_child(struct dentry * parent,struct dentry * prev)247 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
248 {
249 struct dentry *child = NULL;
250 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
251
252 spin_lock(&parent->d_lock);
253 while ((p = p->next) != &parent->d_subdirs) {
254 struct dentry *d = container_of(p, struct dentry, d_child);
255 if (simple_positive(d)) {
256 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
257 if (simple_positive(d))
258 child = dget_dlock(d);
259 spin_unlock(&d->d_lock);
260 if (likely(child))
261 break;
262 }
263 }
264 spin_unlock(&parent->d_lock);
265 dput(prev);
266 return child;
267 }
268
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))269 void simple_recursive_removal(struct dentry *dentry,
270 void (*callback)(struct dentry *))
271 {
272 struct dentry *this = dget(dentry);
273 while (true) {
274 struct dentry *victim = NULL, *child;
275 struct inode *inode = this->d_inode;
276
277 inode_lock(inode);
278 if (d_is_dir(this))
279 inode->i_flags |= S_DEAD;
280 while ((child = find_next_child(this, victim)) == NULL) {
281 // kill and ascend
282 // update metadata while it's still locked
283 inode->i_ctime = current_time(inode);
284 clear_nlink(inode);
285 inode_unlock(inode);
286 victim = this;
287 this = this->d_parent;
288 inode = this->d_inode;
289 inode_lock(inode);
290 if (simple_positive(victim)) {
291 d_invalidate(victim); // avoid lost mounts
292 if (d_is_dir(victim))
293 fsnotify_rmdir(inode, victim);
294 else
295 fsnotify_unlink(inode, victim);
296 if (callback)
297 callback(victim);
298 dput(victim); // unpin it
299 }
300 if (victim == dentry) {
301 inode->i_ctime = inode->i_mtime =
302 current_time(inode);
303 if (d_is_dir(dentry))
304 drop_nlink(inode);
305 inode_unlock(inode);
306 dput(dentry);
307 return;
308 }
309 }
310 inode_unlock(inode);
311 this = child;
312 }
313 }
314 EXPORT_SYMBOL(simple_recursive_removal);
315
316 static const struct super_operations simple_super_operations = {
317 .statfs = simple_statfs,
318 };
319
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)320 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
321 {
322 struct pseudo_fs_context *ctx = fc->fs_private;
323 struct inode *root;
324
325 s->s_maxbytes = MAX_LFS_FILESIZE;
326 s->s_blocksize = PAGE_SIZE;
327 s->s_blocksize_bits = PAGE_SHIFT;
328 s->s_magic = ctx->magic;
329 s->s_op = ctx->ops ?: &simple_super_operations;
330 s->s_xattr = ctx->xattr;
331 s->s_time_gran = 1;
332 root = new_inode(s);
333 if (!root)
334 return -ENOMEM;
335
336 /*
337 * since this is the first inode, make it number 1. New inodes created
338 * after this must take care not to collide with it (by passing
339 * max_reserved of 1 to iunique).
340 */
341 root->i_ino = 1;
342 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
343 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
344 s->s_root = d_make_root(root);
345 if (!s->s_root)
346 return -ENOMEM;
347 s->s_d_op = ctx->dops;
348 return 0;
349 }
350
pseudo_fs_get_tree(struct fs_context * fc)351 static int pseudo_fs_get_tree(struct fs_context *fc)
352 {
353 return get_tree_nodev(fc, pseudo_fs_fill_super);
354 }
355
pseudo_fs_free(struct fs_context * fc)356 static void pseudo_fs_free(struct fs_context *fc)
357 {
358 kfree(fc->fs_private);
359 }
360
361 static const struct fs_context_operations pseudo_fs_context_ops = {
362 .free = pseudo_fs_free,
363 .get_tree = pseudo_fs_get_tree,
364 };
365
366 /*
367 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
368 * will never be mountable)
369 */
init_pseudo(struct fs_context * fc,unsigned long magic)370 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
371 unsigned long magic)
372 {
373 struct pseudo_fs_context *ctx;
374
375 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
376 if (likely(ctx)) {
377 ctx->magic = magic;
378 fc->fs_private = ctx;
379 fc->ops = &pseudo_fs_context_ops;
380 fc->sb_flags |= SB_NOUSER;
381 fc->global = true;
382 }
383 return ctx;
384 }
385 EXPORT_SYMBOL(init_pseudo);
386
simple_open(struct inode * inode,struct file * file)387 int simple_open(struct inode *inode, struct file *file)
388 {
389 if (inode->i_private)
390 file->private_data = inode->i_private;
391 return 0;
392 }
393 EXPORT_SYMBOL(simple_open);
394
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)395 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
396 {
397 struct inode *inode = d_inode(old_dentry);
398
399 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
400 inc_nlink(inode);
401 ihold(inode);
402 dget(dentry);
403 d_instantiate(dentry, inode);
404 return 0;
405 }
406 EXPORT_SYMBOL(simple_link);
407
simple_empty(struct dentry * dentry)408 int simple_empty(struct dentry *dentry)
409 {
410 struct dentry *child;
411 int ret = 0;
412
413 spin_lock(&dentry->d_lock);
414 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
415 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
416 if (simple_positive(child)) {
417 spin_unlock(&child->d_lock);
418 goto out;
419 }
420 spin_unlock(&child->d_lock);
421 }
422 ret = 1;
423 out:
424 spin_unlock(&dentry->d_lock);
425 return ret;
426 }
427 EXPORT_SYMBOL(simple_empty);
428
simple_unlink(struct inode * dir,struct dentry * dentry)429 int simple_unlink(struct inode *dir, struct dentry *dentry)
430 {
431 struct inode *inode = d_inode(dentry);
432
433 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
434 drop_nlink(inode);
435 dput(dentry);
436 return 0;
437 }
438 EXPORT_SYMBOL(simple_unlink);
439
simple_rmdir(struct inode * dir,struct dentry * dentry)440 int simple_rmdir(struct inode *dir, struct dentry *dentry)
441 {
442 if (!simple_empty(dentry))
443 return -ENOTEMPTY;
444
445 drop_nlink(d_inode(dentry));
446 simple_unlink(dir, dentry);
447 drop_nlink(dir);
448 return 0;
449 }
450 EXPORT_SYMBOL(simple_rmdir);
451
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)452 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
453 struct inode *new_dir, struct dentry *new_dentry)
454 {
455 bool old_is_dir = d_is_dir(old_dentry);
456 bool new_is_dir = d_is_dir(new_dentry);
457
458 if (old_dir != new_dir && old_is_dir != new_is_dir) {
459 if (old_is_dir) {
460 drop_nlink(old_dir);
461 inc_nlink(new_dir);
462 } else {
463 drop_nlink(new_dir);
464 inc_nlink(old_dir);
465 }
466 }
467 old_dir->i_ctime = old_dir->i_mtime =
468 new_dir->i_ctime = new_dir->i_mtime =
469 d_inode(old_dentry)->i_ctime =
470 d_inode(new_dentry)->i_ctime = current_time(old_dir);
471
472 return 0;
473 }
474 EXPORT_SYMBOL_GPL(simple_rename_exchange);
475
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)476 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
477 struct dentry *old_dentry, struct inode *new_dir,
478 struct dentry *new_dentry, unsigned int flags)
479 {
480 struct inode *inode = d_inode(old_dentry);
481 int they_are_dirs = d_is_dir(old_dentry);
482
483 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
484 return -EINVAL;
485
486 if (flags & RENAME_EXCHANGE)
487 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
488
489 if (!simple_empty(new_dentry))
490 return -ENOTEMPTY;
491
492 if (d_really_is_positive(new_dentry)) {
493 simple_unlink(new_dir, new_dentry);
494 if (they_are_dirs) {
495 drop_nlink(d_inode(new_dentry));
496 drop_nlink(old_dir);
497 }
498 } else if (they_are_dirs) {
499 drop_nlink(old_dir);
500 inc_nlink(new_dir);
501 }
502
503 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
504 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
505
506 return 0;
507 }
508 EXPORT_SYMBOL(simple_rename);
509
510 /**
511 * simple_setattr - setattr for simple filesystem
512 * @idmap: idmap of the target mount
513 * @dentry: dentry
514 * @iattr: iattr structure
515 *
516 * Returns 0 on success, -error on failure.
517 *
518 * simple_setattr is a simple ->setattr implementation without a proper
519 * implementation of size changes.
520 *
521 * It can either be used for in-memory filesystems or special files
522 * on simple regular filesystems. Anything that needs to change on-disk
523 * or wire state on size changes needs its own setattr method.
524 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)525 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
526 struct iattr *iattr)
527 {
528 struct inode *inode = d_inode(dentry);
529 int error;
530
531 error = setattr_prepare(idmap, dentry, iattr);
532 if (error)
533 return error;
534
535 if (iattr->ia_valid & ATTR_SIZE)
536 truncate_setsize(inode, iattr->ia_size);
537 setattr_copy(idmap, inode, iattr);
538 mark_inode_dirty(inode);
539 return 0;
540 }
541 EXPORT_SYMBOL(simple_setattr);
542
simple_read_folio(struct file * file,struct folio * folio)543 static int simple_read_folio(struct file *file, struct folio *folio)
544 {
545 folio_zero_range(folio, 0, folio_size(folio));
546 flush_dcache_folio(folio);
547 folio_mark_uptodate(folio);
548 folio_unlock(folio);
549 return 0;
550 }
551
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)552 int simple_write_begin(struct file *file, struct address_space *mapping,
553 loff_t pos, unsigned len,
554 struct page **pagep, void **fsdata)
555 {
556 struct page *page;
557 pgoff_t index;
558
559 index = pos >> PAGE_SHIFT;
560
561 page = grab_cache_page_write_begin(mapping, index);
562 if (!page)
563 return -ENOMEM;
564
565 *pagep = page;
566
567 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
568 unsigned from = pos & (PAGE_SIZE - 1);
569
570 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
571 }
572 return 0;
573 }
574 EXPORT_SYMBOL(simple_write_begin);
575
576 /**
577 * simple_write_end - .write_end helper for non-block-device FSes
578 * @file: See .write_end of address_space_operations
579 * @mapping: "
580 * @pos: "
581 * @len: "
582 * @copied: "
583 * @page: "
584 * @fsdata: "
585 *
586 * simple_write_end does the minimum needed for updating a page after writing is
587 * done. It has the same API signature as the .write_end of
588 * address_space_operations vector. So it can just be set onto .write_end for
589 * FSes that don't need any other processing. i_mutex is assumed to be held.
590 * Block based filesystems should use generic_write_end().
591 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
592 * is not called, so a filesystem that actually does store data in .write_inode
593 * should extend on what's done here with a call to mark_inode_dirty() in the
594 * case that i_size has changed.
595 *
596 * Use *ONLY* with simple_read_folio()
597 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)598 static int simple_write_end(struct file *file, struct address_space *mapping,
599 loff_t pos, unsigned len, unsigned copied,
600 struct page *page, void *fsdata)
601 {
602 struct inode *inode = page->mapping->host;
603 loff_t last_pos = pos + copied;
604
605 /* zero the stale part of the page if we did a short copy */
606 if (!PageUptodate(page)) {
607 if (copied < len) {
608 unsigned from = pos & (PAGE_SIZE - 1);
609
610 zero_user(page, from + copied, len - copied);
611 }
612 SetPageUptodate(page);
613 }
614 /*
615 * No need to use i_size_read() here, the i_size
616 * cannot change under us because we hold the i_mutex.
617 */
618 if (last_pos > inode->i_size)
619 i_size_write(inode, last_pos);
620
621 set_page_dirty(page);
622 unlock_page(page);
623 put_page(page);
624
625 return copied;
626 }
627
628 /*
629 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
630 */
631 const struct address_space_operations ram_aops = {
632 .read_folio = simple_read_folio,
633 .write_begin = simple_write_begin,
634 .write_end = simple_write_end,
635 .dirty_folio = noop_dirty_folio,
636 };
637 EXPORT_SYMBOL(ram_aops);
638
639 /*
640 * the inodes created here are not hashed. If you use iunique to generate
641 * unique inode values later for this filesystem, then you must take care
642 * to pass it an appropriate max_reserved value to avoid collisions.
643 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)644 int simple_fill_super(struct super_block *s, unsigned long magic,
645 const struct tree_descr *files)
646 {
647 struct inode *inode;
648 struct dentry *root;
649 struct dentry *dentry;
650 int i;
651
652 s->s_blocksize = PAGE_SIZE;
653 s->s_blocksize_bits = PAGE_SHIFT;
654 s->s_magic = magic;
655 s->s_op = &simple_super_operations;
656 s->s_time_gran = 1;
657
658 inode = new_inode(s);
659 if (!inode)
660 return -ENOMEM;
661 /*
662 * because the root inode is 1, the files array must not contain an
663 * entry at index 1
664 */
665 inode->i_ino = 1;
666 inode->i_mode = S_IFDIR | 0755;
667 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
668 inode->i_op = &simple_dir_inode_operations;
669 inode->i_fop = &simple_dir_operations;
670 set_nlink(inode, 2);
671 root = d_make_root(inode);
672 if (!root)
673 return -ENOMEM;
674 for (i = 0; !files->name || files->name[0]; i++, files++) {
675 if (!files->name)
676 continue;
677
678 /* warn if it tries to conflict with the root inode */
679 if (unlikely(i == 1))
680 printk(KERN_WARNING "%s: %s passed in a files array"
681 "with an index of 1!\n", __func__,
682 s->s_type->name);
683
684 dentry = d_alloc_name(root, files->name);
685 if (!dentry)
686 goto out;
687 inode = new_inode(s);
688 if (!inode) {
689 dput(dentry);
690 goto out;
691 }
692 inode->i_mode = S_IFREG | files->mode;
693 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
694 inode->i_fop = files->ops;
695 inode->i_ino = i;
696 d_add(dentry, inode);
697 }
698 s->s_root = root;
699 return 0;
700 out:
701 d_genocide(root);
702 shrink_dcache_parent(root);
703 dput(root);
704 return -ENOMEM;
705 }
706 EXPORT_SYMBOL(simple_fill_super);
707
708 static DEFINE_SPINLOCK(pin_fs_lock);
709
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)710 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
711 {
712 struct vfsmount *mnt = NULL;
713 spin_lock(&pin_fs_lock);
714 if (unlikely(!*mount)) {
715 spin_unlock(&pin_fs_lock);
716 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
717 if (IS_ERR(mnt))
718 return PTR_ERR(mnt);
719 spin_lock(&pin_fs_lock);
720 if (!*mount)
721 *mount = mnt;
722 }
723 mntget(*mount);
724 ++*count;
725 spin_unlock(&pin_fs_lock);
726 mntput(mnt);
727 return 0;
728 }
729 EXPORT_SYMBOL(simple_pin_fs);
730
simple_release_fs(struct vfsmount ** mount,int * count)731 void simple_release_fs(struct vfsmount **mount, int *count)
732 {
733 struct vfsmount *mnt;
734 spin_lock(&pin_fs_lock);
735 mnt = *mount;
736 if (!--*count)
737 *mount = NULL;
738 spin_unlock(&pin_fs_lock);
739 mntput(mnt);
740 }
741 EXPORT_SYMBOL(simple_release_fs);
742
743 /**
744 * simple_read_from_buffer - copy data from the buffer to user space
745 * @to: the user space buffer to read to
746 * @count: the maximum number of bytes to read
747 * @ppos: the current position in the buffer
748 * @from: the buffer to read from
749 * @available: the size of the buffer
750 *
751 * The simple_read_from_buffer() function reads up to @count bytes from the
752 * buffer @from at offset @ppos into the user space address starting at @to.
753 *
754 * On success, the number of bytes read is returned and the offset @ppos is
755 * advanced by this number, or negative value is returned on error.
756 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)757 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
758 const void *from, size_t available)
759 {
760 loff_t pos = *ppos;
761 size_t ret;
762
763 if (pos < 0)
764 return -EINVAL;
765 if (pos >= available || !count)
766 return 0;
767 if (count > available - pos)
768 count = available - pos;
769 ret = copy_to_user(to, from + pos, count);
770 if (ret == count)
771 return -EFAULT;
772 count -= ret;
773 *ppos = pos + count;
774 return count;
775 }
776 EXPORT_SYMBOL(simple_read_from_buffer);
777
778 /**
779 * simple_write_to_buffer - copy data from user space to the buffer
780 * @to: the buffer to write to
781 * @available: the size of the buffer
782 * @ppos: the current position in the buffer
783 * @from: the user space buffer to read from
784 * @count: the maximum number of bytes to read
785 *
786 * The simple_write_to_buffer() function reads up to @count bytes from the user
787 * space address starting at @from into the buffer @to at offset @ppos.
788 *
789 * On success, the number of bytes written is returned and the offset @ppos is
790 * advanced by this number, or negative value is returned on error.
791 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)792 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
793 const void __user *from, size_t count)
794 {
795 loff_t pos = *ppos;
796 size_t res;
797
798 if (pos < 0)
799 return -EINVAL;
800 if (pos >= available || !count)
801 return 0;
802 if (count > available - pos)
803 count = available - pos;
804 res = copy_from_user(to + pos, from, count);
805 if (res == count)
806 return -EFAULT;
807 count -= res;
808 *ppos = pos + count;
809 return count;
810 }
811 EXPORT_SYMBOL(simple_write_to_buffer);
812
813 /**
814 * memory_read_from_buffer - copy data from the buffer
815 * @to: the kernel space buffer to read to
816 * @count: the maximum number of bytes to read
817 * @ppos: the current position in the buffer
818 * @from: the buffer to read from
819 * @available: the size of the buffer
820 *
821 * The memory_read_from_buffer() function reads up to @count bytes from the
822 * buffer @from at offset @ppos into the kernel space address starting at @to.
823 *
824 * On success, the number of bytes read is returned and the offset @ppos is
825 * advanced by this number, or negative value is returned on error.
826 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)827 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
828 const void *from, size_t available)
829 {
830 loff_t pos = *ppos;
831
832 if (pos < 0)
833 return -EINVAL;
834 if (pos >= available)
835 return 0;
836 if (count > available - pos)
837 count = available - pos;
838 memcpy(to, from + pos, count);
839 *ppos = pos + count;
840
841 return count;
842 }
843 EXPORT_SYMBOL(memory_read_from_buffer);
844
845 /*
846 * Transaction based IO.
847 * The file expects a single write which triggers the transaction, and then
848 * possibly a read which collects the result - which is stored in a
849 * file-local buffer.
850 */
851
simple_transaction_set(struct file * file,size_t n)852 void simple_transaction_set(struct file *file, size_t n)
853 {
854 struct simple_transaction_argresp *ar = file->private_data;
855
856 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
857
858 /*
859 * The barrier ensures that ar->size will really remain zero until
860 * ar->data is ready for reading.
861 */
862 smp_mb();
863 ar->size = n;
864 }
865 EXPORT_SYMBOL(simple_transaction_set);
866
simple_transaction_get(struct file * file,const char __user * buf,size_t size)867 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
868 {
869 struct simple_transaction_argresp *ar;
870 static DEFINE_SPINLOCK(simple_transaction_lock);
871
872 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
873 return ERR_PTR(-EFBIG);
874
875 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
876 if (!ar)
877 return ERR_PTR(-ENOMEM);
878
879 spin_lock(&simple_transaction_lock);
880
881 /* only one write allowed per open */
882 if (file->private_data) {
883 spin_unlock(&simple_transaction_lock);
884 free_page((unsigned long)ar);
885 return ERR_PTR(-EBUSY);
886 }
887
888 file->private_data = ar;
889
890 spin_unlock(&simple_transaction_lock);
891
892 if (copy_from_user(ar->data, buf, size))
893 return ERR_PTR(-EFAULT);
894
895 return ar->data;
896 }
897 EXPORT_SYMBOL(simple_transaction_get);
898
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)899 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
900 {
901 struct simple_transaction_argresp *ar = file->private_data;
902
903 if (!ar)
904 return 0;
905 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
906 }
907 EXPORT_SYMBOL(simple_transaction_read);
908
simple_transaction_release(struct inode * inode,struct file * file)909 int simple_transaction_release(struct inode *inode, struct file *file)
910 {
911 free_page((unsigned long)file->private_data);
912 return 0;
913 }
914 EXPORT_SYMBOL(simple_transaction_release);
915
916 /* Simple attribute files */
917
918 struct simple_attr {
919 int (*get)(void *, u64 *);
920 int (*set)(void *, u64);
921 char get_buf[24]; /* enough to store a u64 and "\n\0" */
922 char set_buf[24];
923 void *data;
924 const char *fmt; /* format for read operation */
925 struct mutex mutex; /* protects access to these buffers */
926 };
927
928 /* simple_attr_open is called by an actual attribute open file operation
929 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)930 int simple_attr_open(struct inode *inode, struct file *file,
931 int (*get)(void *, u64 *), int (*set)(void *, u64),
932 const char *fmt)
933 {
934 struct simple_attr *attr;
935
936 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
937 if (!attr)
938 return -ENOMEM;
939
940 attr->get = get;
941 attr->set = set;
942 attr->data = inode->i_private;
943 attr->fmt = fmt;
944 mutex_init(&attr->mutex);
945
946 file->private_data = attr;
947
948 return nonseekable_open(inode, file);
949 }
950 EXPORT_SYMBOL_GPL(simple_attr_open);
951
simple_attr_release(struct inode * inode,struct file * file)952 int simple_attr_release(struct inode *inode, struct file *file)
953 {
954 kfree(file->private_data);
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
958
959 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)960 ssize_t simple_attr_read(struct file *file, char __user *buf,
961 size_t len, loff_t *ppos)
962 {
963 struct simple_attr *attr;
964 size_t size;
965 ssize_t ret;
966
967 attr = file->private_data;
968
969 if (!attr->get)
970 return -EACCES;
971
972 ret = mutex_lock_interruptible(&attr->mutex);
973 if (ret)
974 return ret;
975
976 if (*ppos && attr->get_buf[0]) {
977 /* continued read */
978 size = strlen(attr->get_buf);
979 } else {
980 /* first read */
981 u64 val;
982 ret = attr->get(attr->data, &val);
983 if (ret)
984 goto out;
985
986 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
987 attr->fmt, (unsigned long long)val);
988 }
989
990 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
991 out:
992 mutex_unlock(&attr->mutex);
993 return ret;
994 }
995 EXPORT_SYMBOL_GPL(simple_attr_read);
996
997 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)998 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
999 size_t len, loff_t *ppos, bool is_signed)
1000 {
1001 struct simple_attr *attr;
1002 unsigned long long val;
1003 size_t size;
1004 ssize_t ret;
1005
1006 attr = file->private_data;
1007 if (!attr->set)
1008 return -EACCES;
1009
1010 ret = mutex_lock_interruptible(&attr->mutex);
1011 if (ret)
1012 return ret;
1013
1014 ret = -EFAULT;
1015 size = min(sizeof(attr->set_buf) - 1, len);
1016 if (copy_from_user(attr->set_buf, buf, size))
1017 goto out;
1018
1019 attr->set_buf[size] = '\0';
1020 if (is_signed)
1021 ret = kstrtoll(attr->set_buf, 0, &val);
1022 else
1023 ret = kstrtoull(attr->set_buf, 0, &val);
1024 if (ret)
1025 goto out;
1026 ret = attr->set(attr->data, val);
1027 if (ret == 0)
1028 ret = len; /* on success, claim we got the whole input */
1029 out:
1030 mutex_unlock(&attr->mutex);
1031 return ret;
1032 }
1033
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1034 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1035 size_t len, loff_t *ppos)
1036 {
1037 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1038 }
1039 EXPORT_SYMBOL_GPL(simple_attr_write);
1040
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1041 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1042 size_t len, loff_t *ppos)
1043 {
1044 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1045 }
1046 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1047
1048 /**
1049 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1050 * @sb: filesystem to do the file handle conversion on
1051 * @fid: file handle to convert
1052 * @fh_len: length of the file handle in bytes
1053 * @fh_type: type of file handle
1054 * @get_inode: filesystem callback to retrieve inode
1055 *
1056 * This function decodes @fid as long as it has one of the well-known
1057 * Linux filehandle types and calls @get_inode on it to retrieve the
1058 * inode for the object specified in the file handle.
1059 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1060 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1061 int fh_len, int fh_type, struct inode *(*get_inode)
1062 (struct super_block *sb, u64 ino, u32 gen))
1063 {
1064 struct inode *inode = NULL;
1065
1066 if (fh_len < 2)
1067 return NULL;
1068
1069 switch (fh_type) {
1070 case FILEID_INO32_GEN:
1071 case FILEID_INO32_GEN_PARENT:
1072 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1073 break;
1074 }
1075
1076 return d_obtain_alias(inode);
1077 }
1078 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1079
1080 /**
1081 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1082 * @sb: filesystem to do the file handle conversion on
1083 * @fid: file handle to convert
1084 * @fh_len: length of the file handle in bytes
1085 * @fh_type: type of file handle
1086 * @get_inode: filesystem callback to retrieve inode
1087 *
1088 * This function decodes @fid as long as it has one of the well-known
1089 * Linux filehandle types and calls @get_inode on it to retrieve the
1090 * inode for the _parent_ object specified in the file handle if it
1091 * is specified in the file handle, or NULL otherwise.
1092 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1093 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1094 int fh_len, int fh_type, struct inode *(*get_inode)
1095 (struct super_block *sb, u64 ino, u32 gen))
1096 {
1097 struct inode *inode = NULL;
1098
1099 if (fh_len <= 2)
1100 return NULL;
1101
1102 switch (fh_type) {
1103 case FILEID_INO32_GEN_PARENT:
1104 inode = get_inode(sb, fid->i32.parent_ino,
1105 (fh_len > 3 ? fid->i32.parent_gen : 0));
1106 break;
1107 }
1108
1109 return d_obtain_alias(inode);
1110 }
1111 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1112
1113 /**
1114 * __generic_file_fsync - generic fsync implementation for simple filesystems
1115 *
1116 * @file: file to synchronize
1117 * @start: start offset in bytes
1118 * @end: end offset in bytes (inclusive)
1119 * @datasync: only synchronize essential metadata if true
1120 *
1121 * This is a generic implementation of the fsync method for simple
1122 * filesystems which track all non-inode metadata in the buffers list
1123 * hanging off the address_space structure.
1124 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1125 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1126 int datasync)
1127 {
1128 struct inode *inode = file->f_mapping->host;
1129 int err;
1130 int ret;
1131
1132 err = file_write_and_wait_range(file, start, end);
1133 if (err)
1134 return err;
1135
1136 inode_lock(inode);
1137 ret = sync_mapping_buffers(inode->i_mapping);
1138 if (!(inode->i_state & I_DIRTY_ALL))
1139 goto out;
1140 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1141 goto out;
1142
1143 err = sync_inode_metadata(inode, 1);
1144 if (ret == 0)
1145 ret = err;
1146
1147 out:
1148 inode_unlock(inode);
1149 /* check and advance again to catch errors after syncing out buffers */
1150 err = file_check_and_advance_wb_err(file);
1151 if (ret == 0)
1152 ret = err;
1153 return ret;
1154 }
1155 EXPORT_SYMBOL(__generic_file_fsync);
1156
1157 /**
1158 * generic_file_fsync - generic fsync implementation for simple filesystems
1159 * with flush
1160 * @file: file to synchronize
1161 * @start: start offset in bytes
1162 * @end: end offset in bytes (inclusive)
1163 * @datasync: only synchronize essential metadata if true
1164 *
1165 */
1166
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1167 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1168 int datasync)
1169 {
1170 struct inode *inode = file->f_mapping->host;
1171 int err;
1172
1173 err = __generic_file_fsync(file, start, end, datasync);
1174 if (err)
1175 return err;
1176 return blkdev_issue_flush(inode->i_sb->s_bdev);
1177 }
1178 EXPORT_SYMBOL(generic_file_fsync);
1179
1180 /**
1181 * generic_check_addressable - Check addressability of file system
1182 * @blocksize_bits: log of file system block size
1183 * @num_blocks: number of blocks in file system
1184 *
1185 * Determine whether a file system with @num_blocks blocks (and a
1186 * block size of 2**@blocksize_bits) is addressable by the sector_t
1187 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1188 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1189 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1190 {
1191 u64 last_fs_block = num_blocks - 1;
1192 u64 last_fs_page =
1193 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1194
1195 if (unlikely(num_blocks == 0))
1196 return 0;
1197
1198 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1199 return -EINVAL;
1200
1201 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1202 (last_fs_page > (pgoff_t)(~0ULL))) {
1203 return -EFBIG;
1204 }
1205 return 0;
1206 }
1207 EXPORT_SYMBOL(generic_check_addressable);
1208
1209 /*
1210 * No-op implementation of ->fsync for in-memory filesystems.
1211 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1212 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1213 {
1214 return 0;
1215 }
1216 EXPORT_SYMBOL(noop_fsync);
1217
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1218 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1219 {
1220 /*
1221 * iomap based filesystems support direct I/O without need for
1222 * this callback. However, it still needs to be set in
1223 * inode->a_ops so that open/fcntl know that direct I/O is
1224 * generally supported.
1225 */
1226 return -EINVAL;
1227 }
1228 EXPORT_SYMBOL_GPL(noop_direct_IO);
1229
1230 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1231 void kfree_link(void *p)
1232 {
1233 kfree(p);
1234 }
1235 EXPORT_SYMBOL(kfree_link);
1236
alloc_anon_inode(struct super_block * s)1237 struct inode *alloc_anon_inode(struct super_block *s)
1238 {
1239 static const struct address_space_operations anon_aops = {
1240 .dirty_folio = noop_dirty_folio,
1241 };
1242 struct inode *inode = new_inode_pseudo(s);
1243
1244 if (!inode)
1245 return ERR_PTR(-ENOMEM);
1246
1247 inode->i_ino = get_next_ino();
1248 inode->i_mapping->a_ops = &anon_aops;
1249
1250 /*
1251 * Mark the inode dirty from the very beginning,
1252 * that way it will never be moved to the dirty
1253 * list because mark_inode_dirty() will think
1254 * that it already _is_ on the dirty list.
1255 */
1256 inode->i_state = I_DIRTY;
1257 inode->i_mode = S_IRUSR | S_IWUSR;
1258 inode->i_uid = current_fsuid();
1259 inode->i_gid = current_fsgid();
1260 inode->i_flags |= S_PRIVATE;
1261 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1262 return inode;
1263 }
1264 EXPORT_SYMBOL(alloc_anon_inode);
1265
1266 /**
1267 * simple_nosetlease - generic helper for prohibiting leases
1268 * @filp: file pointer
1269 * @arg: type of lease to obtain
1270 * @flp: new lease supplied for insertion
1271 * @priv: private data for lm_setup operation
1272 *
1273 * Generic helper for filesystems that do not wish to allow leases to be set.
1274 * All arguments are ignored and it just returns -EINVAL.
1275 */
1276 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1277 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1278 void **priv)
1279 {
1280 return -EINVAL;
1281 }
1282 EXPORT_SYMBOL(simple_nosetlease);
1283
1284 /**
1285 * simple_get_link - generic helper to get the target of "fast" symlinks
1286 * @dentry: not used here
1287 * @inode: the symlink inode
1288 * @done: not used here
1289 *
1290 * Generic helper for filesystems to use for symlink inodes where a pointer to
1291 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1292 * since as an optimization the path lookup code uses any non-NULL ->i_link
1293 * directly, without calling ->get_link(). But ->get_link() still must be set,
1294 * to mark the inode_operations as being for a symlink.
1295 *
1296 * Return: the symlink target
1297 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1298 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1299 struct delayed_call *done)
1300 {
1301 return inode->i_link;
1302 }
1303 EXPORT_SYMBOL(simple_get_link);
1304
1305 const struct inode_operations simple_symlink_inode_operations = {
1306 .get_link = simple_get_link,
1307 };
1308 EXPORT_SYMBOL(simple_symlink_inode_operations);
1309
1310 /*
1311 * Operations for a permanently empty directory.
1312 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1313 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1314 {
1315 return ERR_PTR(-ENOENT);
1316 }
1317
empty_dir_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1318 static int empty_dir_getattr(struct mnt_idmap *idmap,
1319 const struct path *path, struct kstat *stat,
1320 u32 request_mask, unsigned int query_flags)
1321 {
1322 struct inode *inode = d_inode(path->dentry);
1323 generic_fillattr(&nop_mnt_idmap, inode, stat);
1324 return 0;
1325 }
1326
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1327 static int empty_dir_setattr(struct mnt_idmap *idmap,
1328 struct dentry *dentry, struct iattr *attr)
1329 {
1330 return -EPERM;
1331 }
1332
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1333 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1334 {
1335 return -EOPNOTSUPP;
1336 }
1337
1338 static const struct inode_operations empty_dir_inode_operations = {
1339 .lookup = empty_dir_lookup,
1340 .permission = generic_permission,
1341 .setattr = empty_dir_setattr,
1342 .getattr = empty_dir_getattr,
1343 .listxattr = empty_dir_listxattr,
1344 };
1345
empty_dir_llseek(struct file * file,loff_t offset,int whence)1346 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1347 {
1348 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1349 return generic_file_llseek_size(file, offset, whence, 2, 2);
1350 }
1351
empty_dir_readdir(struct file * file,struct dir_context * ctx)1352 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1353 {
1354 dir_emit_dots(file, ctx);
1355 return 0;
1356 }
1357
1358 static const struct file_operations empty_dir_operations = {
1359 .llseek = empty_dir_llseek,
1360 .read = generic_read_dir,
1361 .iterate_shared = empty_dir_readdir,
1362 .fsync = noop_fsync,
1363 };
1364
1365
make_empty_dir_inode(struct inode * inode)1366 void make_empty_dir_inode(struct inode *inode)
1367 {
1368 set_nlink(inode, 2);
1369 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1370 inode->i_uid = GLOBAL_ROOT_UID;
1371 inode->i_gid = GLOBAL_ROOT_GID;
1372 inode->i_rdev = 0;
1373 inode->i_size = 0;
1374 inode->i_blkbits = PAGE_SHIFT;
1375 inode->i_blocks = 0;
1376
1377 inode->i_op = &empty_dir_inode_operations;
1378 inode->i_opflags &= ~IOP_XATTR;
1379 inode->i_fop = &empty_dir_operations;
1380 }
1381
is_empty_dir_inode(struct inode * inode)1382 bool is_empty_dir_inode(struct inode *inode)
1383 {
1384 return (inode->i_fop == &empty_dir_operations) &&
1385 (inode->i_op == &empty_dir_inode_operations);
1386 }
1387
1388 #if IS_ENABLED(CONFIG_UNICODE)
1389 /*
1390 * Determine if the name of a dentry should be casefolded.
1391 *
1392 * Return: if names will need casefolding
1393 */
needs_casefold(const struct inode * dir)1394 static bool needs_casefold(const struct inode *dir)
1395 {
1396 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1397 }
1398
1399 /**
1400 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1401 * @dentry: dentry whose name we are checking against
1402 * @len: len of name of dentry
1403 * @str: str pointer to name of dentry
1404 * @name: Name to compare against
1405 *
1406 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1407 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1408 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1409 const char *str, const struct qstr *name)
1410 {
1411 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1412 const struct inode *dir = READ_ONCE(parent->d_inode);
1413 const struct super_block *sb = dentry->d_sb;
1414 const struct unicode_map *um = sb->s_encoding;
1415 struct qstr qstr = QSTR_INIT(str, len);
1416 char strbuf[DNAME_INLINE_LEN];
1417 int ret;
1418
1419 if (!dir || !needs_casefold(dir))
1420 goto fallback;
1421 /*
1422 * If the dentry name is stored in-line, then it may be concurrently
1423 * modified by a rename. If this happens, the VFS will eventually retry
1424 * the lookup, so it doesn't matter what ->d_compare() returns.
1425 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1426 * string. Therefore, we have to copy the name into a temporary buffer.
1427 */
1428 if (len <= DNAME_INLINE_LEN - 1) {
1429 memcpy(strbuf, str, len);
1430 strbuf[len] = 0;
1431 qstr.name = strbuf;
1432 /* prevent compiler from optimizing out the temporary buffer */
1433 barrier();
1434 }
1435 ret = utf8_strncasecmp(um, name, &qstr);
1436 if (ret >= 0)
1437 return ret;
1438
1439 if (sb_has_strict_encoding(sb))
1440 return -EINVAL;
1441 fallback:
1442 if (len != name->len)
1443 return 1;
1444 return !!memcmp(str, name->name, len);
1445 }
1446
1447 /**
1448 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1449 * @dentry: dentry of the parent directory
1450 * @str: qstr of name whose hash we should fill in
1451 *
1452 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1453 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1454 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1455 {
1456 const struct inode *dir = READ_ONCE(dentry->d_inode);
1457 struct super_block *sb = dentry->d_sb;
1458 const struct unicode_map *um = sb->s_encoding;
1459 int ret = 0;
1460
1461 if (!dir || !needs_casefold(dir))
1462 return 0;
1463
1464 ret = utf8_casefold_hash(um, dentry, str);
1465 if (ret < 0 && sb_has_strict_encoding(sb))
1466 return -EINVAL;
1467 return 0;
1468 }
1469
1470 static const struct dentry_operations generic_ci_dentry_ops = {
1471 .d_hash = generic_ci_d_hash,
1472 .d_compare = generic_ci_d_compare,
1473 };
1474 #endif
1475
1476 #ifdef CONFIG_FS_ENCRYPTION
1477 static const struct dentry_operations generic_encrypted_dentry_ops = {
1478 .d_revalidate = fscrypt_d_revalidate,
1479 };
1480 #endif
1481
1482 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1483 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1484 .d_hash = generic_ci_d_hash,
1485 .d_compare = generic_ci_d_compare,
1486 .d_revalidate = fscrypt_d_revalidate,
1487 };
1488 #endif
1489
1490 /**
1491 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1492 * @dentry: dentry to set ops on
1493 *
1494 * Casefolded directories need d_hash and d_compare set, so that the dentries
1495 * contained in them are handled case-insensitively. Note that these operations
1496 * are needed on the parent directory rather than on the dentries in it, and
1497 * while the casefolding flag can be toggled on and off on an empty directory,
1498 * dentry_operations can't be changed later. As a result, if the filesystem has
1499 * casefolding support enabled at all, we have to give all dentries the
1500 * casefolding operations even if their inode doesn't have the casefolding flag
1501 * currently (and thus the casefolding ops would be no-ops for now).
1502 *
1503 * Encryption works differently in that the only dentry operation it needs is
1504 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1505 * The no-key flag can't be set "later", so we don't have to worry about that.
1506 *
1507 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1508 * with certain dentry operations) and to avoid taking an unnecessary
1509 * performance hit, we use custom dentry_operations for each possible
1510 * combination rather than always installing all operations.
1511 */
generic_set_encrypted_ci_d_ops(struct dentry * dentry)1512 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1513 {
1514 #ifdef CONFIG_FS_ENCRYPTION
1515 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1516 #endif
1517 #if IS_ENABLED(CONFIG_UNICODE)
1518 bool needs_ci_ops = dentry->d_sb->s_encoding;
1519 #endif
1520 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1521 if (needs_encrypt_ops && needs_ci_ops) {
1522 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1523 return;
1524 }
1525 #endif
1526 #ifdef CONFIG_FS_ENCRYPTION
1527 if (needs_encrypt_ops) {
1528 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1529 return;
1530 }
1531 #endif
1532 #if IS_ENABLED(CONFIG_UNICODE)
1533 if (needs_ci_ops) {
1534 d_set_d_op(dentry, &generic_ci_dentry_ops);
1535 return;
1536 }
1537 #endif
1538 }
1539 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1540
1541 /**
1542 * inode_maybe_inc_iversion - increments i_version
1543 * @inode: inode with the i_version that should be updated
1544 * @force: increment the counter even if it's not necessary?
1545 *
1546 * Every time the inode is modified, the i_version field must be seen to have
1547 * changed by any observer.
1548 *
1549 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1550 * the value, and clear the queried flag.
1551 *
1552 * In the common case where neither is set, then we can return "false" without
1553 * updating i_version.
1554 *
1555 * If this function returns false, and no other metadata has changed, then we
1556 * can avoid logging the metadata.
1557 */
inode_maybe_inc_iversion(struct inode * inode,bool force)1558 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1559 {
1560 u64 cur, new;
1561
1562 /*
1563 * The i_version field is not strictly ordered with any other inode
1564 * information, but the legacy inode_inc_iversion code used a spinlock
1565 * to serialize increments.
1566 *
1567 * Here, we add full memory barriers to ensure that any de-facto
1568 * ordering with other info is preserved.
1569 *
1570 * This barrier pairs with the barrier in inode_query_iversion()
1571 */
1572 smp_mb();
1573 cur = inode_peek_iversion_raw(inode);
1574 do {
1575 /* If flag is clear then we needn't do anything */
1576 if (!force && !(cur & I_VERSION_QUERIED))
1577 return false;
1578
1579 /* Since lowest bit is flag, add 2 to avoid it */
1580 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1581 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1582 return true;
1583 }
1584 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1585
1586 /**
1587 * inode_query_iversion - read i_version for later use
1588 * @inode: inode from which i_version should be read
1589 *
1590 * Read the inode i_version counter. This should be used by callers that wish
1591 * to store the returned i_version for later comparison. This will guarantee
1592 * that a later query of the i_version will result in a different value if
1593 * anything has changed.
1594 *
1595 * In this implementation, we fetch the current value, set the QUERIED flag and
1596 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1597 * that fails, we try again with the newly fetched value from the cmpxchg.
1598 */
inode_query_iversion(struct inode * inode)1599 u64 inode_query_iversion(struct inode *inode)
1600 {
1601 u64 cur, new;
1602
1603 cur = inode_peek_iversion_raw(inode);
1604 do {
1605 /* If flag is already set, then no need to swap */
1606 if (cur & I_VERSION_QUERIED) {
1607 /*
1608 * This barrier (and the implicit barrier in the
1609 * cmpxchg below) pairs with the barrier in
1610 * inode_maybe_inc_iversion().
1611 */
1612 smp_mb();
1613 break;
1614 }
1615
1616 new = cur | I_VERSION_QUERIED;
1617 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1618 return cur >> I_VERSION_QUERIED_SHIFT;
1619 }
1620 EXPORT_SYMBOL(inode_query_iversion);
1621